
Robust and Flexible Mapping for
Real-time Distributed Applications during the Early Design Phases

Junhe Gan1, Paul Pop1, Flavius Gruian2, and Jan Madsen1

1Department of Informatics and Mathematical Modelling Technical University of Denmark, Denmark
2Department of Computer Science, Lund University, Sweden

Abstract–We are interested in mapping hard real-time ap-
plications on distributed heterogeneous architectures. An ap-
plication is modeled as a set of tasks, and we consider a
fixed-priority preemptive scheduling policy. We target the early
design phases, when decisions have a high impact on the
subsequent implementation choices. However, due to a lack
of information, the early design phases are characterized by
uncertainties, e.g., in the worst-case execution times (wcets), or
in the functionality requirements. We model uncertainties in the
wcets using the “percentile method”. The uncertainties in the
functionality requirements are captured using “future scenarios”,
which are task sets that model functionality likely to be added
in the future. In this context, we derive a mapping of tasks
in the application, such that the resulted implementation is
both robust and flexible. Robust means that the application
has a high chance of being schedulable, considering the wcet

uncertainties, whereas a flexible mapping has a high chance
to successfully accommodate the future scenarios. We propose
a Genetic Algorithm-based approach to solve this optimization
problem. Extensive experiments show the importance of taking
into account the uncertainties during the early design phases.

I. INTRODUCTION

There is a lot of research on embedded systems design [1],
but very few researchers have addressed the early design
phases. The decisions taken during the early design phases,
e.g., architecture selection and task mapping, have a high im-
pact on the subsequent implementation choices [2]. However,
early phases are characterized by many uncertainties, e.g., in
terms of the hardware components available, functionality that
has to be implemented and attributes such as the wcet.

We address hard real-time applications, modeled as a set
of tasks, where timing constraints are of utmost importance.
We are interested in tackling uncertainties in the functionality
requirements and the wcets of tasks. We model the uncer-
tainties in the wcets using the “percentile method” [3], which
captures the wcet of a task by two values, the 50th and the 90th

percentile. These numbers are chosen by the designers based
on the best available information and their experience.

Today, most systems are engineered in an evolutionary
fashion: introducing a new version of an existing product,
introducing new features—possibly as part of a planned evo-
lution of a product line, performing a design-iteration, etc.

Functionality requirements often change during these itera-
tions. For example, new tasks may be introduced to update
the existing functionality or add a new feature, etc. Several
approaches to generating realistic product scenarios and how
these product scenarios should be prioritized, are discussed
in [4]. Thus, we capture the uncertainties in functionality
requirements using “future scenarios” [4], which are task sets
that model functionalities likely to be added in the future.

We assume that the hardware architecture is fixed, and we
want to decide the mapping of tasks to processing elements
(PEs), such that the application is schedulable, even consid-
ering the uncertainties. A straightforward solution to tackle
uncertainties is to over-design the system, e.g., to build a lot of
spare capacity, but this is often prohibitively expensive. As an
alternative, researchers have proposed adaptive systems, which
change at runtime their configuration (e.g., re-mapping tasks
using task migration) in response to changes in the require-
ments, execution times, environment, etc. However, many hard
real-time applications are safety critical, where online task
migration is not feasible, and an offline reconfiguration, e.g.,
task re-mapping, may be very costly. Hence, we want to derive,
early on, a mapping of tasks to PEs, which is both robust
and flexible. In our case, robust means that the application
has a high chance of being schedulable, considering the wcet
uncertainties, whereas a flexible mapping has a high chance
to successfully accommodate future scenarios.

For time-triggered systems using static-cyclic scheduling,
researchers have proposed approaches for the synthesis of
flexible schedules, which can accommodate future changes.
In [5], the future applications are captured using a set of
possible wcets and their probability distributions, and the
flexibility is measured as the likelihood of successfully adding
new functionality in the future. In [6], the flexibility is defined
as both “extensibility”, i.e., the maximum increase in the
wcet of a task that can be handled without rescheduling, and
“scalability”, i.e., the maximum wcet of a new task that a
schedule can accommodate without change. The work in [7]
uses the info-gap decision theory to synthesize robust FlexRay
bus schedules, considering uncertainties in design parameters,
such as the size of a message.

