472 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Scheduling with Bus Access Optimization for
Distributed Embedded Systems

Petru ElesMember, IEEEAlex Doboli, Student Member, IEEFPaul Pop, and Zebo Pengember, IEEE

Abstract—In this paper, we concentrate on aspects related to system-level synthesis process. Surveys on this topic can be
the synthesis of distributed embedded systems consisting of pro-found in [1]-[6].

grammable processors and application-specific hardware compo- . - L. .
nents. The approach is based on an abstract graph representation Animportant characteristic of an embedded systemiis its per

that captures, at process level, both dataflow and the flow of con- formance in terms of timing behavior. In this paper, we con-
trol. Our goal is to derive a worst case delay by which the system centrate on several aspects related to the synthesis of systems
completes execution, such that this delay is as small as possibleiconsisting of communicating processes, which are implemented
EO ge?_er?‘te a Iogicatlly an?(l :ﬁmpora”y d‘?te{_mi”ismi SChledU'ﬁ;t";‘]”? on multiple processors and dedicated hardware components. In
o optimize parameters of the communication protocol such tha : - ; ;
this Fc)JIeIay ispguaranteed. We have further invesqigated the impact such a system, in which severa! processes communicate with
of particular communication infrastructures and protocols on the ~€ach other and share resources like processors and buses, sched-
overall performance and, specially, how the requirements of such uling of processes and communications is a factor with a deci-

an infrastructure have to be considered for process and commu- sive influence on the performance of the system and on the way
nication scheduling. Not only do particularities of the underlying it meets its timing constraints. Thus, process scheduling has to

architecture have to be considered during scheduling but also the . .
parameters of the communication protocol should be adapted to fit be performed not only for the synthesis of the final system but

the particular embedded application. The optimization algorithm, ~@ls0 as part of the performance estimation task.
which implies both process scheduling and optimization of the pa- Optimal scheduling, in even simpler contexts than that pre-
rameters related to the communication protocol, generates an effi- sented above, has been proven to be an NP complete problem
cient bus access scheme as well as the schedule tables for activatiom Thus, it is essential to develop heuristics that produce good
of processes and communications. . ’ - .
o o quality results in a reasonable time. In our approach, we assume
Index Terms—Communication synthesis, distributed embedded that some processes can only be activated if certain conditions,
systems, process scheduling, real-time systems, system synthesigy, o ted by previously executed processes, are fulfilled [8]
time-triggered protocol. A . . ’
[9]. Thus, process scheduling is further complicated since at a
given activation of the system, only a certain subset of the total
I. INTRODUCTION amount of processes is executed, and this subset differs from
one activation to the other. This is an important contribution of
ur approach because we capture both the flow of data and that

Emerging designs are usually based on heterogeneous ar%?_ontrol at t.he proces;level,which allqwsgmore accurate and
tectures that integrate multipie programmable processors > modeling of a wide range of applications.
dedicated hardware components. New tools that extend desigfferformance estimation at the process level has been well
automation to system level have to support the integratétydied in the last years. Papers like [10]-{16] provide a good
design of both the hardware and software components of si@fkground for derivation of execution time (or worst case
systems. execution time) for a single process. Starting from estimated
During synthesis of an embedded system the designer mgﬁggcution times of single processes, performance estimation
the functionality captured by the input specification on differeft"d Scheduling of a system consisting of several processes can
architectures, trying to find the most cost-efficient solution thap€ Performed. Preemptive scheduling of independent processes
at the same time, meets the design requirements. This deé’iﬁw _stat|c prlqutles running on single-processor architectures
process implies the iterative execution of several allocatié}S its roots in [17]. The approach has been later extended
and partitioning steps before the hardware and software cof@-2ccommodate more general computational models and has
ponents of the final implementation are generated. The tef{§0 been applied to distributed systems [18]. The reader is

“hardware/software cosynthesis” is often used to denote tfiferred to [19] and [20] for surveys on this topic. In [21],
performance estimation is based on a preemptive scheduling

strategy with static priorities using rate monotonic analysis. In
Manuscript received August 15, 1999; revised February 18, 2000. [22], an earlier deadline first strategy is used for nonpreemptive

P. Eles, P. Pop, and Z. Pang are with the Department of Computer qé‘r@h : : : :
Information Science, Linkdping University, Sweden (e-mail: petel@ida.liu.sg; edu“ng of processes with pOSSIb|e data dEpendenCIeS'

paupo@ida.liu.se; zebpe@ida.liu.se). Preemptive and nonpreemptive static scheduling are combined

A. Doboli is with the Department of Electrical and Computer Engineeringn the cosynthesis environment described in [23] and [24].
and Computer Science, University of Cincinnati, Cincinnati, OH 45221 USA S | h h id d hard /
(e-mail: adoboli@ececs.uc.edu). everal research groups have considered hardware/software

Publisher Item Identifier S 1063-8210(00)09504-4. architectures consisting of a single programmable processor

ANY embedded systems have to fulfill strict require
ments in terms of performance and cost efficiency)

1063-8210/00$10.00 © 2000 IEEE

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 473

and an application-specific integrated circuit acting as a harshges, clock synchronization, etc. These aspects are, however,
ware coprocessor. Under these circumstances, deriving a statisential in the context of safety-critical distributed real-time
schedule for the software component is practically reducedapplications, and one of our objectives is to develop a strategy
the linearization of a dataflow graph with nodes representittigat takes them into consideration for process scheduling.
elementary operations or processes [25]. In the Vulcan systenMany efforts dedicated to communication synthesis have con-
[26], software is implemented as a set of linear threads thagntrated on the synthesis support for the communication infra-
are scheduled dynamically at execution. Linearization fatructure but without considering hard real-time constraints and
thread generation can be performed both by exact, exponengigdtem-level scheduling aspects [41]-[45].
complexity, algorithms and by faster urgency-based heuristics We have to mention here some results obtained in extending
Given an application specified as a collection of tasks, theal-time schedulability analysis so that network communica-
tool presented in [27] automatically generates a schedut@n aspects can be handled. In [46], for example, the CAN
consisting of two parts: a static scheduler that is implementpebtocol is investigated, while [47] considers systems based on
in hardware and a dynamic scheduler for the software tagkg asynchronous transfer mode (ATM) protocol. These works,
running on a microprocessor. however, are restricted to software systems implemented with
Static cyclic scheduling of a set of data-dependent softwapeiority-based preemptive scheduling.
processes on a multiprocessor architecture has been intensively the first part of this paper we consider a communication
researched [28]. Several approaches are based on list sceoddel based on simple bus sharing. There we concentrate on
uling heuristics using different priority criteria [29]-[32] orthe aspects of scheduling with data and control dependencies,
on branch-and-bound algorithms [33], [34]. In [35] and [36]and such a simpler communication model allows us to focus
static scheduling and partitioning of processes, and allocation these issues. However, one of the goals of this paper is to
of system components, are formulated as a mixed integer liné#hlight how communication and process scheduling strongly
programming (MILP) problem. A disadvantage of this apinteract with each other and how system-level optimization can
proach is the complexity of solving the MILP model. The sizenly be performed by taking into consideration both aspects.
of such a model grows quickly with the number of process@herefore, in the second part of this paper, we introduce a par-
and allocated resources. In [37], a formulation using constratidular communication model and execution environment. We
logic programming has been proposed for similar problems. take into consideration the overheads due to communications
Itis important to mention that in all the approaches discussaeld to the execution environment and consider the requirements
above, process interaction is only in terms of dataflow. This & the communication protocol during the scheduling process.
the case also in [38], where a two-level internal representatidoreover, our algorithm performs an optimization of param-
is introduced: control-dataflow graphs for operation-level repreters defining the communication protocol, which is essential
sentation and pure dataflow graphs for representation at prociesgeduction of the execution delay. Our system architecture is
level. The representation is used as a basis for derivation dndlt on a communication model that is based on the time-trig-
validation of internal timing constraints for real-time embeddegered protocol (TTP) [48]. TTP is well suited for safety-critical
systems. In [39] and [40], an internal design representationdistributed real-time control systems and represents one of the
presented that is able to capture mixed data/control flow speemerging standards for several application areas, such as auto-
fications. It combines dataflow properties with finite-state manotive electronics [28], [49].
chine behavior. The scheduling algorithm discussed in [39] han-This paper is divided as follows. In Section II, we formulate
dles a subset of the proposed representation. Timing aspegis basic assumptions and set the specific goals of this work.
are ignored and only software scheduling on a single procesSarction 1l defines the formal graph-based model, which is
system is considered. used for system representation, introduces the schedule table,
In our approach, we consider embedded systems specifiehad creates the background needed for presentation of our
interacting processes, which have been mapped on an archigeheduling technique. The scheduling algorithm for conditional
ture consisting of several programmable processors and dprbcess graphs is presented in Section IV. In Section V, we
icated hardware components interconnected by shared bugasoduce the hardware and software aspects of the TTP-based
Process interaction in our model is not only in terms of dataflogystem architecture. The mutual interaction between scheduling
but also captures the flow of control. Considering a nonpreemgnd the communication protocol as well as our strategy for
tive execution environment, we statically generate a schedgleheduling with optimization of the bus access scheme are
table and derive a guaranteed worst case delay. discussed in Section VI. Section VIl describes the experimental
Currently, more and more real-time systems are used in phgsaluation, and Section VIII presents our conclusions.
ically distributed environments and have to be implemented on
distributed architectures in order to meet reliability, functional,
and performance constraints. However, researchers have often
ignored or very much simplified aspects concerning the com-We consider a generic architecture consisting b-
munication infrastructure. One typical approach is to considgrammable processorsand application specifichardware
communication processes as processes with a given execufimtessors(ASICs) connected through severblises The
time (depending on the amount of information exchanged) ahdses can be shared by several communication channels con-
schedule them as any other process, without considering issnesting processes assigned to different processors. Only one
like communication protocol, bus arbitration, packaging of meprocess can be executed at a time by a programmable processor,

