
Abstract
In this paper we present an approach to the synthesis of fault-tol-
erant schedules for embedded applications with soft and hard
real-time constraints. We are interested to guarantee the dead-
lines for the hard processes even in the case of faults, while max-
imizing the overall utility. We use time/utility functions to
capture the utility of soft processes. Process re-execution is em-
ployed to recover from multiple faults. A single static schedule
computed off-line is not fault tolerant and is pessimistic in terms
of utility, while a purely online approach, which computes a new
schedule every time a process fails or completes, incurs an un-
acceptable overhead. Thus, we use a quasi-static scheduling
strategy, where a set of schedules is synthesized off-line and, at
run time, the scheduler will select the right schedule based on
the occurrence of faults and the actual execution times of pro-
cesses. The proposed schedule synthesis heuristics have been
evaluated using extensive experiments.

1. Introduction
Fault-tolerant embedded real-time systems have to be designed
such that they implement correctly the required functionality
even in the presence of faults. Faults can be permanent (i.e. dam-
aged microcontrollers or communication links), transient, or in-
termittent. Transient and intermittent faults (also known as “soft
errors”) appear for a short time and can be caused by electro-
magnetic interference, radiation, temperature variations, soft-
ware “bugs”, etc. Transient and intermittent faults1, which we
will deal with in this paper, are the most common and their num-
ber is increasing due to greater complexity, higher frequency and
smaller transistor sizes [8].

In addition, very important for the correct functioning of such
systems are their timing constraints: “the correctness of the sys-
tem behavior depends not only on the logical results of the com-
putations, but also on the physical instant at which these results
are produced” [10]. Real-time systems have been classified as
hard real-time and soft real-time systems. For hard real-time
processes, failing to meet a deadline can potentially have cata-
strophic consequences, whereas a soft real-time process retains
some diminishing value after its deadline.

Traditionally, hard and soft real-time systems have been sched-
uled using very different techniques [10]. However, many applica-
tions have both hard and soft timing constraints [2], and therefore
researchers have proposed techniques for addressing mixed hard/
soft real-time systems [2, 4, 3]. The issue of fault-tolerance has
also been addressed separately for hard and soft systems.

In the context of hard real-time systems, researchers have
shown that schedulability of hard real-time applications can be
guaranteed for pre-emptive online scheduling [6, 11, 16]. Howev-
er, such approaches lack the predictability required in many safe-
ty-critical applications, where static off-line scheduling is the only
option for ensuring both the predictability of worst-case behavior,
and high resource utilization. Thus, researchers have proposed ap-
proaches for integrating fault tolerance into the framework of stat-

ic scheduling. A heuristic for combining together several static
schedules in order to mask fault patterns through replication is
proposed in [13]. The actual static schedules are generated ac-
cording to the approach in [5]. Xie et al. [15] propose a technique
to decide how replicas can be selectively inserted into the applica-
tion, based on process criticality. Kandasamy et al. [9] propose
constructive mapping and scheduling algorithms for transparent
re-execution on multiprocessor systems. In [7] we have shown
how re-execution and active replication can be combined in an op-
timized implementation that leads to a schedulable fault-tolerant
application without increasing the amount of employed resources.

Regarding soft real-time systems, researchers have shown how
faults can be tolerated with active replication while maximizing the
utility of the system [12]. In [1] faults are tolerated while maximiz-
ing the reward in the context of online scheduling and an imprecise
computation model, where processes are composed of mandatory
and optional parts. In [14] trade-off between performance and
fault-tolerance, based on active replication, is considered in the
context of online scheduling. This, however, incurs a large over-
head during runtime which seriously affects the quality of results.

In this paper, we consider embedded systems composed of both
hard and soft processes. Process re-execution is used to provide
the required level of fault tolerance. We propose a novel quasi-
static scheduling strategy, where a set of fault-tolerant schedules
is synthesized off-line and, at run time, the scheduler will select
the right schedule based on the occurrence of faults and the actual
execution times of processes, such that hard deadlines are guaran-
teed and the overall system utility is maximized. The scheduling
strategy can also handle overload situations with dropping of soft
processes. The online overhead of quasi-static scheduling is very
low, compared to traditional online scheduling approaches [3].

The next section presents our application model. Section 3 il-
lustrates static and quasi-static scheduling for fault tolerance
with examples. Section 4 presents our problem formulation.
Static and quasi-static scheduling heuristics are discussed in de-
tail in Section 5. Our experimental results, including a real-life
example, are presented in Section 6.

2. Application Model
We model an application A as a directed, acyclic, polar graph
Gk(Vk, Ek) ∈ A. Each node Pi ∈ Vk represents one process. An edge
eij ∈ Ek from Pi to Pj indicates that the output of Pi is the input of
Pj. A process can be activated after all its inputs have arrived and
it issues its outputs when it terminates. Processes are non-pre-
emptable and thus cannot be interrupted during their execution.

