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Abstract—Distributed Real-time Embedded (DRE) systems 
are facing great challenges in networked, unpredictable and 
especially unsecured environments. In such systems, there is 
a strong need to enforce security on distributed computing 
nodes in order to guard against potential threats, while 
satisfying the real-time requirements. This paper proposes a 
Security-Aware Feedback Control Mechanism (SAFCM) 
which has the ability to dynamically change the security 
level to guarantee soft real-time requirements and make the 
security protection as strong as possible. In order to widely 
support distributed real-time systems, a multi-input 
multi-output feedback loop is designed and a model 
predictive controller is deployed based on an equation model 
that describes the dynamic behavior of the DRE systems. 
This control loop uses security level scaling to globally 
control the CPU utilization and security performance for the 
whole system. We propose a “security level” metric based on 
an evolution of cryptography algorithms used in embedded 
systems. Experimental results demonstrate that SAFCM not 
only has the excellent adaptivity compared to open-loop 
mechanism, but also has a better overall performance than 
PID control mechanism. 

Keywords: Real-time Embedded Systems, Security-Aware, 
Feedback Control, 

I. INTRODUCTION 
With the rapid development of embedded systems and 

security technologies, real-time embedded systems are 
widely used in security-critical application areas, such as 
power grid and data acquisition systems. However, the 
operating environments in these areas are highly dynamic. 
The fluctuating system workload and unpredictable 
security surroundings make the traditional “open loop” 
mechanisms no longer applicable [1]. Traditionally, the 
static method to meet the system requirements of security 
and real-time mostly depends on static analysis which 
requires a priori knowledge of the Worst Case Execution 
Time (WCET) of each task [2]. Thus, such static 
approaches are not adaptable and have poor reactions in 
rapidly changing environments. These limitations are 
particularly serious for security-critical DRE systems. 
Facing more dangerous and unpredictable attacks, these 
DRE systems need higher security protections in addition 
to their hard or soft timing constraints. Failing to satisfy 
real-time or security requirements may lead to 
catastrophic consequences. Therefore, the design of 
effective DRE systems for security-critical real-time 

applications is very important. 
To provide critical Quality of Service (QoS) 

guarantees, recently, a control theory approach has been 
proposed [1]. This approach has shown promise in 
providing robust QoS and real-time guarantees in 
unpredictable environments. While the traditional 
real-time scheduling relies on accurate characterization of 
workloads, this control theory approach can adapt to 
overloads and deadline misses via on-line performance 
feedback loops.  

Many existing works on feedback control have 
focused on providing guarantees on stand-alone systems 
based on the assumption that tasks are independent. 
Unfortunately, such solutions are not applicable to DRE 
systems, for the nodes and tasks in distributed systems are 
inter-independent. Therefore, we consider it is necessary 
to propose new security-aware scheduling mechanisms 
for DRE systems. Such mechanisms are required to have 
the ability to monitor system status or slack time, and 
then dynamically change the Security Level (SL) for each 
node to maintain the desired utilization as well as provide 
high-level security protection. To achieve these goals, 
several issues need to be addressed. The first one is to 
design of a feedback loop. Corresponding to the features 
of distributed systems, the feedback loop should be 
Multi-Input Multi-Out (MIMO) where the system 
performance on multiple nodes must be guaranteed 
simultaneously. The second one is controller design. 
Traditionally, controller designs are based on linear 
control techniques such as Proportional Integral 
Derivative (PID) controller, which cannot easily be 
extended to distributed systems due to the MIMO 
feedback loop and practical constraints. Thus, it is 
necessary to introduce a more effective controller for 
security-critical DRE systems. The final issue is to assess 
cryptographic algorithms. To protect information security, 
researchers have designed many cryptographic algorithms, 
including symmetric, asymmetric and hash algorithms. 
Although these algorithms have been widely used in 
many devices, their performance in embedded systems 
has not been systematically evaluated. 

In this paper, we propose a Security-Aware Feedback 
Control Mechanism (SAFCM) to address these problems. 
SAFCM can guarantee soft real-time requirements as well 
as provide high-level security protection. Considering one 
major application of DRE systems, supervisory control 
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and data acquisition system [3], the SAFCM architecture 
features a MIMO feedback loop which is controlled by a 
global controller. At every sampling window, the 
surveillance components, which are deployed in 
distributed nodes, monitor the status of every node. Based 
on this information, the central controller, which is 
deployed in the host server, makes a global decision to 
adjust security level for each node. The mechanism 
increases security level when the system has enough slack, 
and decreases the level when it is busy. Compared to PID 
controller, the advanced Model Predictive Controller 
(MPC) is more effective for distributed systems [4]. 
Hence, we design a novel MPC controller as the core part 
of SAFCM to obtain good performance. To make our 
SAFCM more realistic, we evaluated the performance of 
several cryptographic algorithms in real embedded 
testbed and utilize the obtained data to verify the 
advantages of SAFCM through experiments. 

The primary contributions of this paper are: (1) the 
design and development of a MPC controller for 
security-critical DRE systems to guarantee the security 
performance and soft real-time for the first time; (2) the 
design and analysis of a MIMO feedback control loop 
that maintains good system performance even when tasks’ 
execution times vary significantly at runtime; (3) 
establishing a dynamic system model that describes the 
dynamic behavior of a distributed real-time system based 
on our measured execution times of cryptographic 
algorithms in a real embedded testbed. 

