
Schedulability-Driven Reliability

Optimization of FlexRay

Communications

Xiaojun Ma

Informatics and Mathematical Modelling,

Technical University of Denmark

March 17, 2008

2

Contents

List of Figures viii

List of Tables x

Acknowledgements xi

Abstract xiii

Introduction 1

1 Background 5

1.1 Vehicle Communication Networks . 6

1.2 FlexRay Protocol . 7

1.2.1 Network Topology . 7

ii CONTENTS

1.2.2 Node Architecture . 7

1.2.3 Communication Cycle Architecture 9

1.2.4 Message Schedulability . 11

1.2.5 Message Reliability . 12

1.3 AMPL and CPLEX . 13

1.4 System Model . 14

2 Message Schedulability Optimization 15

2.1 Static Message Schedulability Optimization 16

2.1.1 Static Message Transmission 16

2.1.2 Static Message Modeling Description 17

2.1.2.1 Notations . 18

2.1.2.2 Constraints . 20

2.1.2.3 Objective . 23

2.1.3 Case Study . 23

2.2 Dynamic Message Schedulability Optimization 29

2.2.1 Dynamic Message Transmission 30

2.2.2 Dynamic Message Modeling Description 32

CONTENTS iii

2.2.2.1 Notations . 32

2.2.2.2 Constraints . 36

2.2.2.3 Objective . 41

2.2.3 Case Study . 41

3 Message Reliability Optimization 45

3.1 Hardware Replication . 46

3.1.1 Dual-channel . 46

3.1.2 Fault-tolerant Unit . 47

3.2 Re-execution . 48

3.2.1 With error notifications . 49

3.2.2 Without error notifications 51

4 Implementation 55

4.1 Design Overview . 55

4.1.1 Dual-channel Transmissions 56

4.1.2 Message Types . 59

4.1.3 Design Objective . 61

iv CONTENTS

4.2 Implementation Solutions . 61

4.2.1 Naive Solution . 61

4.2.2 Optimal Solution With Replicas 63

4.2.3 Adding Redundancy to the Optimal Solution Without Replicas 66

5 Evaluation 69

5.1 Evaluation Analysis . 70

5.2 A Real-life Example . 72

6 Conclusion 77

Bibliography 79

Appendix A AMPL Programs 83

A.1 ST Messages Scheduling Optimization 83

A.2 DYN Messages Scheduling Optimization 88

A.3 Naive Solution . 92

A.4 Optimum Solution with Replicas . 99

Appendix B Data Files used for the Real-life Example 109

v

B.1 Naive Solution . 109

B.2 Optimal Solution with Replicas . 112

Appendix C Results for the Real-life Example 117

C.1 Naive Solution . 117

C.2 Optimal Solution with Replicas . 123

vi CONTENTS

List of Figures

1.1 A typical CAN network in a car from [13]. 6

1.2 FlexRay network topology from [1] 8

1.3 FlexRay node architecture. 9

1.4 FlexRay communication cycle architecture from [1]. 10

1.5 FlexRay system architecture from [20]. 14

2.1 An example for the ST message transmission. 17

2.2 The architecture for the case study of the ST message scheduling

optimization . 24

2.3 The optimal assignment for the case study of the ST message schedul-

ing optimization . 26

viii LIST OF FIGURES

2.4 The optimal message assignment for the case study of the ST messages

with the big enough deadlines . 28

2.5 An example for the DYN messages transmission 31

2.6 The architecture for the case study of the DYN message scheduling

optimization . 41

3.1 Dual-channel transmission example. 46

3.2 Fault-tolerant unit consisting of two active nodes and a shadow node

from [12]. 47

3.3 Re-transmit one message with the error notification (ERRNOTIF) . 49

3.4 Re-transmit multiple messages with the error notification (ERRNOTIF) 50

3.5 Re-transmission example without the error notification. 52

4.1 An example for the naive solution. 62

4.2 An example for the optimum solution with replicas 65

4.3 An example for the optimum solution without replicas. 67

5.1 The message assignment of the real-life example using NS 74

5.2 The message assignment of the real-life example using OS+ 75

List of Tables

2.1 The parameters for the ST segment 19

2.2 The parameters for the ST message 19

2.3 The variables for the ST message . 20

2.4 The data used for the case study of the ST message scheduling opti-

mization . 24

2.5 The results for the case study of the ST message scheduling optimization 26

2.6 The data used for the case study of the ST messages with big enough

deadlines . 27

2.7 The results for the case study of the ST messages with big enough

deadlines . 28

2.8 The parameters for the DYN segment 33

x LIST OF TABLES

2.9 The parameters for the DYN message 34

2.10 The variables for the DYN message response time 35

2.11 The binary decision variables MMi,j table for Figure 2.5. 38

2.12 The binary decision variables TTi,j table for Figure 2.5. 38

2.13 The data used for the case study of the DYN message scheduling

optimization . 42

2.14 The results for the case study of the DYN message scheduling opti-

mization . 42

2.15 The new results for the case study when m5’s deadline is 40 43

2.16 The Infeasible results when m5’s deadline is 30 43

4.1 The message types and their assignable segments 60

5.1 The Results of the example as shown in Figure 4.1 and 4.2 using NS

and OS+ . 71

5.2 The performances of the real-life example using NS and OS+ 72

5.3 The results for the DYN messages in the real-life example using NS. 73

5.4 The results for the DYN messages in the real-life example using OS+. 73

Acknowledgements

This master thesis brought me many challenges during the 6 months. With helps

and contributions of many people, I would like to thank the ones who contributed

in various ways.

First and foremost, I would like to thank my supervisor, Paul Pop, for his guidance,

concern and help through my master thesis. He proposed the idea of the mes-

sage scheduling optimization approach and introduced me the modeling language

for mathematical programming. He always encouraged and supported me warmly

when I was face difficulties. His advice and confidence are very important for me

in the completion of this thesis. I am grateful to have the pleasure of knowing and

working with him.

Secondly, I own my gratitude to my family and friends. Although my parents lived

far from me, they always gave me their love, constant support, concern and encour-

agement.

Finally, I want to give my special thanks to Di Wang for his trust, patience and

support through my master thesis. He gave me many useful suggestions, and he

xii Acknowledgements

always encourage me when I was tired and negative.

Thank you for all the people that helped me with this thesis. I will be truly glad to

share my accomplishment in the future.

Abstract

Currently, more and more real-time systems are implemented on distributed archi-

tectures in order to meet reliability, functional, and performance constraints. Com-

munications in such systems can be triggered either dynamically, in response to an

event (event-driven), or statically, at predetermined moments in time (time-driven).

A large consortium of automotive manufacturers and suppliers has recently proposed

a protocol called FlexRay, which allows the sharing of the bus among event-driven

(ET) and time-driven (TT) messages, thus offering the advantages of both TT and

ET worlds. FlexRay will very likely become the de-facto standard for in-vehicle

communications. While the importance of FlexRay has been quickly recognized,

analysis and optimization approaches for the protocol have not been available until

recently.

FlexRay will be used more and more in safety-critical applications, where message

transmission has to be reliable. There are several approaches to increase message

transmission reliability, such as the hardware replication and re-execution.

The thesis will investigate how to get an optimal message scheduling result in the

xiv Abstract

static and dynamic segments of FlexRay protocol, and how to increase the message

reliability using relevant approaches. The objective of the thesis is to determine a

combination of redundancy techniques for each message in an application, such that

the message transmission meets the reliability goal imposed by the designer, and the

application is schedulable.

Introduction

In the early days of automotive electronics, messages were exchanged through point-

to-point links between electronic control units (ECUs). However, this mechanism

was unable to deal with an exponential increasing use of ECUs due to the problem of

weight, cost, complexity and reliability caused by the wires and connectors [23]. To

solve this problem, vehicle networks are considered to be used for multiplex message

transmissions, where the rules — communication protocols are needed to ensure

well-balanced transmissions and manage the message access to the vehicle network.

At present, there are several communication protocols for vehicle networks based on

the event-triggered or time-triggered mechanism. Controller Area Network (CAN)

is currently used in many automotive applications. It is an event-triggered protocol

developed by the German company Robert Bosch in 1985 for in-vehicle applications.

It dynamically schedules the messages based on the occurrence of events [24]. CAN

has a good performance in terms of bandwidth utilization. However, it is hard

to deal with safety critical issues because it is difficult to guarantee the message

deadlines. Thus CAN is not considered deterministic enough to be used in safety

critical applications which require high reliability and dependability [25].

2 Introduction

Time-triggered Protocol (TTP) has been developed by Technical University of Vi-

enna for more than 25 years. Messages using TTP are statically scheduled based

on the progression of time. It has an advantage that it can precisely control the

message transmission and reception time. This characteristic makes it suitable for

safety critical applications. However in [23], the author mentioned TTP has three

drawbacks: one is the inefficiency in term of network utilization and periodic mes-

sage response time; another is the lack of flexibility; and the other is the difficulty

in extendability.

Nowadays, either an event-triggered or a time-triggered mechanism is required for

message transmissions in the vehicle network, and in some cases, both of them are

required at the same time in complex control systems [24]. Currently, a large consor-

tium of automotive manufactures has proposed a hybrid type of protocol, FlexRay

communication protocol [1]. FlexRay allows to transmit both event-triggered and

time-triggered messages on the same bus, thus supplying the advantage of both

worlds [2].

FlexRay communication happens within the recurring communication cycle. Each

cycle consists of a mandatory static (ST) segment and an optional dynamic (DYN)

segment. Message transmissions in the ST segments is based on the time-division

multiple-access (TDMA) scheme which is adopted by TTP [25]. Message transmis-

sions in the DYN segment which is similar to Byteflight protocol, is based on the

flexible TDMA (FTDMA) bus access scheme [2].

FlexRay is considered to have more potential in supporting additional services for

safety critical systems due to its flexibility in configurations. However, there are not

many researches proposed analysis techniques and optimization approaches for both

ST and DYN segments of FlexRay protocol. In [26], the author proposed an approach

to static scheduling for the FlexRay system. But in their discussion, they assumed

Introduction 3

FlexRay communications only scheduled in the ST segment based on the TDMA

scheme. In [25], the author discussed the performance analysis of the Byteflight

protocol, which adopted the same bus access scheme FTDMA like communications

in the DYN segment of FlexRay. However, their discussion assumed a quasi-TDMA

(QTDMA) technique as the Byteflight access mechanism, which means that they

did not fully exploit the FTDMA technique. The transmission of minislots in the

DYN segment is also ignored in their discussion.

In this thesis, we investigate how to get an optimal scheduling result in both ST

and DYN segments of FlexRay based on the discussion in [2], which presents a

static cyclic scheduling technique and a worst-case response time analysis for com-

munications in ST and DYN segments, respectively. Moreover, we propose several

techniques for increasing the FlexRay message reliability on the ground that each

message is schedulable. It is proved that FlexRay is suitable for safety critical appli-

cations, such as x-by-wire system, which generally require for ultra-high reliability

demand fault tolerance and extensive redundancy on the communication bus.

Our main objective is to determine a combination of redundancy techniques for each

FlexRay message in an application, such that the message meets the reliability goal

and the application is schedulable.

This thesis is organized in 6 chapters. Chapter 1 gives all the necessary theoretical

concepts and methods used in this work. Chapter 2 discusses two optimization

approaches for FlexRay communication in ST and DYN segments, respectively, such

that each message is schedulable on a FlexRay bus. Chapter 3 introduces several

redundancy techniques to increase the message reliability in FlexRay, such that each

message can meet its reliability goal. In Chapter 4, we extend the analysis to schedule

the message on two FlexRay channels. Several solutions are also proposed to combine

the two optimization approaches together for both ST and DYN messages based on

4 Introduction

the knowledge in Chapter 2 and 3. Chapter 5 shows the evaluation analysis to

determine the efficiency of our solutions. The last chapter presents our conclusions.

Chapter 1

Background

Introduction

The main purpose of this chapter is to provide the necessary background for the

concepts and methods presented in this thesis. First, we give a short overview about

vehicle communication networks. Then we introduce FlexRay network topology,

node and cycle architecture, FlexRay message schedulability and reliability. We also

give a short description about AMPL which is the programming language for our

implementation. In the last part of this chapter, we briefly describe the system

model used in this thesis.

6 Background

1.1 Vehicle Communication Networks

Vehicle communication networks are used to connect components in automotive ap-

plications. Typical vehicle components are Engine Control Modules(ECM), Trans-

mission Control Modules(TCM), Anti-lock Brake Systems(ABC) and so on[13]. Fig-

ure 1.1 shows a typical CAN network in a car.

Figure 1.1: A typical CAN network in a car from [13].

Each module or component can be seen as a node in the vehicle network. Com-

munications between these nodes need some rules—standard protocols, to ensure

well-balanced message transmission performance. Currently, vehicle network com-

munication is mainly based on the event-triggered (ET) and time-triggered (TT)

mechanism. The event-triggered protocol, such as Controller Area Network (CAN),

manages message transmission based on the occurrence of events. The message

access to the network is dynamically based on the message priorities. The time-

triggered protocol (TTP) uses TDMA (Time Division Multiple Access) scheme and

timing points to control nodes to access the communication bus. It is also possible

to combine these two kinds of mechanisms in one protocol, such as FlexRay, which

allows the ET and TT messages to transmit on the same channel.

FlexRay Protocol 7

1.2 FlexRay Protocol

FlexRay is a new protocol which is developed in 1999 by the core members of the

FlexRay Consortium (BMW, Bosch, DaimlerChrysler, Freescale, GM, NXP Semi-

conductors and Volkswagen) for future in-vehicle communication systems, specially

for safety-critical applications. The aim of FlexRay is to develop an advanced com-

munication system for high-speed control applications in vehicles such as advanced

powertrain, chassis and by-wire systems, to provide flexibility, reliability and func-

tional alternatives [14].

1.2.1 Network Topology

As its name, FlexRay has flexibility and scalability features. It can not only support

bus and multiple star network topology in Figure 1.2, but also combine these two

topologies for comprehensive systems.

FlexRay supports two channels for data communication and every channel can pro-

vide a gross data rate of 10Mbits/s. It increases the net bandwidth 20 times in

advanced automotive control applications compared to CAN protocol. The two in-

dependent FlexRay channels can also be used as a redundant communication system

for increasing error containments.

1.2.2 Node Architecture

Each node connected to a FlexRay bus contains a host, a communication controller

(CC) and a bus guardian (BG) as displayed in Figure 1.3. The host is an embedded

system processor running software to control the communication process. CC is one

8 Background

(a) Bus topology

(b) Star topology

Figure 1.2: FlexRay network topology from [1]

FlexRay Protocol 9

of the most important parts in a node. It handles the message transmission and

reception and maintains message scheduling based on the clock synchronization[1].

The host and CC are interconnected through a controller host interface (CHI) which

is used to handle configurations and message buffers for transmission and reception.

BG provides the error detection mechanism and generates interrupts when critical

problems occur[15].

Figure 1.3: FlexRay node architecture.

1.2.3 Communication Cycle Architecture

FlexRay communication happens within the recurring communication cycle. Each

cycle consists of four parts shown in Figure 1.4, a mandatory static (ST) segment, a

network idle time (NIT), an optional dynamic (DYN) segment and a symbol window

[1].

• Static segment

The ST segment is used to transmit ST messages based on the TDMA scheme.

A ST segment contains several time slots. Each time slot has the same length.

10 Background

Figure 1.4: FlexRay communication cycle architecture from [1].

The number of slots in a ST segment is deterministic off-line by the designer.