We consider that the application is running on a single compu-
tation node. Each process Pi in the application has a best-case ex-

1. We will refer to both transient and intermittent faults as “transient” faults.

P2

P1
k = 1

P3

d = 180 ms AET
P1

P2

P3

BCET
30 50

30 50

40 60

WCET
70

70

80T = 300 ms

µ = 10 ms

Figure 1. Application Example

A : G1

Scheduling of Fault-Tolerant Embedded Systems with
Soft and Hard Timing Constraints

Viacheslav Izosimov 1, Paul Pop 2, Petru Eles 1, Zebo Peng 1

1 {viaiz | petel | zebpe}@ida.liu.se
Dept. of Computer and Information Science

Linköping University

2 Paul.Pop@imm.dtu.dk
Dept. of Informatics and Mathematical Modelling

Technical University of Denmark

978-3-9810801-3-1/DATE08 © 2008 EDAA

ecution time (BCET), ti
b, an average-case execution time (AET),

ti
e, and a worst-case execution time (WCET), ti

w. The communica-
tion time between processes is considered to be part of the process
execution time and is not modeled explicitly. In Fig. 1 we have an
application A consisting of the process graph G1 with three pro-
cesses, P1, P2 and P3. The execution times for the processes are
shown in the table. µ is a recovery overhead, which represents the
time needed to start re-execution of a process in case of faults.

All processes belonging to a process graph G have the same pe-
riod T = TG , which is the period of the process graph. In Fig. 1 pro-
cess graph G1 has a period T = 300 ms. If process graphs have
different periods, they are combined into a hyper-graph capturing
all process activations for the hyper-period (LCM of all periods).

2.1 Utility Model
The processes of the application are either hard or soft. We will
denote with H the set of hard processes and with S the set of soft
processes. In Fig. 1 processes P2 and P3 are soft, while process
P1 is hard. Each hard process Pi ∈ H is associated with an indi-
vidual hard deadline di. Each soft process Pi ∈ S is assigned with
a utility function Ui(t), which is any non-increasing monotonic
function of the completion time of a process. For example, in
Fig. 2a the soft process Pa is assigned with a utility function
Ua(t) and completes at 60 ms. Thus, its utility would equal to 20.
The overall utility of the application is the sum of individual util-
ities produced by soft processes. The utility of the application
depicted in Fig. 2b, which is composed of two processes, Pb and
Pc, is 25, with case that Pb completes at 50 ms and Pc at 110 ms
giving utilities 15 and 10, respectively. Note that hard processes
are not associated with utility functions but it has to be guaran-
teed that, under any circumstances, they meet their deadlines.

We consider that once a process has started, it completes until
the end if no fault occurs. However, for a soft process Pi we have
the option not to start it at all, and we say that we “drop” Pi, and
thus its utility will be 0. This might be necessary in order to meet
deadlines of hard processes, or to increase the overall system
utility (e.g. by allowing other, more useful soft processes to
complete). Moreover, if Pi is dropped and is supposed to pro-
duce an input for another process Pj, we assume that Pj will use
an input value from a previous execution cycle, i.e., a “stale”
value. This is typically the case in automotive applications,
where a control loop executes periodically, and will use values
from previous runs if new ones are not available.

To capture the degradation of service that might ensue from
using stale values, we update our utility model of a process Pi to
Ui

*(t) = αi × Ui(t), where αi represents the stale value coeffi-
cient. αi captures the degradation of utility that occurs due to
dropping of processes. Thus, if a soft process Pi is dropped, then

αi = 0, i.e., its utility Ui
*(t) will be 0. If Pi is executed, but reuses

stale inputs from one or more of its direct predecessors, the stale
value coefficient will be calculated as the sum of the stale value
coefficients over the number of Pi’s direct predecessors:

where DP(Pi) is the set of Pi’s direct predecessors. Note that we add
“1” to the denominator and the dividend of the formula to account
for Pi itself. The intuition behind this formula is that the impact of
stale value on Pi is in inverse proportion to the number of its inputs.

Suppose that soft process P3 has two predecessors, P1 and P2.
If P1 is dropped while P2 and P3 are completed successfully,
then, according to the formula, α3 = (1 + 0 + 1) / (1 + 2) = 2/3.
Hence, U3

*(t)= 2/3 × U3(t). The use of a stale value will propa-
gate though the application. For example, if soft process P4 is the
only successor of P3 and is completed, then α4 = (1 + 2/3) /
(1+1)= 5/6. Hence, U4

*(t) = 5/6 × U4(t).

2.2 Fault Tolerance
In this paper we are interested in fault tolerance techniques for toler-
ating transient faults, which are the most common faults in today’s
embedded systems. In our model, we consider that at most k tran-
sient faults may occur during one operation cycle of the application.

The error detection and fault-tolerance mechanisms are part of
the software architecture. The error detection overhead is consid-
ered as part of the process execution time. The software architec-
ture, including the real-time kernel, error detection and fault-
tolerance mechanisms are themselves fault-tolerant.