The rest of this paper is organized as follows. We 
review related work in Section II. Section III presents the 
system architecture. We model the security-critical 
distributed real-time systems and introduce the design 
problem in Section IV. A MPC controller is designed and 
analyzed in Section V. Extensive experiments are 
conducted in Section VI and conclusions are drawn in 
Section VII. 

II.  RELATED WORK 
Recently, many researchers have focused on risk and 

security management systems and proposed many useful 
algorithms and models. Chopra et al. discussed some of 
the main security issues and proposed solutions for 
real-time peer-to-peer communication [5]. Although these 
solutions can improve the security, they are static and 
cannot be adaptive to the unpredictable threats. M. Lin et 
al. integrate the group-based security model with a 
traditional real-time scheduling policy, and then design 
two EDF based security-aware scheduling schemes [6]. 
Jiang et al. proposed a hardware/software co-design 
technique to satisfy the confidentiality requirements of 
DRE systems with communication security constraints 
[7]. Qin et al. proposed a dynamic security-aware packet 
scheduling mechanism for wireless networks, which can 
achieve high security for packets and guarantee their soft 
real-time requirements [8]. Due to the lack of feedback 
control loop, these works have limited adaptivity and are 
not applicable to dynamic DRE systems. 

To address the limitations of static algorithms, several 
dynamic and adaptive QoS scheduling policies have been 

proposed. A survey of feedback performance control in 
computing system is presented by Abdelzaher [9]. The 
dynamic feedback-based scheduling approaches have 
been applied in many application areas, such as dynamic 
voltage scaling [10], fault-tolerance [11] and thermal 
control [12]. Xie et al. bring the feedback idea into the 
area of security-critical clusters and propose a 
security-aware real-time heuristic strategy. Although the 
adaptivity is still limited, this mechanism has been proved 
more efficient than the static strategies [13]. However, the 
controllers in these works are inappropriate for distributed 
MIMO systems. Following the development of feedback 
control theory, advanced controllers have been proposed. 
X. Wang et al. deployed a MPC controller in a DRE 
system for end-to-end tasks to control the utilization and 
verified this controller has better performance than a PID 
controller [4], [14]. However, due to not taking security 
factors into consideration, these approaches cannot be 
directly used for security-critical DRE systems. 

III. MOTIVATING APPLICATIONS AND  
SYSTEM ARCHITECTURE 

A. Motivating Scenario 
In this section, we describe a real-time distributed 

system, Supervisory Control And Data Acquisition 
(SCADA), which serves as a case study to investigate 
security-aware management mechanisms in DRE systems 
[3]. SCADA is a combination of telemetry and data 
acquisition and its typical structure is depicted in Fig. 1. 
Distributed nodes, as Programmable Logic Controllers 
(PLCs) in Fig. 1, encompass the collecting of information, 
transferring it back to the central site, the SCADA Master. 
SCADA Master carries out any necessary analysis and 
control and then displays that information on operator 
screens. 

SCADA Master

PLC1 PLCnPLCj

Network

Administrator Hacker

Attacks

 
Fig. 1. Typical SCADA Network Architecture 

The traditional proprietary standards of SCADA 
communication protocols are becoming more open, hence 
hackers can more easily gain in-depth knowledge of 
SCADA networks. Although many approaches have been 
proposed by researchers to improve SCADA network 
security, potential security risks are still very large [15]. 
Thus, we consider that it is necessary to improve the 
security for DRE systems like SCADA. Generally, 
deploying symmetric and hash cryptography algorithms 
can guarantee the integrity and confidentiality. In this 
work, we make efforts to design a dynamic mechanism to 
protect the system from intercepting and alternating 
attacks even when hackers enter into the network. The 
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DRE system is assumed clock synchronized and allows 
the switching between different cryptography algorithms. 

B. Security-Aware Scheduling Framework 
In this section, we propose architecture for SAFCM to 

manage security-critical DRE systems, as presented in 
Fig. 2. The MPC (the core of SAFCM) is deployed in the 
host server and makes global decisions. It collects the 
utilization (control variable) of each node periodically 
and calculates appropriate security level (control inputs). 
There are three major components in each distributed 
node, Utilization Monitor, Security Actuator and 
Executor. At each sampling window, the Monitor 
measures the utilization and feeds the samples back to 
MPC. Based on the control inputs conveyed from the 
MPC controller, the Actuator dynamically chooses the 
most appropriate security algorithm to encrypt or decrypt 
the sensitive data in tasks. Executor is in charge of 
executing tasks and guaranteeing their real-time 
requirements by special scheduling policies like RM and 
EDF [16]. Hence, the security algorithms and tasks can be 
seemed as separated. Tasks will be scheduled and 
executed by Executor in each node and the dynamic 
security algorithm decision is made by MPC and the 
Actuator. 

 For the MPC controller, the multi-inputs are the 
utilization of all the nodes and the multi-outputs are the 
integrity security level and confidentiality security level. 