In this paper we consider that the tasks are scheduled using
fixed-priority preemptive scheduling (fpps). In this context,
robustness has been addressed using “sensitivity analysis” [8],
where the attributes of an implementation, e.g., worst-case
response times, are evaluated against changes in system prop-978-3-9810801-8-6/DATE12/ c�2012 EDAA



erties, e.g., wcets. In [3], the mapping is fixed, and the
uncertainties in the wcets are captured using the “percentile
method”. The author proposes a Monte Carlo simulation
approach to evaluate the likelihood that tasks will meet their
deadlines. Other researchers [9] quantify the robustness in
terms of a “revision cost”, and they aim to provide robust
designs, which minimize the revision cost.

Regarding flexibility, [10] proposes a mapping technique
to increase the chance of successfully accommodating fu-
ture applications. The future applications are captured similar
to [5], using probabilities for wcet values. The approach
in [11] defines flexibility in terms of the amount of func-
tionality that the design is able to implement, and proposes
a flexibility vs. cost trade-off model to search for Pareto-
optimal solutions. In [4], researchers model the uncertainty
in functionality requirements using scenarios, i.e., prioritized
task sets, and derive an architecture and a mapping of tasks
such that the flexibility is maximized. The flexibility is defined
as the likelihood of all tasks being schedulable when adding
a scenario to the existing mapping.

In this paper we are interested to derive a robust and
flexible mapping solution during early design phases, taking
into account the uncertainties. The problem is defined in Sec-
tion III, and the uncertainty models are presented in Section II.
Section V presents a motivational example which shows the
importance of considering the uncertainties. In order to address
both robustness and flexibility simultaneously, we propose a
Genetic Algorithm-based approach to search for a Pareto-
front of solutions (Section VI). The evaluation of the proposed
approach is presented in Section VII. In the last section, we
draw the conclusion of our work.

II. SYSTEM MODEL

In this paper, a system is composed of software applications,
modeled as a set of tasks, and a hardware architecture con-
sisting of a set N of PEs, interconnected by a communication
channel, which is a bus on which messages are exchanged
between tasks mapped on different PEs.

The mapping of a task ⌧i to a PE Nj is captured by a
mapping function:M(⌧i) = Nj. This mapping is not yet known
and will be decided by our proposed approach. For each task
⌧i, we assume that the period Ti and deadline Di are known
and given such that Di  Ti. Tasks are scheduled using fpps.

A. Modeling wcet uncertainties
In this paper, we are not interested in modeling the variabil-

ity of the execution time ei of a task ⌧i, but in modeling the
uncertainties of the wcet ci. The variability of ei is typically
captured by a probability mass function [12] and is due to,
for example, the variations in the input data of tasks or the
speculative features of modern processors.

In our case, the uncertainties in a wcet ci come from the
lack of information during the early design stages, when, for
example, the algorithm used to implement a task ⌧i or the
parameters of the architecture are not yet known. Similar
to [3], we use the “percentile method” to model the wcet

N1 N2 Ti =
Tasks 50th 90th 50th 90th Di
⌧1 10 20 15 30 50
⌧2 25 50 37.5 75 100
⌧3 40 60 60 90 150
⌧4 60 72 90 108 300

Fig. 1 Uncertainties in wcets Fig. 2 Two mapping alternatives

uncertainties. Thus, we capture the wcet of a task by two
values, the 50th and 90th percentiles. This means that in 50%
of the possible future implementations, a task will have a
wcet smaller or equal to the 50th percentile value, while in
the majority of the cases, i.e., 90%, the wcet will not exceed
the 90th percentile value.

Fig. 1 presents an example in which four tasks, ⌧1 to
⌧4, can be mapped on two PEs, N1 and N2. For each task
⌧i and its mapping on each PE Nj, two wcet values are
given, i.e., the 50th and 90th percentile, respectively. The more
information is available about a task and the PEs where it
can potentially be mapped, the smaller the difference between
the two percentiles. A wcet can also be a fixed value, e.g.,
for legacy tasks mapped on legacy PEs. In our example,
⌧4 is an updated task, thus designers believe that its 90th

percentile is only 20% larger than its 50th percentile. For ⌧3,
this difference is 50%. However, tasks ⌧1 and ⌧2 are new tasks
to be introduced, hence designers have lower confidence and
thus their 90th percentiles are twice the 50th percentiles.