We use re-execution for tolerating faults. Let us consider the
example in Fig. 3, where we have process P1 and a fault-scenar-
io consisting of k = 2 transient faults that can happen during one
cycle of operation. In the worst-case fault scenario depicted in
Fig. 3, the first fault happens during P1’s first execution, and is
detected by the error detection mechanism. After a worst-case
recovery overhead of µ = 5 ms, depicted with a light gray rect-
angle, P1 will be executed again. Its second execution in the
worst-case could also experience a fault. Finally, the third exe-
cution of P1 will take place without fault.

Hard processes have to be always re-executed if affected by a
fault. Soft processes, if affected by a fault, are not required to re-
cover, i.e., they can be dropped. A soft process will be re-execut-
ed only if it does not impact the deadlines of hard processes, and
its re-execution is beneficial for the overall utility.

3. Static vs. Quasi-Static Scheduling
The goal of our scheduling strategy is to guarantee meeting the
deadlines for hard processes, even in the case of faults, and to
maximize the overall utility for soft processes. In addition, the
utility of the no-fault scenario must not be compromised when
building the fault-tolerant schedule because the no-fault scenar-
io is the most likely to happen.

In this paper we will adapt a static scheduling strategy for hard
processes, which we have proposed in [7], that uses “recovery
slack” in the schedule in order to accommodate time needed for
re-executions in case of faults. After each process Pi we assign
a slack equal to (ti

w + µ) × f, where f is the number of faults to
tolerate. The slack is shared between processes in order to re-
duce the time allocated for recovering from faults. In this paper,
we will refer to such a fault-tolerant schedule with recovery
slacks as an f-schedule.

Ua (t)
40

20

t

Ub(t)30

15
t

Uc (t)

20

10 t

Pa 60 ms

Pb PcPb Pc

(a)

(b)
50 ms 110 ms

Figure 2. Soft Processes and Utility Functions

Figure 3. Re-execution

P1 30 ms
µ = 5 ms

k = 2
P1 P1 P1P1

αi

1 αj
Pj DP Pi()∈

∑+

1 DP Pi()+
---------------------------------------=

Let us illustrate how static scheduling would work for applica-
tion A in Fig. 1. The application has to tolerate k = 1 faults and the
recovery overhead µ is 10 ms for all processes. There are two pos-
sible ordering of processes: schedule S1, “P1, P2, P3” and schedule
S2, “P1, P3, P2”, for which the executions in the average case are
shown in Fig. 4b1-b2. With a recovery slack of 70 ms, P1 would
meet the deadline in both of them and both schedules would com-
plete before the period T = 300 ms. With a static scheduling ap-
proach we have to decide off-line, which schedule to use. In the
average case for S1, process P2 completes at 100 ms and process
P3 completes at 160 ms. The overall utility in the average case is
U = U2(100) + U3(160) = 20 + 10 = 30. In the average case for S2,
process P3 completes at 110 and P2 completes at 160, which re-
sults in the overall utility U = U3(110) + U2(160) = 40 + 20 = 60.
Thus, S2 is better than S1 on average and is, hence, preferred.
However, if P1 will finish sooner, as shown in Fig. 4b5, the order-
ing of S1 is preferable, since it leads to a utility of U = U2(80) +
U3(140) = 40 + 30 = 70, while the utility of S2 would be only 60.

Hard processes have to be always executed and have to tolerate
all k faults. Since soft processes can be dropped, this means that
we do not have to re-execute them after a fault if their re-execution
affects the deadline for hard processes, leads to exceeding the pe-
riod T, or if their re-execution reduces the overall utility. In
Fig. 4b4, execution of process P2 in the worst-case cannot com-
plete within period T. Hence, process P3 should not be re-execut-
ed. Moreover, in this example, dropping of P3/2 is better for utility.
If P2 is executed instead of P3/2, we get a utility of 10 even in the
worst-case and may get utility of 20 if the execution of P2 takes
less time, while re-execution P3/2 would lead to 0 utility.

In Fig. 4c, we reduce the period T to 250 for illustrative pur-
poses. In the worst case, if process P1 is affected by a fault and
all processes are executed with their worst-case execution times,
as shown in Fig. 4c1, schedule S2 will not complete within T.
Neither will schedule S1 do in Fig. 4c2. Since hard process P1 has
to be fault-tolerant, the only option is to drop one of soft process-
es, either P2 or P3. The resulting schedules S3: “P1, P3” and S4:
“P1, P2” are depicted in Fig. 4c3 and Fig. 4c4, respectively. The
utility of S3, U=U3(100) = 40, is higher than the utility of S4,
U=U2(100) = 20. Hence, S3 will be chosen.

We have extended our approach from [7] to consider the hard/soft
shared slacks, dropping of soft processes, and utility maximization
for average execution times as presented in Section 5.2.

The problem with static scheduling is that there exists only one
precalculated schedule and the application cannot adapt to a partic-
ular situation. In this paper we propose a quasi-static scheduling for
fault tolerance to overcome the limitations of static scheduling. The
main idea of quasi-static scheduling is to generate off-line a set of
schedules, each adapted to a particular situation that can happen on-
line. These schedules will be available to an online scheduler, which
will switch to the best one (the one that guarantees the hard dead-
lines and maximizes utility) depending on the occurrence of faults
and the actual execution times of processes.