Model
Predicted
Controller

Utilization
Monitor

Security
Actuator

Executor

Node 1

Utilization
Monitor

Security
Actuator

Executor

Node n

Control
Inputs Utilization Control

Inputs UtilizationHost Server

 

Fig. 2. The MIMO Control Loop 

IV. SYSTEM MODELING AND PROBLEM 
FORMULATIONS 

A. Security Overhead Model 
To obtain the performance of cryptographic 

algorithms, some researchers have measured and 
analyzed their time executions [17]. However, many of 
these studies are mainly based on specific protocols 
which may not be suitable for real-time embedded 
systems. Hence, we evaluate the relative symmetric and 
hash cryptographic algorithms typically used in a real 
embedded platform. The security library we used is 
Cryptlib, which is open source and independent for any 
network protocol [18]. The target device is an embedded 
development board, TQ2440, shipped with an S3C2440 
ARM processor and 64MB SDRAM. The measuring 
device is PXI 1024Q with NI 6221 data acquisition card. 
For symmetric algorithms, we are interested in the 
encryption, decryption and key initialization time; for 
hash algorithms, we only measure the encryption time. 

Integrity and confidentiality can be accomplished by 

hash and symmetric algorithms, respectively. In this paper, 
we investigate four hash algorithms and seven symmetric 
algorithms for security. Fig. 3, 4 and 5 depict the results 
of our measurements. 

From Fig. 3, we find an interesting phenomenon that 
with the same plaintext, the time cost of encryption 
approximates to the cost of decryption. Hence, we can 
make an average of the time costs of encryption and 
decryption to analyze cryptographic algorithms. Fig. 5 
depicts the time cost of key initialization where the key 
size is a default value in Cryptlib. The execution time of 
key initialization is much larger than encryption and 
decryption. However, it is not necessary to dynamically 
initialize a new key at run time, and we assume all the 
required keys are established and distributed when system 
initializing and never changed during the runtime. 

 
Fig. 3. Time Costs of Symmetric Algorithms. 

 
Fig. 4. Time Consumption of Hash Algorithms  

 
Fig. 5. Key Initialization Time of Symmetric Algorithms 

Based on our measurement, we introduce the concept 
of security level to rank these cryptography algorithms in 
Table I and II. Similar to other findings, the security level 
of one algorithm is generally proportional to its execution 
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time [13]. We assign integrity security level 1 to MD4, 
the weakest but fastest encryption algorithm, and assign 
confidentiality security level 1 to RC4 for the same 
reason. Security levels of the remaining hash algorithms 
are computed by (1), where AvgTimei is the average 
execution time of the ith cryptographic algorithm when 
the data size of plaintext in a range of 16B to 2048B.  

/ 3.7,1 4int
i iSL AvgTime i! " "        (1) 

Security levels of symmetric algorithms are computed by 
(2). 

/ 4.2,1 7conf
i iSL AvgTime i! " "        (2) 

TABLE I. Security Levels of Algorithms for Integrity 

Cryptographic Algorithm AvgTime (ms) SLint 
MD4 3.7 1.000 
MD5 4.0 1.098 
SHA1 5.7 1.551 
SHA2 11.6 3.169 

TABLE II. Security Levels of Algorithms for Confidentiality 

Cryptographic Algorithm AvgTime (ms) SLconf 
RC4 4.2 1.000 
RC5 7.7 1.826 

BLOWFISH 9.9 2.352 
CAST 10.3 2.450 
IDEA 11.3 2.665 

SKIPJACK 12.3 2.906 
DES 15.4 3.654 

For the one-to-one relationship between security level 
and cryptography algorithm, we can use the security level 
of an algorithm to refer to the algorithm itself. 

B. Task Model 
In this paper, we consider a security-critical DRE 

system with n independent embedded nodes and in each 
node there are m periodic tasks running on it. Each task is 
denoted by Ti = {pi, ei, di, SLi

int, SLi
conf}, where pi is the 

period, ei is the execution time and di is the deadline. 
Since alternating and snooping are two common attacks 
in distributed systems, it is mandatory to deploy integrity 
and confidentiality services for every task. SLi

int and 
SLi

conf represent the integrity security level and 
confidentiality security level, respectively. As our 
definition of security level, the SLi

int and SLi
conf can be 

dynamically adjusted within [SLint 
min, SLint 

max] and [SLconf 
min ,   

SLconf 
max ], respectively.  
The execution time of every task, ei, is decided by 

three factors, the data size of the plaintext, the security 
levels of integrity and confidentiality, and the execution 
times of other operations with no security issue. Hence, ei 
can be described as, 

int int conf conf o
i i i i i ie SL SL e# #! $ % $ %        (3) 

The coefficients int
i# and conf

i# are relative the size of 
sensitive data. The more the sensitive data, the bigger 
these two coefficients are. ei

o represents the WCETs of 
the other security-unrelated operations. 

C. Control Model of Security-Critical DRE System 
To formulate the control model, some notations need 

to be introduced: 
! ωi: The task set in the ith node. 
! ui

s The local utilization set point in the ith node. 
! ui(k): The CPU utilization of node Pi in the kth 

sampling window. It ranges from 0% to 100%. 
! ΔSLint(k): One of the control inputs to adjust security 

level of integrity in the kth sampling window. 
! ΔSLconf(k): One of the control inputs to adjust security 

level of confidentiality in the kth sampling window. 
! SLint(k): Security level of integrity services in the kth 

sampling window.  
! SLconf(k): Security level of confidentiality services in 

the kth sampling window.  
Note that in a very large scale distributed systems, the 

host server may be confused if sensitive data is encrypted 
by different cryptographic algorithm in different node, we 
assume all nodes execute the same cryptographic 
algorithms at the same time. Though all these nodes 
change their security levels to the same new level at once, 
the solution for one node cannot directly apply to all other 
nodes. In the real-world applications, such as SCADA, 
these nodes are heterogeneous, and the load of every node 
is also disparate. Hence, we still need to design a global 
and integrated distributed mechanism rather than simply 
applying the one-node solution into the whole distributed 
system. 