We use a Gumbel distribution, with the cumulative distribu-
tion function (cdf ) defined as [13]: P(ci  x) = e�e�

x�µ
� , where

P is the probability that the wcet ci will have a value smaller
or equal to x. Using the two percentile values, corresponding
to 0.5 and 0.9 probability, we can determine the distribution
parameters µ and �, i.e., determine the cdf of the wcet. For
example, for ⌧1 mapped on N1 in Fig. 1, we have µ = 8.05
and � = 5.31. Knowing the cdf for a task ⌧i, we can also
determine its probability density function (pdf ) �i.

B. Modeling functionality uncertainties

Additionally, product requirements often change during later
design and development phases. We use the approach from [4]
to describe an application as one baseline functionality, S 0, and
a set of future scenarios, S f = {S 1, S 2, . . .}. Each future sce-
nario is associated a weight wi, which reflects the probability
of this future scenario becoming a reality.

N1 N2 Ti =
Tasks 50th 90th 50th 90th Di

S 0: Example in Fig. 1
S 1 = S 0 \ ⌧1 [ ⌧5 (w1 = 0.8)

⌧5 10 20 15 30 50
S 2 = S 0 [ ⌧6 (w2 = 0.4)

⌧6 25 50 37.5 75 100
S 3 = S 0 [ ⌧7 [ ⌧8 (w3 = 0.6)

⌧7 30 60 45 90 300
⌧8 50 75 75 102.5 300

S 4 = S 0 \ ⌧1 [ ⌧5 [ ⌧6 (w4 = 0.2)
⌧5 10 20 15 30 50
⌧6 25 50 37.5 75 100

Fig. 3 Modeling uncertainties in functionality requirements



Let us consider the example in Fig. 3, which includes one
baseline functionality S 0 (tasks ⌧1 to ⌧4 from Fig. 1), and four
future scenarios S 1 to S 4. We consider an architecture of two
PEs, N1 and N2 (the same as in Fig. 1) . S 1 replaces ⌧1 with ⌧5
due to a functionality update. S 2 introduces ⌧6 for enhancing
the application performance. In S 3, a new application is added,
which is modeled by ⌧7 and ⌧8. S 4 is the combination of S 1
and S 2, which captures the case when both S 1 and S 2 happen
at the same time. Next to each scenario S i, we also specify its
weight wi. These scenarios, and their associated weights, are
determined using the methods presented in [4].

III. PROBLEM FORMULATION

As an input to our problem, we have the hardware archi-
tecture N , the baseline functionality S 0 and the set of future
scenarios S f . For each task, we know the two wcet percentile
values, on every PE where it is considered for mapping.

We are interested to determine the mapping M0 of the
baseline functionality S 0 on the given architecture N , such
that the robustness and flexibility of M0 is maximized. These
two metrics will be formally defined in the next subsection.
A mapping M0 is robust if the tasks in S 0 have a high chance
of being schedulable. M0 is flexible if it has a high chance
to successfully accommodate the future scenarios from S f ,
such that they are also likely to be schedulable. This is a
two-objective optimization problem (robustness and flexibil-
ity). Our optimization strategy, presented in Section VI, will
produce a Pareto-front of solutions.

We target safety-critical hard real-time applications, so we
consider that M0 is fixed when adding a future scenario. Our
optimization strategy will produce the mappings Mi of future
scenarios S i, as a byproduct of evaluating the flexibility of
M0. In the later design stages, when a scenario S i has become
a reality, we use our proposed mapping optimization strategy
to decide the mapping Mi of S i, while keeping the mapping
of tasks in S 0, decided during the early design phases, fixed.

A. Robustness and Flexibility

We use the “degree of schedulability” to characterize the
schedulability of a given mapping alternative M,

rM =

8>><
>>:

d1 =
P

i max(0, ri � Di) i f d1 > 0
d2 =

P
i(ri � Di) i f d1 = 0

(1)

where ri is the worst-case response time (wcrt) of a task ⌧i and
Di is its deadline. If a mapping is not schedulable, there exists
at least one ri greater than the deadline Di, therefore the term
d1 of the function will be positive. In this case rM is equal
to d1. However, if a mapping is schedulable, then each ri is
smaller than its corresponding deadline Di. In that case d1 = 0
and we use d2 as the rM , to be able to differentiate between
two mapping alternatives, both leading to feasible schedules.
rM  0 means the mapping is schedulable. A larger negative
value of rM indicates the mapping is “more schedulable”, i.e.,
the wcrts are smaller.

