
SAFCM: A Security-Aware Feedback Control Mechanism

for Distributed Real-Time Embedded Systems
Yue Ma†, Wei Jiang†#*, Nan Sang†, Paul Pop#

†School of Computer Science and Engineering
University of Electronic Science and Technology of China

 yue_ma_880131@hotmail.com, {weijiang, sn}@uestc.edu.cn
*Corresponding Author

#Informatics and Mathematical Modeling Department
Technical University of Denmark

DK-2800 Kongens Lyngby, Denmark
paul.pop@imm.dtu.dk

Abstract—Distributed Real-time Embedded (DRE) systems
are facing great challenges in networked, unpredictable and
especially unsecured environments. In such systems, there is
a strong need to enforce security on distributed computing
nodes in order to guard against potential threats, while
satisfying the real-time requirements. This paper proposes a
Security-Aware Feedback Control Mechanism (SAFCM)
which has the ability to dynamically change the security
level to guarantee soft real-time requirements and make the
security protection as strong as possible. In order to widely
support distributed real-time systems, a multi-input
multi-output feedback loop is designed and a model
predictive controller is deployed based on an equation model
that describes the dynamic behavior of the DRE systems.
This control loop uses security level scaling to globally
control the CPU utilization and security performance for the
whole system. We propose a “security level” metric based on
an evolution of cryptography algorithms used in embedded
systems. Experimental results demonstrate that SAFCM not
only has the excellent adaptivity compared to open-loop
mechanism, but also has a better overall performance than
PID control mechanism.

Keywords: Real-time Embedded Systems, Security-Aware,
Feedback Control,

I. INTRODUCTION
With the rapid development of embedded systems and

security technologies, real-time embedded systems are
widely used in security-critical application areas, such as
power grid and data acquisition systems. However, the
operating environments in these areas are highly dynamic.
The fluctuating system workload and unpredictable
security surroundings make the traditional “open loop”
mechanisms no longer applicable [1]. Traditionally, the
static method to meet the system requirements of security
and real-time mostly depends on static analysis which
requires a priori knowledge of the Worst Case Execution
Time (WCET) of each task [2]. Thus, such static
approaches are not adaptable and have poor reactions in
rapidly changing environments. These limitations are
particularly serious for security-critical DRE systems.
Facing more dangerous and unpredictable attacks, these
DRE systems need higher security protections in addition
to their hard or soft timing constraints. Failing to satisfy
real-time or security requirements may lead to
catastrophic consequences. Therefore, the design of
effective DRE systems for security-critical real-time

applications is very important.
To provide critical Quality of Service (QoS)

guarantees, recently, a control theory approach has been
proposed [1]. This approach has shown promise in
providing robust QoS and real-time guarantees in
unpredictable environments. While the traditional
real-time scheduling relies on accurate characterization of
workloads, this control theory approach can adapt to
overloads and deadline misses via on-line performance
feedback loops.

Many existing works on feedback control have
focused on providing guarantees on stand-alone systems
based on the assumption that tasks are independent.
Unfortunately, such solutions are not applicable to DRE
systems, for the nodes and tasks in distributed systems are
inter-independent. Therefore, we consider it is necessary
to propose new security-aware scheduling mechanisms
for DRE systems. Such mechanisms are required to have
the ability to monitor system status or slack time, and
then dynamically change the Security Level (SL) for each
node to maintain the desired utilization as well as provide
high-level security protection. To achieve these goals,
several issues need to be addressed. The first one is to
design of a feedback loop. Corresponding to the features
of distributed systems, the feedback loop should be
Multi-Input Multi-Out (MIMO) where the system
performance on multiple nodes must be guaranteed
simultaneously. The second one is controller design.
Traditionally, controller designs are based on linear
control techniques such as Proportional Integral
Derivative (PID) controller, which cannot easily be
extended to distributed systems due to the MIMO
feedback loop and practical constraints. Thus, it is
necessary to introduce a more effective controller for
security-critical DRE systems. The final issue is to assess
cryptographic algorithms. To protect information security,
researchers have designed many cryptographic algorithms,
including symmetric, asymmetric and hash algorithms.
Although these algorithms have been widely used in
many devices, their performance in embedded systems
has not been systematically evaluated.

In this paper, we propose a Security-Aware Feedback
Control Mechanism (SAFCM) to address these problems.
SAFCM can guarantee soft real-time requirements as well
as provide high-level security protection. Considering one
major application of DRE systems, supervisory control

2012 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

978-0-7695-4824-1/12 $26.00 © 2012 IEEE

DOI 10.1109/RTCSA.2012.31

340

and data acquisition system [3], the SAFCM architecture
features a MIMO feedback loop which is controlled by a
global controller. At every sampling window, the
surveillance components, which are deployed in
distributed nodes, monitor the status of every node. Based
on this information, the central controller, which is
deployed in the host server, makes a global decision to
adjust security level for each node. The mechanism
increases security level when the system has enough slack,
and decreases the level when it is busy. Compared to PID
controller, the advanced Model Predictive Controller
(MPC) is more effective for distributed systems [4].
Hence, we design a novel MPC controller as the core part
of SAFCM to obtain good performance. To make our
SAFCM more realistic, we evaluated the performance of
several cryptographic algorithms in real embedded
testbed and utilize the obtained data to verify the
advantages of SAFCM through experiments.