As the definition in equation (3), security level is 
proportional to tasks’ execution times and of course 
proportional to system utilization. Similar with [4], we 
define the estimated utilization, ' ( )iu k , as, 

' ( ) ( ) ( )
j i

int int conf conf
i j j

T
u k C SL k C SL k

&'
! $ % $(   (4) 

where the security levels (SLint(k), SLconf(k)) in the ith node. 
Cj

int and Cj
conf are the estimated proportional factors. 

Following control theory, we must establish a 
dynamic model that characterizes the relationship 
between the control inputs (ΔSLint(k), ΔSLconf(k)) and the 
controlled variable (Δui(k)). The estimated change to 
utilization ( ' ( )iu k) ) can be defined as follows, 

' ( ) ( ) ( )
j i

int int conf conf
i j j

T
u k C SL k C SL k

&'
) ! $) % $)(   (5) 

We introduce a new parameter (gi) to model the actual 
utilization ui(k) at kth sampling window. 

( ) ( 1) ' ( )i i i iu k u k g u k! * % $)         (6) 
where the system gain gi represents the ratio between the 
estimated utilization change ( ' ( )iu k) ) and the actual 
utilization change (Δui(k)). The smaller the gi, the more 
optimistic the estimation is, and the estimation comes to 
real situation more closely. However, the exact value of gi 
is unknown due to the unpredictability of tasks’ execution 
times and the environment. 

Thus, we have established the dynamic model to 
describe the relationship between the control inputs and 
controlled variable. The whole equation is 

( 1) ( )i iu k u k% !  
 ( ( ) ( ))

j i

int int conf conf
i j j

T
g C SL k C SL k

&'
% $) % $)(

 
(7) 

Equations (7) are used for a single node, but SAFCM 
is designed for a DRE system with multiple nodes. The 
following MIMO model can describe a DRE system with 
n nodes, 
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( ) ( 1) ( 1)k k k! * % $) *u u G u'        (8) 
G is a diagonal matrix where gii = gi (1 ≤ i ≤ n) and gij = 0 
(i≠j). Both of u(k) and ( 1)k *u' are n-dimensional 
vectors. 

1 2( ) [ ( ), ( ),..., ( )]Tk u k u k u kn!u   

1 2'( 1) [ ' ( 1), ' ( 1),..., ' ( 1)]T
nk u k u k u k) * ! ) * ) * ) *u  

From equation (5), the relationship between the estimated 
utilization and the security level is characterized as 

( ) ( )k k) ! $)u' C SL              (9) 
where ΔSL(k) is a two-dimensional vector and equals to 
[ ( ), ( )]int conf TSL k SL k) ) and C is a n×2 matrix defined as 

1 1

2 2

i j

i i

i n i n

int conf
i i

T T

int conf
i i

T T

int conf
i i

T T

C C

C C

C C

& &

& &

& &

' '

' '

' '

+ ,
- .
- .
- .

! - .
- .
- .
- .
/ 0

( (

( (

( (
.
.
..

C  

Finally, the state equation of SAFCM is 
( ) ( 1) ( 1)k k k! * % $ $) *u u C G SL       (10) 

Equation (10) cannot be directly used by the controller for 
the unknown parameter G. According to control theory, if 
a feedback system is stable and controllable, this G 
cannot affect the final system status. Thus, we assume

(1,1, 1)diag! 1)G and design MIMO controller based on 
the following system mode, 

( ) ( 1) ( 1)k k k! * % $) *u u C SL        (11) 

D. Problem Formulation 
Security-aware feedback control can be formulated as 

a constrained optimization problem. The goal is to 
minimize the difference between the utilization set points 
and the actual utilization, 

1
min ( ( ) )

n
s

i i
i

u k u
!

*(           (12) 

subject to following constraints 

min max
int int int

iSL SL SL" "            (13) 

min max
conf conf conf

iSL SL SL" "            (14) 
These two constraints are the controlled regions of intSL
and confSL respectively. This optimization problem 
concerns the system performance as an integrated one, 
and dismisses the status of each single node. In our 
method to assign security level, 

min min 1.000int confSL SL! !  

max 3.169intSL !  
max 3.654confSL !  

In addition, both intSL and confSL are discrete and can be 
only enumerated in Table I and II. 

V.  MPC CONTROLLER DESIGN 
In this section, we propose a novel MPC controller to 

solve the problem. Firstly, we derive formulations of 
MPC in our SAFCM framework. Then, we transform 
these formulations into a quadratic programming problem 

which can be solved by using Matlab functions [19]. 
Finally, we analyze the stability and controllability of 
SAFCM. 

A. The Formulation for MPC 
A MPC controller includes a cost function, a reference 

trajectory, an appropriate predicted system model and a 
quadratic programming solver. In the end of every 
sampling window, the controller uses the solver to 
compute the control input that minimizes the cost 
function under the security level constraints. Referring to 
equation (11), the predictive model is: 

( 1 | ) ( | ) ( )k i k k i k k i% % ! % % $) %u u C SL  (15) 
The term controlled variable, ( 1| )k i k% %u , means that 
the CPU utilization at (k+i+1)th sampling window relies 
on the condition at kth sampling window. The ( )k i) %SL
are the control inputs which represents the change of 
security levels at the (k+i)th sampling window. 