• Dynamic segment

DYN messages are transmitted in the DYN segment. A DYN segment includes

a number of “minislots”. Each DYN slot consists of several “minislots”. Dif-

ferent with the ST slot, the length of each DYN slot is a variable which is

depended on the assigned message size.

• Network idle time

NIT is a communication-free period during which the node calculates clock

correction terms[1]. In the NIT, nodes in a cluster do not have any message

exchanges between them.

• Symbol window

The symbol window is an optional part in the communication cycle. It is used

to transmit special messages, called FlexRay symbols.

We are only interested in the ST and DYN segments for message transmissions in

this thesis. So we only discuss these two segments in each communication cycle in

the following content.

FlexRay Protocol 11

1.2.4 Message Schedulability

When several messages are going to transmit on a FlexRay bus, the designer has

to decide a scheduling policy to ensure the message schedulability. The scheduling

policy must unambiguously determine the message transmission at any time.

In this thesis, the schedulability analysis of FlexRay messages is based on two dif-

ferent policies for the two types of FlexRay messages, the ST and DYN messages,

respectively.

The ST message is seen as a time-triggered (TT) message. The host in each node

holds a schedule table with the transmission time for the ST message. When the ST

message can access to the FlexRay bus is depended on the starting time point saved

in the schedule table. In order to ensure all the ST messages in the application are

schedulable, we must make sure each ST message can finish its transmission before

its message deadline.

The DYN message is seen as an event-triggered (ET) message. Different from the

ST message, the transmissions of DYN messages are not depended on any schedule

table. When the DYN message can be transmitted on the FlexRay bus is based on

the message priority. In other words, we can not use the time point to control the

DYN message transmission as the ST message. It is not easy to ensure that each

DYN message is schedulable compared to the ST message. In this thesis, we discuss

a heuristic method to get the worst response time of each DYN message based on

the timing analysis in [2]. If we can make sure the message worst response time is

not more than the message deadline, then the DYN message is schedulable.

12 Background

1.2.5 Message Reliability

“Reliability is the probability of a device to function correctly over a given period

of time under a given set of operating conditions” [19]. A safety critical application

must ensure a higher reliability to satisfy fault tolerant requirements. The reliabil-

ity of a message is defined as the probability that the message performs correctly

throughout an interval of time. In our implementation, the time interval of concern

is usually depended on the time period from the message transmission starting point

to its deadline point.

TTP has several safety services, including the node membership, the clique avoidance

algorithm and the independent bus guardian, to guarantee a fail-silent behavior

of a faulty node [12]. Compared to TTP, there are not many details about the

membership service and message diagnosis in FlexRay specification as [1]. But in

[9], the author mentioned each FlexRay node has a local BG for avoiding a faulty

node to transmit within unscheduled time slots. There are two watchdogs in BG

used to detect illegal behaviors of the synchronization signals [15]. If the CC tries to

transmit a message within a wrong time slot or it detects a clock or timing error, the

local BG can pass the related illegal information to the node. FlexRay also provides

a mechanism to check if the BG works correctly or not.

Unlike the BG in TTP which is independent to the CC, the BG in FlexRay shares

the power supply with the CC and it is controlled by the CC. So strictly speaking, it

is not totally independent on the CC. From the safety point of view, the dependent

mechanism is a drawback for safety requirements [6].

But due to the flexible structure of FlexRay protocol, we discuss several relevant

techniques, such as the hardware replication and re-execution, to increase FlexRay

message reliability in Chapter 3.

AMPL and CPLEX 13

1.3 AMPL and CPLEX

The term “mathematical programming” describes the minimization or maximization

of an objective function of numbers of variables and constraints [16]. AMPL, a mod-

eling language for mathematical programming, has been chosen as the programming

language for our implementations in this thesis. It allows users to switch several

solvers to find an optimal solution.

CPLEX is an optimization solver developed by ILOG software company in 1997.

It can solve integer programming and linear programming problems. In this thesis,

we choose ILOG CPLEX 10.0.0 optimization solver as an effective solver for our

implementation.

To get an optimal solution for our implementations, the following steps are needed[16]:

• Formulate a model, which means several variables, objectives and constraints

should be described for the problem.

• Collect the data defined for the specific problem.

• Generate an objective function and several constraint equations from the model

and data.

• Solve the problem and find optimal values of the variables.

• Analyze the results.

14 Background

1.4 System Model

Our system architecture contains several nodes connected to two FlexRay commu-

nication channels as shown in Figure 1.5. Each node uses two different message

scheduling policies for ST and DYN messages, respectively.

Figure 1.5: FlexRay system architecture from [20].

When several messages are ready to transmit in the CHI on a node, they are assigned

to the FlexRay channels through the bus driver. The message assignment is decided

by the specified scheduling policy depended on the message attribute (It is a ST or

DYN message). The starting time of each ST message is off-line fixed in the schedule

table which is saved in the host of the node. The assignment of the DYN message

is based on the message priority. The ST message transmission is time-triggered

depended on a local clock in each node [3]. The synchronization of local clocks is

decided by FlexRay communication protocol [1].

Chapter 2

Message Schedulability

Optimization

Introduction

In this chapter, we explain how to guarantee that each message is schedulable in

both ST and DYN segments on a FlexRay bus. There are two parts: in the first

part, we present how static (ST) messages transmit on a FlexRay communication

bus and how to model ST messages scheduling in the ST segment; in the second

part, how dynamic (DYN) messages transmit on a FlexRay communication bus will

be explained, and the DYN message scheduling based on the schedulability analysis

in [2] is modeled as well.

16 Message Schedulability Optimization

2.1 Static Message Schedulability Optimization

The process of ST message scheduling is used to decide the schedule table for all the

ST messages. We need to make sure that each ST message can meet its deadline,

then all the ST messages are schedulable.

The ST messages are transmitted in the ST segments. The bus for the ST segment

is implemented with time division multiple access (TDMA) scheme. The system

architecture for the ST segment described in this section is consistent with the ST

segment structure of FlexRay protocol.

The goal of this section is to find an optimization approach for the ST message

scheduling, such that the total response time for all the ST message is minimized.

2.1.1 Static Message Transmission

The ST segment has a specified size and a fixed number of time slots. Each time slot

has the same length. A ST message is defined as data exchange between different

nodes. Each node in the system will be assigned to one or more pre-determined

time slots for message transmission in every communication cycle. For simplicity,

we assume that each node has only one time slot for transmission in each cycle,

which means that the number of time slots in a ST segment is equal to the number

of nodes which have ST messages to send. This ensures that each node has at least

one chance for transmission in every communication cycle. During the transmission

process, the assignment can not be changed.

In Figure 2.1(a), there are three nodes, N1, N2 and N3, sending the ST messages

m1, m2...m6 using a FlexRay bus. Each ST message uses a schedule table label,

Static Message Schedulability Optimization 17

(a) The schedule table for the ST message

(b) Message assignment for the ST messages.

Figure 2.1: An example for the ST message transmission.

specifying that which time slot and cycle the message should be assigned. For

example, m3 points to a label “1/2”, describing that it must be transmitted in the

second slot of the first cycle. We can notice that the messages coming from the same

node should be transmitted in the same slot of each cycle and the messages coming

from the different nodes must be transmitted in the different slots. For example,

in Figure 2.1(b), m1, m2 and m3 belonging to N1 are always sent in the second

slot, although the cycle number of these messages are different. m4 and m6 are

transmitted in the third and first slot of the first cycle. They are always transmitted

in the different slots because they are coming from the different nodes.

2.1.2 Static Message Modeling Description

In this part, the model for ST messages scheduling using mathematical programming

framework will be given based on the discussions in 2.1.1.

18 Message Schedulability Optimization

2.1.2.1 Notations

Several notations will be explained in this part, including sets, parameters and vari-

ables used in the model.

• Sets

STmessage a set of ST messages

STmessage = {mi|i = 1, . . . ,m}
NODE a set of nodes

NODE = {ni|i = 1, . . . ,n}
NM a set of node-message pairs describing the affiliations between

nodes and messages

{(ni,mj)|ni ∈ NODE, mj ∈ STmessage}
CYCLE a set of cycle numbers

CYCLE = 1, 2, . . . , c

SLOT a set of time slot numbers

SLOT = 1, 2, . . . , s

CS a set of cycle-slot pairs

{(c, s)|c ∈ CYCLE, s ∈ SLOT}

• Parameters

There are two kinds of parameters, the ST segment parameters and the ST

message parameters, in Table 2.1 and 2.2, respectively.

A ST segment has a fixed size STsize and several time slots. Each slot has

a specified size Sslot. DY Nsize and Tbus are two parameters described the

length of the DYN segment and the whole cycle, respectively.

A message with deadline Mdeadlinem has a given size Msizem.

Static Message Schedulability Optimization 19

ST Segment Parameters

Sslot the size of the time slot in the ST segment

STsize the size of the ST segment

DY Nsize the size of the DYN segment

Tbus the size of the whole communication cycle, which is equal to the

sum size of a ST and DYN segment

Table 2.1: The parameters for the ST segment

ST Message Parameters

Msizem the size of the ST message, m ∈ STmessage

Mdeadlinem the deadline of the ST message, m ∈ STmessage

Table 2.2: The parameters for the ST message

• Variables

Two binary decision variables are used to describe the assignments between

the slots and the messages, the assignments between the slots and the nodes,

respectively. The binary variable message assign(c,s),(n,m) is used to describe if

the node-message pair (n,m) belonging to the set NM is assigned to the cycle-

slot pair (c, s). The variable node assigns,(n,m) specifies if the slot number s

is assigned to the node n .

message assign(c,s),(n,m) =

1, if node-message pair (n,m) is assigned

to the cycle-slot pair (c, s)

0, otherwise
(2.1)

node assigns,(n,m) =

1, if the slot s is assigned to the node n

0, otherwise
(2.2)

20 Message Schedulability Optimization

Static Message Variables

Rtime the response time of the ST message

Mcycle the cycle number of the ST message

Mslot the slot number of the ST message

Table 2.3: The variables for the ST message

The rest three variables are used to present the message response time, the

message cycle number and the message slot number, respectively, as Table 2.3.

2.1.2.2 Constraints

The ST message scheduling is feasible if it satisfies all the constraints imposed by

the ST segment requirement of FlexRay protocol in [1]:

• Only one message can be transmitted on a FlexRay bus at a time. Collisions

of messages lead to an infeasible result.

• Each message can only be assigned to one time slot.

• Messages belonging to the same node should be assigned in the same time slot

of each cycle.

• Messages belonging to the different node should be assigned in the different

time slot of each cycle.

• The sum of the messages sizes in each time slot cannot exceed the size of the

time slot.

• All the messages must meet their deadlines.

Static Message Schedulability Optimization 21

In order to build a mathematical model, the above constraints are formulated in the

following content.

Message Mutual Exclusion Constraint: Equation 2.3 describes each ST mes-

sage can be assigned to the only one cycle-slot pair. Equation 2.4 presents each node

can be assigned to the only one time slots in each cycle. These two equations to-

gether ensure each message should be transmitted once on a FlexRay communication

bus.

∑

(c,s)∈CS

message assign(c,s),(n,m) = 1, (n,m) ∈ NM (2.3)

∑

s∈SLOT

node assigns,(n,m) = 1, (n,m) ∈ NM (2.4)

Message, Node and Slot Constraints: This part presents four constraints for

messages, nodes and slots in the ST segment. Equation 2.5 and Equation 2.6 together

ensure that in each cycle, the messages coming from the same node must be assigned

to the same slot, and messages coming from the different nodes must be assigned to

the different slots. Equation 2.7 ensures that the total sizes of the messages which are

assigned in a time slot, cannot exceed the size of the slot. For example, the total sizes

of m1 and m2 are not larger than the size of the time slot in Figure 2.1(b), so both of

them can be assigned in the second slot of the second cycle. Equation 2.8 describes

the relationship between the two binary decision variables message assignc,s,n,m and

node assigns,n,m. It also ensures that each node is always assigned to a fixed slot

number in every cycle.

22 Message Schedulability Optimization

node assigns,n,mi = node assigns,n,mj ,

s ∈ SLOT, (n,mi) ∈ NM, (n,mj) ∈ NM (2.5)

∑

(n,m)∈NM

node assigns,n,m >= 1, s ∈ SLOT (2.6)

∑

(n,m)∈NM

message assignc,s,n,m ∗Msizem <= Sslot, (c, s) ∈ CS (2.7)

∑

(c,s)∈CS,
(n,m)∈NM

message assignc,s,n,m =
∑

(n,m)∈NM

node assigns,n,m,

s ∈ SLOT, (n,m) ∈ NM (2.8)

Message Variables Constraints: This part describes three constraints about

three ST message variables, respectively, shown in Table 2.3. Equation 2.9 is used

to calculate the message cycle number. Equation 2.10 describes the message slot

number. The above two equations describes the schedule table value for the ST

message. In Equation 2.11, the expression is to calculate the response time of the

ST message, describing how much time is needed for the message transmission.

Mcyclem =
∑

(c,s)∈CS

message assignc,s,n,m ∗ c, (n,m) ∈ NM (2.9)

Static Message Schedulability Optimization 23

Mslotm =
∑

(c,s)∈CS

message assignc,s,n,m ∗ s, (n,m) ∈ NM (2.10)

Rtimem = (Mcyclem − 1) ∗ Tbus + Mslotm ∗ Sslot, m ∈ STmessage (2.11)

Message Deadline Constraints: All the ST messages have to finish their trans-

mission before their deadlines as Equation 2.12.

Rtimem <= Mdeadline, m ∈ STmessage (2.12)

2.1.2.3 Objective

The objective is represented as Equation 2.13, which is to minimize the total response

time for all the ST messages in the system.

Minimize
∑

m∈STmessage

Rtimem (2.13)

2.1.3 Case Study

In this section, we apply our model into a specified case. The case study system

contains three nodes with 9 ST messages, which are transmitting on a FlexRay

communication bus as Figure 2.2. The data for the message sizes and the deadlines

are presented in Table 2.4.

24 Message Schedulability Optimization

Figure 2.2: The architecture for the case study of the ST message scheduling opti-

mization

Node Message Size Deadline

n1 m1 5 40

n1 m2 2 60

n1 m3 4 70

n1 m4 3 90

n2 m5 4 20

n2 m6 2 50

n3 m7 1 50

n3 m8 4 70

n3 m9 4 90

Table 2.4: The data used for the case study of the ST message scheduling optimiza-

tion

Static Message Schedulability Optimization 25

In this case study, all the messages have fixed sizes and deadlines as Table 2.4. For

the safety-critical system, all the ST messages must meet their deadlines. In order to

find a scheduling optimization result which has the minimum total response time of

all the ST messages, we adjust the size of the time slot until it leads to an infeasible

result.

From Equation 2.7, the minimum size of the time slot should be at least equal to the

maximum message size (Splitting message for multi-transmissions is not allowed in

FlexRay protocol). So at the beginning, we choose 5 (the maximum message size in

this case as Table 2.4) as the first value of the parameter Sslot. Then every time we

increase the parameter value by 1 for the rest cases. We can get the different node

sequences for the different cases, and the objective values are also different as shown

in Table 2.5. (The sequence of the nodes corresponds to the sequence of the slots

they assigned in each cycle. For example, the node sequence “n1n3n2” describes

that in each cycle, the first slot is always assigned to the node n1, and the second

and third slot are assigned to n3 and n2, respectively.)