Il. PROBLEM FORMULATION

474 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

while a hardware processor can execute processes in paralsghrocess graphEach node’; € V represents one procedss
Processes on different processors can be executed in paradletl £~ are the sets of simple and conditional edges, respec-
Only one data transfer can be performed by a bus at a givdrely. Es N Ec = & andEs U Ec = E, wherekF is the set
moment. Data transfer on buses and computation can overlagf. all edges. An edge;; € £ from P; to P; indicates that the
Each process in the specification can be, potentially, assigraaput of 7; is the input ofP;. The graph is polar, which means
to several programmable or hardware processors, which #ratthere are two nodes, callgsourceandsink, that convention-
able to execute that process. For each process estimated albgrepresent the first and last task. These nodes are introduced
and execution time on each potential host processor are gisadummy processes, with zero execution time and no resources
[50]. We assume that the amount of data to be transferred duragsigned, so that all other nodes in the graph are successors of
communication between two processes has been determitieglsource and predecessors of the sink, respectively.
in advance. In [50], we presented algorithms for automatic A mapped process gragi(V'*, E%, E¢., M) is generated
hardware/software partitioning based on iterative improvemenom a process grapl&(V, Es, E¢) by inserting additional
heuristics. The problem we are discussing in this paper cqrocesses (communication processes) on certain edges and by
cerns performance estimatiofia given design alternativend mapping each process to a given processing element. The map-
scheduling of processes and communications. Thus, we assynimg of processeg; € V* to processors and buses is given by a
that each process has been assigned to a (programmabléunctionds: V* — PE, wherePE = {pe1, pea, ..., PeNpe}
hardware) processor and that each communication chanigthe set of processing elements = PPUH P U B, where
which connects processes assigned to different processdét®, is the set of programmable processdisl is the set of
has been assigned to a bus. Our goal is to derive a worst cdedicated hardware components, dhds the set of allocated
delay by which the system completes execution such that thigses. In certain contexts, we will call both programmable pro-
delay is as small as possible, to generate the static schedule@gbors and hardware components simply processors. For any
optimize parameters of the communication protocol, such thaocessP;, M (F;) is the processing element to whiéh is as-
this delay is guaranteed. signed for execution. In the rest of this paper, when we use the
For the beginning, we will consider an architecture based ¢erm conditional process grapfCPG), we consider a mapped
a communication infrastructure in which communication tasksocess graph as defined here.
are scheduled on buses similar to the way processes are schelBach procesd’;, assigned to a programmable or hardware
uled on programmable processors. The time needed for a giyencessorM (F;), is characterized by an execution time,.
communication is estimated depending on the parametersimthe CPG depicted in Fig. 15, and P, are the source and
the bus to which the respective communication channel is &k nodes, respectively. For the rest of 31 nodes, 17, denoted
signed and the number of transferred bits. Communication tink®, P, ..., Pi7, are ordinary processes specified by the
between processes assigned to the same processor is ignatesigner. They are assigned to one of the two programmable
Based on this architectural model we introduce our approachpmcessorge; and pes or to the hardware componepts.
process schedulinigp the context of both control and data de-The rest of 14 nodes are so-calledmmunication processes
pendencies (Pis, Pig, ..., P51). They are represented in Fig. 1 as solid
In the second part of the paper we introduce an architectucaicles and are introduced during the mapping process for each
model with a communication infrastructure suitable for safegonnection, which links processes assigned to different pro-
critical hard real-time systems. This allows us to further ircessors. These processes model interprocessor communication
vestigate the scheduling problem and to explore the impactanid their execution timg ; (wherel’; is the sender anéf; the
the communication infrastructure on the overall system perfaeceiver process) is equal to the corresponding communication
mance. The main goal is to determine the parameters of the cdime. All communications in Fig. 1 are performed on busAs
munication protocol so that the overall system performancedsscussed in the previous section, we treat, for the beginning,
optimized and, thus, the imposed time constraints can be satismmunication processes exactly as ordinary processes. Buses
fied. We show that system optimization and, in particular, scheare similar to programmable processors in the sense that only
uling cannot be efficiently performed without taking into conene communication can take place on a bus at a given moment.

sideration the underlying communication infrastructure. An edgee;; € E¢ is aconditional edggrepresented with
thick lines in Fig. 1) and has an associated condition value.
I1l. PRELIMINARIES Transmission on such an edge takes place only if the associated

condition value idrue and not, like on simple edges, for each
activation of the input proced3. In Fig. 1, processeBs, P,
We consider that an application specified as a set of intetnd P, have conditional edges at their output. ProcBssfor
acting processes is mapped to an abstract representation ex@mple, communicates alternatively wigh and Ps, or with
sisting of a directed acyclic polar gragh(V, Es, Ec) called Ps. ProcessP,,, if activated (which occurs only if conditioP
in P11 has valudrue), always communicates with; ¢ but alter-
natively with P4 or Py5, depending on the value of condition
1in some designs certain processes implemented on the same hardware fro-

cessor can share resources and, thus, cannot execute in parallel. This situatiape call a node with conditional edges at its outpdigjunc-
can easily be handled in our scheduling algorithm by considering such procecsises

in a similar way as those allocated to programmable processors. For simpli {9!’1 n_Ode(_and the corresponding progesﬂ;aunct!qn procegs
here we consider that processes allocated to ASICs do not share resourcesA disjunction process has one associated condition, the value of

A. The Conditional Process Graph

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 475

_ Py Execution time tp; for processes P
- S T T 13 tpgl 5 tpi 6 tpig 4
tpa: 4 tpy: - tpya: 6 tpy7: 2
tpy: 12 tpg: 4 tp3: 8
thy: 5 tpyl 5 tpygl 2
s 3 tpipi S tpysi 6

Execution time ti_d-_for communication
between P; and Pi
iy Lot 3

s 3 teg 332t 72
ol 20 toger 20 by

o2 tgigt 20 tps3

el a2

Process mapping
Processor pe;: Py, P, Py, Pg. Py, Py, Pi3
Processor pe;: Py, Ps, P7. Py, Py, Prs, Py
= p T Processor pes: Pg, Pis. Pig
P;v C ications are t i .
32 omimunications are mapped to a unique bus

Fig. 1. Conditional process graph with execution times and mapping.

which it computes. Alternative paths starting from a disjunén which a process is blocked even if its guard is true, because it
tion node, which correspond to complementary values of thits for a message from a process that will not be activated. If
condition, are disjoint, and they meet in a so-caltemjunc- P; is a conjunction node, predecessor noffesan be situated
tion node(with the corresponding process callednjunction on alternative paths corresponding to a condition.
proces$.2 In Fig. 1, circles representing conjunction and dis- The above execution semantics is that of a so-called single
junction nodes are depicted with thick borders. The alternativate system. It assumes that a node is executed at most once for
paths starting from disjunction nodé, which computes con- each activation of the system. If processes with different periods
dition C, meet in conjunction nodB,o. NodeP; 7 is the joining have to be handled, this can be solved by generating several
point for both the paths corresponding to conditigr(starting instances of the processes and building a CPG that corresponds
from disjunction node”;») and conditionD (starting from dis- to a set of processes as they occur within a time period that is
junction nodeP; ;). We assume that conditions are independeatjual to the least common multiple of the periods of the involved
and alternatives starting from different processes cannot dep@ndcesses.
on the same condition. As mentioned, we consider execution times of processes, as
A process that is not a conjunction process can be activatedll as the communication times, to be given. In the case of
only after all its inputs have arrived. A conjunction process cdrard real-time systems this will, typically, be worst case execu-
be activated after messages coming on one of the alternatiom times, and their estimation has been extensively discussed
paths have arrived. All processes issue their outputs when theyhe literature [13], [14]. For many applications, actual execu-
terminate. In Fig. 1, proced% can be activated after it receivegion times of processes are depending on the current data and/or
messages sent ki, and Ps; processP;o waits for messages the internal state of the system. By explicitly capturing the con-
sent by P;, Ps, and Py or by P; and P. If we consider the trol flow in our model, we allow for a more fine-tuned modeling
activation time of the source process as a reference, the activad a tighter (less pessimistic) assignment of worst case execu-
tion time of the sink process is the delay of the system at a cépn times to processes, compared to traditional dataflow-based
tain execution. This delay has to be, in the worst case, smalgproaches.
than a certain imposed deadline. Release times of some pro-
cesses as well as multiple deadlines can be easily modeled byBn-The Schedule Table
serting dummy nodes between certain processes and the sourggyr 3 given execution of the system, that subset of the pro-
or the sink node, respectively. These dummy nodes represggises is activated that corresponds to the actual track followed
processes with a certain execution time but that are not allocagebugh the CPG. The actual track taken depends on the value of
to any processing element. certain conditions. For each individual track there exists an op-
A Boolean expressioXp;, called aguard, can be associ- timal schedule of the processes that produces a minimal delay.
ated to each nod#; in the graph. It represents the necessalyet us consider the CPG in Fig. 1. If all three conditigisD,
conditions for the respective process to be activated. In Fig.ghdx are true, the optimal schedule requifsto be activated
for example, Xp3 = true, Xp1y = DA K, Xpi17 = true, attimet = 0 on processope; and processopes to be kept
and Xp; = C. Xp; is not only necessary but also sufficientdle until t = 4, in order to activateP; as soon as possible
for processt; to be activated during a given system executioflsee Fig. 2(a)]. However, i€ and D are true butk is false,
Thus, two nodeg’; and P’;, whereP’; is not a conjunction node, the optimal schedule requires starting béthon pe; and Pr
are connected by an edgg only if Xp; = Xp; (Which means on e, att = 0; P; will be activated in this case at= 6, after
thatXPi istrue WheneVeXPj is true). This avoids SpeCificationSPH has terminated and7 thq&b becomes free [See F|g Z(b)]

_ o _ . .. This example reveals one of the difficulties when generating a
2If no process is specified on an alternative path, itis modeled by a conditional

edge from the disjunction to the corresponding conjunction node (a commuﬁf-:hedu'e fora SySFem like thatin Flg 1.Asthe \{alues ofthe con-
cation process may be inserted on this edge at mapping). ditions are unpredictable, the decision of on which process to ac-

476 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

. 01 2 32 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Time T S (S U SO VO A A S PN B Lo R S Y |

Processor pe, REXANSNYY T e

Processor pe,

Processor pe;
(hardware)

Bus pey
a) Optimal schedule of the track DACAK

Processorpe, KOUONNYANNY [» | /77

Processor pe, i X —13

Processor pe;
(hardware)

Bus pey

b) Optimal schedule of the track DACAK

Fig. 2. Optimal schedules for two tracks extracted from the CPG in Fig. 1.

tivate onpes and at which time has to be taken without knowing = 1, 2, ..., N,. For each subgraph, there is an associated
which values the conditions will later get. On the other side, kigical expressiorl;, (the label of the track) that represents
a certain moment during execution, when the values of sorie necessary conditions for that subgraph to be executed. The
conditions are already known, they have to be used in ordarbgrapiy;, contains those nodd$ of the conditional process
to take the best possible decisions on when and which procgsaphl’, for which L;, = Xp; (Xp; is the guard of node’;
to activate. Heuristic algorithms have to be developed to prand has to be true whenevgy, is true). For the CPG in Fig. 1,
duce a schedule of processes such that the worst case delayvgeabkave six subgraphs (alternative tracks) corresponding to the
small as possible. The output of such an algorithm is a so-calliedlowing labels:CADAK, CADAK,CAD, CADAK,
schedule tableln this table, there is one row for each ordinaryy A D A K, andC A D.
or communication process, which contains activation times for If at activation of the system all the condition valwesuld be
that process corresponding to different values of the conditiot®own in advance, the processesild beexecuted according to
Each column in the table is headed by a logical expression cdine (near) optimal schedule of the corresponding subgfaph
structed as a conjunction of condition values. Activation timdgnder these circumstances, the worst case dglaywould be
in a given column represent starting times of the processes when
the respective expression is true. bmax = nm
Table I shows a possible schedule table corresponding to {hg,
system depicted in Fig. 1. According to this schedule processes
P, P, P; as well as the communication procd3ds are ac- Sy = max{&, k=1,2, ..., Na}
tivated unconditionally at the times given in the first column of))
the table. No condition value has yet been determined to sel¥&}€red. is the delay corresponding to subgra@h.
between alternative schedules. ProcBss on the other hand, _HOwever, this is not the case, as we do not assume any pre-
has to be activated at= 24 if D A C A K — true andt — 18 diction of the condition values at the start of the system. Thus,
if DA CAK = true. To determine the worst case defy,,, Whatwe can say is only thaté,ax > 6.
we have to observe the rows corresponding to proce3send A schedu_llng heuristic has _to p_ro_du_ce a sc_hedule table for
Pio? Smae = max{35 + t10, 30 + 17} = 40. which the dlff_erencéma}? __61_” is minimized. ThIS means that
The schedule table contains all information needed by a df3€ Perturbation of the individual schedules, introduced by the
tributed run-time scheduler to take decisions on activation gct that the actual track is not known in advance, should be as
processes. We consider that, during execution, a very simplga!l @s possible.
schedule_r chated on _each processor decides on process @.n%onditions, Guards, and Influences
communication activation depending on actual values of con- o i))
ditions. Once activated, a process executes until it completesYVe first introduce some notations. # is a logical expres-
Only one part of the table has to be stored on each proces§#fn. We use the notationt’/ to denote the set of conditions
namely, the part concerning decisions that are taken by the cé$ed inE. Thus,/CADAK/ = /CADANK /[={C, D, K};
responding scheduler. [true/ = [false/ = &. Similarly, if M is a set of condi-
Our goal is to derive a minimal worst case delay and f¢°n values,/M/ is the set of conditions used /. For ex-
generate the corresponding schedule table given a conditioR@Ple, ifA = {C, D, K}, then/M/ = {C, D, K}. Fora
process graph'(V*, E%, EX., M) and estimated worst caseSetM of condition values, we denote withi/ the logical ex-
execution times for each proceBs e V*. pression consisting of the conjunction of that values\if=
At a certain execution of the system, one of they, 1C: D, K} thenAM = CADAK.
alternative tracks through the CPG will be executed. Eachsqy s formula to be rigorously corredt, has to be the maximum of the
alternative track corresponds to one subgra@h ¢ I, optimal delays for each subgraph.