The MPC deployed in SAFCM can predict the system 
behavior in the next P sampling windows, called the 
prediction horizon. The control objective is to select the 
control inputs ( )k i) %SL that minimize the cost function 
under the security level constraints. The input trajectory 
includes the control input in the following M periods, 
called control horizon. The cost function to be minimized 
by MPC is 

2

1 1
( ) [ ( | ) ( )]

P N

i j j
i j

J k q u k i k w k i
! !

! % * %((  

1
2

0
([ ( ) ( 1)] )

M
conf int

i
i

r SL k i SL k i
*

!

% ) % *) % *(  

 
1

2

0
([ ( ) ( 1)] )

M
conf int

i
i

r SL k i SL k i
*

!

% ) % *) % *(  (16) 

where both the error weight qi and the control weight ri 
are nonnegative. We assume the reference trajectory, 
wj(k+i), is exponential, 

( ) ( ( ))refS is s
j j j jw k i u e u u k* 1% ! * *       (17) 

where Sref is a time constant to specify the speed of 
system to converge its set point. A larger Sref can 
accelerate the system respond speed, as well as the 
possibility of oscillation. The first term in this cost 
function is tracking error, and the second and third terms 
are penalty errors, which are used to prevent system from 
dramatic oscillation or overstep the limited range. 
Comparing to the formulated optimization problem in 
(12), this cost function only has more coefficients and the 
penalty errors. Hence, the method to minimize the cost 
function can address this optimization problem [4]. 

For convenience, we transfer the scalar equation (16) 
into a matrix as follows. 

2

1
( ) || ( | ) ( | ) ||

P

Q
i

k k i k k i k
!

! % * %(J u w  

    
   

1
2

0
|| ( ) ||

M

R
i

k i
*

!

% ) %( SL                (18) 

The tracking error weight Q and the control penalty 
weight R are P-dimension and M-dimension matrix, 
respectively,  

1 2( , ,..., )Pdiag q q q!Q  
1 2( , ,..., )Mdiag r r r!R  
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In addition,  
1 2( | ) [ ( | ), ( | ),..., ( | )]T

Nk i k w k i k w k i k w k i k% ! % % %w  
Thus, we have established the formulation of MPC. The 
system optimization problem can now be described as 
finding a best input trajectory to minimize the cost 
function in (18) under the security level constraints in (13)  
and (14). 

B. Solving the MPC Problem 
Quadratic Programming (QP) is a classical approach 

to solve the mathematical optimization problem. Matlab 
has integrated a function, named QUADPROG, to solve 
this QP problem, 

1 2
1min( ( ) ( ) ( )), ( )
2

T Tk k k k$ $ % $ " "e H e H e LC e RC  (19) 

e(k) is a vector of control inputs and H1, H2, LC, RC are 
coefficient. Therefore, in order to solve the MPC problem, 
we only need transform the formulation of MPC to the 
standard QP problem. 

The first step to solve the MPC problem is to create a 
relationship between the controlled variable ( | )k i k%u  
and the current system status ( )ku . ( | )k i k%u can be 
described as equation (20) by recursions of equation (15). 

( | ) ( 1| ) ( 1| )k i k k i k k i k% ! % * % $) % *u u C SL  

 ( ) ( 1| )k k i k! % % $) % *u C SL      (20) 
The utilization for given prediction horizon, P, can be 
written as, 

( ) ( ) ( )k k k! % $u u A e            (21) 
( ) [ ( ), ( 1),..., ( 1)]Tk k k k P! ) ) % ) % *e SL SL SL ,

 
( 1 | )
( 2 | )

( )

( | ) P

k k
k k

k

k P k

%+ ,
- .%- .!
- .
- .%/ 0

.

.

..

u
u

u

u

,  

( )
( )

( ) ( )

( ) P

k
k

k k

k

+ ,
- .
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- .!
- .
- .
- ./ 0

.

.

..

u
u

u u

u

 

0 0 0
0 0

0
0

P P1
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- .
- .
- .!
- .
- .
- ./ 0

,0
.
,,
.0 .0 ..0
.0
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e(k) denotes the changing vector of control inputs in the 
control horizon. If [ ( 1| ),..., ( | )]Tk k k P k! % %w w w and 

2

2 2

1,...,1,0,...,0
M

P P

diag
1

2 3
! 4 54 56 7

88 , cost function (18) can be 

rewritten and simplified as the following equation, 
2 2( ) || ( ) ( ) || || ( ) ||k k k k! $ % %99 8Q RJ A e e          

( ) [ ] ( )T T Tk k%88 8= e A QA R e  
2 ( ) ( ) ( ) ( )T Tk k k k% %QAe Q99 9 9        (22) 

where ( ) ( )k k! *u w99 . 
If 1 2*( )T T! %88 8H A QA R , 2 (2 ( ) )T Tk!H QA99 and

3 ( ) ( )Tk k! 99 9H Q , the cost function can be transformed 
to the standard form finally as 

1 2 3
1( ) ( ) ( ) ( )
2

T Tk k k k! % %J e H e H e H      (23) 

In this equation, H1 and H2 are certain values and can be 
considered as coefficients in the kth sampling window. For 
H3 is independent for e(k), it can be considered as a 
constant and ignored when solving the optimization 
problem. 