From Table 2.5, we can get a minimum objective value 215 (the total response time

for all the 9 ST messages) when Sslot is 10. Under this case, how the ST messages

are assigned is displayed in Figure 2.3. When the Sslot value is increased to 17, we

get an infeasible result because m7 fails to meet its deadline in this case.

The objective value 215 obtained from Table 2.5 may not be the minimum result.

If we give the big enough deadlines for all the ST message, then we can get an even

smaller objective value for the total messages response time. In this case, we change

all the messages deadlines to 1000 and keep other values the same as Table 2.6. In

order to find a minimum result for the total message response time, we choose the

value of the slot size in a variable range. In this case, the minimum slot size is 5 as

discussed above, and the maximum slot size is 14, which is equal to the maximum

26 Message Schedulability Optimization

Sslot Node sequence Objective value

5 n1n3n2 230

6 n1n3n2 228

7 n1n2n3 227

8 n1n2n3 253

9 n1n2n3 237

10 n1n2n3 215

11 n2n1n3 257

12 n2n1n3 279

13 n2n1n3 301

14 n2n1n3 266

15 n2n1n3 285

16 n2n1n3 304

17 infeasible infeasible

Table 2.5: The results for the case study of the ST message scheduling optimization

(a) The message schedule table when Sslot = 10 in the case study

(b) The message assignment depended on the schedule table

Figure 2.3: The optimal assignment for the case study of the ST message scheduling

optimization

Static Message Schedulability Optimization 27

sum of a node’s message sizes (N1 has the maximum messages sizes 14 in this case).

Node Message Size Deadline

n1 m1 5 1000

n1 m2 2 1000

n1 m3 4 1000

n1 m4 3 1000

n2 m5 4 1000

n2 m6 2 1000

n3 m7 1 1000

n3 m8 4 1000

n3 m9 4 1000

Table 2.6: The data used for the case study of the ST messages with big enough

deadlines

In Table 2.7, we get the results when the Sslot value is between 5 and 14. It is

clear that when the size of the slot is equal to 9, we can get a smaller total message

response time 186 compared to 215(the minimum result presented in Table 2.5).

Under this case, how the messages are assigned is displayed in Figure 2.4.

28 Message Schedulability Optimization

Sslot Node sequence Objective value

5 n1n3n2 230

6 n1n3n2 228

7 n1n3n2 220

8 n1n3n2 245

9 n1n3n2 186

10 n1n3n2 205

11 n1n3n2 224

12 n1n3n2 243

13 n1n3n2 262

14 n1n3n2 224

Table 2.7: The results for the case study of the ST messages with big enough dead-

lines

(a) New message schedule tables when Sslot = 9 and the deadlines for all the

ST messages are 1000

(b) The message assignment depended on the schedule table

Figure 2.4: The optimal message assignment for the case study of the ST messages

with the big enough deadlines

Dynamic Message Schedulability Optimization 29

2.2 Dynamic Message Schedulability Optimization

The process of DYN message scheduling is to determine a frame identifer for each

DYN message and to calculate the message worst response time. Different with the

ST messages, we do not know the starting transmission time of the DYN message

through the schedule table, which means we are not sure when the DYN message

can be transmitted on a FlexRay bus. That is why we call it “dynamic message”.

When the DYN message can be transmitted on a FlexRay bus is based on several

factors as Equation 2.14 from [2].

Rm(t) = σm + ωm(t) + Cm (2.14)

Where Rm is the worst response time for the DYN message m. Cm is the message

m’s transmission time. σm is the delay caused by the first factors as discussed below.

ωm(t) is the worst case delay caused by the second and the third factor.

The first factor indicates that if the DYN message is ready to transmit just after

its slot has passed, then it must wait until the next bus cycle for the transmission.

The second factor is that the transmission for the DYN message could be delayed by

the transmissions for those messages with higher priorities. If several messages are

ready in the CHI buffer, which message can be transmitted first is decided by the

message priority. The message with a higher priority is allowed to be transmitted

first on a FlexRay bus. The last factor means that the message transmission can be

delayed by a numbers of “minislots”, which is explained in 2.2.1.

In this section, we need to ensure that all the DYN message deadlines are chosen

properly based on the worst response time of the DYN messages. In other words, if

30 Message Schedulability Optimization

we can make sure that all the DYN messages deadlines are larger than their worst

response time, then the DYN messages deadlines are guaranteed, and all the DYN

messages are schedulable.

The goal of this section is to find an optimization approach for the DYN message

scheduling, such that the total worst response time of all the DYN messages is

minimized.

2.2.1 Dynamic Message Transmission

In this section, we will describe how the DYN messages are transmitted on a FlexRay

communication bus. Compared to the ST message transmission using TDMA scheme,

the flexible time division multiple access (FTDMA) scheme is applied in the DYN

segment.

A DYN segment contains a number of “minislots”, and each minislot has the same

length which is equal to gdMinislot [1]. If no messages are transmitted in a DYN slot,

then all the nodes should wait for a period of time which is equal to the length of a

minislot gdMinislot. At the same time, the minislot counter will be incremented by

1. Afterwards, all nodes will check if the current slot counter is equal to their frame

identifers. The scheduled message will be transmitted if they are equal. In this case,

the length of the slot will be equal to the number of minislots required for the whole

message transmission. After that the minislot counter will be incremented again.

The above process will be repeated until the end of the DYN segment. If there are

no messages or only very few messages to be transmitted within a DYN segment,

then there will be a lot of minislots left. Otherwise there will be very few minislots

left.

Dynamic Message Schedulability Optimization 31

(a) The message assignment for the DYN messages and frame identifers

(b) The DYN messages schedule process

Figure 2.5: An example for the DYN messages transmission

In Figure 2.5(a), there are two nodes N1 and N2, which are sending DYN messages

m1 ... m5 using a FlexRay bus. Node N1 is assigned to DYN slot 2 and 4, N2 is

given to DYN slot 1, 3 and 5. We can see that a message label always points to a

frame identifer number, for example, m1 points to the frame identifer 2, specifying

m1 needs to be transmitted in DYN slot 2. For DYN messages, a priority scheme[3]

is applied to decide which message will be transmitted first if several DYN messages

have the same frame identifer. But in this thesis, we assume that each message has

its own unique frame identifer, and each frame identifer can be only assigned to one

DYN message as Figure 2.5(a). The message with a lower frame identifier has a

higher priority for the transmission.

At the beginning of the each DYN cycle, the communication controller for each

node will reset the slot and minislot counters. At the beginning of the each slot, the

controller will check if there are messages ready for transmission in the controller

host interface(CHI) buffer[2], then assign the ready message to frame identifers. In

Figure 2.5, we assume all the DYN messages are ready for the transmission before

32 Message Schedulability Optimization

the first DYN cycle.

In Figure 2.5(b), messages m3 and m1 are transmitted in the first and second slot

of the first DYN cycle, respectively, according to their frame identifiers. m5 is

supposed to be transmitted in the third slot, but actually there is a minislot replacing

its transmission. Because the current minislot counter number 7 is larger than

pLatestTxm5 which is equal to 6, m5 has to wait for the transmission until the

next DYN cycle. pLatestTxm is the last minislot counter number which allows the

start of message m’s transmission[2]. After passing the minislot in the third slot

of the first DYN cycle, the slot counter number is increased to 4 (which is equal

to the m2’s frame identifer) and pLatestTxm2 is just equal to the current minislot

counter number 8, so m2 can be transmitted in the fourth slot of the first DYN cycle,

although m5 has a higher priority (lower frame identifer).

2.2.2 Dynamic Message Modeling Description

In this part, the system model for the DYN messages description using mathematical

programming framework will be given based on the discussion in 2.2.1.

2.2.2.1 Notations

Several notations will be explained in this part, including sets, parameters and vari-

ables used in the system model.

• Sets

Dynamic Message Schedulability Optimization 33

DYN Segment Parameters

STsize the size of the ST segment

DY Nsize the size of the DYN segment

Tbus the size of one communication cycle

gdMinislot the size of a minislot

Table 2.8: The parameters for the DYN segment

DYNmessage a set of DYN messages

DYNmessage = {mi|i = 1, . . . ,m}
FrameID a set of frame identifers

FrameID = 1, 2, . . . , fid

• Parameters

There are two kinds of parameters: the DYN segment parameters and the

DYN message parameters in Table 2.8 and Table 2.9, respectively.

A bus cycle has a deterministic length Tbus. In each cycle, it contains one ST

segment with a specified size STsize and one DYN segment with a specified size

DY Nsize. Compared to the structure of the ST segment, the DYN segment

consists of several minislots, and each minislot has a given size gdMinislot.

A DYN message m with deadline Mdeadlinem has a given size Msizem.

pLatestTxm is a parameter which describes the last minislot number allowing

to start message m’s transmission in a DYN segment. If the minislot counter

number exceeds the pLatestTxm value, then the current message m must wait

to transmit until the next bus cycle.

bignum is a parameter which is used to describe the relationship between two

messages’ frame identifiers.

34 Message Schedulability Optimization

DYN Message Parameters

Msizem the size of the DYN message,m ∈ DY Nmessage

Mdeadlinem the deadline of the DYN message,m ∈ DY Nmessage

pLatestTxm the last minislot which allows to start the message transmission,

m ∈ DY Nmessage

Table 2.9: The parameters for the DYN message

• Variables

The binary decision variable message to frameIDfid,m is used to describe

whether the DYN message m is assigned to the frame identifer fid or not,

m ∈ DY Nmessage, fid ∈ FrameID:

message to frameIDfid,m =

1, if m is assigned to the frame identifer

fid

0, otherwise
(2.15)

Two binary decision variables MMi,j and TTi,j are used to explain the rela-

tionship between any two messages’ frame identifers, i, j ∈ DY Nmessage:

MMi,j =

1, if i’s frame identifer is higher than j’s

0, otherwise
(2.16)

TTi,j =

1, if i’s frame identifer is lower than j’s

0, otherwise
(2.17)

The rest five variables are used to describe the worst response time of the DYN

message, which are displayed in Table 2.10, m ∈ DY Nmessage:

Dynamic Message Schedulability Optimization 35

DYN Message Response Time Variables

Atimem the longest delay in a bus cycle if the message is ready to

transmit right after its slot has passed. It has the same

meaning with the variable σm in [2]

Btimem the worst delay because of the transmission in the ST

segment and those DYN messages with the lower frame

identifers. It is has the same meaning with the variable

ωm(t) in [2]

Rtimem the worst response time of the DYN message

BusCyclem the number of bus cycles for message m which should wait

because of the transmission of those messages with lower

frame identifiers

roundBusCyclem ceiling of variable BusCyclem

Table 2.10: The variables for the DYN message response time

36 Message Schedulability Optimization

2.2.2.2 Constraints

The DYN message scheduling is feasible if it satisfies all of the constraints imposed by

the DYN segment requirements of FlexRay protocol and the schedulability analysis

of DYN messages in [2].

• Only one DYN message can be transmitted on a FlexRay bus at a time. Col-

lisions of message transmissions lead to infeasible results.

• Each DYN message can only be assigned to one frame identifer.

• Each frame identifier can only be assigned to an unique DYN message.

• The DYN message with a lower frame identifer has a higher priority for the

transmission.

• All the DYN messages must meet their deadlines.

In order to build a mathematical model, the above constraints are formulated in the

following content.

Frame Identifers Constraint: This part presents five constraints about DYN

messages’ frame identifers.

The following constraint describes that each frame identifer can only be assigned to

an unique DYN message in Equation 2.18.

∑

m∈DY Nmessage

message to frameIDfid,m = 1, fid ∈ FrameID (2.18)

Equation 2.19 calculates the frame identifier value for the DYN message.

Dynamic Message Schedulability Optimization 37

Mframeidm =
∑

fid∈FrameID

message to frameIDfid,m ∗ fid,

m ∈ DY Nmessage (2.19)

Equations 2.20, 2.21 and 2.22 together ensure that there is a deterministic relation-

ship between any two DYN messages’ frame identifiers. The parameter bignum is

a big enough integer compared to the difference between any two messages’ frame

identifers in Equation 2.20 and 2.21. For example, in Figure 2.5, m3 and m1 have 1

and 2 as their frame identifier, respectively. Thus there is a deterministic relation-

ship between m3 and m1, describing m3 has a lower frame identifier than m1, and

m1 has a higher frame identifier than m3. The relationship between any two DYN

messages in Figure 2.5 can be described by two binary variables MMi,j and TTi,j in

Table 2.11 and 2.12.

Mframeidi −Mframeidj <= bignum ∗MMi,j ,

i, j ∈ DY Nmessage, i 6= j (2.20)

Mframeidj −Mframeidi <= bignum ∗ TTi,j ,

i, j ∈ DY Nmessage, i 6= j (2.21)

MMi,j + TTi,j = 1, i, j ∈ DY Nmessage, i 6= j (2.22)

Message Worst Response Time Constraints: This part describes five con-

straints about the DYN message worst response time.

38 Message Schedulability Optimization

m1 m2 m3 m4 m5

m1 � 0 1 0 0

m2 1 � 1 0 1

m3 0 0 � 0 0

m4 1 1 1 � 1

m5 1 0 1 0 �

Table 2.11: The binary decision variables MMi,j table for Figure 2.5.

m1 m2 m3 m4 m5

m1 � 1 0 1 1

m2 0 � 0 1 0

m3 1 1 � 1 1

m4 0 0 0 � 0

m5 0 1 0 1 �

Table 2.12: The binary decision variables TTi,j table for Figure 2.5.

Dynamic Message Schedulability Optimization 39

In Equation 2.27, there is an expression to calculate the worst response time Rtimem

of the DYN message, where Atimem is the longest delay in one bus cycle if the

message m is ready to transmit right after its slot has passed. Atimem in Equation

2.25 has the same meaning with the variable σm in [2].

Btimem is the worst delay contributed by the transmission in the ST segment and

those DYN messages with the lower frame identifiers. Btimem in Equation 2.26 is

supposed to have the same meaning with the variable ωm(t) in [2]. But actually they

have a small difference. The different place is the value of the variable BusCyclem.

In [2], it used the bin covering algorithm to get the BusCyclem value and modeled the

problem of computing BusCyclem as an integer linear program(ILP). The problem

will be very complicated if we use the same way to get the BusCyclem value in

our model. For simplicity, we used Equation 2.23 to get the value of BusCyclem.

Here, we assume that those messages with lower frame identifiers than the message

m are transmitted before m’s transmission in the worst case. So from Equation

2.23, it is known that message m has to wait at least BusCyclem cycle(s) before

its transmission. In Equation 2.24, roundBusCyclem is the ceiling of the variable

BusCyclem.

BusCyclei =
∑

j∈DY Nmessage,i 6=j

MMi,j ∗Msizej/pLatesTxi,

i ∈ DY Nmessage (2.23)

roundBusCyclem >= BusCyclem, m ∈ DY Nmessage (2.24)

40 Message Schedulability Optimization

Atimem = Tbus− STsize− (Mframeidm − 1) ∗ gdMinislot,

m ∈ DY Nmessage (2.25)

Btimem = roundBusCyclem ∗ Tbus + STsize + pLatestTxm

∗gdMinislot, m ∈ DY Nmessage (2.26)

Rtimem = Atimem + Btimem + Msizem, m ∈ DY Nmessage (2.27)

Message Deadline Constraint: In our model, we assume that all the DYN mes-

sages must finish their transmissions before their deadlines. In the DYN segment,

we can not get the schedule table for DYN messages, which means that it is hard

to get the exact message transmission time. So we have to restrict that the worst

response time for each DYN message should be smaller than or equal to the message

deadline in Equation 2.28, then the scheduling of the DYN messages is guaranteed.