The primary contributions of this paper are: (1) the
design and development of a MPC controller for
security-critical DRE systems to guarantee the security
performance and soft real-time for the first time; (2) the
design and analysis of a MIMO feedback control loop
that maintains good system performance even when tasks’
execution times vary significantly at runtime; (3)
establishing a dynamic system model that describes the
dynamic behavior of a distributed real-time system based
on our measured execution times of cryptographic
algorithms in a real embedded testbed.

The rest of this paper is organized as follows. We
review related work in Section II. Section III presents the
system architecture. We model the security-critical
distributed real-time systems and introduce the design
problem in Section IV. A MPC controller is designed and
analyzed in Section V. Extensive experiments are
conducted in Section VI and conclusions are drawn in
Section VII.

II. RELATED WORK
Recently, many researchers have focused on risk and

security management systems and proposed many useful
algorithms and models. Chopra et al. discussed some of
the main security issues and proposed solutions for
real-time peer-to-peer communication [5]. Although these
solutions can improve the security, they are static and
cannot be adaptive to the unpredictable threats. M. Lin et
al. integrate the group-based security model with a
traditional real-time scheduling policy, and then design
two EDF based security-aware scheduling schemes [6].
Jiang et al. proposed a hardware/software co-design
technique to satisfy the confidentiality requirements of
DRE systems with communication security constraints
[7]. Qin et al. proposed a dynamic security-aware packet
scheduling mechanism for wireless networks, which can
achieve high security for packets and guarantee their soft
real-time requirements [8]. Due to the lack of feedback
control loop, these works have limited adaptivity and are
not applicable to dynamic DRE systems.

To address the limitations of static algorithms, several
dynamic and adaptive QoS scheduling policies have been

proposed. A survey of feedback performance control in
computing system is presented by Abdelzaher [9]. The
dynamic feedback-based scheduling approaches have
been applied in many application areas, such as dynamic
voltage scaling [10], fault-tolerance [11] and thermal
control [12]. Xie et al. bring the feedback idea into the
area of security-critical clusters and propose a
security-aware real-time heuristic strategy. Although the
adaptivity is still limited, this mechanism has been proved
more efficient than the static strategies [13]. However, the
controllers in these works are inappropriate for distributed
MIMO systems. Following the development of feedback
control theory, advanced controllers have been proposed.
X. Wang et al. deployed a MPC controller in a DRE
system for end-to-end tasks to control the utilization and
verified this controller has better performance than a PID
controller [4], [14]. However, due to not taking security
factors into consideration, these approaches cannot be
directly used for security-critical DRE systems.

III. MOTIVATING APPLICATIONS AND
SYSTEM ARCHITECTURE

A. Motivating Scenario
In this section, we describe a real-time distributed

system, Supervisory Control And Data Acquisition
(SCADA), which serves as a case study to investigate
security-aware management mechanisms in DRE systems
[3]. SCADA is a combination of telemetry and data
acquisition and its typical structure is depicted in Fig. 1.
Distributed nodes, as Programmable Logic Controllers
(PLCs) in Fig. 1, encompass the collecting of information,
transferring it back to the central site, the SCADA Master.
SCADA Master carries out any necessary analysis and
control and then displays that information on operator
screens.

SCADA Master

PLC1 PLCnPLCj

Network

Administrator Hacker

Attacks

Fig. 1. Typical SCADA Network Architecture

The traditional proprietary standards of SCADA
communication protocols are becoming more open, hence
hackers can more easily gain in-depth knowledge of
SCADA networks. Although many approaches have been
proposed by researchers to improve SCADA network
security, potential security risks are still very large [15].
Thus, we consider that it is necessary to improve the
security for DRE systems like SCADA. Generally,
deploying symmetric and hash cryptography algorithms
can guarantee the integrity and confidentiality. In this
work, we make efforts to design a dynamic mechanism to
protect the system from intercepting and alternating
attacks even when hackers enter into the network. The

341

DRE system is assumed clock synchronized and allows
the switching between different cryptography algorithms.

B. Security-Aware Scheduling Framework
In this section, we propose architecture for SAFCM to

manage security-critical DRE systems, as presented in
Fig. 2. The MPC (the core of SAFCM) is deployed in the
host server and makes global decisions. It collects the
utilization (control variable) of each node periodically
and calculates appropriate security level (control inputs).
There are three major components in each distributed
node, Utilization Monitor, Security Actuator and
Executor. At each sampling window, the Monitor
measures the utilization and feeds the samples back to
MPC. Based on the control inputs conveyed from the
MPC controller, the Actuator dynamically chooses the
most appropriate security algorithm to encrypt or decrypt
the sensitive data in tasks. Executor is in charge of
executing tasks and guaranteeing their real-time
requirements by special scheduling policies like RM and
EDF [16]. Hence, the security algorithms and tasks can be
seemed as separated. Tasks will be scheduled and
executed by Executor in each node and the dynamic
security algorithm decision is made by MPC and the
Actuator.