The next step is to transform the constraints. 
Constraints (13) and (14) can be transformed to the linear 
inequality constraint form as x$ "LC RC . Constraints 
can be described by matrix 
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where E is a unit matrix, (1,1)diag!E . SLmin and SLmax 
represent the upper and lower bound. 

min
min
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SL
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!SL , max
max
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[ ]
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!SL  

Due to ( ) ( ) ( 1)k P k k P% ! % %) % *(((SL SL SL , 
constraints can be described as 

( )k$ "LC e RC             (24) 
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Therefore, the MPC problem has been transformed to 

a standard QP problem. The Matlab built-in function, 
QUADPROG can minimize the equation (23) under the 
constraint in equation (24). 

QUADPROG can address the MPC problem 
efficiently, but there is one shortage of this solution.  
From our method to determine the security level, the 
integrity level can have the following discrete values 
{1.000, 1.098, 1.551, 3.169}, and the confidentiality level 
can be in the set {1.000, 1.826, 2.352, 2.450, 2.665, 2.906, 
3.654}. They are all discrete, but the control inputs 
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computed by MPC controller are a continuous value. 
Hence, we define a minimization disciple as: the actual 
security level can never be bigger than the computed 
security level. For example, if the computed security 
levels are 1.05intSL ! and 1.05confSL ! , the actual security 
levels in the next window are both 1.000, rather than

1.098intSL ! , 1.826confSL ! . We will use this disciple in 
our experiments. 

C. Stability Analysis 
SAFCM is a linear time-invariant discrete system and 

the state equation is 
( ) ( 1) ( 1)k k k! * % $ $) *u u C G SL  

The operation of MPC is to find the most appropriate 
ΔSL(k) to optimize the cost function J(k). Hence, we can 
get 

( ) 0
( )
k

k
: !
:)

J
SL

              (25) 

by derivation of J(k). Equation (25) can be described as, 
( ) ( ( ))k X k) !SL u  

where X is an abstract function. Hence, the closed-loop 
system model is like 

( ) ' ( 1) 'k k! $ * %u A u B           (26) 
where 'A and 'B are matrixes. According to control theory, 
a system is asymptotically stable if and only if all the 
eigenvalues of matrix 'A  are located inside the unit 
circle in the complex space. 

The above methodology gives a general way to judge 
the stability. Given specific C and gi, we can always 
analyze the stability. However, when C and gi become 
larger, stability analysis becomes more complicated and 
time consuming. 

D. Controllability Analysis 
Controllability is a weaker concept than stability, 

which denotes the ability to move a system around in its 
entire configuration space using only certain admissible 
manipulations. 
Controllability Condition: the condition to guarantee 
controllability is  

( ) ,| | 0rank n$ ! $ ;C G C G           (27) 
or the matrix $C G is full rank. 
Proof: If the $C G is full rank, it is, 

1( ) ( , )nrank rank n*$ ! $ $ $ !1n 1C G C G E C G        
where the E is an unit matrix. From control theory and 
the system state equation in (10), the sufficient and 
necessary condition of controllability is, 

1( , , ) ,| | 0nrank n*$ $ $ $ $ ! $ ;1n 11C G E C G E C G C G  
Hence the sufficient condition of controllability is 
equation (27). 

VI. EXPERIMENTATAL EVALUATION 
In this section, we conduct extensive simulations to 

evaluate SAFCM. Firstly, we test the system performance 
beyond different loads. Next, we try to confirm if 
SAFCM can be used in both optimistic and pessimistic 
estimation situations. Thirdly, we compare our proposed 
system with open-loop and FCS [1] mechanisms to prove 
the advancement of SAFCM. Finally, we measure the 

overhead of the MPC controller. 

A. Experiment Configuration 
The simulator is implemented in C# (in Visual Studio 

2010) and the MPC controller is implemented in Matlab 
(R2009b). The system initializes at 0T ! and executes 
the feedback algorithm once every 100 time units. For 
every task, we assume each of the two estimated 
proportional factors, Cj

int and Cj
conf, are set to 0.2, and 

both int
i# and conf

i# (in equation (3)) are random in the 
range from 1.0 to 1.2. We assume all the 
security-unrelated operations are independent. They can 
be executed by some periphery components and do not 
participate in system scheduling. The periodic tasks 
concern only security-related operations. Hence, the ei

o 
can be set to 0 in experiments. Every node executes same 
number of periodic tasks, and the system gain gi is a 
random value ranging from 5 to 6. Parameters in the 
MPC controller, M and P, are 1 and 3, respectively.  

In order to describe the overall performance of whole 
system, we introduce the concept, global utilization, 
which is defined as the average utilization of all nodes. 
Corresponding to this concept, local utilization represents 
the utilization of a single node. At every 100 time units, 
which is defined as one sampling window, we calculate 
this couple of utilizations. In real-time scheduling theory, 
the schedulable utilization bounds derive from the 
different scheduling polices. It has been established that 
the schedulable utilization bound of EDF is 100%, and 
the bound of RM is relied on the number of tasks [16]. 
For the soft real-time system, it’s allowed the CPU 
utilization exceeds the schedulable bound sometime, but 
at most time, the CPU utilization must be bounded by 
these schedulable bounds. Similar as [1], the set point of 
each node, ui

s, is better to set smaller than the schedulable 
bound. In addition, we assume all the ui

s are equal to the 
global set point, US. For EDF, 85%sU ! , and for RM, 

1/( (2 1) 0.10) 100%s mU m! $ * * 1  
where m represents the number of tasks in a processor. 