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 477

TABLE |
SCHEDULE TABLE CORRESPONDING TO THECPG $HOWN IN FIG. 1

true D DAC | DACAK | DACAK | DAC | DACAK | DACAK D DAC | DAC
' 7
P, 3
P, 5 5
P, 7 7
Py IS 8 13
P, 3T 30 70
P, 71 31 3
P, 35 73 35
P, %6 35 35
P 35 34 27 26 34 26
Py 5 5
P 10 3
P I3 37
Ps 19 Y
P, 5 15 15 I3
J 25 24 30 26 24 24
P]g (1 —)3) 3
Py (3—10) 21 20 21 20 20 20
B, (356) 9 3 3
Pyy (4—7) 12 13
B2 (658 36 %5 35
Py (7—10) 25 24 24
Pos (§8—10) 33 32 32
By (1T513) g T
By, (11512) g g
Pog (12—14) 16 16
Pyg (12—-15) 16 16
Py (1I3517)))
) 33) 73)
D 6
C 7 7
K 15 15

Activation times in the schedule table are such that a process R4) Activation of a proces$’; at a certain timeg has to
is started only after its predecessors, corresponding to the ac- depend only on condition values that are determined at
tually executed track, have terminated. This is a direct conse- the respective momenand are known to the processor
quence of the dataflow dependencies as captured in the CPG that takes the decision df} to be executed.
model. However, in the context of the CPG semantics, there areThe correct behavior, according to the semantics associated to
more subtle requirements that the schedule table has to fulfilldonditions, is guaranteed by requirements R1 and R2. R3 guar-
order to produce a deterministic behavior that is correct for agytees the functionality as a single rate system. Requirement R4
combination of condition values. states that decisions at any location of the distributed system are

R1)

R2)

R3)

If for a certain execution of the system the guafgl based on information available at the particular location and at
becomes true, theR; has to be activated during thatthe given time.

execution. A scheduling algorithm has to traverse, in one way or another,
If for a certain process;, with guardXp;, there exists all the alternative tracks in the CPG and to place activation times
an activation time in the column headed by the logic@f processes and the corresponding logical expressions into the
expressionky, then £, = Xp;; this means that no schedule table. For a given execution track, labdlgdand a
process will be activated if the conditions required foprocessP; that is included in that track, one single activation
its execution are not fulfilled. time 75* has to be placed into the table (see R3 above); the
Activation times and the corresponding logical expregorresponding column will be headed by an expresgioive
sions have to be determined so thata processis activaég§ that/ £/ is the set of conditions used for scheduliRg It

not more then one single time. for a giV(_en execution Q& obvious tha/ £/ C /L;/ andL = E.

the system. Thus, if for a certain execution aprodess whjch conditionsinsetE/ are tobe usedfor scheduling acer-

is scheduled to be executedmt’ (placed in column tain process? This is a question to be answered by the scheduling
headed by¥;), there is no other execution timg* # algorithm. A straightforward answer would be: those conditions
Tf::j for P; (placed in column headed liy,) so thatF,, that determine if the process has to be activated or that have an
becomes true during the same execution. influence on the moment when this activation has to occur.

478 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

7Py \/Pl;(
a b

Process mapping to processors is illustrated by shading; all processors are programmable.

Fig. 3. Examples of conditional process graphs.

In the following section, we will give a more exact answer tthere is a conflict for the processdf; is scheduled first and,
the question above. As a prerequisite, we definegiinerd set with decreasing priorityFs, P11, and P». Concerning execu-
G Sp; andinfluence sef Sp; of a process;. tion times, we assumép; < tps + tg10 < tpi + tpa,

Theguard set7Sp; of a procesg’; is the set of conditions that ¢ pg+ts 10+t p1o+t10,11 < tps+te < tpi+tpatitpiottior.
decide whether or not the process is activated during a certhinder these circumstances(if= true, thenP;; is ready when
execution of the systen® Sp; = / Xp;/, whereXp; is the guard the processor is released By, and thus will be scheduled be-

of processP;. In Fig. 1, for_exampIeXp3 = true, Xp1y = fore P,; we havefrg2 = tps +tpg + tp11. FOrC =false, Py
DAK,andXp15; = D A K; thus,GSp3 = &, GSp14 = is delayed because of the earlier activatiodpf which means
GSp1s =1{D, K}. that P, will not be ready whenP, has finished; thuspP; is

However, not only the conditions in the guard set have an ieheduled befor®;; andr§, = tpg + tpy. In this case, the in-
pact on the execution of a process. There are other conditidluence ofC on P, has been induced by resource sharing from
that do not decide if a process has or does not have to be agtir, which is influenced from its predecessbyy.
vated during a given execution, but that influence the momentwe can observe from the examples above that the influence
when the process is scheduled to start. In Fig. 3(a), for exampdéa certain condition on a process can only be determined dy-
GSpy = J; processhy is executed regardless of whetlt@is namically, during the scheduling process. A particular sched-
true or false. However, the activation time Bf depends on the uling policy, priorities, and execution times all have an impact
value of conditionC: P, will be activated at 5, = tp1 +¢p2, onwhether at a certain moment the scheduling of a process is in-
if C = true, and atrs, = tp; + tp3, if C =false. As a conse- fluenced or not by a condition. In Fig. 3(c), for example, sched-
guence, the activation time &% is also dependent on the valuauling of 2 is influenced byC only because the scheduler has
of C. We say that botlP, and P5 are influenced by”, and this considereds with a higher priority, and this is also whys is
influence is induced to them (from their predecessors) by suwt influenced byC.
cession in the CPG. The set of conditions to be used for scheduling a certain

However, not only by succession can the influence of a coprocessF, at a momentt consists of the guard se¥Sp;
dition be induced to a process. This is illustrated in Fig. 3(b}orresponding to that process and of all the other conditions
where we assume that each communication is mapped to a thst influence the activation aF;. An efficient heuristic has
tinct bus and thatp; < tp2 +t25 < tp1 + tps. ForC = to be developed for the scheduler in order to determine these
true, we haverss = max(tp> + t25,tp1) = tp2 + t25. FOr conditions so that a correct and close to optimal schedule
C =false, P, becomes ready and will be scheduled befBse table is produced. In order to solve this problem, we define
thus,75; = max(tps +t2 5,¢tp1 +tpa) = tp1 +tps. The ac- the influence set/Sp; corresponding to a proceds. It is
tivation time of P5 depends on conditiof?, because’s shares important to notice that this set of conditions can be determined
the same programmable processor withand the activation statically for a given CPG, and it consists of all conditions that
of P, is conditioned byC. In this case, the influence of con-are not part of the guard set but potentially could influence the
dition C is induced onPs from P, by resource sharing. This scheduling of process;.
influence is then further induced frof, by succession, to the A conditionC'is in theinfluence sef Sp; of a process’; if
communication process betweé&p and P> and toP-. P, and C is not in the guard seSp; of F; and if the influence of”
the communicatio®, to P; as well asP; are not influenced by can be induced t&’; by successiowr by resource sharing
C. The influence of conditior”' can be induced to a process

Fig. 3(c) illustrates a more complex situation. We assunig by successiornf £; is a successor of a proces$ and the
that communications are mapped to distinct buses and thatfoifowing condition is satisfiedC ¢ 1.5p; or C € GSp;.

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 479

The influence of conditiorC' can be induced to a process | st schedule ()
F; by resource sharingf all the following three conditions are for each processing element pe;, i=1.2, .. N,,. do

satisfied. freep,=0
1) P; is mapped on a programmable processor or a bus. end for;
2) P, is neither the process that computes conditibnor a schedule Py at =0; initialize ready process list Ls_Ready
predecessor of that process. with direct successors of Py; -- Py is the source node
3) There exists a procesy mapped to the same resource as ~ While Ls_Ready is not empty do
P, and: p=Head(Ls_Ready),
if M(p)e HP then -- hardware supports several

a) P; is neither a predecessor nor a successda; pf :
schedule p at t=p.1,,,4, -- processes at a time;

b) Ce ISPJ' orC € GSPJ'. else
In Fig. 3(b), for example]Sps; = ISps = 1Sp7r =157 = p=Select(Ls_Ready, M(p));
{C}. For the other processes, the influence set is vBidcan schedule p at ==max(p.tyeudy: freeppy);
be influenced by resource sharing and the other processes en dfzf,eMm):’”p
succession. In Fig. 3(c), the influence@fcan be induced by delete}) from Ls_Ready:
succession t@; and by resource sharing f& and . This is Ls_Ready = Ls_Ready'+ processes which become
then transferred by successionftp, P;; and to the communi- ready after p is executed

cation processes preceding them. The influence can be induc ~ end while
by resource sharing tB,, Ps, andP, and then by successionto €"d Listschedule;
the communications following» and Ps. For both examples, _
we considered that communications do not share any bus. Ifi
Fig. 3(b) we consider that all communications are mapped to the
same bus, thehS, ; = {C'}, as a result of resource sharing. time units after initiation of the broadcast. For the example given
In the next section we will see how the influence setis utilizeid Table I, communication time for condition values has been
by a particular scheduling algorithm in order to determine thmnsidered, = 1. In Table I, the last three rows indicate the
actual set of conditions used for scheduling a process. schedule for communication of the values of conditiéhsD,
The activation of a proced3 at a certain momeritdepends and K.
on the conditions specified in the expression heading the re-
spective column of the schedule table (the conditions used to |\, ScCHEDULING OF CONDITIONAL PROCESSGRAPHS
scheduleF;). According to requirement R4, the values of all
these conditions have to be determined at the respective rﬁo—

H. 4. Basic list scheduling algorithm.

The Scheduling Algorithm

mentt and have to be known to the proceseii?’;). Q(FP;) = Our algorithm for scheduling of conditional process graphs
M(P;), the processor that executBs if P; is not a communi- relies on a list scheduling heuristic. List scheduling heuristics
cation process. IP’; is a communication process, ther;) = [29] are based on ordered lists from which processes are ex-
M(P;), whereP; is the process that initiates the communicdvacted to be scheduled at certain moments. In the algorithm
tion. presented in Fig. 4 we have such a lisg_Ready, in which

The value of a condition is determined at the momemt processes are placed in increasing order of the time when they
which the corresponding disjunction process terminates. Tigcome ready for execution (this time is stored as an attribute
means that at any moment > 7, the value of the condition is p.t:ady Of €ach process in the list, and is the moment when
available for scheduling decisions on the processor that has exéthe predecessors pfhave terminated). Ip is mapped to a
cuted the corresponding disjunction process. However, in ord@rdware processor, it is scheduled, without any restriction, at
to be available on any other processor, the value has to arrivéhg moment when it is ready. On a programmable processor or
that processor. The scheduling algorithm has to consider bbtis, however, a new procegsan be scheduled only after the
the time and the resource (bus) needed for this communicatiegspective processing elemedtp) becomes free [freg,, in-
Transmissions of condition values are scheduled as commuticates this moment]. There can be several processes mapped
cations on buses. These communication processes are not @&pd (p), so that, at a given momentteaqy < freey . All
resented in the CPG and are the only activities that areanoof them will be ready when processing elemé#tp) becomes
priori mapped to a specific resource (bus). A condition commiree. From these processes, funct®elecwill pick out the one
nication will be mapped as part of the scheduling process tdhat has the highest priority assigned to it, in order to be sched-
bus. For broadcasting of condition values, only buses are ceted. This priority function is one of the essential features that
sidered to which all processors are connected, and we assulifferentiate various list scheduling approaches. We will later
that at least one such bus existEhe timer, needed for such a discuss the particular priority function used by our algorithm.
communication is the same for all conditions and depends on thé' he algorithm presented in Fig. 4 is able to schedule, based
features of the employed buses. The transmitted condition vafiie & certain priority function, process graphs without condi-
is available for scheduling decisions on all other processprstional control dependencies. In Fig. 5, we show the algorithm