Rtimem <= Mdeadlinem, m ∈ DY Nmessage (2.28)

Dynamic Message Schedulability Optimization 41

2.2.2.3 Objective

The objective is represented as Equation 2.29, which is to minimize the worst re-

sponse time for all the DYN messages in the system.

Minimize
∑

m∈DY Nmessage

Rtimem (2.29)

2.2.3 Case Study

In this section, a case study for DYN message scheduling optimization will be pre-

sented. The case study system contains two nodes with 5 DYN messages transmit-

ting on a FlexRay communication bus as Figure 2.6. The data used by the case

study about message sizes, the last minislot numbers and message deadlines are in

Table 2.13.

Figure 2.6: The architecture for the case study of the DYN message scheduling

optimization

In this case study, all the DYN messages have fixed sizes as Table 2.13. We assume

that each DYN message in the system should meet its deadline, and all the DYN

messages are ready to transmit before the first DYN cycle. In order to find an

optimization scheduling result which has the minimum total worst response time for

all the DYN messages, we give a big enough deadline for each message as Table 2.13.

42 Message Schedulability Optimization

Node Message Size pLatestTx Deadline

n1 m1 5 7 100

n1 m2 3 9 100

n2 m3 4 8 100

n2 m4 6 6 100

n2 m5 7 5 100

Table 2.13: The data used for the case study of the DYN message scheduling opti-

mization

Message FrameID roundBusCycle Atime Btime Rtime

m1 3 1 10 35 50

m2 1 0 12 17 32

m3 4 1 11 36 51

m4 2 1 9 34 49

m5 5 2 8 53 68

Table 2.14: The results for the case study of the DYN message scheduling optimiza-

tion

In this case, we get a minimum value for the objective function, which is equal to

250 based on Equation 2.29. The result for this case is shown in Table 2.14.

Table 2.14 shows that m2 gets the lowest frame identifier which means it has the

highest priority for transmission, so it does not need to wait any cycle to transmit

(roundBusCyclem2 is 0 in this case), and its worst response time is 32, which is the

smallest one. m5 gets the highest frame identifier, which means it has the lowest

priority for its transmission. Because roundBusCyclem5 is 2, m5 should wait at

least two cycles to transmit.

If we change m5’s deadline from 100 to 40, then m5 is supposed to be assigned to

Dynamic Message Schedulability Optimization 43

Message FrameID roundBusCycle Atime Btime Rtime

m1 5 2 8 55 68

m2 2 1 11 37 51

m3 4 2 9 56 69

m4 3 1 10 34 50

m5 1 0 12 13 32

Table 2.15: The new results for the case study when m5’s deadline is 40

Message Deadline FrameID

m1 100 infeasible

m2 100 infeasible

m3 100 infeasible

m4 100 infeasible

m5 30 infeasible

Table 2.16: The Infeasible results when m5’s deadline is 30

a lower frame identifer, because it has a earlier deadline now. In this new case, we

get the new results in Table 2.15, and the objective for this new case is 270 based

on Equation 2.29.

Table 2.15 shows that m5 gets the lowest frame identifier which means it has the

highest priority this time due to its earlier deadline. Correspondingly, it does not

need to wait for any cycle to transmit because roundBusCyclem5 is 0, and its worst

response time is only 32 in this case.

Table 2.14 and 2.15 show that 32 is the smallest worst response time among all

the DYN messages in the case. If we change m5’s deadline from 40 to 30, we are

supposed to get an infeasible result in this case. The results in Table 2.16 verify our

assumption. In this case, m5’s deadline is too small to get a feasible frame identifier,

44 Message Schedulability Optimization

which leads this case to an infeasible result.

Chapter 3

Message Reliability

Optimization

Introduction

In this chapter, we discuss how to increase the message reliability on the ground that

each message is schedulable as discussed in Chapter 2. Due to FlexRay’s flexible

structure, it has more potential to support additional reliable requirements, and it

will be used more and more in safety-critical applications. In order to ensure the

reliability of message transmissions in FlexRay, we discuss two techniques to increase

the reliability of message transmissions in 3.1 and 3.2, respectively.

46 Message Reliability Optimization

3.1 Hardware Replication

The hardware replication technique is mostly used in many safety critical appli-

cations. In order to achieve the redundancy objective, the number of hardware

components must be increased, such as channels and nodes.

3.1.1 Dual-channel

FlexRay uses two channels for message communications as TTP. In TTP, the com-

munications on both channels are identical, which means one of the channels is used

for the normal message communication, and the other one is employed for the mes-

sage redundancy. Compared to TTP, FlexRay has more flexible choices. It can

use one channel for normal traffic and the other for message redundancy as TTP

in Figure 3.1. The other option is that we can transmit different messages on both

channels to increase the bandwidth when there is no fault tolerance requirements

needed in the application. In this case, two channels are independent for the message

transmissions.

Figure 3.1: Dual-channel transmission example.

Hardware Replication 47

In Figure 3.1, messages m∗
1, m∗

2 . . .m∗
6 transmitted on channel B are the replicas

of messages m1, m2 . . .m6 transmitted on channel A. (In the following content, m∗

is always the replica message of m.) In this case, each message has one replica in

order to increase the message reliability. It should be noticed that in this case, the

whole channel B (including ST and DYN segments of each cycle) is used to transmit

replica messages.

3.1.2 Fault-tolerant Unit

In order to tolerate node failures in the bus-based system, we can assign several

nodes into a Fault-tolerant Unit (FTU) to provide redundancy services.

Figure 3.2: Fault-tolerant unit consisting of two active nodes and a shadow node

from [12].

In Figure 3.2, there are four FTUs connected to the two bi-directional communication

channels, and each FTU consists of two active nodes and a shadow node. Here, we

assume these nodes are fail-silent1. When these two active nodes work correctly,

the shadow node, which can be seen as a replicated node, only gets all the input

messages, but does not transmit any output messages to the bus. When one of the

active nodes fails, the shadow node will turn to be an active node and receive input

and transmit output messages on two channels until the failed node comes back to

the normal state[12]. FTU ensures that the redundancy mechanism can be started

1A fail-silent provides either correct results or no results at all[11]

48 Message Reliability Optimization

within a short latency whenever an active node fails, and it can keep the system in

the correct operation state during the repairing process of the failed node[11].

If nodes in the system are not fail-silent nodes, replications of nodes in the FTU

described above are not enough to tolerate the node failure in the system. Usually

it needs more hardware to implement the redundancy service. For example, if the

failure happens in the communication network interface (CNI), a FTU needs three

nodes and a voter to tolerate, which is called Triple-Modular redundancy. If Byzan-

tine failure2 occurs, which is one of the worst failures, the FTU must require at least

four nodes and carry out a Byzantine-resilient agreement protocol to tolerate one

Byzantine failure[11].

3.2 Re-execution

As discussed in Section 3.1.1, if both channels are independent, and messages trans-

mitted on each channel are different, then there is no additional channel to ensure the

fault tolerant requirements. In this section, we discuss how to use the re-execution

technique to increase messages reliability on a FlexRay communication channel.

That means even we transmit different messages on two channels, it can still satisfy

fault tolerance requirements on both channels.

Each FlexRay cycle consists of a ST segment and a DYN segment as described in

Chapter 2. The transmission in ST segments is similar with the communication in

TTP cycle. They all use TDMA scheme to manage messages to access the bus.

This scheme is very suitable for hard real-time messages due to its precision on

the point-in-time. We can use ST segments for transmitting those hard real-time

messages. The DYN segment is more flexible in time slot length. It can be used
2Fault node may provide different information to different observers[9].

Re-execution 49

for transmitting soft real-time messages or tolerating hard real-time messages to

increase the messages reliability. Based on the above discussions, we illustrate two

ways to increase the message reliability in 3.2.1 and 3.2.2, respectively.

3.2.1 With error notifications

If we have an error notification (ERRNOTIF) to describe which message has failed

during its transmission, then we can just re-transmit those fault messages to increase

the messages reliability. We assume that the ERRNOTIF is displayed in the first

minislot of each DYN segment to check whether there are fault messages in the

previous ST segment or not.

If a hard real-time message has errors during its transmission, it is indicated by the

ERRNOTIF in the following DYN segment. Afterwards, the failed message needs

to be re-transmitted when there is available space for its transmission. In Figure

3.3, the transmission of m1 has failed in the ST segment, and m∗
1 is re-transmitted

in the DYN segment after the ERRNOTIF notices the transmission fault. Because

m1 has an early deadline, m∗
1 is re-transmitted in the following DYN segment.

Figure 3.3: Re-transmit one message with the error notification (ERRNOTIF)

If there are more than one message needed to be re-transmitted, the value of the

message priorities as Equation 3.1 should be compared. The message which has a

50 Message Reliability Optimization

smaller value should be set a higher priority tab and be re-transmitted first.

Pm = Dm −Rnotif −Rm (3.1)

where Pm is the message priority value, Dm is the message deadline, Rnotif is the

response time of the ERRNOTIF, and Rm is the response time of the message m.

Figure 3.4: Re-transmit multiple messages with the error notification (ERRNOTIF)

In Figure 3.4, there are 4 hard real-time messages m1 . . .m4 ready to transmit before

the first cycle. Messages m1, m2 and m3 are transmitted in the first, second and

third ST slot of the first cycle, respectively. Message m4 is transmitted in the first

ST slot of the second cycle. Unfortunately, m1, m2 and m3 have failed during their

communication process. So after the error notification displayed in the first minislot

of the first DYN segment, these three fault messages should be re-transmitted during

the rest space of the DYN segment. Because Pm3 > Pm1 > Pm2 based on Equation

3.1, m∗
3 has a higher priority to transmit compared to m∗

1 in the first cycle. There

is not enough space for m∗
2’s re-transmission in the first DYN segment, thus m∗

2

has to wait until the next DYN segment. We should know that if there are no

redundant messages to be re-transmitted, then the DYN segment is used to transmit

the soft real-time messages. Otherwise, those soft real-time messages may be delayed

contributed by the transmission of the redundant messages.

Re-execution 51

The discussion above is an ideal case to increase the messages reliability. In this

method, we assume that the ERRNOTIF in each DYN segment can indicate all the

fault messages to nodes only within a very small period of time which is equal to

the length of a minislot as Figure 3.3 and 3.4. Actually, it is not easy to ensure

that all the redundant messages are ready to re-transmit just after the length of

a minislot in each DYN segment. We need some configurations to make sure that

at the beginning of the each DYN segment, the controller of each node will check

if there are messages needed to be re-transmitted in the CHI buffer. If yes, the

node has to write the redundant information in the ERRNOTIF. That means the

ERRNOTIF needs to be updated at the beginning of each DYN segment.

For example, in Figure 3.4, m∗
1, m∗

2 and m∗
3 are needed to be re-transmitted which

is indicated by the ERRNOTIF at the beginning of the first DYN segment. Due to

the limited segment length, only m∗
3 and m∗

1 are successfully re-transmitted in the

first DYN segment. m∗
2 is required to be re-transmitted when the ERRNOTIF is

updated at the beginning of the second DYN segment.

Based on the above analysis, it is not easy to implement using the ERRNOTIF. If we

give a priority to each message in advance, then we can just re-transmit the replicas

for those hard real-time messages in order to increase the messages reliability in

Section 3.2.2.

3.2.2 Without error notifications

In this section, whether the message fails during its transmission is unknown because

there is no error notifications. We assume that there are two types of messages, hard

real-time messages and soft real-time messages. In order to increase the messages

reliability, we assume that each hard real-time message always has one replica even

52 Message Reliability Optimization

the original one does not have any fault. The replicas of the hard real-time mes-

sages can be transmitted in the ST or DYN segment by random. They can be also

transmitted in either channel A or channel B depended on the message deadline.

(a) The node structure

(b) Re-transmission on the single channel

(c) Re-transmission on the dual-channel

Figure 3.5: Re-transmission example without the error notification.

In Figure 3.5(a), there are 2 nodes sending 4 messages m1 . . .m4. We assume that

m1 and m2 are hard real-time messages which means they have hard deadlines,

and m3 and m4 are soft real-time message. In order to ensure that each hard real-

time message can meet its deadline, all the hard real-time messages can only be

Re-execution 53

transmitted in the ST segment. Thus m1 and m2 are transmitted in the first and

the second slot of the first cycle as Figure 3.5(b) and 3.5(c).

The assignment for the replicas are depended on the message deadline. In Figure

3.5(b), the deadlines of m1 and m2 are at the end of the first cycle, thus it is

possible to re-transmit m∗
1 and m∗

2 in the following DYN segment of the same channel

(Channel A) as Figure 3.5(b). If the message has a very early deadline, it may be

only possible to re-transmit the replica on the different channels. The deadlines of

m1 and m2 are at the end of the first ST segment in Figure 3.5(c). In order to ensure

the message deadlines, m∗
1 and m∗

2 are re-transmitted in the ST segment of channel

B.

54 Message Reliability Optimization

Chapter 4

Implementation

Introduction

We have discussed the theoretical knowledge about how to schedule FlexRay mes-

sages and how to increase the messages reliability through the preceding chapters.

In this chapter, we will explain our implementations based on the presented design.

The proposed solutions are used to evaluate the performance of our implementations.

4.1 Design Overview

In this section, first, we discuss how to schedule FlexRay messages on two channels

based on two different mechanisms for the ST and DYN message transmission. Sec-

ond, we give a description on three message types used in our implementation. Last,

56 Implementation

our design objective is explained.

4.1.1 Dual-channel Transmissions

We have already discussed how to schedule FlexRay messages on a FlexRay bus in

Chapter 2. In order to assign FlexRay messages on both channel A and B, more

variables, parameters and constraints are needed in our implementations.

For ST messages, two new sets CHANNEL and CCS are needed. The set CHANNEL

is added to describe the available channels. The new set CCS is used to describe the

available places for the message assignments. It replaces the old set CS described in

Section 2.1.2. Using the set CCS, we not only decide the cycle and slot numbers for

the ST messages as Section 2.1.2, but also determine the channel assignments for

the ST messages.

CHANNEL a set of channels

CHANNEL = {A, B}
CCS a set of channel-cycle-slot pairs representing the assigned

place of the ST messages

{(c, i, j)|c ∈ CHANNEL, i ∈ CYCLE, j ∈ SLOT}

Once the schedule table of the ST message is decided, no other factors can affect the

message assignment. It is easy to assign the ST messages on both channel A and B.

Actually, we do not care which channels the ST message is assigned to. In order to

minimize the total response time for all the ST messages, we just need to make sure

that the cycle number Mcycle and the slot number Mslot for each ST message are

minimized in Equation 2.11.

For DYN messages, it is more complicated to decide the message assignments on two

Design Overview 57

channels. First, a new set CHANNEL and a new binary variable CC are needed.

The set CHANNEL describes the available channels for the DYN messages. The

variable CC is used to explain the relationship between any two DYN messages and

the available channel in Equation 4.1.

CCi,j =

1, if DYN messages i and j are assigned on the same channel

0, otherwise
(4.1)

Second, a new constraint in Equation 4.2 replaces the old one in Equation 2.23.

BusCyclei =
∑

j∈DY Nmessage,i 6=j

MMi,j ∗ CCi,j ∗Msizej/pLatesTxi,

i ∈ DY Nmessage (4.2)

In order to calculate the worst response time for the DYN message m, we need to

know the messages which will delay the m’s transmission on a FlexRay bus in the

worst case. We use the binary variable MM and Equation 2.23 to describe how many

cycles are delayed by those messages with lower frame identifiers in Section 2.2.2.

