Traffic Class Assignment for Mixed-Criticality Frames in TTEthernet

Voica Gavriluț Paul Pop

Technical University of Denmark Kongens Lyngby, Denmark

Outline

- Motivation
- Architecture and application models
- The TTEthernet protocol
- Problem formulation and motivational example
- Optimization strategy: Tabu Search and cost function
- Experimental results
- Summary, message and future work

Motivation

- ► Trend: From "federated" to "integrated" architectures, where distributed applications of different criticality share the same platform
- Mixed-criticality systems: integrate safety-critical, mission-critical and non-critical applications
 - Our focus is on the mixed time-criticality: hard real-time, soft real-time and non critical (non real-time)
 - Hard real-time: missing a deadline leads to failure
 - Soft real-time: missing a deadline degrades the service
- Safety-critical communication protocols:
 - Specialized protocols in each area (e.g., CAN, FlexRay, SAFEBus, ProfiNet)
 - Trend: extending Ethernet
 - Ethernet: low cost, high speed, but unsuitable for real-time & safety-critical systems
 - Extensions: AFDX/ARINC 664p7, EtherCAT, FTT-Ethernet, TTEthernet (our focus)

TTEthernet Traffic Classes

TTEthernet

- Standardized as SAE 6802
- ARINC 664p7 compliant
- Developed and marketed by TTTech Computertechnik AG
- ▶ Used in several application areas: automotive, aerospace, industrial

Multiple traffic classes support mixed-criticality requirements

- Time-Triggered (TT)
 - Very low latency and jitter
 - The frames are sent based on schedule tables; highest priority
- Rate-Constrained (RC)
 - Compatible with ARINC 664p7; lower priority than TT
 - Guaranteed bandwidth via a "Bandwidth Allocation Gap" (BAG)
 - Bounded worst-case end-to-end latency
- Best-Effort (BE)
 - Standard Ethernet frame
 - No timing guarantees; lowest priority

Our problem: how to assign the traffic classes to mixed-criticality messages

Architecture Model

- Virtual Links (VL)
 - Emulate point-to-point connections and provide the separation required for messages of mixed-criticality
 - Each message has a VL, and we assume that VL routing is given

Application Model

Mixed-criticality messages

HRT: periodic hard real-time messages with a hard deadline SRT: periodic or sporadic soft real-time messages with a *utility* function NC: aperiodic non-critical messages

Message	Source	Destination(s)	Size	Period	Deadline/ Utility
$m_1 \in \mathcal{M}^{HRT}$	ES_1	$\{ES_3, ES_4\}$	80 B	750 μ <i>s</i>	200 μ <i>s</i> 1.4 ms/
$m_2 \in \mathcal{M}^{SRT}$	ES_3	$\{ES_2\}$	300 B	2 ms	see utility
$m_3 \in \mathcal{M}^{NC}$	ES_2	$\{ES_1, ES_3\}$	1200 B	-	

Figure: Example utility(t) function for SRT messages

TTEthernet: TT and RC traffic

- ► TT Traffic
 - TT frames are sent based on schedule tables and have the highest priority
 - > The schedules contain the time when TT frames are sent and received on the links
- RC Traffic
 - RC frames are queued up at the outgoing ports, and have to wait for TT frames and other RC frames
 - A "Traffic Regulator" assures that there is at most one frame sent during a BAG interval L_{max} is the maximum size of a RC frame
- Traffic integration policies:

Preemtion	The transmission of lower priority message is interrupted and resumed
	after the integral transmission of the higher priority message
*timely block	The lower priority message transmission is postponed if it would interfere
	with the transmission of a scheduled higher priority message
Shuffling	The transmission of higher priority message is postponed until the lower
	priority messages sending is finished

Problem Formulation

Given

- The architecture model; the TTEthernet cluster
- Note: for each message we know its VL and the VL routing

Determine

- The traffic class $\mathcal{TC}(m_i)$ for each message m_i
- The BAG and L_{max} for each RC message
- The sending schedule tables S_S for each TT message

Such that

- The HRT messages are schedulable and
- The total utility for SRT messages is maximized.

Motivational Example: Introduction

6

(c) Example Utility Functions

Motivational Example

(a) All messages are RC; m_1 is **not** schedulable; total achieved utility is only 36% out of 12.

(b) HRT messages are TT and SRT are RC. m_1 and m_2 are schedulable, but the total utility is only of 11%.

(c) HRT m_2 is RC, SRT m_3 is TT. HRT are schedulable, and the total utility is increased to 79%. m_3 has a maximum utility.