4This assumption is made for simplification of the further discussion. If nfor schedu_lmg of cont_jltlonal prqcess g_raphs. Itis based on the

‘ Qfggeral principles of list scheduling, using the list Ready to

bus is connected to all processors, communication tasks have to be sched :
on several buses according to the actual interconnection topology. store processes ordered by the time when they become ready

480 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

List_schedule_CPG (Ls_Ready, free
p=empty_process:
while Ls_Ready is not empty and p is not a disjunction process do
p=Head(Ls_Ready),

pei i=1... Npe, Cond_Set)

if M(p)e HP then -- hardware processors support several processes at a time;
=p.r reudy)
else -- programmable processors and buses support one process at a time

p=Select(Ls_Ready, M(p));
T=max(/’-[reud\" freeM(]’))

end if;

Z={c | ce Cond_Set and ¢.1,,,,<T}; -- set of condition values computed at T
CS={c|ceZand (/{c}/ c GSp or/{c}/ cISy)}; -- set of condition values used to schedule p
Exp =vCS; -- the logical expression used to schedule p

0 = maximum among c.t,,,, where ce CS and ¢ is computed on a processor different from Q(p);
-- this is the earliest time when all condition values needed to schedule p are known on processor Q(p)

schedule p at r=max(t, 0), controlled by expression Exp;
freeM(m:th;
delete p from Ls_Ready;
if p is not a disjunction process then
Ls_Ready = Ls_Ready + processes which become ready after p is executed

end if

end while

if p is a disjunction process then -- we consider that C is the condition computed by p
Cilpomp=t+iy: ‘ .
Schedule the communication of the condition value and fix C.t,,, accordingly;
Ls_Ready_true = Ls_Ready + processes on the true alternative, which become ready after p is executed;
List_schedule_CPG(Ls_Ready_true, free,o|i=1... Np,,, Cond_Set {C});
Ls_Ready_false = Ls_Ready + processes on the false alternative, which become ready after p is executed;
List_schedule_CPG(Ls_Read)'jalse,freepe,~|i:l... Npe» Cond_Set w {C}):

end List_schedule_CPG;

Fig. 5. List scheduling of conditional process graphs.

for execution.Cond_Set is the set of those condition values
for which the corresponding disjunction process (which con
putes the value) has been already scheduled. Each condi

Alternative tracks through

the CPG in Fig. 1

valuec € Cond_Set has two attributes attacheglt o, is the %22/\}(
moment when the value has been computed (the disjunctior DACAK
process has terminated) and,.. is the time when: is avail- truece— DACTAK
able on processors different from the one that executes the « gig’\'{

junction process. The recursive procedl¥gt_schedule_ CPG
traverses the CPG analyzing each possible alternative track .
considering for each track only the processes executed for the
spective condition values. The algorithm, thus, proceeds alony

a binary decision tree corresponding to the alternative tracksy. 6. The decision tree explored at generation of the schedule table for the
which is explored in depth first order. CPG in Fig. 1.

Fig. 6 shows the decision tree explored during generation
of Table | for the CPG in Fig. 1. The nodes of the tree corredternative, and scheduling is continued with the condition set
spond to the states reached during scheduling when a disjuiend_Sct U {C}.
tion process has been scheduled and the algorithm branches faret us suppose that a proceBshas become ready and has
the alternative condition values. Whenever a proéé$ms been been added to the lisks_Ready before the branching for a
scheduled, it is eliminated from the ready Ifst_Ready, and certain conditionZ. If the process is scheduled before the
all processes that become ready aftehas been executed arebranching, it will be eliminated fronks_Ready and, thus, not
added tolLs_Ready. If, however, P; is a disjunction process handled any more during further exploration of the tree below
computing conditiorC, the two possible alternatives are hanthat branching point. This scheduling decision is the one and
dled separately. First, the processes are addéd tBeady that only decision valid forP; on all tracks including that point.
become ready on the true alternative, and scheduling is cdih-"; has not been scheduled before branchingZgrit will
tinued with the condition s&tond_SetU{C}. Then, those pro- be inherited byLs_Ready on both branches (these branches
cesses are added Is_Ready that become ready on the falseébelong to different execution tracks through the CPG) and

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION

will be eventually scheduled on both of them. There are two
important conclusions to be drawn here.

1) If a process becomes ready on a certain execution track
through the CPG, it will be scheduled for activation on
that track. By this, requirement R1 is satisfied.

2) During exploration of a certain execution track, a given
process that has to be activated on that track is considered
one single time for scheduling.

We will now discuss three additional aspects concerning the
scheduling algorithm in Fig. 5: the set of conditions used to
schedule a certain process, the communication of condition
values, and the priority assignment.

B. Conditions Used for Process Scheduling

When a process is ready to be scheduled at a momehe
set of conditions to be used to schedule it has to be determined:

A condition C will be used at moment for scheduling a
processP; if C'is a member of the guard set or of the influence
set of P; and, according to the current schedule, the valu€ of
has already been computed at time

There are several aspects to be discussed in the context of this
rule.

1) Asdiscussedin Section lll, the influence $8%; consists
of all conditions, except those in the guard set, wigoh
tentially could havean influence on the execution &f.

481

from the influence set oF;; we know thatl;, = Y and

Ly = Y’ Letus considefy, I, ..., Iy, the conditions
that appear both iy, and inL,, but with complementary
values. If we take, for example, the tracks labeled
CAK andD A C A K in Fig. 6, thenl; is C and I,

is K. For any pair of tracks there has to be at least one
such condition (the one on which the two tracks branch).
If none of the conditiondy, ..., Iy is a member of the
influence set of?;, thenP; is scheduled at identical times
on the two tracks (there is no influence on the process
from any condition which differentiates the tracks) and,
thus, there is no conflictrs” = 5).

Let us suppose thdt is a member of the influence set
of P;. If P, is considered for scheduling before the algo-
rithm has branched on conditiai, then the respective
scheduling time is the only one for both tradks and.,

(see previous subsection) and there is no conflict.

If P; is considered for scheduling after the algorithm
has branched on conditidp, but beforel; .t..i., we have
r}? = 7§ and, thus, no conflict (beforf .¢cai., which
means that before the disjunction process has terminated
and; has been computed, the two branches act identi-
cally). If P; is scheduled aftef; ..., thenl; will be used
to schedule?; on both track4l, € /E/andl, € /E'/)
but with complementary values. Consequenihand £’
cannot both become true during the same execution.

The above rule selects from the influence set those cqn- communication of Condition Values

ditions thatactually havean influence on the execution

of P;, considering the actual track that is scheduled andIn Section IlI-C, we have shown that the values of all condi-
the particular moment. Those conditions are eliminatedtions needed to schedule a certain prodéssave to be known
that have not been computed at momenaccording to 0N processo)(F;) at the activation moment of that process. In
the current schedule, and, thus, are excluded to have dmg. 5, we have used to denote the earliest moment when all
influence (by sharing or succession) on the scheduling fese conditions are available, and proc@ssill not be sched-

P, in the current context.
2)

uled befored. Hence, correctness requirement R4 is also satis-
Every conditionC' that is a member of the guard set of died by the algorithm in Fig. 5.

3)

Transmission of a value for conditi@riis scheduled as soon

requirement R2 is satisfied. as possible on the first bus that becomes available after termi-
We use the notatioafor the value of conditior® cor- nation of the disjunction process that computesit the same

responding to the current track! is a member of the time, the moment when the respective value becomes available

guard set of?;, which means that it is computed by a preon processors different from the one running the disjunction

decessor of’;. Thus,c € Cond_Set andc.teomp < 7 Process has to be determinétit,,, = t+79, wheret is the time

(any predecessor df; has been scheduled and has teft which transmission of the condition value has been sched-

minated before?; becomes ready). Consequentlys Z uled. We mention that communication of a condition value will

and alsoc € CS (Fig. 5), which means thaf’ will be only be scheduled if there exists at least one pro¢gsso that

used for scheduling’;. C € GS,; or C € 1S,;, andQ(F;) is different from the pro-

Consider a procesB; with guard Xp;. For a given ex- Cessor running the disjunction process.

ecution track, labeled, (L, = Xpi), P, is scheduled

atT{;:, conditioned b_y expressiaf. Let us suppose that Priority Assignment

the same procesB; is scheduled also on another track,

labeledL (L, = Xp;i) atv{{' # 75 , conditioned by ex- In this section, we first introduce the priority function used

pressionE’. We have shown in the previous subsectiohy our list scheduling algorithm and then show how priorities

that P, is scheduled one single time for a given executioare assigned in the particular context of a CPG.

track. In order to prove that requirement R3 is satisfied, List scheduling algorithms rely on priorities in order to solve

we have to show that during execution of neither of theonflicts between several processes that are ready to be exe-

two tracks can both expressioAsand £/ become true. cuted on the same programmable processor or bus. Such pri-
We havell = Xp; AY and E = Xp; A Y/, where orities very often are based on the critical path (CP) from the

Y andY”’ are conjunctions of condition values selectetespective process to the sink node. In this case (we call it CP

processP; (C € GSp;) is used to schedul®,. By this,

482 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

scheduling), the priority assigned to a procéjswill be the = ®; -
maximal total execution time on a path from the current node to oy @
the sink t Y 5 [
A . B
lpl—max Z tpj L®\\\ 5 ///
" picma \(5\@/3;/

wherer is thekth path from nodeP; to the sink node. i o)
Considering the concrete definition of our problem, signifi-'d- /- Delay estimation for PCP scheduling.
cant improvements of the resulting schedule can be obtained,
without any penalty in scheduling time, by making use of thgB,s and PCP-based list scheduling from the lengths of the op-
available information on process mapping. timal schedules. The optimal schedules were produced running
Let us consider the graph in Fig. 7 and suppose that the lgbranch-and-bound based algorithm. The average deviation for
scheduling algorithm has to decide between scheduling procafigyraphs is 4.73% with UB, 4.69% with CP, and 2.35%, two
P4 or Pg, which are both ready to be scheduled on the sartimes smaller, with PCP. Further details concerning the PCP
programmable processor or bus. In Fig. 7, we have depicted policy and its experimental evaluation can be found in [33].
only the critical path fromP4 and P to the sink node. Letus How is a PCP priority assignment applied to conditional
consider thai’x is the last successor #f4 on the critical path process graphs? The problem is that in a CPG a process
such that all processes froR)y to Py are assigned to the samepotentially belongs to several tracks, and relative to each of
processing elemempk;. The same holds faFy- relative toPg. these tracks it has a different PCP priority. Thus, a process is
t4 andty are the total execution time of the chain of processedaracterized not by a single priority but by a set of priorities,
from P4 to Px and fromP5 to Py, respectively, following the one for each track to which the process belorfgs.in Fig. 1,
critical paths.A,4 andAp are the total execution times of thefor example, has priority 14 corresponding to all tracks that
processes on the rest of the two critical paths. Thus, we havémply condition value D, priority 15 corresponding to the
tracks that implyD A K, and 18 for those implyind A K.
Ipa=ta+Aa and Ilpg =tp+ Ag. When a certain process is considered for scheduling, the
) N scheduler does not know the particular track to be followed,
However, we will not use the length of these critical pathgng thus it is not obvious which priority to use for the given
as apriority. Our policy, called partial critical path schedulingprocessl We have used a very simple and efficient heuristic for
(PCP), is based on the estimation of a lower bolirh the total priority assignment to processes in a CPG: for each praess
delay, taking into consideration that the two chains of processggt PCP priority is considered that corresponds to the most
P4 — Px andPp — Py are executed on the same processQ¥itical track to whichP; belongs. This means that, gets
Lpa andLpp are the lower bounds iP4 and Pg, respectively, the maximal priority among those assigned for each particular
are scheduled first track. In the case aP; (Fig. 1), the chosen priority will be 18.
From a practical point of view, the above heuristic means that
priorities are assigned to processes by simply applying PCP pri-
T_current+ta+tp+ Ap) ority assignment to the simple (unconditional) process graph
Lpp = max(T_current +tg + Ap, that is obtained from the CPG by ignoring conditional depen-
dencies and considering conditional edges as simple edges.
By this priority assignment policy, we try to enforce sched-

We select the alternative that offers the perspective of tHJfS so that the execution of longer tracks is as similar as pos-
shorter delayl, = min(Lpa, Lpp). It can be observed that if sible to the best schedule we could generate if we could know in
= , .