If the DYN messages are assigned in two channels, both two variables MM and

CC decide the BusCycle value as Equation 4.2. In this case, only those messages

with lower frame identifiers which are transmitted on the same channel with the

message m could delay the m’s transmission, because the transmissions on channel

A and B are independent. For example, if m1 is transmitted on channel A and m2

is transmitted on channel B, then m1’s transmission can not delay m2’s even m1’s

frame identifier is lower than m2’s.

To calculate the result with ILOG CPLEX 10.0.0 optimization solver, only linear

constraints are feasible. In Equation 4.2, we have the multiplication of two binary

58 Implementation

variables, which means that it is a nonlinear expression. Nonlinear problems are

much harder to solve than the comparable linear one, because in mathematic, it is

harder to ensure that a nonlinear function of any number of variables is continuous

and has a well-defined gradient at every point [16].

To solve this problem, we assume that the channel assignment of each DYN message

is known in this thesis. We only need to decide the messages’ frame identifers for

those DYN messages which are transmitted on the same channel. For example, there

are 5 DYN messages ready to transmit in the buffer. The channel assignments for

the 5 messages are decided by the designer off-line. In this case, we assume that

m1 and m2 are transmitted on channel A, and m3, m4 and m5 are transmitted on

channel B. So in our implementation, we just need to decide the message frame

identifers for m1 and m2 on channel A, and the message frame identifers for m3, m4

and m5 on channel B.

Two new sets CDY NM and CF are added in the following content. The set

CDY NM replaces the old set DY Nmessage in Section 2.2.2. It describes the

affiliations between channels and DYN messages. The set CF replaces the old set

FrameID in Section 2.2.2. It explains the affiliations between channels and frame

identifers.

CDYNM a set of channel-message pairs describing the affiliations between

channels and messages

{(c,m)|c ∈ CHANNEL, m ∈ DYNmessage}
CF a set of channel-frame identifier pairs representing the affiliations

between channels and frame identifiers

{(c, fid)|c ∈ CHANNEL, fid ∈ FrameID}

Based on the set CDY NM , we know the number of DYN messages planning to

transmit on the channel A and B. Then we can decide the number of frame identifiers

Design Overview 59

for each channel (the number of frame identifiers should be equal to the number of

DYN messages on the same channel). Then the problem is simplified. We can

just use the assignment mechanism discussed in Section 2.2.2 to calculate the worst

response time of all the DYN messages on channels A and B, respectively.

4.1.2 Message Types

Critical, hard and soft messages are three message types for each node in our design.

Critical messages are very important messages in our application. All of them have

hard deadlines. The whole system may crash if one of the critical messages fails

to meet its deadline. Due to its importance, we assume that each critical message

must have one replica message to increase the message reliability, such that the fault

tolerant requirements are satisfied. In our design, both the critical message and the

replica message must meet their deadlines as discussed in Section 3.2.2.

Hard messages also have hard deadlines as the critical messages, but they do not

have any replicas compared to the critical messages. Each hard message must meet

its hard deadline in our design.

Soft real-time messages do not have hard deadlines for their transmissions, and they

do not need any replica messages either. We only need to ensure that each soft

message has one chance to be transmitted on a FlexRay bus.

In the thesis, we use the term “original messages” to describe the three types of

messages, critical, hard and soft messages, and we use the term “replica message”

to describe the replica of the critical message.

As represented in Table 4.1, we assume that critical and hard messages can only be

60 Implementation

Message type Assignable segment

Critical messages ST

Hard messages ST

Soft messages DYN

Replica messages ST or DYN

Table 4.1: The message types and their assignable segments

assigned in ST segments due to their hard deadlines as the ST messages explained

in Section 2.1. Soft messages are assigned in the DYN segments due to their flexible

schedule as the DYN messages presented in Section 2.2. The replica messages can

be transmitted in either ST or DYN segment decided by the designer off-line.

Based on the above discussions, several message sets are added in the program for

our solutions in the following Section 4.2.1, 4.2.2 and 4.2.3.

• New message sets

criticalMESSAGE a set of critical messages

hardMESSAGE a set of hard messages

softMESSAGE a set of soft real-time messages

STmessage a set of ST message assigned in ST segments

STmessage = criticalMESSAGE ∪ hardMESSAGE

DYNmessage a set of DYN message assigned in DYN segments

DYNmessage = softMESSAGE

MESSAGE a set of messages

MESSAGE = STmessage ∪ DYNmessage

Implementation Solutions 61

4.1.3 Design Objective

The objective of our solutions in Section 4.2.1, 4.2.2 and 4.2.3 is to determine the

schedule table for the critical, hard and a parts of replica messages, and decide the

worst response time for the soft and the rest part of replica messages based on the

knowledge in Chapter 2, such that all the messages are schedulable, and the total

response time for all the messages is minimized.

4.2 Implementation Solutions

Three solutions are explained according to the above discussion. One is the naive

solution, another is the optimal solution with replicas, and the other is adding redun-

dancy to the optimal solution without replicas. The first two solutions are required

to satisfy fault tolerant requirements. In these two solutions, the transmissions of

the replica messages must be ensured.

4.2.1 Naive Solution

We call it “the naive solution”, because in this solution, we just need a simple copy

process for critical messages from channel A to channel B.

In this case, all the original messages are transmitted on channel A which is used

for normal transmissions. All the replica messages are transmitted in ST segments

of channel B which is only used for redundancy.

There are 3 nodes sending 6 messages in Figure 4.1(a). m1, m2 and m3 are critical

messages. m4 is a hard message. m5 and m6 are soft messages. The schedule

62 Implementation

(a) The message schedule tables and the relationship between nodes and messages

(b) Message assignment for the naive solution.

Figure 4.1: An example for the naive solution.

table for ST messages (m1 . . .m4) and the assignments of frame identifiers for DYN

messages (m5 and m6) are decided by the program in Appendix A.3. All the original

messages m1 . . .m6 are assigned on channel A. The replica messages m∗
1, m∗

2 and

m∗
3 are assigned on channel B to increase the reliability of the critical messages as

Figure 4.1(b).

The assignments of replica messages on channel B are the same as the assignments

of the corresponding critical messages on channel A. For example, in Figure 4.1, the

critical message m1 is transmitted in the second slot of the first cycle on channel A.

Then the corresponding replica message m∗
1 must be transmitted in the second slot

of the first cycle on channel B.

It is noticeable that we can not get a schedule table for the DYN messages, because

the program can only decide the worst response time for DYN messages. So the

Implementation Solutions 63

assignments of m5 and m6 in Figure 4.1(b) are based on the specification in [1] and

the description in Section 2.2.1.

Actually, in the naive solution, we only need to consider how to schedule the original

messages on a single channel (channel A). The objective is to minimize the original

messages response time on channel A and the replica messages response time on

channel B as Equation 4.3. The program of the naive solution is in Appendix A.3

based on a combination of the modeling description in Section 2.1.2 and 2.2.2.

Minimize
∑

m∈MESSAGE

Rtimem +
∑

m∈criticalMESSAGE

Rtimem (4.3)

4.2.2 Optimal Solution With Replicas

Different with the naive solution in Section 4.2.1, both channel A and B are used for

the normal transmission in the optimal solution with replicas, which means channel

A and B are independent and the original and replica messages can be transmitted

on the two channels.

In this case, each critical message also has one replica to increase its reliability. We

must ensure that both the critical message and its replica meet the deadline. For

example, the critical message m1 and its replica m∗
1 must finish their transmissions

before m1’s deadline in Figure 4.2.

As represented in Table 4.1, the replica messages can be assigned in either ST or

DYN segments in this solution. For simplicity, the replica messages assigned in ST

or DYN segments is decided by the data file as shown in Appendix A.4.

There are several additional sets in addition to the new message sets presented in

64 Implementation

Section 4.1.2. The ST messages contain critical, hard messages and a part of replica

messages. The DYN messages includes soft messages and the rest part of replicas

messages.

• Additional sets

replicaInST a set of replicas belonging to the ST messages

replicaInDYN a set of replicas belonging to the DYN messages

STmessage a set of ST messages

STmessage = criticalMESSAGE ∪ hardMESSAGE ∪
replicaInST

DYNmessage a set of DYN messages

DYNmessage = softMESSAGE ∪ replicaInDYN

CHANNEL a set of channels

CHANNEL = {A, B}
CCS a set of channel-cycle-slot pairs representing ST messages

schedule table

{(c, i, j)|c ∈ CHANNEL, i ∈ CYCLE, j ∈ SLOT}

We use the same example presented in the naive solution to describe how the mes-

sages are assigned using the optimal solution with replicas as Figure 4.2. In this case,

we assume that the replica messages m∗
1 and m∗

2 are assigned in the ST segment as

two ST messages, and m∗
3 is assigned in the DYN segment as a DYN message. For

the three DYN messages, m5, m6 and m∗
3, we assume that m5 and m∗

3 are assigned

on channel A, and m6 is assigned on channel B.

We can see that there are original and replica messages transmitted on both channel

A and B in Figure 4.2, and the two channels are independent for message transmis-

sions in this case.

Implementation Solutions 65

(a) The message schedule tables and the relationship between nodes and mes-

sages

(b) Message assignment for the optimal solution with replicas

Figure 4.2: An example for the optimum solution with replicas

66 Implementation

4.2.3 Adding Redundancy to the Optimal Solution Without Repli-

cas

In the optimal solution without replicas, critical messages do not have any replicas.

That means we just need to decide the solution for all the original messages without

replicas on the two channels. We can get an optimal solution for the assignments

of all the original messages, but in this case it can not satisfy the fault tolerant

requirements for safety critical applications. In the following content, we discuss

how to add redundancy functions for this solution, such that it is possible to ensure

the fault tolerant requirements to increase the message reliability.

The same with the optimal solution with replicas, the original message are trans-

mitted on both channel A and B in this solution. So two new set CHANNEL and

CCS are also needed as Section 4.2.2. The other message sets for this solution are

the same as the description in Section 4.1.2. The different place is that the replica

messages are only assigned in the rest of the available space after the assignments

of all the original messages are decided.

We use the same example presented in the naive solution to describe how the original

messages are assigned using this solution as Figure 4.3. First, we assign the original

messages on both channel A and B, then the redundancy messages (replica messages)

can be put in the shadow space to increase the message reliability as Figure 4.3(b).

We noticed that the assignments of the original messages must be first ensured in

this solution. If there is enough shadow space for the replica messages transmis-

sions, then the fault tolerant requirements can be ensured. Otherwise, some replica

messages may not finish their transmissions before their deadlines. In other words,

this solution could not ensure all the original and replica messages transmissions for

safety critical applications.

Implementation Solutions 67

(a) The relationship between nodes and messages

(b) The optimum solution without replicas for the original messages

assignments and the available space for the replica messages.

Figure 4.3: An example for the optimum solution without replicas.

68 Implementation

Chapter 5

Evaluation

Introduction

The idea of the evaluation is to analyse the performance of the different solutions

discussed in Chapter 4. The performance includes the execution time and the ob-

jective value obtained from the solutions. In Section 5.1, we apply the evaluation

analysis for the example discussed in Chapter 4, and compare the results based on

the two different solutions: the naive solution and the optimal solution with repli-

cas. A real-world example is also used to evaluate these two optimization solutions

in Section 5.2.

70 Evaluation

5.1 Evaluation Analysis

In this section, two solutions, NS and OS+, are to analyse and evaluate using the

example shown in Figure 4.1 and 4.2. The experiments are performed on a laptop

with Intel Pentium processor 1.5GHz and 768 MB RAM.

Abbreviations Solutions

NS Naive solution (4.2.1)

OS+ Optimum solution with replicas (4.2.2)

In this example, we generate 6 messages mapped to the system architecture consist-

ing of 3 nodes. It has 3 critical messages, 1 hard message and 2 soft messages. The

affiliations between nodes and messages are shown in Figure 4.1(a) and 4.2(a). The

results based on the two solutions are displayed in Table 5.1. The objective value is

the total response time of all the messages. The MIP simplex iterations controls the

number of simplex iterations performed on each variable [21].

As shown in Table 5.1, the objective value of OS+ (179) is bigger than that of NS

(149). We can see that the response time of m∗
3 using OS+ (59) is much bigger

than using NS (5). The difference value is because in OS+, we assume that m∗
3

is assigned in the DYN segment as a DYN message, and in NS, m∗
3 is seen as a

ST message which is transmitted in the ST segment. For each DYN message, we

can only get the worst response time, which may be much bigger than the actual

message response time. Thus when we assume m∗
3 is a ST message in OS+, we can

get a smaller objective value which is only equal to 125.

Evaluation Analysis 71

NS OS+

Rtimem1 10 10

Rtimem2 5 5

Rtimem3 5 5

Rtimem4 15 15

Rtimem5 59 35

Rtimem6 35 35

Rtimem∗
1

10 10

Rtimem∗
2

5 5

Rtimem∗
3

5 59

Objective 149 179

MIP simplex iterations 14 30

Table 5.1: The Results of the example as shown in Figure 4.1 and 4.2 using NS and

OS+

72 Evaluation

5.2 A Real-life Example

In order to evaluate our solutions on a real-world example, we use the real-life ex-

ample implementing a vehicle cruise controller from [2]. It consists of 26 messages

mapped to 5 nodes. We assume that there are 6 critical messages, 12 hard messages

and 8 soft messages, and each critical message must have one replica to increase the

message reliability. So actually, we should schedule 32 (26 original messages + 6

replica messages) messages in total in this example. However, due to the missing

information about the message sizes in this example, we randomly generate several

integers in a specified range as the message sizes.

Performance NS OS+

Objective 3596 3166

MIP simplex iterations 5478578 1318528

Branch-and-bound nodes 586254 237849

Execution time 11min 3min

Table 5.2: The performances of the real-life example using NS and OS+

Table 5.2 shows that OS+ produces a smaller (12%) objective value and a shorter

(73%) execution time than NS in the real-life example. Scheduling the example

using NS takes about 11 minutes, while OS+ is faster, finishing all the message

scheduling in only 3 minutes. The example using NS gives 3596 as all the message

response time, while OS+ produces a smaller value which is only equal to 3166.

Figure 5.1 and 5.2 show the message assignments using NS and OS+, respectively.

We can see that it takes 4 communication cycles to schedule all the original and

replica messages by using NS. While using OS+, it only takes 2 communication

cycles. In OS+, the original and replica messages can be assigned in both channel A

and B as Figure 5.2, which means the space on these two channels are used sufficiently

A Real-life Example 73

for all the message transmissions. In NS, the original messages are assigned on the

whole channel A, including both ST and DYN segments. The replica message are

only assigned in the ST segments of channel B. So actually, the space in the DYN

segments of channel B are useless as shown in Figure 5.1. That is why scheduling

the example using NS needs more communication cycles than using OS+.

FrameID 1 2 3 4 5 6 7 8

DYN message m20 m25 m19 m22 m21 m26 m23 m24

roundBusCycle 0 1 1 1 1 2 2 3

The actual response time 93 96 98 100 101 202 304 408

The worst response time 114 215 214 213 212 313 312 413

Table 5.3: The results for the DYN messages in the real-life example using NS.

FrameID A/1 A/2 A/3 A/4 A/5 B/1 B/2 B/3 B/4 B/5

DYN message m23 m20 m19 m22 m21 m∗
6 m25 m24 m∗

5 m26

roundBusCycle 0 1 1 1 1 0 1 1 1 2

The actual

response time 94 97 99 101 102 91 94 99 102 201

The worst

response time 114 215 214 213 212 114 215 214 213 314

Table 5.4: The results for the DYN messages in the real-life example using OS+.