Note that rM is a stochastic variable, since it is calculated
based on wcrts ri, and each ri is determined by the related
wcets ci, see Section IV.

The robustness of a mapping Mk (k = 0, 1, . . .), for the tasks
in a task set S k, is defined as the probability of all tasks in S k
being schedulable,

RMk = P(rMk  0) (2)
where rMk is the degree of schedulability from Eq. 1.

Let us denote Mi, the mapping of the tasks in a future
scenario S i 2 S f , on top of the mapping M0 of the baseline
functionality S 0, such that the robustness RMi is maximized.
Then, the flexibility FM0 of M0 is defined as,

FM0 =

P|S f |
i=1 wi ⇥ RMi

P|S f |
i=1 wi

(3)

where wi is the weight of scenario S i, and |S f | is the number of
future scenarios. To calculate FM0 , we need first to determine
the mapping Mi of each S i, such that RMi is maximized (See
Section VI-A).

IV. SCHEDULABILITY ANALYSIS

We are interested to determine the probability RMk of a
mapping Mk to be schedulable. This value is used in both
metrics, robustness (RM0 ) and flexibility (RMi , i = 1, 2, . . .). In
this paper, we assume that tasks are scheduled using a fixed-
priority preemptive scheduling policy, and we use a Response
Time Analysis (RTA) [14] to determine the wcrt ri of a task
⌧i, according to the recurrence equation:

rn+1
i = ci +

X

8⌧ j2hp(⌧i)

&
rn

i

T j

'
c j (4)

where hp(⌧i) is the set of tasks that have a priority higher than
the priority of ⌧i.

This basic analysis has been extended over the years [14]
to take into account blocking times, arbitrary deadlines and
release times, jitter, offsets, etc. Our analysis for uncertain
wcets uses a RTA inside an iterative loop. For simplicity, in this
paper, we have decided to consider the case when Di  Ti and
ignore the messages. The RTA is orthogonal to our analysis,
and can be extended to consider a more general case.

In [12], a stochastic schedulability analysis is used to handle
the variability in ei. Each job Ji, j of a task ⌧i may have different
execution times, depending on the probability distribution
function ⇠i of ei. Thus, for calculating ri, the updated response
time equation (Eq. 4) [12] uses stochastic variables of ci and
c j. In each iteration of the recurrence equation for ri, ci and
c j will get different values, based on their pdf s of ⇠i and ⇠ j,
respectively. However, such a solution is not applicable in our
case, where each job Ji, j of a task ⌧i has the same wcet ci in
each iteration.

The analysis in [3] uses Monte Carlo Simulation (MCS)
to determine the probability distribution of ri. With MCS, a
large number of iterations are run, and the following steps are
performed. First, for each task ⌧i, a value of ci is generated
based on its wcet pdf, �i. Second, the generated values of ci
are used to determine the wcrt ri of each task ⌧i with Eq. 4.



Then, the degree of schedulability rM is calculated using Eq. 1.
Finally, the rM values are collected over all iterations, and thus
the degree of schedulability pdf is obtained.

MCS requires a large number of iterations (e.g., 100,000) to
get an accurate result, which is time-consuming, and thus we
cannot use MCS during design space exploration. In this pa-
per, instead of MCS, we propose using the Kernel Smoothing
Density Estimate (KSDE) technique [15] to quickly approxi-
mate the degree of schedulability pdf.

Similar to MCS, we start by performing a number of
iterations to get the degree of schedulability values. However,
we need fewer samples for KSDE (e.g., 1,000 instead of
100,000 in MCS), since a smoothing technique is applied
to estimate the pdf based on the available samples. Given m
random samples X1, . . . , Xm whose underlying density f is to
be estimated, KSDE uses a kernel density estimator,

bf (x, h) =
1

mh

mX

i=1

K
✓ x � Xi

h

◆
(5)

where K( x�Xi
h ) is the kernel and h (> 0) is the bandwidth. The

bandwidth h is a smoothing parameter, which controls how
wide the probability mass is spread around a sample.