As > Ap, thenLps < Lpp, which means that we have toadvan(_:e that the pgrticular tra_lck is going _to be selected. By in-

scheduleP, first so thatL = Ly, similarly, if Az > A4, then troducmg perturbations (possible delayg) |_nt0 the sho_rter track§

Lo < Lpa, and we have to schedulg; first in order to get and Iettlng_the longer ones proceed as similar as possible to their

L = Lpg. (qear) opt!m_al schedule, we hope Fo produce a .sc.he(_jule 'gable
As a conclusion, for PCP scheduling we use the valugf with a .mln.|m|zed worst case exe_cutlon time. This is in line with

as a priority criterion instead of the lengih of the whole crit- e Objective formulated in Section 11l-B.

ical path. Thus, we take into consideration only that part of the

critical path corresponding to a proceBsthat starts with the V. A TTP-BASED SYSTEM ARCHITECTURE

first successor aF; that is assigned to a processor different from |, the previous sections, we have considered a general system

M(F;). architecture with a relatively simple communication infrastruc-
For evaluation of the PCP policy, we used 1250 graphs gefire. Such a model is representative for a large class of appli-

erated for experimental purpose. Two-hundred fifty graphs haygtions, and this is the reason why it has been used in order to
been generated for each dimension of 20, 40, 75, 130, and 2elop our scheduling strategy for CPGs.

nodes. We considered architectures consisting of one ASIC, one
o1l processor_s, _and one to eight buses. We have evaluated tbl?rgency-based (UB) scheduling uses the difference between the as late as
percentage deviations of the schedule lengths produced by fiRsible (ALAP) schedule of a process and the current time as a priority.

Lpy = max(T_current +ta4 + Aa,

T_current +tp +ta + Aa).

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 483

When designing a particular system, however, very specific Sensors/Actuators
architectural solutions and particular communication protocols \ #A /
often have to be used. In such a situation, particulars of th 1/0 Interface
communication infrastructure have to be considered for syster RAM
scheduling. At the same time, several parameters of the con CPU | ROM
munication protocol have to be optimized in order to meet time ASIC
constraints at the lowest possible cost. These two aspects & TTP Controller

strongly interrelated and have a strong impact on the quality o |

the final design. Node \
We consider a system architecture built around a communi

cation model that is based on the TTP [48]. TTP is well suitec | | |

for the category of systems targeted by our synthesis enviror

ment. These are systems that include both dataflow and contr g,

aspects and that are implemented on distributed architecture <"

They have to fulfill hard real-time constraints and are often

A

a) System architecture

safety-critical. TTP is also perfectly suited for systems imple- .+ So @ St S0 Sao S S0 S0 5,
mented with static nonpreemptive scheduling, and thus repre ' TDMA Round . Cyele of two rounds + Frame
sents an ideal target architecture for the scheduling approac = >

presented in the previous sections. b) Bus access scheme
While in the previous sections we emphasized the impact

of conditional dependencies on system scheduling, in the régt 8. TTP-based system architecture

of this paper we mainly concentrate on how the communica-

tion infrastructure and protocol have to be considered duri?&rface (MBI), which is usually implemented as a dual-ported
scheduling and how they can be optimized in order to redu M (see Fig; 9)

the system delay. In this section, we describe our hardware an he TDMA access scheme is imposed by a message de-
software arch|tectu_re based on the TTP' In Section VI, we t.hggriptor list (MEDL) that is located in every TTP controller.
show how scheduling and optimization of the communicati MEDL basically contains the time when a frame has to be
protocol interact with each other and how they can be Considerse t or received. the address of the frame in the MBI. and the

together in order to improve the overall system performance.length of the frame. MEDL serves as a schedule table for the
TTP controller, which has to know when to send or receive a
A. Hardware Architecture frame to or from the communication channel.

The TTP controller provides each CPU with a timer inter-

We consider arch_ltec_tures con5|st|n_g of nodes connected b%%t based on a local clock, synchronized with the local clocks
b_roadcast communication channel [Fig. 8(a)]. Every node €% the other nodes. The clock synchronization is done by com-
sists of a TTP controller [48], a CPU, a RAM, a ROM, and a aring thea priori known time of arrival of a frame with the

I/O interface to sensors and actuators. A node can also havi o%gerve d arrival time. By applying a clock synchronization al-

ASéC n ordgr t? acl;:elerate pa(;ts o,f |tt)s furzjctlonsllt_)lf._rp TP orithm, TTP provides a global time-base of known precision,
ommunication between nodes is based on the) thout any overhead on the communication.

designed for distributed real-time applications that require pre-

dictability and reliability. The communication is performed on

a broadcast channel, so a message sent by a node is recé?(le

by all the other nodes. The bus access scheme is time-divisiowe have designed a software architecture that runs on the

multiple-access (TDMA) [Fig. 8(b)]. Each no@& can transmit CPU in each node and that has a real-time kernel as its main

only during a predetermined time interval, the so-called TDMA&omponent. Each kernel has a schedule table that contains all the

slot S;. In such a slot, a node can send several messages paaiormation needed to take decisions on activation of processes

aged in a frame. We consider that a sktis at least large and transmission of messages, based on the values of conditions.

enough to accommodate the largest message generated by afihe message passing mechanism is illustrated in Fig. 9,

process assigned to nodg, so the messages do not have twhere we have three procesdasto P;. P, andP, are mapped

be split in order to be sent. A sequence of slots corresponditagnode N, that transmits in slotS,, and P; is mapped to

to all the nodes in the architecture is called a TDMA round. Aode NV; that transmits in slof;. Messagen; is transmitted

node can have only one slotin a TDMA round. Several TDMAetweenP; and P, that are on the same node, while message

rounds can be combined together in a cycle that is repeated pg- is transmitted fromP, to P; between the two nodes. We

riodically. The sequence and length of the slots are the samedonsider that each process has its own memory locations for

all the TDMA rounds. However, the length and contents of thtte messages it sends or receives and that the addresses of the

frames may differ. memory locations are known to the kernel through the schedule
Every node has a TTP controller that implements the protodable.

services and runs independently of the node’s CPU. Communi-F; is activated according to the schedule table, and when it

cation with the CPU is performed through a message base fimishes it calls thesendkernel function in order to sendh;

ﬁoftware Architecture

484 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

A S
v Vo Py L
stl Su I l ! m" |
Round 0 Round 1 Round2 Round3 Round 4
«) Schedule length of 24 ms
o EA U I
| S |'S |
Round 0 Round | Round 2 Round 3
b} Schedule length of 22 ms
. . . [l 1] ' P
Fig. 9. Message passing mechanism. ' : ' :
L L

and thenn,. Based on the schedule table, the kernel copies oo Sy~ Round 2

from the corresponding memory location f## to the memory o) Schedule length of 20 ms d) Graph example
location inP;. WhenP; will be activated, it finds the message in

the right location. According to our scheduling policy, whenevetig. 10. Scheduling example.

a receiving process needs a message, the message is already

placed in the corresponding memory location. Thus, there is ARation of such messages is instantaneous. This is in line with
overhead on the receiving side for messages exchanged ongfeCPG representation where no communication processes are
same node. introduced between processes mapped to the same processor.

Messagen, has to be sent from nod¥, to nodeN;. Ata However, if the message is sent between two processes mapped
certain time, known from the schedule table, the kernel tranSfQj'ﬁto different nodeS, the message has to be scheduled according
m> to the TTP controller by packaging it into a frame in theg the TTP protocol. Several messages can be packaged together
MBI. Later on, the TTP controller knows from its MEDL whenijn the data field of a frame. The number of messages that can
it has to take the frame from the MBI in order to broadcast it abhe packaged depends on the slot |ength Corresponding to the
the bus. In our example the tlmlng information in the SChedU"ﬁ)de_ The effective time spent by a messageon the bus is
table of the kernel and the MEDL is determined in such away; = bg; /T, wherebs; is the length of slotS; and 7 is the
that the broadcasting of the frame is done in slptof Round transmission speed of the channel. In Figz,9; depicts the
2. The TTP controller of nod&’; knows from its MEDL that it time spent byny on the bus. The previous equation shows that
has to read a frame from sl6} of Round 2 and to transfer it the communication time,,; does not depend on the bit length
into the MBI. The kernelin nod#/; will read messager, from 3 . of the message:; but on the slot length corresponding to
the MBI. WhenP; will be activated based on the local schedulghe node sending;.
table of nodeV,, it will already havem. in its right memory The important impact of the communication parameters on
location. the performance of the application is illustrated in Fig. 10. In

In [51], we presented a detailed discussion concerning thgy. 10(d), we have a graph consisting of four procege®
overheads due to the kernel and to every system call. We a}sgand four messages; to my. The architecture consists of
presented formulas for derivation of the worst case executiiio nodes interconnected by a TTP channel. The first node,
delay of a process, taking into account the overhead of the tinygf| transmits on slof, of the TDMA round, and the second
interrupt, the worst case overhead of the process activation, g¢dle N, , transmits on sla$, . Processe®, and P, are mapped

message passing functions. on nodeN,, while processe®; and P; are mapped on node
Np. With the TDMA configuration in Fig. 10(a), where slf{
VI. SCHEDULING WITH Bus ACCESSOPTIMIZATION is scheduled first and slaf, is second, we have a resulting

schedule length of 24 ms. However, if we swap the two slots
inside the TDMA round without changing their lengths, we can
We consider a system captured as a CPG. The target architetprove the schedule by 2 ms, as seen in Fig. 10(b). Further-
ture is as described in Section V. Each process is mapped amare, if we have the TDMA configuration in Fig. 10(c) where
CPU or an ASIC of anode. We are interested in deriving a delaipt .S, is first, slotS; is second, and we increase the slot lengths
on the system execution time so that this delay is as smallsasthat the slots can accommodate both of the messages gener-
possible, and in synthesizing the local schedule tables for eatbd on the same node, we obtain a schedule length of 20 ms,
node, as well as the MEDL for the TTP controllers, which guawhich is optimal. However, increasing the length of slots is not
antee this delay. necessarily improving a schedule, as it delays the communica-
For each message, its lengdth; is given. If the message istion of messages generated by other nodes.
exchanged by two processes mapped on the same node, the meé3ur optimization strategy, described in the following sec-
sage communication time is completely accounted for in thiens, determines the sequence and length of the slots in a
worst case execution delay of the two processes as showrTDMA round with the goal of reducing the delay on the execu-
Section V-B. Thus, from the scheduling point of view, commusion time of the system. Before discussing this optimization of

A. Problem Formulation

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 485

Plan_message (time_ready, b,,, Node,,)

me

Slor=the slot assigned to Node,; -- the slot in which the message has to be sent

Round=/ time_ready/ round_length | ; -- the first round which could be a candidate

if time_ready - Round*round_length > startg,,, then -- is the right slot in this round already gone?
Round = Round+1 -- if yes, take the next round

end if;

while b, > bg; - byceypica 40 -- is enough space left in the slot for the message?
Round = Round+1 -- if not, take the next round

end while;

return (Round, Slot) -- return the right round and slot

end Plan_message;

Fig. 11. Message communication planning.

the bus access scheme, we first analyze how the particularities : . : : o)
of the TTP protocol have to be taken into consideration at [, = ; s Fo,
scheduling of CPGs. Py] BN
Sy=10 | $,=8 | | @ 6