The set of schedules is organized as a tree, where each node
corresponds to a schedule, and each arc is a schedule switch that
has to be performed if the condition on the arc becomes true dur-
ing the execution. Let us illustrate such a tree in Fig. 5, for the ap-
plication A in Fig. 1. We will use utility functions depicted in
Fig. 4a. The quasi-static tree is constructed for the case k = 1 and
contains 12 nodes. We group the nodes into 4 groups. Each
schedule is denoted with Si

j, where j stands for the group number.
Group 1 corresponds to the no-fault scenario. Groups 2, 3 and 4
correspond to a set of schedules in case of faults affecting pro-
cesses P1, P2, and P3, respectively. The schedules for the group 1
are presented in Fig. 5b. The scheduler starts with the schedule
S1

1. If process P1 completes after 40, the scheduler switches to
schedule S2

1 , which will produce a higher utility. If the fault hap-
pens in process P1, the scheduler will switch to schedule S1

2 that
contains the re-execution P1/2 of process P1. Here we switch not
because of utility, but because of fault tolerance. Schedules for
group 2 are depicted in Fig. 5c. If the re-execution P1/2 completes
between 90 and 100, the scheduler switches from S1

2 to S2
2, that

gives higher utility, and, if the re-execution completes after 100,
it switches to S3

2 in order to satisfy timing constraints. Schedule
S3

2 represents the situation illustrated in Fig. 4c2, where process
P3 had to be dropped. Otherwise, execution of process P3 will ex-
ceed the period T. Note that we choose to drop P3, not P2, because
this gives a higher utility value.

P2

P1 P2 P3

U2(t) 40

U3(t) 40

P1/1 P1/2 P3 P2

30
10

20 10

b1)

b3)

b4)

a)

P1 P3 P2b2)

P1 P3/1 P3/2

T: 300 250

P1/1 P1/2 P3 P2c1)

c2) P1/1 P1/2 P2 P3

P1

P2P1

P3c3)

c4)

90ms

100ms 150ms 220ms

200ms 250ms

50 100 160

50 110 160

70 150 230 300

70 150 240 310

70 150 230 300

70 150 220 300

50 110

50 100

t

t

b5) P1 P2 P3
30 80 140

S1

S2

S3

S4

Figure 4. Static Scheduling

P2 P3P1

P1 P3 P2

P1/1 P1/2 P3 P2

P1/1 P1/2 P2 P3

P1/1 P1/2 P2

P2/1 P3P1 P2/2

P1 P2/1 P2/2

P1 P3 P2/1 P2/2

P1 P3 P2/1

P2 P3/1P1 P3/2

P1 P2 P3/1

P1 P3/1 P2

b)

c)

d)

e)

T
S1

1S1
1

S2
1S2
1

S1
2S1
2

S2
2S2
2

S3
2S3
2

S2
3S2
3

S3
3S3
3

S4
3S4
3

S1
3S1
3

S1
4S1
4

S2
4S2
4

S3
4S3
4

Figure 5. Quasi-Static Scheduling

S1 S2

Group 1

S1

S2

Group 2

S1 S2

Group 3

S3

S3 S4

S1 S2

Group 4

S3

P1P1

tc(P1)>40

90<tc(P1/2)≤100

a)

tc(P1/2)>100 tc(P2/1) > 90

tc(P2/1) >160

tc(P3/1)>150

P2P2
P3P3

The generation of a complete quasi-static tree with all the nec-
essary schedules that captures different completion times of pro-
cesses is practically infeasible for large applications. The
number of fault scenarios is growing exponentially with the
number of faults and the number of processes [8]. In addition, in
each fault scenario, the processes may complete at different time
moments. The combination of different completion times is also
growing exponentially [3]. Thus, the main challenge of quasi-
static scheduling is to generate an as small as possible number of
schedules with the most improvement to the overall utility.

4. Problem Formulation
As an input we get an application A, represented as an acyclic di-
rected polar graph G, with a set S of soft processes and set H of
hard processes. Soft processes are assigned with utility functions
Ui(t) and hard processes with hard deadlines di. Application A
runs with a period T on a single computation node. The maximum
number k of transient faults and the recovery overhead µ are giv-
en. We also know the best, average, and worst-case execution
times for each process, as presented in Section 2.

As an output, we have to obtain a quasi-static tree of schedules
that maximizes the overall utility U of the application in the no-
fault scenario, maximizes the overall utility Uf in faulty scenarios,
and satisfies all hard deadlines in all scenarios. It is important that
the overall utility U of a no-fault scenario must not be compro-
mised due to optimizing schedules for faulty scenarios. This is due
to the fact that the no-fault scenario is the most likely to happen.
This property will be captured in all our algorithms.