There are 8 soft real-time messages in this example. In NS, each soft message is seen

as a DYN message corresponding to an unique frame identifer as Table 5.3. In OS+,

we assume that two replica messages m∗
5 and m∗

6 are assigned in the DYN segments

as two DYN messages. So there are 10 messages assigned in the DYN segments in

all. We assume that there are 5 DYN messages transmitted on both channel A and

B corresponding to an unique frame identifer as Table 5.4.

Table 5.3 and 5.4 show that the worst response time for each DYN message is big

74 Evaluation

Figure 5.1: The message assignment of the real-life example using NS

A Real-life Example 75

Figure 5.2: The message assignment of the real-life example using OS+

enough compared to the actual response time, which means the worst response time

calculated by the two solutions are reasonable. We can use these two solutions

to check if the message deadline is met or not before starting the DYN message

transmission in a real-world example.

76 Evaluation

Chapter 6

Conclusion

In this thesis, we have determined two solutions which combined several redundancy

techniques for the FlexRay message scheduling in an application, such that the

message transmission meet the reliability purpose, and the application is schedulable.

We have described how messages are transmitted in ST and DYN segments of a

FlexRay bus. Based on two different bus access schemes in the ST and DYN segment,

we discussed two optimization approaches to model message scheduling, respectively.

For ST messages, we implemented a schedule table for all the messages, and ensured

that each message can finish its transmission before its deadline. For DYN message,

we gave an unique frame identifer to each message, and calculated the message worst

response time. Based on the worst response time, we can check if the DYN message

deadline was met or not. For both ST and DYN messages, our objective of these two

optimization approaches was minimized the total response time for all the messages.

78 Conclusion

Since FlexRay will be used more and more in safety-critical applications, the message

transmission has to be reliable. We have investigated two techniques, the hardware

replication and the re-execution, to increase the message reliability on the ground

that each FlexRay message is schedulable. For the replication technique, we in-

creased the number of hardware components, such as channels and nodes, to achieve

the redundancy purpose. For the re-execution technique, we considered to use the

DYN segments to re-transmit hard real-time messages for increasing the message re-

liability. Two methods, with error notification and without error notification, which

dealt with the message re-transmission were also discussed.

Finally, we have proposed two solutions to satisfy fault tolerant requirements. NS

uses a simple copy process for critical messages from channel A to channel B. OS+

allows the original and replica messages to transmit on both channel A and B based

on the without error notification method. We use a real-life example to evaluate these

two solutions. Our experiments have shown that the OS+ has better performances,

which produces a smaller (12%) objective value and a shorter (73%) execution time

than NS.

Bibliography

[1] FlexRay Communications System Protocol Specification Version 2.1 Revision

A, 22-December-2005.

[2] T. Pop, P. Pop, P. Eles, Z. Peng, A. Andrei. Timeing Analysis of the FlexRay

Communication Protocol, Springer Science+Business Media, LLC 2007.

[3] T. Pop, P. Pop, P. Eles, Z. Peng. Bus Access Optimisation for FlexRay-based

Distributed Embedded System, 2007.

[4] R. Makowitz. FlexRay - A Communication Network for Automotive Control

Systems, IEEE 2006.

[5] J. Rushby. Bus Architectures for Safety-Critical Embedded Systems.

[6] H. Kopetz. A Comparison of TTP and FlexRay, Techinical University of Wien,

Austria, 2001.

[7] L. M. Pinho, F. Vasques. Reliable Communication in Distributed Computer-

Controlled Systems, Ada-Europe 2001, LNCS 2043, pp. 136-147, 2001.

[8] http://en.wikipedia.org/wiki/Vehicle bus.

80 BIBLIOGRAPHY

[9] C. Ryan, D. Heffernan, G. Leen. Additional Communication System Services

for Safety-Critical Applications, ISSC 2005, Dublin, September 1-2.

[10] R. Johansson. Time and event triggered communication scheduling for automo-

tive applications, Chalmers Lindholmen University, 2004.

[11] H. Kopetz. Real-time Systems: Design Principles for Distributed Embedded Ap-

plications, Chapter 6, Springer.

[12] H. Kopetz, G. Grünsteidl. TTP-A protocol for Fault Tolerant Real-Time Sys-

tems, 1994 IEEE.

[13] J. Cosgrove and B. Donnelly. Intelligent automotive networks for distributed

real-time control, 2003.

[14] Dr. Christopher Temple. FlexRay International Workshop, 2003.

[15] P. M. Szecowka, M. A. Swiderski. On Hardware Implementation of FlexRay Bus

Guardian Module, 2007.

[16] R. Fourer, David M. Gay, Brain W. Kernighan. AMPL—A Modeling Language

for Mathmatical Programming, 1993.

[17] H. Paul Williams. Model Building in Mathematical Programming, 1999.

[18] K. Sandström, C. Norström, M. Ahlmark. Frame Packing in Real-Time Com-

munication, 2000 IEEE.

[19] B. W. Johnson. An Introduction to the Design and Analysis of Fault-Tolerant

Systems, 1989.

[20] B. Rogers, S. Schmechtig. FlexRay message buffers, 2006.

[21] ILOG. ILOG CPLEX 6.5 Reference manual, 1999.

[22] http://en.wikipedia.org/wiki/Branch-and-bound

BIBLIOGRAPHY 81

[23] N. Navet, Y. Song, F. Simonot-lion, C. Wilwert. Trends in automotive commu-

nication systems, 2005.

[24] H.Kopetz. A Comparison of CAN and TTP, Annual Reviews in Control 24

(2000) 177-188.

[25] G. Cena, A. Valenzano. Performace Analysis of Byteflight Networks, Proceed-

ings of the IEEE International Workshop on Factory Communication Systems,

pp 157-166, 2004.

[26] S. Ding, N. Murakami, H. Tomiyama, H. Takada. A GA-Based Scheduling

Method for FlexRay Systems, 2005.

82 BIBLIOGRAPHY

Appendix A AMPL Programs

A.1 ST Messages Scheduling Optimization

The Beginning of the Model file

Sets

set STmessage;

set NODE;

set NM within (NODE cross STmessage);

set CYCLE;

set SLOT;

set CS within (CYCLE cross SLOT);

Parameters

param Sslot;

param STsize := Sslot * card(NODE);

84 Appendix A

param DYNsize;

param Tbus := STsize + DYNsize ;

param Msize {STmessage};

param Mdeadline {STmessage};

Variables

var message_assign{CS, NM} binary;

var node_assign{SLOT, NM} binary;

var Rtime{STmessage};

var Mcycle{STmessage};

var Mslot{STmessage};

Objective

minimize Obj: sum{m in STmessage} Rtime[m];

Message Mutual Exclusion Constraint

subject to c1{(n,m) in NM}:

sum {(c,s) in CS} message_assign[c,s,n,m] = 1 ;

subject to c2{(n,m) in NM}:

sum{s in SLOT} node_assign[s,n,m] = 1;

Appendix A 85

Message, Node and Slot Constraints

subject to c3{s in SLOT,(n,p) in NM,(n,q) in NM}:

node_assign[s,n,p] = node_assign[s,n,q];

subject to c4{s in SLOT}:

sum{(n,m) in NM} node_assign[s,n,m] >= 1;

subject to c5{(c,s) in CS}:

sum{(n,m) in NM} message_assign[c,s,n,m] * Msize[m]

<= Sslot ;

subject to c6{s in SLOT, n in NODE}:

sum{(c,s) in CS, (n,m) in NM} message_assign[c,s,n,m]

= sum{(n,m) in NM} node_assign[s,n,m];

Message Deadline Constraints

subject to c7{m in STmessage}:

Mcycle[m] = sum{(c,s) in CS} message_assign[c,s,n,m] * c ;

subject to c8{m in STmessage}:

Mslot[m] = sum{(c,s) in CS} message_assign[c,s,n,m] * s;

subject to c9{m in STmessage}:

86 Appendix A

Rtime[m] = (Mcycle[m] - 1) * Tbus + Mslot[m] * Sslot;

subject to c10{m in STmessage}:

Rtime[m] <= Mdeadline[m];

The End of the Model file

The Beginning of the Data file

set MESSAGE := m1 m2 m3 m4 m5 m6 m7 m8 m9;

set NODE := n1 n2 n3;

set NM :=

(n1, *) m1 m2 m3 m4

(n2, *) m5 m6

(n3, *) m7 m8 m9 ;

set CYCLE := 1 2 3 4 5;

set SLOT := 1 2 3;

set CS :=

(1, *) 1 2 3

(2, *) 1 2 3

(3, *) 1 2 3

(4, *) 1 2 3

(5, *) 1 2 3 ;

param Sslot := 5;

param DYNsize := 15;

Appendix A 87

param: Mdeadline :=

m1 40

m2 60

m3 70

m4 90

m5 20

m6 50

m7 50

m8 70

m9 90 ;

param: Msize :=

m1 5

m2 2

m3 4

m4 3

m5 4

m6 2

m7 1

m8 4

m9 4 ;

The End of the Data file

88 Appendix A

A.2 DYN Messages Scheduling Optimization

The Beginning of the Model file

Sets

set DYNmessage;

set FrameID;

check card(DYNmessage) = card(FrameID);

Parameters

param STsize;

param DYNsize;

param Tbus = STsize + DYNsize;

param gdMinislot;

param Msize{DYNmessage};

param Mdeadline{DYNmessage};

param pLatestTx{m in DYNmessage} = DYNsize - Msize[m];

param bignum;

Variables

var message_to_frameID{FrameID,DYNmessage} binary;

var Mframeid{DYNmessage} in FrameID;

Appendix A 89

var MM{i in DYNmessage, j in DYNmessage : i<>j} binary;

var TT{i in DYNmessage, j in DYNmessage : i<>j} binary;

var BusCycle{DYNmessage};

var roundBusCycle{DYNmessage} integer;

var Rtime{DYNmessage};

var Atime{DYNmessage};

var Btime{DYNmessage};

Objective

minimize Totaltime: sum{m in DYNmessage} Rtime[m] ;

Constraints

subject to c1{fid in FrameID}:

sum{m in DYNmessage} message_to_frameID[fid,m] = 1;

subject to c2{m in DYNmessage}:

sum{fid in FrameID} message_to_frameID[fid,m] = 1;

subject to c3{m in DYNmessage}:

Mframeid[m] =

sum{fid in FrameID} message_to_frameID[fid,m] * fid ;

90 Appendix A

subject to c4{i in DYNmessage, j in DYNmessage : i<>j}:

Mframeid[i] - Mframeid[j] <= bignum * MM[i,j] ;

subject to c5{i in DYNmessage, j in DYNmessage : i<>j}:

Mframeid[j] - Mframeid[i] <= bignum * TT[i,j] ;

subject to c6{i in DYNmessage, j in DYNmessage : i<>j}:

MM[i,j] + TT[i,j] = 1;

subject to c7{i in DYNmessage}:

BusCycle[i] = sum{j in DYNmessage:i<>j}

MM[i,j] * Msize[j] / pLatestTx[i];

subject to c8{m in DYNmessage}:

roundBusCycle[m] >= BusCycle[m];

subject to c9{m in DYNmessage}:

Atime[m] = Tbus - STsize - (Mframeid[m] - 1) * gdMinislot;

subject to c10{m in DYNmessage}:

Btime[m] = roundBusCycle[m] * Tbus

+ STsize + pLatestTx[m] * gdMinislot;

subject to c11{m in DYNmessage}:

Rtime[m] = Atime[m] + Btime[m] + Msize[m];

subject to c12{m in DYNmessage}:

Rtime[m] <= Mdeadline[m];

Appendix A 91

The End of the Model file

The Beginning of the Data file

set DYNmessage := m1 m2 m3 m4 m5;

set FrameID := 1 2 3 4 5;

param STsize := 8;

param DYNsize := 12;

param gdMinislot := 1;

param bignum := 1000;

param: Msize :=

m1 5

m2 3

m3 4

m4 6

m5 7 ;

param: Mdeadline :=

m1 100

m2 100

m3 100

m4 100

m5 40 ;

The End of the Data file

92 Appendix A

A.3 Naive Solution

The Beginning of the Model file

Sets

set criticalMESSAGE;

set hardMESSAGE;

set softMESSAGE;

set STmessage := criticalMESSAGE union hardMESSAGE;

set DYNmessage := softMESSAGE;

set MESSAGE := STmessage union DYNmessage;

set NODE;

set STNM within (NODE cross STmessage);

set FrameID;

check card(DYNmessage) = card(FrameID);

set CYCLE;

set SLOT;

set CS within (CYCLE cross SLOT);

Appendix A 93

Parameters

param Msize{MESSAGE};

param Mdeadline{STmessage};

param Sslot;

param STsize := card(NODE) * Sslot;

param DYNsize;

param Tbus := STsize + DYNsize ;

param gdMinislot;

param pLatestTx{m in DYNmessage} := DYNsize - Msize[m] ;

param bignum;

Variables

var message_assign{CS, STNM} binary;

var node_assign{SLOT, STNM} binary;

var Mcycle{STmessage};

var Mslot{STmessage};

var message_to_frameID{FrameID,DYNmessage} binary;

var Mframeid{DYNmessage} in FrameID;

var MM{i in DYNmessage, j in DYNmessage : i<>j} binary;

94 Appendix A

var TT{i in DYNmessage, j in DYNmessage : i<>j} binary;

var BusCycle{DYNmessage};

var roundBusCycle{DYNmessage} integer;

var Atime{DYNmessage};

var Btime{DYNmessage};

var Rtime{MESSAGE};

Objective

minimize Obj: sum{m in MESSAGE} Rtime[m]

+ sum{m in criticalMESSAGE} Rtime[m];

###------ The beginning for Constraints of ST messages ------- ###

Message Mutual Exclusion Constraint

subject to c1{(n,m) in STNM}:

sum {(c,s) in CS} message_assign[c,s,n,m] = 1 ;

subject to c2{(n,m) in STNM}:

sum{s in SLOT} node_assign[s,n,m] = 1;

Message, Node and Slot Constraints

subject to c3{s in SLOT,(n,p) in STNM, (n,q) in STNM: p<>q}:

Appendix A 95

node_assign[s,n,p] = node_assign[s,n,q];

subject to c4{s in SLOT}:

sum{(n,m) in STNM} node_assign[s,n,m] >= 1;

subject to c5{(c,s) in CS}:

sum{(n,m) in STNM}

message_assign[c,s,n,m] * Msize[m] <= Sslot ;

subject to c6{s in SLOT, n in NODE}:

sum{(c,s) in CS, (n,m) in STNM} message_assign[c,s,n,m]

= sum{(n,m) in STNM} node_assign[s,n,m];

Message Deadline Constraints

subject to c7{(n,m) in STNM}:

Mcycle[m] = sum{(c,s) in CS} message_assign[c,s,n,m] * c ;

subject to c8{(n,m) in STNM}:

Mslot[m] = sum{(c,s) in CS} message_assign[c,s,n,m] * s;

subject to c9{m in STmessage}:

Rtime[m] = (Mcycle[m] - 1) * Tbus + Mslot[m] * Sslot;

subject to c10{m in STmessage}:

Rtime[m] <= Mdeadline[m];

subject to SlotSizeConstraint:

96 Appendix A

Sslot >= max{m in STmessage} Msize[m];