B. Scheduling with a Given Bus Access Scheme Round 0 Round | 8

. . . 3 a) Schedule length of 40 iny

Given a certain bus access scheme, which means a given or- . 8

dering of the slots in the TDMA round and fixed slot lengths, | P il I . meo
the CPG has to be scheduled with the goal to minimize the worst | . Py [Py
case execution delay. This can be performed using our algorithm | | Sy=10 | §,=8 4
List_schedule_CPG (Fig. 5) presented in Section IV. Two as- Round 0 Round 1

¢) Graph example

pects have to be discussed here: the planning of messages inpre- b} Schedule length of 36 ms
determined slots and the impact of this communication stratel%l 12
on the priority assignment.
The functionPlan_message in Fig. 11 is called in order to
plan the communication of a messagewith lengthb,,,, gener- suppose that there is no message transferred betiesmmd Fs.
ated onNVode,,,, which is ready to be transmittedtatne_rcady. PCP (see Section IV-D) assigns a higher prioritydbecause
Plan_message returns the first round and corresponding slot has a partial critical path of 12, starting fraRs, longer than
(the slot corresponding & ode,,,) that can host the message. Irthe partial critical path oP, which is ten and starts from. This
Fig. 11,round_length is the length of a TDMA round expressedresults in a schedule length of 40 ms depicted in Fig. 12(a). On
in time units (in Fig. 12, for examplepund_length = 18 ms). the other hand, if we schedul® first, the resulting schedule,
Thefirstround aftetime_ready is the initial candidate to be con- depicted in Fig. 12(b), is only 36 ms.
sidered. Forthisround, however, it can be too late to catch the righThis apparent anomaly is due to the fact that the way we have
slot, in which case the next round is selected. When a candidetenputed PCP priorities, considering message communication
round is selected, we have to check that there is enough spacedefh simple activity of delay 6 ms, is not realistic in the context of
in the slot for our messagé.(.cupiea represents the total numbera TDMA protocol. Let us consider the particular TDMA config-
of bits occupied by messages already scheduled in the respeatisation in Fig. 12 and suppose that the scheduler has to decide at
slot of that round). If no space is left, the communication has to= 0 which one of the processé3 or P» to schedule. IfP; is
be delayed for another round. scheduled, the message is ready to be transmittéetat. Based
With this message planning scheme, the algorithm in Fig.dhacomputationsimilartothatusedinFig. 11, itfollowsthatmes-
will generate correct schedules for a TTP-based architectusagen will be placed inround8/18] = 0, anditarrives intime
with guaranteed worst case execution delays. However, tioeget slotS; of that roundtime_ready = 8 < starts; = 10).
quality of the schedules can be much improved by adaptiii@pus,m arrives att,,, = 18, which means a delay relative to
the priority assignment scheme so that particularities of the = 8 (when the message was ready)sof= 10. This is the
communication protocol are taken into consideration. delay that should be considered for computing the partial critical
Let us consider the graph in Fig. 12(c), and suppose thaath of %, which now results id + ¢tp, = 14 (longer than the
the list scheduling algorithm has to decide between schedulioge corresponding té).
processP; or P, which are both ready to be scheduled on the The obvious conclusion is that priority estimation has to be
same programmable processor. The worst case execution thased on message planning with the TDMA scheme. Such an es-
of the processes is depicted on the right side of the respectiveation, however, cannot be performed statically before sched-
node and is expressed in milliseconds. The architecture considisg. If we take the same example in Fig. 12, but consider that
of two nodes interconnected by a TTP channel. ProceBsesthe priority-based decision is taken by the schedulerat, m
and P, are mapped on nod#, while processes’ and P, will be ready at’ = 13. This is too late forn to get into slotS,
are mapped on nod¥,. Node IV, transmits on slof5, of the of round 0. The message arrives with round 4,at = 36. This
TDMA round, andV; transmits on slof; . SlotSy has a length leads to a delay due to the message passifgo86—13 = 23,
of 10 ms, while slotS; has a length of 8 ms. For simplicity, wedifferent from the one computed above.

Priority function example.

486 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Optimize_access ()

for i:= 0 to Nr_slot-1 do -- creates the initial, straightforward solution
Node =N lengths=min_lengthg;
end for;
for i:= 0 to Nr_slot-1 do -- over all slots
for j:= i to Nr_slot-1 do -- over all slots which have not yet been allocated a node and slot length
swap values (Nodeg;, lengthg;) with (Nodeg;, lengthg;);
for all slot lengths A, larger than lengthg; do - initially, lengthg; has the minimal allowed value
lengthg=\;

List_schedule_CPG (...);
remember best_solution=(Nodeg;, lengths;), with the smallest 8., produced by List_schedule_CPG

end for;
swap back values (Nodeg;, lengthg;) with (Nodeg;, lengthg;) to the state before entering the for cycle
end for;
bind (Nodeg;, lengthgj)=best_solution; -- slot §; gets a node allocated and a length fixed
end for;

end Optimize_access;

Fig. 13. Optimization of the bus access scheme.

We introduce a new priority function, the modified PCRries to find the node that, when transmitting in this slot, will
(MPCP), which is computed during scheduling, wheneveninimize the worst case delay of the system, as produced by
several processes are in competition to be scheduled on thet_Schedule_ CPG. Simultaneously with searching for the
same resource. Similar to PCP, the priority metric is the lengtight node to be assigned to the slot, the algorithm looks for
of that portion of the critical path corresponding to a procesise optimal slot length. Once a node is selected for the first slot
FP;, which starts with the first successorBfthat is assigned to and a slot length fixed, the algorithm continues with the next
a processor different from/ (F;). The critical path estimation slots, trying to assign nodes (and fix slot lengths) from those
starts with timet at which the processes in competition ar@odes that have not yet been assigned.
ready to be scheduled on the available resource. During thaVhen calculating the length of a certain slot, a first alter-
partial traversal of the graph, the delay introduced by a certaiative could be to try all the slot lengthisallowed by the
noder’; is estimated as follows: protocol. Such an approach starts with the minimum slot
length determined by the largest message to be sent from the
candidate node, and it continues incrementing with the smallest
tar —t', if P; is @a message passing. data unit (e.g., 2 bits) up to the largest slot length determined
Ikgp(_the maximum allowed data field in a TTP frame (e.g., 32

t' is the time when the node generating the message terbt d di th troller imol tati W I
nates (and the message is ready) apdis the time when the IS, depenading on. ‘e controller implementation). © ca
this_alternative Optimize_access_1. A second alternative,

slot to which the message is supposed to be assigned has i 9 is based teedback f th hed

rived. The slot is determined as in Fig. 11, but without takintg}? Lm?ze‘fﬁcess‘ N 'ﬁ ased on deel ?C_ rotm o et _scd € t

into consideration space limitations in slots. As the experimen N9 algortnm, which recommends siot sizes 1o be tried out.
efore starting the actual optimization process for the bus

results (Section VII) show, using MPCP instead of PCP f . . o
the TTP-based architecture results in an important improvem&(f rfi)srizzhtig]te, :nzcr:ZteedsutILnegrg](c:gr]‘r?nf(tarr?(ljgergfsolrc\;ﬁég St(rjllsutl'lc')rl;]elsse
of the quality of generated schedules, with a slight increaseliﬁngthS are prodguced by thelan_message function (Fig 1i)
scheduling time. -)
g whenever a new round has to be selected because of lack of

C. Optimization of the Bus Access Scheme space in the current slot. In such a case, the slot length that

In th . i h h h | 'thWOUld be needed in order to accommodate the new message
Li r; 7 %eylog;éezl::_loné we have dS own ‘;rV.V _ou; a%or(; IEI added to the list of recommended lengths for the respective

Lst-scneauie- (Fig. 5) can produce an efficient schedu &lot. With this alternative, the optimization algorithm in Fig. 13

for a.CPG, gvena cgrtam TDMA bus access scheme. Howev |[1’Iy selects among the recommended lengths when searching
as discussed in Section VI-A, both the ordering of slots and t & the right dimension of a certain slot

slot lengths strongly influence the worst case execution delayAS the experimental results show (see Section VII), optimiza-

of the system. In Fig. 13, we show a heuristic that, based f8n of the bus access scheme can produce huge improvements

a greedy approach, determines an ordering of slots and thﬁ'{erms of performance. As expected, (igtimize_access 2

lengths so that the worst case delay corresponding to a Ccerdrative is much faster then the first one, while the quality of

CPG is as small as possible. : .
L) . . . the results produced is only slightly lower.
The initial solution, the “straightforward” one, assigns in P y signtly

order nodes to the slots (Noge= N;) and fixes the slot
lengthlengthg; to the minimal allowed value, which is equal
to the length of the largest message generated by a proceds the following two sections, we show a series of experi-
assigned to Nodg. The algorithm starts with the first slot andments that demonstrate the effectiveness of the proposed algo-

5 { tpj, if P; is not a message passing
rj —

VIl. EXPERIMENTAL RESULTS

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 487

rithms. The first set of results is related to the scheduling of cor
ditional process graphs, while the second set targets the proble
of scheduling with optimization of the bus access scheme. As
general strategy, we have evaluated our algorithms performir
experiments on a large number of test cases generated for
perimental purpose. We then have validated the proposed &
proaches using real-life examples. All experiments were run ¢
SPARCstation 20.

120 processes 4—
80 processes A —
60 processes O -

Increase of 8, over 3y (%)

A. Evaluation of the Scheduling Algorithm

As discussed in Section llI-B, there akg;; alternative tracks 10 15 b 20f ernat '25t . 30 35
through a CPG, and a schedule could be generated for each « umber of aiernative tracks
. a) Increase of the worst case delay
separately. Suppose that; is the longest of these schedules

This, however, does not mean that the worst case dglay, 0.35 P
corresponding to the CPG, is guaranteed t6peSuch a delay 03 ///
cannot be guaranteed in theory, as the values of conditions, ¢ _ e "
thus the actual track to be followed, cannot be predicted. IS 55 /,// -7
objective of our scheduling heuristic is to generate a schedi £ - oL
table so that the differenc®,, — 857 is minimized. g o2 e

For evaluation of the scheduling algorithm, we used 10€ go 5 ///J R
conditional process graphs generated for experimental purpo= /,/// - PP 120 processes +
360 graphs have been generated for each dimension of 60, o014 & - -~ gg P:gz::z: f;
and 120 processes. The number of alternative tracks through 1 ° Procem®
graphs is 10, 12, 18, 24, or 32. Execution times were assign % ; s o o 20 3
randomly using both uniform and exponential distribution. W Number of alternative tracks
considered architectures consisting of one ASIC, one to 11 pi - b) Execution time of the scheduling algorithm

cessors, and one to eight buses. Fio 14, Evaluation of the scheduling aldorithim for PG
Fig. 14(a) presents the percentage increase of the worst cage™® Fvaluation ofthe scheduling algorithm for CPGs.