5. Scheduling Strategy
Due to complexity, in our approach we restrict the number of
schedules that are part of the quasi-static tree. Our quasi-static
scheduling strategy for fault tolerance is presented in Fig. 6. We are
interested in determining the best M schedules that will guarantee
the hard deadlines (even in the case of faults) and maximize the
overall utility. Thus, the function returns either a fault-tolerant qua-
si-static tree Φ of size M or that the application is not schedulable.

We start by generating the f-schedule Sroot , using the static sched-
uling algorithm for fault tolerance (FTSS) presented in Section 5.2,
which considers the situation where all the processes are executed
with their worst-case execution times, while the utility is maxi-
mized for the case where processes are executed with their average
execution times (as was discussed in Fig. 4). Thus, Sroot contains the
recovery slacks to tolerate k faults for hard processes and as many
as possible faults for soft processes. The recovery slacks will be
used by the online scheduler to re-execute processes online, with-
out changing the order of process execution. Since this is the sched-
ule assuming the worst-case execution times, many soft processes
will be dropped to provide a schedulable solution.

If the f-schedule Sroot is not schedulable, i.e., one or more hard
processes miss their deadlines, we conclude that the application
is not schedulable and terminate. If the f-schedule Sroot is sched-
ulable, we generate the quasi-static tree Φ starting from schedule
Sroot by calling the FTQS heuristic presented in Section 5.1,
which uses FTSS to generate f-schedules that maximize utility.

5.1 Quasi-Static Scheduling
In general, quasi-static scheduling should generate a tree that
will adapt to different execution situations. However, tracing all
execution scenarios is infeasible. Therefore, we have used the
same principle as in [3] to reduce the number of schedules in the
quasi-static tree Φ, where only best-case and the worst-case exe-
cution times of processes are considered.

Our quasi-static scheduling for fault tolerance (FTQS) heuris-
tic, outlined in Fig. 7, generates a fault tolerant quasi-static tree
Φ of a given size M for a given root schedule Sroot, which toler-
ates k faults. Schedule Sroot is generated such that each process
Pi completes within its worst-case execution time (see our strat-
egy in Fig. 6), including soft processes.

At first, we explore the combinations of best- and worst-case
execution times of processes by creating sub-schedules from the
root schedule Sroot (line 2). We generate a sub-schedule SSi for
each process Pi in Sroot. SSi begins with process Pi executed with
its best-case execution time. The rest of the processes in SSi, af-
ter Pi, are scheduled with the FTSS heuristic, which generates an
f-schedule for the worst-case execution times, while the utility is
maximized for average execution times.

After producing the first layer of sub-schedules (from root
schedule Sroot), a second layer of sub-schedules is created. For
each sub-schedule SSi on the first layer, which begins with pro-
cess Pi, we create with FTSS the second-layer sub-schedule SSj
for each process Pj after process Pi. Each initial process Pj of the
sub-schedule SSj is executed with its best-case execution time.
Similarly, we generate the sub-schedules of the third layer. Un-
less we terminate the heuristic, the generation of sub-schedule
layers will continue until all combinations of best- and worst-
case execution times of processes are reflected in the tree Φ.

Although, in principle, all the sub-schedules can be captured
in the quasi-static tree Φ, it would require a lot of memory be-
cause the number of sub-schedules is growing exponentially
with the number of processes in the application. Therefore, we
have to keep only those sub-schedules in the tree that, if
switched to, lead to the most significant improvement in terms
of the overall utility. In general, our strategy is to eventually gen-
erate the most different sub-schedules. We limit the tree size to
M and, when the number of different schedules in the tree
Φ reaches M, we stop the exploration (line 3).

Our fault-tolerant quasi-static tree Φ finally contains schedules
generated for only the best-case and worst-case execution times of
processes. However, the actual execution times of processes will
be somewhere between the best-case and the worst-case. There-
fore, in the quasi-static tree we have to provide information when
it is better to switch from “parent” schedule SSP to a sub-schedule
SSi after process Pi is completed. The completion times of process
Pi may vary from the best-possible, when all processes scheduled
before Pi and Pi itself are executed with their best-case execution

 SchedulingStrategy(G, k, M)
 1 Sroot = FTSS(G, k)
 2 if Sroot = ∅ then return unschedulable
 3 else
 4 set Sroot as the root of fault-tolerant quasi-static tree Φ
 5 Φ = FTQS(Φ, Sroot, k, M)
 6 return Φ
 7 end if
 end SchedulingStrategy

Figure 6. General Scheduling Strategy

 FTQS(Φ, Sroot, k, M)
 1 layer = 1
 2 Φ = Φ ∪ CreateSubschedules(Sroot, k, layer)
 3 while DifferentSchedules(Φ) < M do
 4 SSp = FindMostSimilarSubschedule(Φ, layer)
 5 if SSp = ∅ then return layer = layer + 1
 6 else
 7 Φ = Φ ∪ CreateSubschedules(SSp, k, layer + 1)
 8 end if
 9 end while
 10 IntervalPartitioning(Φ)
 11 return Φ
 end FTQS Figure 7. Quasi-Static Scheduling Algorithm

times, to the worst-possible, which is the worst-case fault scenario
(with k faults) when all processes before Pi and Pi itself are exe-
cuted with the worst-case execution times. We trace all possible
completion times of process Pi , assuming they are integers, and
compare utility values produced by SSP and SSi (line 10). This
procedure is called interval-partitioning [3]. If the utility value
produced by SSi is greater than the utility value produced by SSP ,
then switching to schedule SSi makes sense. SSi is not always safe
since it considers best-case execution time of Pi. SSi will violate
deadlines after certain completion time ti

c. Therefore, if Pi com-
pletes after ti

c , then SSP schedule has to be used.
After interval partitioning is done, FTQS returns a fault-tolerant

quasi-static tree Φ, which can be used by the online scheduler.