B. Exp. 1: Runtime Performance 
We test the system performance under two different 

conditions (in TABLE III). The global utilization and 
local utilization of the 1st processor under the Condition-A 
are shown in Fig. 6. 

TABLE  III.  LOAD CONDITIONS 

Condition Scheduling Tasks Nodes 
Condition-A RM 10 4 
Condition-B EDF 14 8 

 
Fig. 6. Global (left) and Local (right) Utilization under Condition-A 

0
10
20
30
40
50
60
70
80

0 100 200 300

   
   

   
   

   
   

 U
til

iz
at

io
n

(%
) 

    Time (Sampling Window) 

0
10
20
30
40
50
60
70
80

0 100 200 300
    Time (Sampling Window) 

   
   

U
til

iz
at

io
n 

(%
)  

346



 
Fig. 7. Global (left) and Local (right) Utilization under Condition-B 

From Fig. 6, we can see no matter the global or local 
utilization can fluctuate with the set point 62%sU ! . 
When the utilization is higher than the set point, SAFCM 
will automatically decrease the security level to make the 
utilization back to the desired value. If the utilization is 
lower than the desired, SAFCM will use the available 
processor resources to increase security level. In the 
further analysis, the average security levels are 

3.13int
avgSL ! and 3.52conf

avgSL ! , which are close to the 
highest ( max 3.169intSL ! and max 3.654confSL ! ), and the 
average global utilization is 59.2%, and the peak is 68%. 
It can be concluded that under these conditions, SAFCM 
can provide high protection as well as try to control the 
utilization under the Us. For the security level is discrete 
and limited, the system cannot completely stabilize at the 
desire situation. 

Fig. 7 shows the global and local (at 1st processor) 
utilization fluctuation under the Condition-B. In 
Condition-B, the average security levels are 

3.03int
avgSL ! and 3.58conf

avgSL ! . The average global 
utilization is 81.8% and the peak is 93.9%. Hence, the 
performance of SAFCM in this condition is also 
advanced. 

From this couple of experiments, we can observe that 
SAFCM can achieve the specified goals and make a good 
trade-off between real-time and security. On one hand, it 
meets the soft real-time requirement via controlling the 
utilization; on the other hand, it provides the security 
protection as strong as possible.  

C. Exp. 2: Optimistic or Pessimistic Estimation 
From control theory, system gain gi can be ignored 

during the design of MPC controller, but it does not mean 
this parameter is insignificant. Actually, it represents the 
feature of our estimation: a small gi means the estimation 
accurate and optimistic. However, it is difficult to 
determine whether our estimation is optimistic or 
pessimistic, so we want to measure the performance with 
different system gains in this set of experiments. 

Under the Condition-A, we measure and analyze the 
system performance when gi ranges in different regions. 
The statistical data for different gains is shown in Fig. 8. 
Based on the measured data, we find that our 
requirements can still be satisfied even when the 

estimation is pessimistic ( (7.5,8)g' ). In this set of 
experiments, the average utilization is only varied in a 
small range around 50%, which is lower than the set point, 
62%.  However, following the rising gi, the peak 
utilization increased, which means the possibility of more 
tasks might be deadline missed. At the same time, the 
security level of integrity and confidentiality services 
decreases gradually.  

In addition, we compare the global utilization 
fluctuation when the gain ranges in different regions. In 
Fig. 9(a), the gain ranges from 7 to 7.5, and gain ranges 
from 4 to 4.5 in Fig. 9(b). 

 
(a)                              (b) 

Fig. 9. Global Utilization When (a) (7,7.5)g' , (b) (4.5,5)g'  

When gi ranges from 7.0 to 7.5, system has already 
become unstable and dramatically oscillates. Undoubtedly, 
the dramatic variations of utilization and security level 
are not we expected and can even make system unusable. 
Based on these analyses, it can be concluded the system 
performance can be better if gi is small. So, careful 
analysis of the execution environments and optimistic 
estimation are still necessary to improve the performance 
of SAFCM. 

D. Exp. 3: Steady Execution Times 
We verify the advantages of SAFCM via comparing 

with open-loop and FCS mechanism in experiment 3 and 
4. In experiment 3, we assume that the execution times of 
tasks do not change rapidly. In experiment 4, the 
execution times vary dynamically at runtime. Through 
these two experiments, we analyze the performance of 
SAFCM in the steady and changeable environments. 

The open-loop mechanism is the most traditional and 
simplest strategy that uses fixed security level. For this 
mechanism, the administrator requires a priori 
knowledge of tasks’ WCETs and assigns an appropriate 
security level before system initialization. If there are m 
tasks in a single node, the constraint of security level is, 

1

m
si

i i

WCET U
p!