delay 6,,.. over the delays,; of the longest track. The delay
6n has been obtained by scheduling separately each alternati¥e1 switch. Through the switching network, cells are routed
track trough the respective CPG, using PCP list scheduling, amstween the: input andg output lines. In addition, the ATM
selecting the delay that corresponds to the longest track. Tdwitch also performs several OAM related tasks.
average increase is between 0.1% and 8.1% and, practicallyin [50], we discussed hardware/software partitioning of the
does not depend on the number of processes in the graph ®aM functions corresponding to the F4 level. We concluded
only on the number of alternative tracks. It is worth mentioninghat filtering of the input cells and redirecting of the OAM cells
that a zero increas@...x = d,s) was produced for 90% of the toward the OAM block have to be performed in hardware as part
graphs with ten alternative tracks, 82% with 12 tracks, 57% witf the line interfaces (LI). The other functions are performed by
18 tracks, 46% with 24 tracks, and 33% with 32 tracks. the OAM blockand can be implemented in software.
Concerning execution time, the interesting aspect is how thewe have identified three independent modes in the function-
algorithm scales with the number of alternative tracks and thality of the OAM block. Depending on the content of the input
of processes. The worst case complexity of the scheduling bisffers [Fig. 15(b)], the OAM block switches between these
gorithm depends on the number of tracks, which theoreticallyree modes. Execution in each mode is controlled by a statically
can grow exponentially. However, such an explosion is unliketyenerated schedule table for the respective mode. We specified
for practically significant applications. Fig. 14(b) shows the atthe functionality corresponding to each mode as a set of inter-
erage execution time for the scheduling algorithm as a functiasting VHDL processes. These specifications have then been
of the number of alternative tracks. We observe very small eixanslated to the corresponding CPGs. Table Il shows the char-
ecution times for even large graphs and very good scaling wibteristics of the resulting CPGs. The main objective of this ex-
the number of alternative tracks. The increase of execution tiperiment was to estimate, using our scheduling algorithm, the
with the number of processes, for a given number of alternatiw@rst case delays in each mode for different alternative archi-
tracks, is practically linear, which corresponds to the theoretidalctures of the OAM block. Based on these estimations as well
complexity of list scheduling algorithms [52], [53]. as on the particular features of the environment in which the
One of the very important applications of our scheduling aswitch will be used, an appropriate architecture can be selected
gorithm is for performance estimation during design space exad the dimensions of the buffers can be determined.
ploration. We have performed such an experiment as part ofFig. 15(b) shows a possible implementation architecture of
a project aiming to implement the operation and maintenanitee OAM block, using one processor and one memory module
(OAM) functions corresponding to the F4 level of the ATM(1P/1M). Our experiments included also architecture models
protocol layer [54]. Fig. 15(a) shows an abstract model of thvéith two processors and one memory module (2P/1M), as well

488 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

ilﬂmlj_, L e, Forty processes were assigned to each nod_e, resulting in graphs
1T . . of 80, 160, 240, 320, anq 400 processes. Thirty CPGs were gen-
s i, % erated for each graph dimension; thus a total of 150 CPGs were
: : used for experimental evaluation. Execution times and message
i"@. e ——0, lengths were assigned randomly using both uniform and expo-
‘ nential distribution. For the communication channel, we consid-
from/to Phys. Layer& ered a transmission speed of 256 kbps and a length below 20 m.
Management Sys‘h) ATM switch The maximum length of the data field was 8 bytes, and the fre-
- " a) ATM switch quency of the TTP controller was chosen to be 20 MHz.
The first results concern the improvement of the schedules

t .netw.) toM t
(gzvxvvlr::eelﬁ ° ;;;%;men produced by our algorithm when using the MPCP priority func-

tion instead of the one based on the general PCP priority. In
order to compare the two priority functions, the 150 CPGs were

OAM cells from Phys. Layer& scheduled, considering the TTP-based architectures presented

(from LIs) Management Syst.

above, using first PCP for priority assignment and then MPCP.

% % We calculated the average percentage deviations of the schedule
lengths produced with MPCP and PCP for each graph, from the

b) OAM block length of the best schedule among the two. The results are de-

picted in Fig. 16(a). The diagram shows an important improve-
ment of the resulted schedules if the TDMA-specific priority
function MPCP is used. On average, the deviation with MPCP
as structures consisting of one (respectively, two) process@s1.34 times smaller than with PCP. However, due to its dy-
and two memory modules (1P/2M, 2P/2M). The inclusion G{amic nature, MPCP implies a slightly larger execution time, as
alternatives with two memory modules is justified by the faghown in Fig. 16(b).
that the information processed by the OAM block is organized |n the following experiments, we were interested to check the
in two main tables that potentially could be accessed in pajotential of the algorithm presented in Section VI-C to improve
allel. The target architectures are based on two types of pfe generated schedules by optimizing the bus access scheme.
cessors: onepl) running at 80 MHz and anotheif{2) run- we compared schedule lengths obtained for the 150 CPGs
ning at 120 MHz. For each architecture, processes have beefsidering four different bus access schemes: the straight-
assigned to processors taking into consideration the potenfigvard solution, the optimized schemes generated with the
parallelism of the CPGs and the amount of communication bgyo alternatives of our greedy algorithi@gtimizc_access_1
tween processes. The worst case delays that resulted after gesgd-Optimize_access_2), and a near-optimal scheme. The
ation of the schedule table for each of the three modes are gi\"@hr_optima| scheme was produced using a simulated annea"ng
in Table Il. As expected, using a faster processor reduces f&g\)-based algorithm for bus access optimization, which is
delay in each of the three modes. Introducing an additional pi§resented in [51]. Very long and extensive runs have been
cessor, however, has no effect on the execution delay in mod@giformed with the SA algorithm for each graph, and the
which does not present any potential parallelism. In mode 3, thest ever solution produced has been considered as the near
delay is reduced by using twgp1 processors instead of one. Fopptimum for that graph.
the faster,p2 processor, however, the worst case delay cannotrapje |1 presents the average and maximum percentage de-
be improved by introducing an additional processor. Using Wgation of the schedule lengths obtained with the straightfor-
processors will always improve the worst case delayate 1 \ard solution and with the two optimized schemes from the
As for the additional memory module, only in mode 1 does thength obtained with the near-optimal scheme. For each of the
model contain memory accesses that are potentially executegigph dimensions, the average optimization time, expressed in
parallel. Table Il shows that only for the architecture consistingcongs, is also given. The first conclusion is that by consid-
of two 1ip2 processors, providing an additional memory modulging the optimization of the bus access scheme, the results im-
pays back by a reduction of the worst case delay in mode 1. Th@ve significantly compared to the straightforward solution.
reason s that, with the process execution times correspondingfs greedy heuristic performs well for all the graph dimensions.
this processor and the 2P/1M architecture, the track containiRg expected, the alternativ@ptimize_access_1 (which con-
parallel memory accesses is the one that dictates the worst cgggrs all allowed slot lengths) produces slightly better results,
execution time. Thus, adding a second memory module resw$ average, tha®ptimize_access_2. However, the execution
in a reduced worst case delay of the systeminmode 1. times are much smaller f@ptimize_access_2. Itis interesting
))) o to mention that the average execution times for the SA algo-

B. Evaluation of Scheduling with Bus Access Optimization yithm needed to find the near-optimal solutions, are between 5

In this set of experiments, we were interested to investigatgn for the CPGs with 80 processes and 275 min for 400 pro-
the efficiency of our scheduling algorithm in the context of theesses [51].
TDMA-based protocol and the potential of our optimization A typical safety-critical application with hard real-time con-
strategies for the bus access scheme. We considered TTP-basmihts, to be implemented on a TTP-based architecture, is a ve-
architectures consisting of two, four, six, eight, and ten noddscle cruise controller (CC). We have considered a CC system

Fig. 15. ATM switch with OAM block

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION 489

TABLE I
WORST CASE DELAYS FOR THE OAM BLOCK

System model Oppax (ns)
Mode || nrof Inrofl 1P/IM 1P/2M 2P/IM 2P/2M
processes \tracks| ypi | up2 | upl | up2 |2xupl| 2xup2 |upl+pp2| 2xupl | 2xuup2 Jupl+up2
Mode | 32 6 |4471]2701(4471]2701| 2932 | 2131 | 2532 | 2932 | 1932 | 2532
Mode 2| 23 3 (1732|1167 (1732|1167 | 1732 | 1167 | 1167 | 1732 | 1167 | 1167
Mode 3|| 42 8 5852|3548 (58523548 | 5033 | 3548 | 3548 | 5033 | 3548 | 3548

10 to distribute the functionality (processes) of the CC over these
five nodes.

" The CPG corresponding to the CC system consists of 32 pro-
&\ cesses and includes two alternative tracks. The maximum al-
PCP lowed delay is 110 ms. For our model, the straightforward so-

lution for bus access resulted in a schedule corresponding to a
. maximal delay of 114 ms (which does not meet the deadline)
when PCP was used as a priority function, while using MPCP
MPCP we obtained a schedule length of 109 ms. Both of the greedy
heuristics for bus access optimization produced solutions so that
. . : the worst case delay was reduced to 103 ms. The near-optimal
80 160 240 20 400 solution (produced with the SA-based approach) results in a
Number of processes delay of 97 ms.

Average percentage deviation

a) Percentage deviation of schedule lengths
VIIl. CONCLUSIONS

0.45
04 We have presented an approach to process scheduling for
the synthesis of embedded systems implemented on architec-
0.35 tures consisting of several programmable processors and appli-
P cation-specific hardware components. The approach is based on
E) an abstract graph representation that captures, at process level,
£025 both dataflow and the flow of control. The scheduling problem
5 0 has been considered in strong interrelation with the problem of
E communication in distributed systems.
3 0.15 We first presented a general approach to process scheduling
01 with control and data dependencies, considering a generic bus-
based distributed architecture. The proposed algorithm is based
0.05 f——s—tr—Tt—5%5 R R onalist schedu!ing ap!orogch gnd statically generates a schedu.le
Number of processes table that contains activation times for processes and communi-
b) Execution time of the scheduling algorithm cations. The main problems that have been solved in this con-

text are the minimization of the worst case delay and the gen-
Fig. 16. Scheduling with PCP and MPCP for TTP-based architectures. ~ eration of a logically and temporally deterministic table, taking

into consideration communication times and the sharing of the
derived from a requirement specification provided by the ircommunication support.
dustry. The CC described in this specification delivers the fol- We have further investigated the impact of particular
lowing functionality: it maintains a constant speed for speed®@mmunication infrastructures and protocols on the overall
over 35 km/h and under 200 km/h, offers an interface (buttonsgrformance and, specially, how the requirements of such
toincrease or decrease the reference speed, and is able to resumiafrastructure have to be considered for process and com-
its operation at the previous reference speed. The CC operatiomnication scheduling. Considering a TTP-based system
is suspended when the driver presses the brake pedal. architecture, we have shown that the general scheduling

The specification assumes that the CC will operate in an eadgorithm for conditional process graphs can be successfully

vironment consisting of several nodes interconnected by a T@pplied if the strategy for message planning is adapted to the
channel. There are five nodes that functionally interact witlequirements of the TDMA protocol. At the same time, the
the CC system: the antiblocking system, the transmission cajuality of generated schedules has been much improved after
trol module, the engine control module, the electronic throttkedjusting the priority function used by the scheduling algorithm
module, and the central electronic module. It has been decidedhe particular communication protocol.

490

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

TABLE Il
EVALUATION OF THE BUS ACCESSOPTIMIZATION ALGORITHM
Nr. of proc. ||Straightforward solution Optimize_access_1 Optimize_access_2

average maximal | average | maximal |optimization| average | maximal |optimization

deviation | deviation | deviation | deviation time deviation | deviation time
80 3.16% 21% 0.02% 0.5% 0.25s 1.8% 19.7% 0.04s
160 14.4% 53.4% 2.5% 9.5% 2.07s 4.9% 26.3% 0.28s
240 37.6% 110% 7.4% 24.8% 10.46s 9.3% 31.4% 1.34s
320 51.5% 135% 8.5% 31.9% 34.69s 12.1% 37.1% 4.8s
400 48% 135% 10.5% 32.9% 56.04s 11.8% 31.6% 8.2s

However, not only do particulars of the underlying architec-[10]
ture have to be considered during scheduling but also the pa-
rameters of the communication protocol should also be adaptqgl]
to fit the particular embedded application. We have shown that
important performance gains can be obtained, without any ad-
ditional cost, by optimizing the bus access scheme. The optl-lz]
mization algorithm, which now implies both process scheduling
and optimization of the parameters related to the communicd?3l
tion protocol, generates an efficient bus access scheme as well
as the schedule tables for activation of processes and commuii4]
cations.