5.2 Static Scheduling for Fault Tolerance
Our static scheduling for fault tolerance and utility maximiza-
tion (FTSS), outlined in Fig. 8, is a list scheduling-based heuris-
tic, which uses the concept of ready processes and ready list. By
a “ready” process Pi we mean that all Pi’s predecessors have
been scheduled. The heuristic initializes the ready list R with
processes ready at the beginning (line 1) and is looping while
there is at least one process in the list (line 2).

FTSS addresses the problem of dropping of soft processes. All
soft processes in the ready list R are evaluated if they can be
dropped (line 3). To determine exactly whether a particular soft
process Pi should be dropped, we have to generate two schedules
with and without process Pi. However, in each of these sched-
ules other processes have to be also evaluated for dropping, and
so on. Instead of evaluating all possible dropping combinations,
we use the following heuristic: for each process Pi we generate
two schedules, Si’ and Si”, which contain only unscheduled soft
processes. Schedule Si’ contains Pi, while schedule Si” does not.
In schedule Si”, if U(Si’) ≤U(Si”), Pi is dropped and the stale
value is passed instead. In Fig. 8 we depict S2’ and S2” for pro-
cess P2 in application A (presented in the bottom of Fig. 8). We
check if we can drop P2. S2’, which contains P2, produces a util-
ity of 80, while S2” produces a utility of only 50. Hence, process
P2 will not be dropped. If a soft process is dropped, its “ready”
successors are put into the ready list.

After removing soft processes from the ready list R, we select a
set A of processes from R that would lead to a schedulable solution

(even in case of k faults), line 4. For each process Pi∈R the sched-
ule Si

H, which contains process Pi and unscheduled hard process-
es, is generated. This schedule is the shortest valid schedule
containing process Pi, where all (other) soft processes have been
dropped. If the hard deadlines are met, then Pi leads to a schedu-
lable solution. In Fig. 8 we have presented schedule S2

H for appli-
cation A. We evaluate if process P2 is schedulable. The only
unscheduled hard process P5 completes at 170 ms in the worst-
case fault scenario with two faults, which is before its deadline of
220 ms. Thus deadlines are met and P2 is schedulable.

If none of the processes in ready list R is leading to a schedu-
lable solution, one of the soft processes is removed from the
ready list and its successors are put there instead. We choose that
soft process which, if dropped, would reduce the overall utility
as little as possible (lines 5–9). Then, the set A is recalculated. If
no schedulable process is found, the application is not schedula-
ble and the algorithm returns ∅ (line 10).

The next step is to find which process out of the schedulable pro-
cesses is the best to schedule. We calculate priorities for all unsched-
uled soft processes using the MU function presented in [3] (line 11).
The GetBestProcess function (line 12) selects either best soft pro-
cess Ps with highest priority SPs or, if there are no soft processes in
the ready list, the hard process Ph with the earliest deadline.

Once process Pbest is scheduled (line 13), the recovery slack
with the number of re-execution has to be assigned to it (line 14).
For the hard process, we always assign k re-executions. If Pbest is
a soft process, then the number of re-executions has to be calcu-
lated. First, we compute how many times Pbest can be re-executed
without violating deadlines. We schedule Pbest’s re-executions
one-by-one directly after Pbest and check schedulability. If the re-
execution is schedulable, it is evaluated with the dropping heuris-
tic. If it is better to drop the re-execution, then we drop it.

After assigning the recovery slack for process Pbest , we re-
move process Pbest from the ready list and add Pbest’s ready suc-
cessors into it (lines 15).

FTSS returns an f-schedule FS generated for worst-case exe-
cution times, while the utility is maximized for average execu-
tion times of processes.

6. Experimental Results
For the experiments, we have generated 450 applications with
10, 15, 20, 25, 30, 35, 40, 45, and 50 processes, where we have
uniformly varied worst-case execution times of processes be-
tween 10 and 100 ms. We have generated best-case execution
times between 0 ms and the worst-case execution times. We con-
sider that completion time of processes is uniformly distributed
between the best-case execution time ti

b and the worst-case exe-
cution time ti

w, i.e. the average execution time ti
e is (ti

w − ti
b) / 2.

The number k of tolerated faults has been set to 3 and the recov-
ery overhead µ to 15 ms. The experiments have been run on a
Pentium 4 2.8 GHz processor with 1Gb of memory.