We evaluated several kernels and bandwidths, and compared
the results with those obtained by MCS. We decided to use a
normal kernel,

K(x) =
1p
2⇡

e�
1
2 x2

(6)

and a normal optimal smoothing h,

h =
�(Xi � �(Xi))

0.6745
·
 

4
3m

! 1
5

(7)

where �(Xi��(Xi))
0.6745 is a robust estimate for standard deviation of

the distribution, and �(Xi) denotes the median of Xi.
Considering the two mappings, M and M0, from Fig. 2,

both MCS and KSDE resulted in RM = 93% and RM0 = 67%,
i.e., the probability of the tasks in S 0 to be schedulable is
93% (using M) and is 67% (using M0). The difference is
that MCS took 25 seconds (using 100,000 samples), whereas
KSDE finishes in 0.5 second (using 1,000 samples).

We have used both MCS and KSDE to determine the
robustness of 20 task sets mapped on varying number of
PEs. The maximum difference between the two techniques
is 3%. Thus, we use KSDE as the basis for calculating
the two objective functions during the optimization. Note
that the analysis presented in this section is only used to
guide the search, not to provide schedulability guarantees. We
assume that a RTA will be used during the later design and
development stages (when maybe more accurate information
about wcets and the functionality is available) to check the
schedulability of an implementation.

V. MOTIVATIONAL EXAMPLE

In the following, we show the importance of modeling and
taking into account the uncertainties in the early design phases.

−500 0 500
0

0.2

0.4

0.6

0.8

1

Degree of schedulability

cp
f

 

 

E[r
M

] = −268

R
M

 = 93%

E[r
M’

] = −317

R
M’

 = 67%

Fig. 4 Results of M and M0

0.85 0.9 0.95 1
0.7

0.75

0.8

0.85

0.9

0.95

Robustness

F
le

x
ib

il
it

y

 

 

SFM
Pareto−optimal

Fig. 5 SFM and Pareto-optimal

For comparison purposes, let us introduce a “straightforward
mapping” (SFM) approach, which does not take into account
the uncertainties. Thus, with SFM, we consider that each wcet
is characterized by a single value (the expected value of the
wcet pdf �i, denoted by E(�i)), and the future scenarios are
ignored. SFM determines that mapping which minimizes the
E(rM), calculated using the expected wcet values in Eq. 1.

Let us assume that SFM has to decide between two map-
pings M and M0 from Fig. 2, during design space exploration.
Using the expected wcet values, rM = �260, while, rM0 =
�317, which means that M0 would be preferred. However,
we reach a different conclusion if we take into account the
uncertainties in wcets and compare the two mappings in terms
of robustness. Fig. 4 presents the degree of schedulability cpf s
for the two mappings. The probability of the mapping being
schedulable P(rM  0) is determined by the intersection of the
cpf with the vertical line at point “0”. As we can see, M has
a better chance of being schedulable (93%) than M0 (67%),
so actually chosing M instead of M0 is more “robust”, i.e., it
has a higher chance of being schedulable.

Let us consider the baseline functionality from Fig. 1, and
the future scenarios from Fig. 3. We are interested to determine
a mapping which maximizes robustness and flexibility. The
Pareto-optimal solutions found after an exhaustive search,
are depicted by a (blue) ‘⇥’ in Fig 5. The rightmost ‘⇥’ is
the most robust mapping, with 95.4% robustness and 88.4%
flexibility. The leftmost ‘⇥’ is the most flexible mapping, with
a robustness of 92.7% and a flexibility of 90.1%.

We have also plotted in Fig. 5 the optimal mapping obtained
by SFM, using a red ‘+’ symbol. The robustness and flexibility
of this mapping have been calculated using Eq. 2 and Eq. 3,
respectively, taking into account the uncertainty model from
Fig. 1 and Fig. 3. As we can see, SFM produces a poor quality
solution, with only 85.5% robustness and 70.6% flexibility.

VI. MAPPING OPTIMIZATION

We propose a Genetic Algorithm (GA)-based approach,
called Mapping for Robustness and Flexibility (MRF), to solve
the optimization problem presented in Section III. There are
several off-the-shelf multiobjective GA implementations, such
as NSGA-II [16] and search frameworks for multiobjective
optimization such as PISA [17]. In this paper, we focus on
determining the importance of modeling the uncertainties in
the early design stages, and thus we decided to use the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [16], due
to its good performance and its simple implementation.