###------ The end for Constraints of ST messages ------- ###

###------ The beginning for Constraints of DYN messages ------- ###

subject to c11{fid in FrameID}:

sum{m in DYNmessage} message_to_frameID[fid,m] = 1;

subject to c12{m in DYNmessage}:

sum{fid in FrameID} message_to_frameID[fid,m] = 1;

subject to c13{m in DYNmessage}:

Mframeid[m] =

sum{fid in FrameID} message_to_frameID[fid,m] * fid ;

subject to c14{i in DYNmessage, j in DYNmessage : i<>j}:

Mframeid[i] - Mframeid[j] <= bignum * MM[i,j] ;

subject to c15{i in DYNmessage, j in DYNmessage : i<>j}:

Mframeid[j] - Mframeid[i] <= bignum * TT[i,j] ;

subject to c16{i in DYNmessage, j in DYNmessage : i<>j}:

MM[i,j] + TT[i,j] = 1;

subject to c17{i in DYNmessage}:

BusCycle[i] = sum{j in DYNmessage:i<>j}

Appendix A 97

MM[i,j] * Msize[j] / pLatestTx[i];

subject to c18{m in DYNmessage}:

roundBusCycle[m] >= BusCycle[m];

subject to c19{m in DYNmessage}:

Atime[m] = Tbus - STsize - (Mframeid[m] - 1) * gdMinislot;

subject to c20{m in DYNmessage}:

Btime[m] = roundBusCycle[m] * Tbus + STsize

+ pLatestTx[m] * gdMinislot;

subject to c21{m in DYNmessage}:

Rtime[m] = Atime[m] + Btime[m] + Msize[m];

subject to DYNsizeConstraint:

DYNsize >= max{m in DYNmessage} Msize[m]

+ (card(FrameID) - 1) * gdMinislot;

###------ The end for Constraints of DYN message ------- ###

The End of the Model file

The Beginning of the Data file

98 Appendix A

set criticalMESSAGE := m1 m2 m3;

set hardMESSAGE := m4;

set softMESSAGE := m5 m6;

set NODE := n1 n2 n3;

set STNM :=

(n1, *) m1

(n2, *) m2 m3

(n3, *) m4 ;

set CYCLE := 1 2 3 ;

set SLOT := 1 2 3;

set CS :=

(1, *) 1 2 3

(2, *) 1 2 3

(3, *) 1 2 3;

set FrameID := 1 2;

param Sslot := 5;

param DYNsize := 10;

param gdMinislot := 1;

param bignum := 1000;

param: Msize :=

m1 5

m2 3

m3 2

Appendix A 99

m4 4

m5 3

m6 5 ;

param: Mdeadline :=

m1 100

m2 100

m3 100

m4 100 ;

The End of the Data file

A.4 Optimum Solution with Replicas

The Beginning of the Model file

Sets

set criticalMESSAGE;

set replicaInST;

set replicaInDYN;

set hardMESSAGE;

set softMESSAGE;

set STmessage := criticalMESSAGE union hardMESSAGE union replicaInST;

100 Appendix A

set DYNmessage := softMESSAGE union replicaInDYN;

set MESSAGE := STmessage union DYNmessage;

set NODE;

set NSTM within (NODE cross STmessage);

set FrameID;

set CHANNEL;

set CYCLE;

set SLOT;

set CCS within (CHANNEL cross CYCLE cross SLOT);

set CDYNM within (CHANNEL cross DYNmessage);

set CF within (CHANNEL cross FrameID);

check card(DYNmessage) = card(CF);

Parameters

param Msize{MESSAGE};

param Mdeadline {STmessage union replicaInDYN};

param Sslot;

param STsize := card(NODE) * Sslot;

param DYNsize;

param Tbus := STsize + DYNsize ;

param gdMinislot;

Appendix A 101

param pLatestTx{m in DYNmessage} := DYNsize - Msize[m] ;

param bignum;

Variables

var message_assign{CCS, NSTM} binary;

var node_assign{SLOT, NSTM} binary;

var Mcycle{STmessage};

var Mslot{STmessage};

var message_to_frameID{CF,CDYNM} binary;

var Mframeid{CDYNM};

var MM{CDYNM,CDYNM} binary;

var TT{CDYNM,CDYNM} binary;

var Atime{DYNmessage};

var Btime{DYNmessage};

var BusCycle{DYNmessage};

var roundBusCycle{DYNmessage} integer;

var Rtime{MESSAGE};

102 Appendix A

Objective

minimize Obj: sum{m in MESSAGE} Rtime[m];

###------ The beginning for Constraints of ST messages ------- ###

Message Mutual Exclusion Constraint

subject to c1{(n,m) in NSTM}:

sum {(c,i,j) in CCS} message_assign[c,i,j,n,m] = 1 ;

subject to c2{(n,m) in NSTM}:

sum{j in SLOT} node_assign[j,n,m] = 1;

Message, Node and Slot Constraints

subject to c3{j in SLOT,(n,p) in NSTM,(n,q) in NSTM}:

node_assign[j,n,p] = node_assign[j,n,q];

subject to c4{j in SLOT}:

sum{(n,m) in NSTM} node_assign[j,n,m] >= 1;

subject to c5{(c,i,j) in CCS}:

sum{(n,m) in NSTM}

message_assign[c,i,j,n,m] * Msize[m] <= Sslot ;

subject to c6{j in SLOT, n in NODE}:

sum{(c,i,j) in CCS, (n,m) in NSTM}

Appendix A 103

message_assign[c,i,j,n,m]

= sum{(n,m) in NSTM}

node_assign[j,n,m];

Message Deadline Constraints

subject to c7{(n,m) in NSTM}:

Mcycle[m] = sum{(c,i,j) in CCS}

message_assign[c,i,j,n,m] * i ;

subject to c8{(n,m) in NSTM}:

Mslot[m] = sum{(c,i,j) in CCS}

message_assign[c,i,j,n,m] * j;

subject to c9{(n,m) in NSTM}:

Rtime[m] = (Mcycle[m] - 1) * Tbus + Mslot[m] * Sslot;

subject to c10{m in STmessage}:

Rtime[m] <= Mdeadline[m];

subject to SlotSizeConstraint:

Sslot >= max{m in STmessage} Msize[m];

###------ The end for Constraints of ST messages ------- ###

###------ The beginning for Constraints of DYN messages ------- ###

104 Appendix A

subject to c11{(c,fid) in CF}:

sum{(c,m) in CDYNM} message_to_frameID[c,fid,c,m] = 1;

subject to c12{(c,m) in CDYNM}:

sum{(c,fid) in CF} message_to_frameID[c,fid,c,m] = 1;

subject to c13{(c,m) in CDYNM}:

Mframeid[c,m] = sum{(c,fid) in CF}

message_to_frameID[c,fid,c,m] * fid ;

subject to c14{(c,i) in CDYNM, (c,j) in CDYNM : i<>j}:

Mframeid[c,i] - Mframeid[c,j] <= bignum * MM[c,i,c,j] ;

subject to c15{(c,i) in CDYNM, (c,j) in CDYNM : i<>j}:

Mframeid[c,j] - Mframeid[c,i] <= bignum * TT[c,i,c,j] ;

subject to c16{(c,i) in CDYNM, (c,j) in CDYNM : i<>j}:

MM[c,i,c,j] + TT[c,i,c,j] = 1;

subject to c17{(c,i) in CDYNM}:

BusCycle[i] = sum{(c,j) in CDYNM:i<>j}

MM[c,i,c,j] * Msize[j] / pLatestTx[i];

subject to c18{m in DYNmessage}:

roundBusCycle[m] >= BusCycle[m];

subject to c19{(c,m) in CDYNM}:

Atime[m] =

Appendix A 105

Tbus - STsize - (Mframeid[c,m] - 1) * gdMinislot;

subject to c20{m in DYNmessage}:

Btime[m] = roundBusCycle[m] * Tbus + STsize

+ pLatestTx[m] * gdMinislot;

subject to c21{m in DYNmessage}:

Rtime[m] = Atime[m] + Btime[m] + Msize[m];

subject to c22{m in replicaInDYN}:

Rtime[m] <= Mdeadline[m];

###------ The end for Constraints of DYN messages ------- ###

The End of the Model file

The Beginning of the Data file

set criticalMESSAGE := m1 m2 m3;

set hardMESSAGE := m4;

set softMESSAGE := m5 m6;

set replicaInST := m1copy m2copy;

set replicaInDYN := m3copy;

set CHANNEL := A B ;

106 Appendix A

set FrameID := 1 2;

set NODE := n1 n2 n3;

set NSTM :=

(n1, *) m1 m1copy

(n2, *) m2 m3 m2copy

(n3, *) m4 ;

set CDYNM :=

(A, *) m5 m3copy

(B, *) m6 ;

set CF :=

(A, *) 1 2

(B, *) 1 ;

set CYCLE := 1 2 3 ;

set SLOT := 1 2 3;

set CCS :=

(A, 1, *) 1 2 3

(B, 1, *) 1 2 3

(A, 2, *) 1 2 3

(B, 2, *) 1 2 3

(A, 3, *) 1 2 3

(B, 3, *) 1 2 3 ;

param Sslot := 5;

Appendix A 107

param DYNsize := 10;

param gdMinislot := 1;

param bignum := 1000;

param: Msize :=

m1 5

m2 3

m3 2

m4 4

m5 3

m6 5

m1copy 5

m2copy 3

m3copy 2;

param: Mdeadline :=

m1 100

m2 100

m3 100

m4 100

m1copy 100

m2copy 100

m3copy 100;

The End of the Data file

108 Appendix A

Appendix B Data Files used for the

Real-life Example

B.1 Naive Solution

The Beginning of the Data file

set criticalMESSAGE := m1 m2 m3 m4 m5 m6 ;

set hardMESSAGE := m7 m8 m9 m10 m11 m12

m13 m14 m15 m16 m17 m18;

set softMESSAGE := m19 m20 m21 m22 m23 m24 m25 m26 ;

set NODE := n1 n2 n3 n4 n5;

set FrameID := 1 2 3 4 5 6 7 8;

set STNM :=

110 Appendix B

(n1, *) m13

(n2, *) m14

(n3, *) m7 m8

(n4, *) m10 m15 m16 m17 m3 m6

(n5, *) m9 m11 m12 m18 m1 m2 m4 m5 ;

set CYCLE := 1 2 3 4;

set SLOT := 1 2 3 4 5;

set CS :=

(1, *) 1 2 3 4 5

(2, *) 1 2 3 4 5

(3, *) 1 2 3 4 5 ;

param Sslot := 18;

param DYNsize := 12;

param gdMinislot := 1;

param bignum := 1000;

param: Msize :=

m1 3

m2 10

m3 2

m4 6

m5 3

m6 1

m7 10

Appendix B 111

m8 4

m9 5

m10 9

m11 4

m12 10

m13 7

m14 8

m15 7

m16 2

m17 5

m18 6

m19 2

m20 3

m21 1

m22 2

m23 4

m24 5

m25 3

m26 5 ;

param: Mdeadline :=

m1 460

m2 460

m3 460

m4 460

m5 460

m6 460

m7 460

112 Appendix B

m8 460

m9 460

m10 460

m11 460

m12 460

m13 247

m14 249

m15 460

m16 460

m17 460

m18 460 ;

The End of the Data file

B.2 Optimal Solution with Replicas

The Beginning of the Data file

set criticalMESSAGE := m1 m2 m3 m4 m5 m6 ;

set hardMESSAGE := m7 m8 m9 m10 m11 m12

m13 m14 m15 m16 m17 m18;

set softMESSAGE := m19 m20 m21 m22 m23 m24 m25 m26 ;

set replicaInST := m1r m2r m3r m4r ;

set replicaInDYN := m5r m6r ;

Appendix B 113

set CHANNEL := A B ;

set NODE := n1 n2 n3 n4 n5;

set FrameID := 1 2 3 4 5;

set NSTM :=

(n1, *) m13

(n2, *) m14

(n3, *) m7 m8

(n4, *) m10 m15 m16 m17 m3 m6 m3r

(n5, *) m9 m11 m12 m18 m1 m2 m4 m5 m1r m2r m4r ;

set CDYNM :=

(A, *) m19 m20 m21 m22 m23

(B, *) m24 m25 m26 m5r m6r ;

set CF :=

(A, *) 1 2 3 4 5

(B, *) 1 2 3 4 5;

set CYCLE := 1 2 3;

set SLOT := 1 2 3 4 5;

set CCS :=

(A, 1, *) 1 2 3 4 5

114 Appendix B

(B, 1, *) 1 2 3 4 5

(A, 2, *) 1 2 3 4 5

(B, 2, *) 1 2 3 4 5 ;

param Sslot := 18;

param DYNsize := 12;

param gdMinislot := 1;

param bignum := 1000;

param: Msize :=

m1 3

m2 10

m3 2

m4 6

m5 3

m6 1

m7 10

m8 4

m9 5

m10 9

m11 4

m12 10

m13 7

m14 8

m15 7

m16 2

m17 5

m18 6

Appendix B 115

m19 2

m20 3

m21 1

m22 2

m23 4

m24 5

m25 3

m26 5

m1r 3

m2r 10

m3r 2

m4r 6

m5r 3

m6r 1 ;

param: Mdeadline :=

m1 460

m2 460

m3 460

m4 460

m5 460

m6 460

m7 460

m8 460

m9 460

m10 460

m11 460

m12 460

116 Appendix B

m13 247

m14 249

m15 460

m16 460

m17 460

m18 460

m1r 460

m2r 460

m3r 460

m4r 460

m5r 460

m6r 460 ;

The End of the Data file

Appendix C Results for the Real-life

Example

C.1 Naive Solution

__

MODEL.STATISTICS

Problem name :naive

Pathname :C:\Program Files\AmplStudio Modeling System 1

:.6.J\Bin\MyWorkSpace\

Date :1:11:2008

Time :09:39-09:50

Constraints :819 : Nonzeros

S_Constraints :799

Variables :638 : Nonzeros

SOLUTION.RESULT

118 Appendix C

’Optimal solution found’