In the first set of experiments we have evaluated the quality of
the static fault-tolerant schedules produced by our FTSS algo-
rithm. We have compared with a straightforward approach that
works as follows: we obtain static non-fault-tolerant schedules
that produce maximal value (e.g. as in [3]). Those schedules are
then made fault-tolerant by adding recovery slacks to tolerate k
faults in hard processes. The soft processes with lowest utility val-
ue are dropped until the application becomes schedulable. We call
this straightforward algorithm FTSF. We can see in Fig. 9 that
FTSF is 20-70% worse in terms of utility compared to FTSS.

P2

P1

P3

d = 110 ms

P4

P5

d = 220 ms

k = 2

µ=10ms

T = 220 ms

U2(t) 40
20

10

U3(t) 30
20

10

60ms 100ms 130ms

70ms 150ms
U4(t)

30 20
10

100ms 150ms

P1 P2 P3 P4

P1 P3 P4

P1 P2 P5/1 P5/2 P5/3

U = U2(60) + U3(90) + U4(130) = 80

U = U3(60) + 2/3 U4(90) = 50

AET
P1
P2
P3

BCET
10 20
20 30
20 30

WCET
30
40
40

P4
P5

20 30
10 20

40
30

FTSS(G, k)
1 R = GetReadyNodes(G)
2 while R ≠ ∅ do
3 DetermineDropping(R)
4 A = GetSchedulable(R)
5 while A = ∅
6 and exists soft process Pl ∈ R do
7 ForcedDropping(R)
8 A = GetSchedulable(R)
9 end while
10 if A = ∅ then return ∅
11 SoftPriority(all unsched. Pi ∈ S)
12 Pbest = GetBestProcess(R)
13 Schedule(FS , Pbest)
14 AddRecoverySlack(FS , Pbest)
15 AddReadySuccessors(Pbest , R)
16 end while
17 return FS
end FTSS

S2’

S2”

S2
H

17030 60

A : G2

Figure 8. Static Scheduling Algorithm

In a second set of experiments we were interested to determine
the quality of our quasi-static approach for fault tolerance (FTQS)
in terms of overall utility for the no-fault scenario and for fault
scenarios. Fig. 9 presents the normalized utility obtained by the
three approaches, varying the size of applications. We have eval-
uated schedules generated by FTQS, FTSS, and FTSF with ex-
tensive simulations. We considered 20,000 different execution
scenarios for the case of no faults, 1, 2, and 3 faults (in order not
to overload the figure, for FTSS and FTSF only the 3 faults case
is depicted). The overall utility for each case is calculated as an av-
erage over all execution scenarios. Fig. 9a shows the results for
the no-fault scenarios. We can see that FTQS is 11-18% better
than FTSS which is the best of the static alternatives.

We were also interested how FTQS performs for the cases when
faults happen. Fig. 9b shows the normalized utility in case of
faults. Obviously, as soon as a fault happens, the overall produced
utility is reduced. Thus, in case of a single fault, the utility of
schedules produced with FTQS goes down by 16% for 10 pro-
cesses and 3% for 50 processes. The utility is further reduced if 2
or all 3 faults are occurring: with 31% and 43% for 10 processes
and with 7% and 10% for 50 processes, respectively. FTQS is
constantly better than the static alternatives which demonstrates
the importance of dynamically taking decisions and being able to
chose among efficient precalculated scheduling alternatives.

In the third set of experiments, we were interested to evaluate the
quality of FTQS in terms of the quasi-static tree size. Less nodes in
the tree means that less memory is needed to store them. Therefore,
we would like to get the best possible improvement with fewer
nodes. We have chosen 50 applications with 30 processes each and
set the percentage of soft and hard processes as 50/50 (i.e. half of
each type). The results are presented in Table 1, for 0, 1, 2, and 3
faults, where, as a baseline, we have chosen FTSS, which generates
a single f-schedule. As the number of nodes in the tree is growing,
the utility value is increasing. For example, with two nodes it is al-
ready 11% better than FTSS and with 8 nodes it is 21% better. Final-
ly, we reach 26% improvement over FTSS with 89 nodes in the tree.
The runtime of FTQS also increases with the size of the quasi-static
tree (from 0.62 sec for FTSS to 38.79 sec for FTQS with 89 nodes).

We have also run our experiments on a real-life example, a ve-
hicle cruise controller (CC) composed of 32 processes [8], which
is implemented on a single microcontroller with a memory unit
and communication interface. Nine processes, which are critically
involved with the actuators, have been considered hard. We have
set k = 2 and have considered µ as 10% of process worst-case ex-
ecution times. FTQS requires 39 schedules to get 14% improve-
ment over FTSS and 81% improvement over FTSF in case of no
faults. The utility of schedules produced with FTQS is reduced by
4% with 1 fault and by only 9% with 2 faults.

7. Conclusions
In this paper we have addressed fault-tolerant applications with
soft and hard real-time constraints. The timing constraints were
captured using deadlines for hard processes and time/utility
functions for soft processes.