"(             (28) 

where pi is the period of task Ti. In our experiment, we 
assume 10m ! , 100ip ! , and the basic scheduling policy 
is RM. Under the inequality (28), the highest security 
level is, 

1.551intSL ! , 3.654confSL !  
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Fig. 8. System Performance When System Gain Range in Different Regions 

 
             (a)                                      (b)                                           (c) 

Fig. 10.  Global Utilization of (a) Open System. (b) FCS System. (c) SAFCM System When Execution Time is Steady 

TABLE IV. Performance Comparison between Open FCS and SAFCM System When Execution Time is Steady

 Average Utilization Peak Utilization Integrity SL Confidentiality SL 
Open 46.5% 53.3% 1.55 3.654 
FCS 56.8% 67.5% 3.162 3.34 

SAFCM 59.2% 68.3% 3.13 3.52 
FCS is a feedback controlled QoS management 

mechanism with three important components [1]. The 
Monitor measured the controlled variables and feeds the 
samples back to the Controller. Relying on these samples, 
Controller compares the performance reference with 
corresponding controlled variables to computes a change. 
The QoS Actuator dynamically adjusts the QoS levels of 
tasks according to the change computed by the Controller. 

Though the FCS is designed for a stand-alone system, 
it can still be used in DRE system via monitoring the 
global utilization. The policy deployed in the Actuator to 
change the security level is similar with open-loop 
mechanism. We evaluate SAFCM, FCS and open-loop 
mechanism under the same assumptions. At the runtime, 
the execution times of tasks are steady 

The results are shown in Fig. 10 and TABLE IV. It is 
obvious the FCS and SAFCM have better performance 
than open-loop. In open-loop, although the confidentiality 
level is highest, the average security level is lowest and 
utilization is far lower than desired, which means 
processor resources have been wasted. Analyzing the 
utilization curve, SAFCM is more stable than FCS. FCS 
and SAFCM have similar performance, while the security 
level of SAFCM is a little higher. The peak utilizations of 
these three systems do not exceed the schedulable 
utilization bound of RM, 71% which means all the 
systems can guarantee the real-time. 

As a conclusion, SAFCM is more stable and can 
provide stronger security protection than FCS when 
executing in a steady environment. 

E. Exp. 4: Varying Execution Times 
Besides the security level, tasks’ execution times are 

also affected by the data size of plaintext. Hence, in this 
experiment, we mainly test the system performance of 
FCS and SAFCM under various plaintext and execution 
times. We assume the execution times dramatically 
increase k times than the original at the 100th sampling 
window, and back to normal at the 200th sampling 
window. The global utilization fluctuation when 5k ! is 
shown in Fig. 11.  

 
(a) SAFCM                    (b) FCS 

Fig. 11. Global Utilization When Execution Times Fluctuate at Runtime. 

As shown in Fig. 11a, SAFCM makes effort to 
converge the set point despite the significant variations in 
execution times. At the 100th window, nodes are suddenly 
overloaded due to the execution times dramatically 
increase 5 times than normal, and utilization becomes 
maximum. Beginning at 125th sampling window, the 
global utilization drops for SAFCM dynamically 
decreases the security level to converge the set point. 
Since the values of tasks’ execution times are so big even 
with lowest security level, global utilization stabilizes at 
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90% during the period from 125th to 200th window. At end 
of this period, nodes are suddenly underutilized, and then 
the utilization quickly returns to normal situation within 5 
sampling windows. By contrast, the performance of FCS 
is very poor in this overloaded period (in Fig. 11b). The 
utilization of FCS always stabilizes at 100%, so it can be 
recognized as losing its adaptivity. FCS has become 
invalid in this situation, but SAFCM is still adaptive and 
enforces to avoid long time of full loaded.  
F. Exp. 5: Overhead of MPC 

The MPC controller has stronger ability than 
traditional PID controller at the cost of complexity. As 
discussed in Section V, the MPC problem can be 
transformed to a quadratic programming problem. To 
estimate the overhead of the MPC controller, we can 
measure the execution time of the quadratic programming 
solver function, QUADPROG in Matlab. MPC controller 
is generally deployed in the host server, such as SCADA 
Master, which has powerful processing capacity. Thus, 
we conduct this simulation on a 2.8GHz CPU with 2GB 
memory platform to test the performance of MPC. The 
results (in TABLE V) indicate the method to solve the 
MPC problem has low overhead. We consider the 
overhead is acceptable even in the large scale field like 
200 distributed nodes. 

TABLE V.  MPC Controller Overhead 

Nodes 10 20 50 100 200 

Time (ms) 35 41 43 50 380 

VII. CONCLUSION 
This paper has presented a security-aware scheduling 

mechanism for distributed real-time embedded systems. 
Inspired from the feedback control theory, SAFCM is 
designed to dynamically manage the security level based 
on the handled utilization of multiple nodes to guarantee 
the soft real-time requirements and make security 
protection as strong as possible. To make our system 
model more practical, we measure the time costs of some 
cryptographic algorithms on a real embedded platform. 
Based on the system model, the designed MIMO 
feedback control loop can increase the security level and 
make the system more secure when system is in low 
workload state, or decrease the security level to satisfy 
the soft real-time requirement if system is busy. As the 
core component of SAFCM, an advanced and more 
suitable controller, MPC, is deployed. Through 
mathematic transformation and simplification, the MPC 
problem can be converted into a quadratic programming 
problem and solved using Matlab. Extensive simulations 
demonstrate that SAFCM can maintain the desired 
utilizations on multiple nodes as well as provide higher 
security protection than open-loop and FCS. Moreover, 
when the tasks’ execution times change dramatically at 
runtime, SAFCM has also a better overall performance 
than FCS. 
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