CPLEX 10.0.0: optimal integer solution; objective 3596

5478578 MIP simplex iterations

586254 branch-and-bound nodes

DECISION.VARIABLES

Variable Activity

12 "message_assign[1,1,’n5’,’m11’]" 1

15 "message_assign[1,1,’n5’,’m1’]" 1

17 "message_assign[1,1,’n5’,’m4’]" 1

18 "message_assign[1,1,’n5’,’m5’]" 1

24 "message_assign[1,2,’n4’,’m15’]" 1

25 "message_assign[1,2,’n4’,’m16’]" 1

26 "message_assign[1,2,’n4’,’m17’]" 1

27 "message_assign[1,2,’n4’,’m3’]" 1

28 "message_assign[1,2,’n4’,’m6’]" 1

39 "message_assign[1,3,’n3’,’m7’]" 1

40 "message_assign[1,3,’n3’,’m8’]" 1

55 "message_assign[1,4,’n1’,’m13’]" 1

74 "message_assign[1,5,’n2’,’m14’]" 1

104 "message_assign[2,1,’n5’,’m18’]" 1

106 "message_assign[2,1,’n5’,’m2’]" 1

113 "message_assign[2,2,’n4’,’m10’]" 1

191 "message_assign[3,1,’n5’,’m9’]" 1

Appendix C 119

193 "message_assign[3,1,’n5’,’m12’]" 1

281 "node_assign[1,’n5’,’m9’]" 1

282 "node_assign[1,’n5’,’m11’]" 1

283 "node_assign[1,’n5’,’m12’]" 1

284 "node_assign[1,’n5’,’m18’]" 1

285 "node_assign[1,’n5’,’m1’]" 1

286 "node_assign[1,’n5’,’m2’]" 1

287 "node_assign[1,’n5’,’m4’]" 1

288 "node_assign[1,’n5’,’m5’]" 1

293 "node_assign[2,’n4’,’m10’]" 1

294 "node_assign[2,’n4’,’m15’]" 1

295 "node_assign[2,’n4’,’m16’]" 1

296 "node_assign[2,’n4’,’m17’]" 1

297 "node_assign[2,’n4’,’m3’]" 1

298 "node_assign[2,’n4’,’m6’]" 1

309 "node_assign[3,’n3’,’m7’]" 1

310 "node_assign[3,’n3’,’m8’]" 1

325 "node_assign[4,’n1’,’m13’]" 1

344 "node_assign[5,’n2’,’m14’]" 1

361 "Mcycle[’m1’]" 1

362 "Mcycle[’m2’]" 2

363 "Mcycle[’m3’]" 1

364 "Mcycle[’m4’]" 1

365 "Mcycle[’m5’]" 1

366 "Mcycle[’m6’]" 1

367 "Mcycle[’m7’]" 1

368 "Mcycle[’m8’]" 1

369 "Mcycle[’m9’]" 3

120 Appendix C

370 "Mcycle[’m10’]" 2

371 "Mcycle[’m11’]" 1

372 "Mcycle[’m12’]" 3

373 "Mcycle[’m13’]" 1

374 "Mcycle[’m14’]" 1

375 "Mcycle[’m15’]" 1

376 "Mcycle[’m16’]" 1

377 "Mcycle[’m17’]" 1

378 "Mcycle[’m18’]" 2

379 "Mslot[’m1’]" 1

380 "Mslot[’m2’]" 1

381 "Mslot[’m3’]" 2

382 "Mslot[’m4’]" 1

383 "Mslot[’m5’]" 1

384 "Mslot[’m6’]" 2

385 "Mslot[’m7’]" 3

386 "Mslot[’m8’]" 3

387 "Mslot[’m9’]" 1

388 "Mslot[’m10’]" 2

389 "Mslot[’m11’]" 1

390 "Mslot[’m12’]" 1

391 "Mslot[’m13’]" 4

392 "Mslot[’m14’]" 5

393 "Mslot[’m15’]" 2

394 "Mslot[’m16’]" 2

395 "Mslot[’m17’]" 2

396 "Mslot[’m18’]" 1

397 "Rtime[’m1’]" 18

Appendix C 121

398 "Rtime[’m2’]" 120

399 "Rtime[’m3’]" 36

400 "Rtime[’m4’]" 18

401 "Rtime[’m5’]" 18

402 "Rtime[’m6’]" 36

403 "Rtime[’m7’]" 54

404 "Rtime[’m8’]" 54

405 "Rtime[’m9’]" 222

406 "Rtime[’m10’]" 138

407 "Rtime[’m11’]" 18

408 "Rtime[’m12’]" 222

409 "Rtime[’m13’]" 72

410 "Rtime[’m14’]" 90

411 "Rtime[’m15’]" 36

412 "Rtime[’m16’]" 36

413 "Rtime[’m17’]" 36

414 "Rtime[’m18’]" 120

415 "Rtime[’m19’]" 214

416 "Rtime[’m20’]" 114

417 "Rtime[’m21’]" 212

418 "Rtime[’m22’]" 213

419 "Rtime[’m23’]" 312

420 "Rtime[’m24’]" 413

421 "Rtime[’m25’]" 215

422 "Rtime[’m26’]" 313

424 "message_to_frameID[1,’m20’]" 1

437 "message_to_frameID[2,’m25’]" 1

439 "message_to_frameID[3,’m19’]" 1

122 Appendix C

450 "message_to_frameID[4,’m22’]" 1

457 "message_to_frameID[5,’m21’]" 1

470 "message_to_frameID[6,’m26’]" 1

475 "message_to_frameID[7,’m23’]" 1

484 "message_to_frameID[8,’m24’]" 1

487 "Mframeid[’m19’]" 3

488 "Mframeid[’m20’]" 1

489 "Mframeid[’m21’]" 5

490 "Mframeid[’m22’]" 4

491 "Mframeid[’m23’]" 7

492 "Mframeid[’m24’]" 8

493 "Mframeid[’m25’]" 2

494 "Mframeid[’m26’]" 6

607 "Atime[’m19’]" 10

608 "Atime[’m20’]" 12

609 "Atime[’m21’]" 8

610 "Atime[’m22’]" 9

611 "Atime[’m23’]" 6

612 "Atime[’m24’]" 5

613 "Atime[’m25’]" 11

614 "Atime[’m26’]" 7

615 "Btime[’m19’]" 202

616 "Btime[’m20’]" 99

617 "Btime[’m21’]" 203

618 "Btime[’m22’]" 202

619 "Btime[’m23’]" 302

620 "Btime[’m24’]" 403

621 "Btime[’m25’]" 201

Appendix C 123

622 "Btime[’m26’]" 301

623 "BusCycle[’m19’]" 0.6

625 "BusCycle[’m21’]" 0.909091

626 "BusCycle[’m22’]" 0.8

627 "BusCycle[’m23’]" 2

628 "BusCycle[’m24’]" 2.85714

629 "BusCycle[’m25’]" 0.333333

630 "BusCycle[’m26’]" 1.57143

631 "roundBusCycle[’m19’]" 1

633 "roundBusCycle[’m21’]" 1

634 "roundBusCycle[’m22’]" 1

635 "roundBusCycle[’m23’]" 2

636 "roundBusCycle[’m24’]" 3

637 "roundBusCycle[’m25’]" 1

638 "roundBusCycle[’m26’]" 2

__

C.2 Optimal Solution with Replicas

MODEL.STATISTICS

Problem name :optimal

Pathname :C:\Program Files\AmplStudio Modeling System 1

:.6.J\Bin\MyWorkSpace\

Date :1:6:2008

124 Appendix C

Time :16:12---16:15

Constraints :1275 : Nonzeros

S_Constraints :1140

Variables :1196 : Nonzeros

SOLUTION.RESULT

’Optimal solution found’

CPLEX 10.0.0: optimal integer solution; objective 3166

1318528 MIP simplex iterations

237849 branch-and-bound nodes

DECISION.VARIABLES

Variable Activity

__

12 "message_assign[’A’,1,1,’n5’,’m9’]" 1

16 "message_assign[’A’,1,1,’n5’,’m1’]" 1

17 "message_assign[’A’,1,1,’n5’,’m2’]" 1

27 "message_assign[’A’,1,2,’n4’,’m10’]" 1

30 "message_assign[’A’,1,2,’n4’,’m17’]" 1

48 "message_assign[’A’,1,3,’n3’,’m8’]" 1

90 "message_assign[’A’,1,5,’n2’,’m14’]" 1

123 "message_assign[’B’,1,1,’n5’,’m11’]" 1

128 "message_assign[’B’,1,1,’n5’,’m4’]" 1

129 "message_assign[’B’,1,1,’n5’,’m5’]" 1

130 "message_assign[’B’,1,1,’n5’,’m1r’]" 1

Appendix C 125

138 "message_assign[’B’,1,2,’n4’,’m15’]" 1

139 "message_assign[’B’,1,2,’n4’,’m16’]" 1

141 "message_assign[’B’,1,2,’n4’,’m3’]" 1

142 "message_assign[’B’,1,2,’n4’,’m6’]" 1

143 "message_assign[’B’,1,2,’n4’,’m3r’]" 1

157 "message_assign[’B’,1,3,’n3’,’m7’]" 1

177 "message_assign[’B’,1,4,’n1’,’m13’]" 1

234 "message_assign[’A’,2,1,’n5’,’m12’]" 1

242 "message_assign[’A’,2,1,’n5’,’m4r’]" 1

345 "message_assign[’B’,2,1,’n5’,’m18’]" 1

351 "message_assign[’B’,2,1,’n5’,’m2r’]" 1

672 "node_assign[1,’n5’,’m9’]" 1

673 "node_assign[1,’n5’,’m11’]" 1

674 "node_assign[1,’n5’,’m12’]" 1

675 "node_assign[1,’n5’,’m18’]" 1

676 "node_assign[1,’n5’,’m1’]" 1

677 "node_assign[1,’n5’,’m2’]" 1

678 "node_assign[1,’n5’,’m4’]" 1

679 "node_assign[1,’n5’,’m5’]" 1

680 "node_assign[1,’n5’,’m1r’]" 1

681 "node_assign[1,’n5’,’m2r’]" 1

682 "node_assign[1,’n5’,’m4r’]" 1

687 "node_assign[2,’n4’,’m10’]" 1

688 "node_assign[2,’n4’,’m15’]" 1

689 "node_assign[2,’n4’,’m16’]" 1

690 "node_assign[2,’n4’,’m17’]" 1

691 "node_assign[2,’n4’,’m3’]" 1

692 "node_assign[2,’n4’,’m6’]" 1

126 Appendix C

693 "node_assign[2,’n4’,’m3r’]" 1

707 "node_assign[3,’n3’,’m7’]" 1

708 "node_assign[3,’n3’,’m8’]" 1

727 "node_assign[4,’n1’,’m13’]" 1

750 "node_assign[5,’n2’,’m14’]" 1

771 "Mcycle[’m1’]" 1

772 "Mcycle[’m2’]" 1

773 "Mcycle[’m3’]" 1

774 "Mcycle[’m4’]" 1

775 "Mcycle[’m5’]" 1

776 "Mcycle[’m6’]" 1

777 "Mcycle[’m7’]" 1

778 "Mcycle[’m8’]" 1

779 "Mcycle[’m9’]" 1

780 "Mcycle[’m10’]" 1

781 "Mcycle[’m11’]" 1

782 "Mcycle[’m12’]" 2

783 "Mcycle[’m13’]" 1

784 "Mcycle[’m14’]" 1

785 "Mcycle[’m15’]" 1

786 "Mcycle[’m16’]" 1

787 "Mcycle[’m17’]" 1

788 "Mcycle[’m18’]" 2

789 "Mcycle[’m1r’]" 1

790 "Mcycle[’m2r’]" 2

791 "Mcycle[’m3r’]" 1

792 "Mcycle[’m4r’]" 2

793 "Mslot[’m1’]" 1

Appendix C 127

794 "Mslot[’m2’]" 1

795 "Mslot[’m3’]" 2

796 "Mslot[’m4’]" 1

797 "Mslot[’m5’]" 1

798 "Mslot[’m6’]" 2

799 "Mslot[’m7’]" 3

800 "Mslot[’m8’]" 3

801 "Mslot[’m9’]" 1

802 "Mslot[’m10’]" 2

803 "Mslot[’m11’]" 1

804 "Mslot[’m12’]" 1

805 "Mslot[’m13’]" 4

806 "Mslot[’m14’]" 5

807 "Mslot[’m15’]" 2

808 "Mslot[’m16’]" 2

809 "Mslot[’m17’]" 2

810 "Mslot[’m18’]" 1

811 "Mslot[’m1r’]" 1

812 "Mslot[’m2r’]" 1

813 "Mslot[’m3r’]" 2

814 "Mslot[’m4r’]" 1

819 "message_to_frameID[’A’,1,’A’,’m23’]" 1

826 "message_to_frameID[’A’,2,’A’,’m20’]" 1

835 "message_to_frameID[’A’,3,’A’,’m19’]" 1

848 "message_to_frameID[’A’,4,’A’,’m22’]" 1

857 "message_to_frameID[’A’,5,’A’,’m21’]" 1

874 "message_to_frameID[’B’,1,’B’,’m6r’]" 1

881 "message_to_frameID[’B’,2,’B’,’m25’]" 1

128 Appendix C

890 "message_to_frameID[’B’,3,’B’,’m24’]" 1

903 "message_to_frameID[’B’,4,’B’,’m5r’]" 1

912 "message_to_frameID[’B’,5,’B’,’m26’]" 1

915 "Mframeid[’A’,’m19’]" 3

916 "Mframeid[’A’,’m20’]" 2

917 "Mframeid[’A’,’m21’]" 5

918 "Mframeid[’A’,’m22’]" 4

919 "Mframeid[’A’,’m23’]" 1

920 "Mframeid[’B’,’m24’]" 3

921 "Mframeid[’B’,’m25’]" 2

922 "Mframeid[’B’,’m26’]" 5

923 "Mframeid[’B’,’m5r’]" 4

924 "Mframeid[’B’,’m6r’]" 1

1125 "Atime[’m19’]" 10

1126 "Atime[’m20’]" 11

1127 "Atime[’m21’]" 8

1128 "Atime[’m22’]" 9

1129 "Atime[’m23’]" 12

1130 "Atime[’m24’]" 10

1131 "Atime[’m25’]" 11

1132 "Atime[’m26’]" 8

1133 "Atime[’m5r’]" 9

1134 "Atime[’m6r’]" 12

1135 "Btime[’m19’]" 202

1136 "Btime[’m20’]" 201

1137 "Btime[’m21’]" 203

1138 "Btime[’m22’]" 202

1139 "Btime[’m23’]" 98

Appendix C 129

1140 "Btime[’m24’]" 199

1141 "Btime[’m25’]" 201

1142 "Btime[’m26’]" 301

1143 "Btime[’m5r’]" 201

1144 "Btime[’m6r’]" 101

1145 "BusCycle[’m19’]" 0.7

1146 "BusCycle[’m20’]" 0.444444

1147 "BusCycle[’m21’]" 1

1148 "BusCycle[’m22’]" 0.9

1150 "BusCycle[’m24’]" 0.571429

1151 "BusCycle[’m25’]" 0.111111

1152 "BusCycle[’m26’]" 1.71429

1153 "BusCycle[’m5r’]" 1

1155 "roundBusCycle[’m19’]" 1

1156 "roundBusCycle[’m20’]" 1

1157 "roundBusCycle[’m21’]" 1

1158 "roundBusCycle[’m22’]" 1

1160 "roundBusCycle[’m24’]" 1

1161 "roundBusCycle[’m25’]" 1

1162 "roundBusCycle[’m26’]" 2

1163 "roundBusCycle[’m5r’]" 1

1165 "Rtime[’m1’]" 18

1166 "Rtime[’m2’]" 18

1167 "Rtime[’m3’]" 36

1168 "Rtime[’m4’]" 18

1169 "Rtime[’m5’]" 18

1170 "Rtime[’m6’]" 36

1171 "Rtime[’m7’]" 54

130 Appendix C

1172 "Rtime[’m8’]" 54

1173 "Rtime[’m9’]" 18

1174 "Rtime[’m10’]" 36

1175 "Rtime[’m11’]" 18

1176 "Rtime[’m12’]" 120

1177 "Rtime[’m13’]" 72

1178 "Rtime[’m14’]" 90

1179 "Rtime[’m15’]" 36

1180 "Rtime[’m16’]" 36

1181 "Rtime[’m17’]" 36

1182 "Rtime[’m18’]" 120

1183 "Rtime[’m1r’]" 18

1184 "Rtime[’m2r’]" 120

1185 "Rtime[’m3r’]" 36

1186 "Rtime[’m4r’]" 120

1187 "Rtime[’m19’]" 214

1188 "Rtime[’m20’]" 215

1189 "Rtime[’m21’]" 212

1190 "Rtime[’m22’]" 213

1191 "Rtime[’m23’]" 114

1192 "Rtime[’m24’]" 214

1193 "Rtime[’m25’]" 215

1194 "Rtime[’m26’]" 314

1195 "Rtime[’m5r’]" 213

1196 "Rtime[’m6r’]" 114