We have proposed an approach to the synthesis of fault-toler-
ant schedules for fault-tolerant mixed hard/soft applications.
Our quasi-static scheduling approach guarantees the deadlines
for the hard processes even in the case of faults, while maximiz-
ing the overall utility of the system.

The experiments have shown that our approach selects online
the right precalculated schedules in order to meet the timing con-
straints and deliver high utility even in case of faults.

References
[1] H. Aydin, R. Melhem, and D. Mosse, “Tolerating Faults while

Maximizing Reward”, 12th Euromicro Conf. on RTS, 219–226, 2000.
[2] G. Buttazzo and F. Sensini, “Optimal Deadline Assignment for

Scheduling Soft Aperiodic Tasks in Hard Real-Time Environments”,
IEEE Trans. on Computers, 48(10), 1035–1052, 1999.

[3] L.A. Cortes, P. Eles, and Z. Peng, “Quasi-Static Scheduling for Real-Time
Systems with Hard and Soft Tasks”, DATE Conf., 1176-1181, 2004.

[4] R. I. Davis, K. W. Tindell, and A. Burns, “Scheduling Slack Time in
Fixed Priority Pre-emptive Systems”, RTSS, 222–231, 1993.

[5] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel, “Off-line Real-Time
Fault-Tolerant Scheduling”, Euromicro Parallel and Distributed
Processing Workshop , 410–417, 2001.

[6] C. C. Han, K. G. Shin, and J. Wu, “A Fault-Tolerant Scheduling
Algorithm for Real-Time Periodic Tasks with Possible Software
Faults”, IEEE Trans. on Computers, 52(3), 362–372, 2003.

[7] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design Optimization of Time- and
Cost-Constrained Fault-Tolerant Distributed Embedded Systems”, DATE
Conf., 864-869, 2005.

[8] V. Izosimov, “Scheduling and Optimization of Fault-Tolerant
Embedded Systems”, Licentiate Thesis No. 1277, Dept. of Computer
and Information Science, Linköping University, 2006.

[9] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Transparent Recovery
from Intermittent Faults in Time-Triggered Distributed Systems”,
IEEE Trans. on Computers, 52(2), 113–125, 2003.

[10]H. Kopetz, “Real-Time Systems - Design Principles for Distributed
Embedded Applications”, Kluwer Academic Publishers, 1997.

[11]F. Liberato, R. Melhem, and D. Mosse, “Tolerance to Multiple
Transient Faults for Aperiodic Tasks in Hard Real-Time Systems”,
IEEE Trans. on Computers, 49(9), 906–914, 2000.

[12]P.M. Melliar-Smith, L.E. Moser, V. Kalogeraki, and P. Narasimhan,
“Realize: Resource Management for Soft Real-Time Distributed
Systems”, DARPA Information Survivability Conf., 1, 281–293, 2000.

[13]C. Pinello, L. P. Carloni, A. L. Sangiovanni-Vincentelli, “Fault-
Tolerant Deployment of Embedded Software for Cost-Sensitive Real-
Time Feedback-Control Applications”, DATE, 1164–1169, 2004.

[14]Wang Fuxing, K. Ramamritham, and J.A. Stankovic, “Determining
Redundancy Levels for Fault Tolerant Real-Time Systems”, IEEE
Trans. on Computers, 44(2), 292–301, 1995.

[15]Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M.J. Irwin,
“Reliability-Aware Co-synthesis for Embedded Systems”, Proc. 15th

IEEE Intl. Conf. on Appl.-Spec. Syst., Arch. and Proc., 41–50, 2004.
[16]Ying Zhang and K. Chakrabarty, “A Unified Approach for Fault

Tolerance and Dynamic Power Management in Fixed-Priority Real-
Time Embedded Systems”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 25(1), 111–125, 2006.

0

20

40

60

80

100

120

10 15 20 25 30 35 40 45 50
Application Size (Processes)

U
ti

lit
y

N
o

rm
al

iz
ed

to
 F

T
Q

S
 (

%
)

FTQS (2 faults)

FTQS (1 fault)

FTQS (no faults)

FTQS (3 faults) FTSS (3 faults)

FTSF (3 faults)

0

20

40

60

80

100

120

10 15 20 25 30 35 40 45 50
Application Size (Processes)

U
ti

lit
y

N
o

rm
al

iz
ed

to
 F

T
Q

S
 (

%
)

FTSF (no faults)

FTSS (no faults)

FTQS (no faults)

Table 1. Increasing the Number of
Nodes for FTQS

(a) (b)

Utility Normalized
to FTSS (%)Nodes

0 1 2 3

Run
time,
sec

1 100 93 88 82 0.62
2 111 104 97 91 1.17
8 121 113 106 99 2.48
13 122 114 107 100 3.57
23 124 115 107 100 4.78
34 125 117 109 102 8.06
79 125 117 110 102 26.14
89 126 117 110 102 38.79Figure 9. Comparison between FTQS, FTSS, and FTSF

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