The algorithms have been evaluated based on extensive gxs;
periments using a large number of graphs generated for experi-
mental purpose as well as real-life examples. [16]

There are several aspects that were omitted from the discus-
sion in this paper. In [55], we have analyzed the optimizatiorf17]
of a TDMA bus access scheme in the context of priority-based
preemptive scheduling. There we also considered the possibilifyg;
of messages being split over several successive frames. We nei-
ﬂwrmgmhemonﬂwrdmwdyﬁmMemmwdwemrmmmmlm
cessing of the schedule table, during which the table can be sin[l-
plified for certain situations in which identical activation times
are scheduled for a given process on different columns. Durin?!
postprocessing, the table is also split into subtables containing
the particular activities to be performed by a certain processor21]

[22]
REFERENCES
[23]
[1] G. De Micheli and M. G. Sami, EdsHardware/Software Co-De-
sign Norwell, MA: NATO ASI 1995, Kluwer Academic, 1996.
[2] G. De Micheli and R. K. Gupta, “Hardware/software co-desidgerdc. [24]
IEEE, vol. 85, no. 3, pp. 349-365, 1997.
[3] R. Ernst, “Codesign of embedded systems: Status and treteEE
Design Test Compuytpp. 45-54, Apr.—June 1998. [25]

[4] D.D. Gajskiand F. Vahid, “Specification and design of embedded hard-

ware-software systemslEEE Design Test Compupp. 53—-67, Spring

1995. [26]
[5] J. Staunstrup and W. Wolf, Ed$dardware/Software Co-Design: Prin-

ciples and Practice Norwell, MA: Kluwer Academic, 1997. [27]
[6] W. Wolf, “Hardware-software co-design of embedded systeRsjt.

IEEE, vol. 82, no. 7, pp. 967-989, 1994.
[7] J. D. Ullman, “NP-complete scheduling problems,” Comput. Syst.

Sci, vol. 10, pp. 384393, 1975. [28]

[8] A.Doboli and P. Eles, “Scheduling under control dependencies for het-
erogeneous architectures,”®noc. Int. Conf. Computer Design (ICCP) [29]
1998, pp. 602-608.

P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of [30]
conditional process graphs for the synthesis of embedded systems,” in
Proc. Design Aut. Test Eui998, pp. 132-138.

El

R. Ernst and W. Ye, “Embedded program timing analysis based on path
clustering and architecture classification,” Rroc. Int. Conf. CAD
1997, pp. 598-604.

J. Gong, D. D. Gajski, and S. Narayan, “Software estimation using a
generic-processor model,” iRroc. Eur. Design Test Confl995, pp.
498-502.

J. Henkel and R. Ernst, “A path-based technique for estimating hard-
ware run-time in Hw/Sw-cosynthesis,” iroc. Int. Symp. Syst. Syn-
thesis 1995, pp. 116-121.

Y. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” iRroc. ACM/IEEE DAGC 1995, pp.
456-461.

T. Lundgvist and P. Stenstrom, “An integrated path and timing analysis
method based on cycle-level symbolic executid®eal-Time Systvol.

17, no. 2/3, pp. 183-207, 1999.

S. Malik, M. Martonosi, and Y. S. Li, “Static timing analysis of em-
bedded software,” ifPfroc. ACM/IEEE DAC1997, pp. 147-152.

K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software perfor-
mance estimation methods for hardware/software codesigrPtan.
ACM/IEEE DAG 1996, pp. 605-610.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environmenfl’ACM, vol. 20, no. 1, pp. 4661,
1973.

K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systemsMicroprocess. Microprogram.vol. 40, pp.
117-134, 1994.

N. C. Audsley, A. Burns, R. I. Davis, K. Tindell, and A. J. Wellings,
“Fixed priority pre-emptive scheduling: An historical perspective,”
Real-Time Systvol. 8, no. 2/3, pp. 173-198, 1995.

F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli,
“Scheduling for embedded real-time system$ZEE Design Test
Comput, pp. 71-82, Jan.—Mar. 1998.

T. Y. Yen and W. Wolf Hardware-Software Co-Synthesis of Distributed
Embedded SystemsNorwell, MA: Kluwer Academic , 1997.

C. Lee, M. Potkonjak, and W. Wolf, “Synthesis of hard real-time appli-
cation specific systemsPesign Automat. Embedded Systl. 4, no.

4, pp. 215-241, 1999.

B. P. Dave and N. K. Jha, “COHRA: Hardware-software cosynthesis
of hierarchical heterogeneous distributed systedtsE Trans. Com-
puter-Aided Desigyvol. 17, no. 10, pp. 900-919, 1998.

B. P. Dave, G. Lakshminarayana, and N. J. Jha, “COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded systems,”
IEEE Trans. VLSI Systvol. 7, no. 1, pp. 92-104, 1999.

P. Chou and G. Borriello, “Interval scheduling: Fine-grained code
scheduling for embedded systems,”Rnoc. ACM/IEEE DAGC 1995,

pp. 462-467.

R. K. Gupta,Co-Synthesis of Hardware and Software for Digital Em-
bedded Systems Boston, MA: Kluwer Academic , 1995.

V. Mooney, T. Sakamoto, and G. De Micheli, “Run-time scheduler syn-
thesis for hardware-software systems and application to robot control
design,” inProc. Int. Workshop Hardware-Software Co-Desid897,

pp. 95-99.

H. Kopetz,Real-Time Systems-Design Principles for Distributed Em-
bedded Applications Norwell, MA: Kluwer Academic , 1997.

E. G. Coffman Jr and R. L. Graham, “Optimal scheduling for two pro-
cessor systemsActa Inform, vol. 1, pp. 200-213, 1972.

P. B. Jorgensen and J. Madsen, “Critical path driven cosynthesis for het-
erogeneous target architectures,Pioc. Int. Workshop Hardware-Soft-
ware Co-Design1997, pp. 15-19.

ELESet al: SCHEDULING WITH BUS ACCESS OPTIMIZATION

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

(48]
[49]

(50]

[51]

[52]
(53]
[54]

[55]

Y. K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An ef-
fective technique for allocating task graphs to multiprocessdEEE
Trans. Parallel Distrib. Systvol. 7, no. 5, pp. 506-521, 1996.

M.Y. Wu and D. D. Gajski, “Hypertool: A programming aid for mes-
sage-passing system$ZEE Trans. Parallel Distrib. Systvol. 1, no. 3,
pp. 330-343, 1990.

P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Process sche
uling for performance estimation and synthesis of hardware/softwa
systems,” inProc. Euromicro Conf.1998, pp. 168-175.

H. Kasahara and S. Narita, “Practical multiprocessor scheduli
algorithms for efficient parallel processindEEE Trans. Computvol.
C-33, no. 11, pp. 1023-1029, 1984.

491

Petru Eles (M'99) received the M.S. degree in
computer science from the Politehnica University
Timisoara, Romania, in 1979 and the Ph.D. degree
in computer science from the Politehnica University
Bucuresti, Romania, in 1993.

He is currently an Associate Professor with the
Department of Computer and Information Science
at Linkoping University, Sweden. His research
interests include design of embedded systems,
hardware/software codesign, real-time systems,
system specification and testing, and computer-aided

design for digital systems. He has published extensively in these areas and has

A. Bender, “Design of an optimal loosely coupled heterogeneous multteauthored several books, among th®eystem Synthesis with VHDNorwell,

processor system,” iRroc. ED&TC, 1996, pp. 275-281.

MA: Kluwer Academic, 1997).

S. Prakash and A. Parker, “SOS: Synthesis of application-specific het-Dr. Eles was a corecipient of best paper awards atthe 1992 and 1994 European
erogeneous multiprocessor systends,Parallel Distrib. Comput.vol. Design Automation Conference.

16, pp. 338-351, 1992.

K. Kuchcinski, “Embedded system synthesis by timing constraint
solving,” in Proc. Int. Symp. Syst. Synth997, pp. 50-57.

A. Dasdan, D. Ramanathan, and R. K. Gupta, “A timing-driven design
and validation methodology for embedded real-time systerA&M
Trans. Des. Aut. Electron. Systol. 3, no. 4, pp. 533-553, 1998.

K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, “Schedulin
hardware/software systems using symbolic techniquesPrae. Int.
Workshop Hardware-Software Co-Desjd®99, pp. 173-177.

D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, “Represel
tation of process model correlation for scheduling,’Piroc. Int. Conf.
CAD, 1998, pp. 54-61.

P. H. Chou, R. B. Ortega, and G. Borriello, “The Chinook hardware/sof
ware co-synthesis system,”lroc. Int. Symp. Syst. Synthei895, pp.
22-27.

J. M. Daveau, T. B. Ismail, and A. A. Jerraya, “Synthesis of system-leve
communication by an allocation-based approach,Piac. Int. Symp.
Syst. Synthesid 995, pp. 150-155.

P. V. Knudsen and J. Madsen, “Integrating communication protocol
selection with hardware/software codesignEEE Trans. Com-
puter-Aided Desigyvol. 18, no. 8, pp. 1077-1095, 1999.

S. Narayan and D. D. Gajski, “Synthesis of system-level bus interface:
in Proc. Eur. Design Test Confl994, pp. 395-399.

R. B. Ortega and G. Borriello, “Communication synthesis for distribute
embedded systems,” Iroc. Int. Conf. CAD1998, pp. 437—-444.

K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area
network (CAN) message response timesgntr. Eng. Practicevol. 3,

no. 8, pp. 1163-1169, 1995.

H. Ermedahl, H. Hansson, and M. Sjodin, “Response-time guarante
in ATM networks,” in Proc. IEEE Real-Time Systems Sym997, pp.
274-284.

H. Kopetz and G. Grunsteidl, “TTP—A protocol for fault-tolerant
real-time systems,JEEE Comput.vol. 27, no. 1, pp. 14-23, 1997.
“X-by-wire consortium,”,
URL:http://www.vmars.tuwien.ac.at/projects/xbywire/.

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hard-

ware/software partitioning based on simulated annealing and ta" -

search,’Design Automat. Embedded Systl. 2, no. 1, pp. 5-32, 1997.
P. Pop, P. Eles, and Z. Peng, “Scheduling with optimized communicati
for time-triggered embedded systems,”Rmoc. Int. Workshop Hard-
ware-Software Co-Desigr1999, pp. 178-182.

G. De Micheli,Synthesis and Optimization of Digital CircuitdcGraw-
Hill, 1994.

S. H. Gerez Algorithms for VLSI Design Automation New York:
Wiley, 1999.

T. M. Chen and S. S. LIUATM Switching Systems Norwood, MA:
Artech House , 1995.

Alex Doboli (S'99) received the M.S. and Ph.D. de-
grees in computer science from Politehnica Univer-
sity Timisoara, Romania, in 1990 and 1997, respec-
tively. He is currently pursuing the Ph.D. degree in
computer engineering at the University of Cincinnati,
Cincinnati, OH.

His research interest is in VLS| design au-
tomation, with special interest in mixed-signal
CAD, hardware—software codesign, and CAD for
reconfigurable computing.

Mr. Doboli is a member of Sigma Xl and ACM.

Paul Pop (S'99) received the M.S. degree in
computer science from the Politehnica University
Timisoara, Romania, in 1997. He is currently
pursuing the Ph.D. degree in computer science at
Linkdping University, Sweden.

His research interests include hardware/software
codesign, systems engineering, and real-time
systems.

Zebo Peng(M'91) received the Ph.D. degree in com-
puter science from Link6ping University, Sweden, in
1987.

He is Professor and Chair of Computer Systems
and Director of the Embedded Systems Laboratory
(ESLAB) at Link6ping University. His current
research interests include design and test of em-
bedded systems, electronic design automation,
design for testability, hardware/software codesign,
and real-time systems. He has published more than
90 technical papers in these areas and is coauthor of

P. Pop, P. Eles, and Z. Peng, “Bus access optimization for distributggstem Synthesis with VHRNorwell, MA: Kluwer Academic, 1997).

embedded systems based on schedulability analysi$tdn. Design
Aut. Test Eur.2000.

Dr. Peng was corecipient of two best paper awards at the European Design
Automation Conferences in 1992 and 1994.