Optimization Strategy: Tabu Search

Tabu Search meta-heuristic

- Search heuristic
 - Explores the search space using Design Transformations
 - Maximizes the Cost Function
 - Avoids revisiting recent solutions by labeling them as "tabu"

Cost Function

• $Cost(\Psi) = wp_{HRT} \cdot \delta_{HRT} + \sum_{m_i \in \mathcal{M}^{SRT}} m_i.utility(WCD(m_i))$

Degree of schedulability:

$$\delta_{HRT} = \sum_{m_i \in \mathcal{M}^{HRT}} \min(0, m_i.deadline - WCD(m_i))$$

WCD is the worst-case end-to-end delay

TT: given by the schedule table RC: determined using a trajectory approach-based analysis method

Design Transformations

- Switch Traffic Class: switches the traffic class of a message
- Modify Schedule: advances or postpones a TT frame
- Modify VL: increases or decreases the BAG and L_{max}

Experimental results

				SFS		TCA	
Name	No. HRT msgs.	No. SRT msgs.	%HRT sched.	%SRT utility	Running time (h:min)	%HRT sched.	%SRT utility
tc1	9	11	44.44%	90.27%	00:50	100%	100%
tc2	11	23	54.54%	85.07%	2:30	100%	99.63%
tc3	17	28	47.06%	64.10%	3:45	100%	95.77%
SAE	40	39	70.00%	81.72%	5:00	100%	94.61%
orion	99	87	45.45%	78.80%	12:30	94.94%	98.68%

- Evaluated algorithms:
 - Traffic Class Assignment (TCA): Our proposed Tabu Search optimization
 - ▶ Straightforward Solution (SFS): all messages are RC, and BAG and L_{max} are optimized
- 3 synthetic cases and 2 real-life
 - The synthetic test cases have the same topology with an increasing number of messages
 - SAE is the "SAE automotive communication" benchmark
 - Orion is the "Orion Crew Exploration Vehicle" case study
- Implementation and hardware:
 - Java programming language (JDK1.8)
 - Intel Xeon E5-2665 at 2.4 GHz

Summary and message

Summary

- Addressed mixed-criticality applications implemented over TTEthernet networks
- Problem: decide the traffic class of each message
- Solution: Tabu Search-based optimization strategy

Message

- For mixed-criticality message it is not obvious what is the best traffic class
- We need tools to decide the assignment of traffic classes

Future work

- Handle the fragmenting and packing of TT frames
- Consider that the traffic class is assigned per dataflow link and not per message
- Ongoing: comparing against an SMT-based solution

Discussion

Advantages

- Can provide low latency and jitter
- There is a SMT-based schedules synthesizer that can handle large systems
- Has the most predictable behaviour due to the scheduled traffic
- There are methods to compute the WCD, so the latency can be bounded
- Uses less bandwidth
- Better suited for sporadic traffic; no wasted resources
- More flexible (easier to add new messages)

Disadvantages

- Schedules are not flexible (difficult to add new messages)
- The SMT-based approach cannot take into account the RC traffic
- RC traffic is still used for legacy reasons
- Uses more bandwidth due to the integration policy
- Larger latency and jitter
- Requires complex analysis and optimization methods for bounded latency and resources utilization

TΤ

RC

Backup: TTEthernet: TT Example

- Packing message m₂ into frame f₂
- Place f₂ in buffer B_{1,Tx} for transmission
- Send time specified in send schedule S_s
- d TT_s sends f₂ to NS₁
- e f₂ is sent on the dataflow link to NS₁
- The Filtering Unit (FU) checks the frame f₂
- g Expected receive time specified in receive schedule S_R

- TT_R checks if f₂ arrives according to schedule
- Place f₂ in buffer B_{1,Tx} for transmission
- Send time specified in send schedule S_s
- FU checks f₂
- Store the frame into receive buffer B_{2,Rx}
- **(11)** Task τ_4 reads f_2 from buffer

Backup: TTEthernet: RC Example

- Packing message m₁ into frame f₁
- Insert it in queue Q_{1.Tx}
- 3 Traffic Regulator (TR) ensures bandwidth for each VL
- A RC scheduler RC multiplexes frames coming from TRs
- S TT_s transmits f₁ when there is no TT traffic
- 6 f₁ is sent on the dataflow link to NS₁
- 7 FU checks the validity of the frame

- 8 Traffic Policing (TP) checks that f2 arrives according to the BAG
- O Copy f₁ to outgoing queue Q_{Tx}
- Send f₁ when there is no TT traffic
- FU checks f₁
- 12 Copy to receiving Q_{2,Rx}
- (3) Task τ_3 reads f_1 from the queue

Backup: Optimization Strategy: Design Transformations

- ▶ Switch Traffic Class *STC*(*m_i*); switches the traffic class of a message:
 - From RC to TT, uses an initial schedules generator
 - From TT to RC, uses m_i.period and m_i.size to determine the vl_i parameters
- Modify Schedules MS(m_i, postpone); affects only TT messages and postpones (when postpone = TRUE) or advances the schedules of a message, on all links, keeping the transmission sequence valid
- Modify VL BAG and L_{max} MVL(m_i, increase); affects only RC messages and doubles (when increase = TRUE) or halved the vl_i.BAG and vl_i.L_{max}

Backup: Optimization Strategy 1

(a) The current solution; Cost=0.98

Message	\mathcal{TC}	link	$\mathcal{S}_{S}/(BAG, L_{max})$	iterations
m_1	TT	$NS_1 - NS_2$	[0.09]	14
m_2	RC	—	(4, 125)	5
m_3	ΤT	$ES_1 - NS_1$	[1]	0
m_3	ΤT	$NS_1 - NS_2$	[1.3]	7
		(1)		

(b) Tabu list

Backup: Optimization Strategy 2

(d) Switch Traffic Class of m_1 from TT to RC; Cost = -2.62; non-tabu

Backup: Optimization Strategy 3

(f) Modify Schedule of m_1 on $ES_1 - NS_1$ by postponing it with 0.04 ms; Cost = 0.98; non-tabu