GA is a metaheuristic optimization approach, which belongs
to the class of Evolutionary Algorithms, inspired from the
process of natural evolution. The set of candidate solutions is
called a “population”, and each solution is (i) encoded using a
string called a “chromosome”. The population is (ii) initialized
to n candidate solutions, where n is the population size. The
population is evolved by (iii) selecting a set of solutions and
performing (iv) recombination and (v) mutation to generate
offsprings. Finally, the parent population is (vi) replaced with
an offspring population with better “fitness”. The fitness of
a solution is evaluated using our multiobjective function.
Steps (iii) to (vi) are repeated until a termination condition
is reached.

Steps (i) to (vi) are explained in the reminder of this section.
There are several choices for their implementation. Through
experiments, we decided to choose the following approaches,
which can find good solutions in a reasonable time. The
parameters were also determined experimentally. One example
of parameters is given in Section VII.

(i) Encoding: We use direct-value encoding, where each
chromosome represents a mapping alternative, and each allele
(the value of a gene, which is a component of a chromosome)
represents a PE. For example, the mapping of ⌧1 and ⌧2 to
N1, ⌧3 and ⌧4 to N2 is described by the string 1|1|2|2, where
ith position in the string is the index j of the PE Nj of task ⌧i.

(ii) Initialization: The initial population is randomly gener-
ated and has a population size n.

(iii) Selection: We use “tournament selection”’ to select
parents for performing recombination and mutation. In a
tournament, four chromosomes are chosen at random, and
the fittest one wins. In total, 2(pc ⇥ n) parents are chosen
for performing recombination, while n � (pc ⇥ n) parents are
chosen for performing mutation, where pc is the probability
of recombination.

(iv) Recombination (also called crossover): We employ a
standard single point crossover. For each two parents, we
compare a randomly generated number with pc, if this number
 pc, the two parents are cut at a random point and the sections
after the cut point are swapped to generate the offsprings.
Otherwise, the offsprings are just copies of their parents. For
example, if 1|2|1|2 and 2|1|2|1 are decided to crossover on their
third position, the offsprings are 1|2|2|1 and 2|1|1|2.

(v) Mutation is used to add diversity to a population
obtained from recombination. For each position of a parent’s
string, we compare a randomly generated number with pm
(probability of mutation) and if this number  pm, this position
is mutated, i.e., the task is randomly remapped to another PE.

(vi) Replacement: Recombination and mutation generate
n offsprings out of the n parents in the current population.
Replacement decides which n solutions are kept out of the
2n solutions available. The key advantage of NSGA-II lies
in how it performs selection and replacement, with the goal
of preserving diverse non-dominated solutions, in the hope of
finding the Pareto-optimal front. See [16] for the details on
the selection and replacement procedures used in NSGA-II.

Steps (iii) to (vi) are repeated until there is no improvement
for a given number of consecutive generations, e.g., 10. In the
end, we obtain a Pareto-front of solutions, which, however, is
not guaranteed to contain the Pareto-optimal, since NSGA-II
is a search metaheuristic which does not guarantee optimality.

A. Determining the mappings of future scenarios
When measuring the flexibility FM0 of a mapping M0, we

need to determine the mapping of each future scenario, S i (i =
1, 2, . . .), and calculate its robustness RMi using Eq. 3. To get
an accurate flexibility value for FM0 , Mi should be as close as
possible to the optimal, i.e., it has a maximum robustness value
for RMi . However, determining such optimal mappings is time-
consuming, and the evaluation of flexibility is performed when
visiting every M0 alternative. Hence, we propose a Greedy
algorithm to determine the mapping Mi of each future scenario
S i. Note that we only have to map those tasks from S i which
are not present in the baseline functionality S 0, i.e., they are
new tasks. All the other tasks will keep the some mapping
as in M0. Thus, the new tasks in S i are sorted according to
their utilization, calculated using the expected wcets, i.e., ui =
E(�i)/Ti. Then each task is mapped on the PE with the lowest
utilization, and the PE utilizations are updated before moving
to the next task.

To determine the quality of the proposed Greedy algorithm,
we have also implemented a GA-based mapping. The two
algorithms have been evaluated using the synthetic benchmark
“synthetic 1” (see Section VII). The difference is only 4%, but
GA is 35-times slower than the greedy algorithm. Therefore,
we have decided to use the Greedy algorithm instead of GA
for determining the mapping of future scenarios.

VII. EXPERIMENTAL RESULTS

To evaluate our proposed approach, we used four real-life
benchmarks (Table II) from the Embedded System Synthesis
Benchmark Suite (E3S), version 0.9 [18], and eight synthetic
benchmarks (Table I) generated using Task Graphs For Free
(TGFF) [19]. The details of the benchmarks are reported in
Columns 1–4 of the tables. For the synthetic benchmarks,
wcets were generated in the range 30–70 ms. These values
are considered as the wcets with 50th percentile. wcets with
90th percentile are generated to be up to 50% larger than their
50th percentile.

For each benchmark, four future scenarios, S 1 to S 4, are
considered. To create S 1, we have randomly selected 10% of
tasks in S 0 and increased their 50th percentile with 20% (and
correspondingly adjusted their 90th percentile). For S 2, we

Table I SYNTHETIC BENCHMARKS

Test Set Number of SFM MRF
PEs Tasks Most robust Most flexible

S 0 S f RM0 FM0 RM0 FM0 RM0 FM0
synthetic 1 3 22 30 34% 17% 84% 56% 69% 64%
synthetic 2 3 22 30 75% 30% 96% 52% 87% 82%
synthetic 3 6 42 58 26% 22% 70% 23% 61% 63%
synthetic 4 6 42 58 77% 44% 95% 45% 89% 81%
synthetic 5 8 62 86 38% 13% 70% 23% 60% 33%
synthetic 6 8 62 86 81% 23% 97% 64% 93% 73%
synthetic 7 10 84 116 22% 6% 88% 18% 69% 27%
synthetic 8 10 84 116 74% 9% 88% 11% 81% 28%



Table II REAL-LIFE BENCHMARKS

Test Set Number of SFM MRF
PEs Tasks Most robust Most flexible

S 0 S f RM0 FM0 RM0 FM0 RM0 FM0
consumer-cords 2 12 16 67% 51% 96% 66% 93% 68%

networking-cords 2 13 17 75% 69% 86% 73% 80% 75%
auto-indust-cords 4 24 32 42% 12% 59% 38% 56% 41%

telecom-cords 4 30 42 46% 44% 97% 57% 91% 73%

have randomly introduced new functionality, which is about
10% of the size of S 0. S 3 is similar to S 2, but larger, 20% of
S 0. Finally, S 4 is a combination of S 1 and S 2. The weights of
four scenarios, S 1 to S 4, are 0.8, 0.4, 0.6 and 0.2, respectively.

In the first set of experiments (Table I), we were interested to
determine the importance of capturing the uncertainties during
the early design phases. We have varied the size of the system
from 22 tasks (S 0) and 3 PEs to 84 tasks (S 0) and 10 PEs and
applied two optimization approaches: MRF, presented in the
previous section, which takes into account both uncertainties,
and SFM, introduced in Section V, which uses the expected
values of wcets and ignores the future scenarios.

The robustness and flexibility of SFM are reported in
columns 5 and 6 of Table I. MRF produces a Pareto-front
of solutions. Due to a lack of space, we show only the Pareto-
front of “synthetic 1” (Fig. 6), and report only the extremes in
the Pareto-front of all synthetic benchmarks, the most robust
solution (columns 7 and 8) and the most flexible solution
(columns 9 and 10).

We have tuned the NSGA-II parameters such that the results
are as close as possible to the optimal (i.e., no improvements
were seen after a very long runtime). Taking “synthetic 7” as
an example, we set n = 100, pc = 0.4, pm = 0.2 and the search
terminates if no improvement is seen after 10 generations.
Both SFM and MRF are implemented in Matlab 2010 and
run on an Intel Core i7 CPU 920 (2.67 GHz) computer. This
resulted in runtime in between 0.5 and 3.5 hours.

As we can see from Table I, SFM is not able to find
robust and flexible solutions, whereas our MRF approach is
able to find good quality solutions, where the robustness and
flexibility is significantly increased compared to SFM.

In the second set of experiments, we evaluated the MRF
approach using four real-life benchmarks from E3S. The
experimental setup details and the results obtained are pre-
sented in Table II. Due to a lack of space, we show only the
Pareto-front of “consumer-cords” (Fig. 7), and report only
the extremes in the Pareto-front of all real-life benchmarks in
columns 7–10 of Table II. The evaluation confirms the results
obtained from the synthetic benchmarks.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Robustness

F
le

x
ib

il
it

y

 

 

SFM
MRF

Fig. 6 synthetic 1

0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

Robustness

F
le

x
ib

il
it

y

 

 

SFM
MRF

Fig. 7 consumer-cords

VIII. CONCLUSION

In this paper, we have addressed the mapping of hard
real-time applications on distributed heterogeneous architec-
tures, during the early design phases. We have considered a
fixed-priority preemptive scheduling policy, where the system
schedulability is determined using a response time analysis.
We have modeled the uncertainties in wcets and functionality
requirements, and we have used the Kernel Smoothing Density
Estimate as the basis for determining the schedulability proba-
bility of a mapping alternative. We have proposed a GA-based
mapping optimization targeting both robustness and flexibility,
related to the uncertainties in wcets and functionality require-
ments, respectively. The results obtained on the synthetic and
real-life benchmarks show the importance of modeling the
uncertainties during the early design phases, and taking them
into account during design space exploration.

REFERENCES

[1] L. Lavagno and C. Passerone, “Design of embedded systems,” Embed-
ded Systems Handbook, 2005.

[2] J. Axelsson, “Cost models with explicit uncertainties for electronic archi-
tecture trade-off and risk analysis,” Intl. Council on Systems Engineering
(INCOSE), 2006.

[3] ——, “A method for evaluating uncertainties in the early development
phases of embedded real-time systems,” in Proc. RTCSA, 2005.

[4] I. Bate and P. Emberson, “Incorporating scenarios and heuristics to
improve flexibility in real-time embedded systems,” in Proc. RTAS, 2006,
pp. 221–230.

[5] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimization of time-
and cost-constrained fault-tolerant embedded systems with checkpoint-
ing and replication,” IEEE Trans. on VLSI Systems, vol. 17, no. 3, pp.
389–402, 2009.

[6] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli, “Extensible and scalable time triggered scheduling,” in
Application of Concurrency to System Design, 2005, pp. 132–141.

[7] A. Ghosal, H. Zeng, M. Di Natale, and Y. Ben-Haim, “Computing
robustness of flexray schedules to uncertainties in design parameters,”
in Proc. DATE, 2010, pp. 550–555.

[8] R. Racu, A. Hamann, and R. Ernst, “A formal approach to multi-
dimensional sensitivity analysis of embedded real-time systems,” 2006.

[9] M. Lukasiewycz, M. Glaß, and J. Teich, “Robust design of embedded
systems,” in Proc. DATE, 2010, pp. 1578–1583.

[10] P. Pop, P. Eles, and Z. Peng, “Flexibility driven scheduling and mapping
for distributed real-time systems,” in RTCSA, 2002.

[11] C. Haubelt, J. Teich, K. Richter, and R. Ernst, “System design for
flexibility,” in Proc. DATE, 2002, pp. 854–861.

[12] K. Kim, J. Diaz, L. Bello, J. Lopez, C. Lee, and S. Min, “An exact
stochastic analysis of priority-driven periodic real-time systems and its
approximations,” IEEE Trans. on Computers, vol. 54, no. 11, pp. 1460–
1466, 2005.

[13] S. Kotz and S. Nadarajah, Extreme value distributions: theory and
applications. World Scientific Publishing Company, 2000.

[14] C. Fidge, “Real-time schedulability tests for preemptive multitasking,”
Real-Time Systems, vol. 14, no. 1, pp. 61–93, 1998.

[15] A. Bowman and A. Azzalini, Applied smoothing techniques for data
analysis: the kernel approach with S-Plus illustrations. Oxford
University Press, USA, 1997, vol. 18.

[16] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in Parallel Problem Solving from Nature PPSN VI. Springer,
2000, pp. 849–858.

[17] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “Pisa – a platform
and programming language independent interface for search algorithms,”
in Evolutionary multi-criterion optimization. Springer, 2003, pp. 1–1.

[18] R. Dick, “Embedded system synthesis benchmarks suite,” 2002.
[19] R. Dick, D. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in Proc.

workshop on Hardware/software codesign. IEEE Computer Society,
1998, pp. 97–101.