 For the MPC controller, the multi-inputs are the
utilization of all the nodes and the multi-outputs are the
integrity security level and confidentiality security level.

Model
Predicted
Controller

Utilization
Monitor

Security
Actuator

Executor

Node 1

Utilization
Monitor

Security
Actuator

Executor

Node n

Control
Inputs Utilization Control

Inputs UtilizationHost Server

Fig. 2. The MIMO Control Loop

IV. SYSTEM MODELING AND PROBLEM
FORMULATIONS

A. Security Overhead Model
To obtain the performance of cryptographic

algorithms, some researchers have measured and
analyzed their time executions [17]. However, many of
these studies are mainly based on specific protocols
which may not be suitable for real-time embedded
systems. Hence, we evaluate the relative symmetric and
hash cryptographic algorithms typically used in a real
embedded platform. The security library we used is
Cryptlib, which is open source and independent for any
network protocol [18]. The target device is an embedded
development board, TQ2440, shipped with an S3C2440
ARM processor and 64MB SDRAM. The measuring
device is PXI 1024Q with NI 6221 data acquisition card.
For symmetric algorithms, we are interested in the
encryption, decryption and key initialization time; for
hash algorithms, we only measure the encryption time.

Integrity and confidentiality can be accomplished by

hash and symmetric algorithms, respectively. In this paper,
we investigate four hash algorithms and seven symmetric
algorithms for security. Fig. 3, 4 and 5 depict the results
of our measurements.

From Fig. 3, we find an interesting phenomenon that
with the same plaintext, the time cost of encryption
approximates to the cost of decryption. Hence, we can
make an average of the time costs of encryption and
decryption to analyze cryptographic algorithms. Fig. 5
depicts the time cost of key initialization where the key
size is a default value in Cryptlib. The execution time of
key initialization is much larger than encryption and
decryption. However, it is not necessary to dynamically
initialize a new key at run time, and we assume all the
required keys are established and distributed when system
initializing and never changed during the runtime.

Fig. 3. Time Costs of Symmetric Algorithms.

Fig. 4. Time Consumption of Hash Algorithms

Fig. 5. Key Initialization Time of Symmetric Algorithms

Based on our measurement, we introduce the concept
of security level to rank these cryptography algorithms in
Table I and II. Similar to other findings, the security level
of one algorithm is generally proportional to its execution

0

10

20

30

40

50

60

RC4 RC5
BLOWFISH CAST
IDEA SKIPJACK
DES

 Data Size

Ti
m

e
(m

s)

Encryption

0

10

20

30

40

50

60

RC4 RC5
BLOWFISH CAST
IDEA SKIPJACK
DES

 Data Size

 T

im
e (

m
s)

Decryption

0

10

20

30

40

16B 32B 64B 128B 256B 512B 1024B 2048B

MD4 MD5 SHA1 SHA2

 Data Size

Ti
m

e
(m

s)

0
20
40
60
80
100
120
140
160
180

Ti
m

e
(m

s)

RC4: 128bit RC5: 256bit BLOWFISH: 256bit CAST: 128bit
IDEA: 128bit SKIPJACK: 80bit DES: 64bit

342

time [13]. We assign integrity security level 1 to MD4,
the weakest but fastest encryption algorithm, and assign
confidentiality security level 1 to RC4 for the same
reason. Security levels of the remaining hash algorithms
are computed by (1), where AvgTimei is the average
execution time of the ith cryptographic algorithm when
the data size of plaintext in a range of 16B to 2048B.

/ 3.7,1 4int
i iSL AvgTime i! " " (1)

Security levels of symmetric algorithms are computed by
(2).

/ 4.2,1 7conf
i iSL AvgTime i! " " (2)

TABLE I. Security Levels of Algorithms for Integrity

Cryptographic Algorithm AvgTime (ms) SLint
MD4 3.7 1.000
MD5 4.0 1.098
SHA1 5.7 1.551
SHA2 11.6 3.169

TABLE II. Security Levels of Algorithms for Confidentiality

Cryptographic Algorithm AvgTime (ms) SLconf
RC4 4.2 1.000
RC5 7.7 1.826

BLOWFISH 9.9 2.352
CAST 10.3 2.450
IDEA 11.3 2.665

SKIPJACK 12.3 2.906
DES 15.4 3.654

For the one-to-one relationship between security level
and cryptography algorithm, we can use the security level
of an algorithm to refer to the algorithm itself.

B. Task Model
In this paper, we consider a security-critical DRE

system with n independent embedded nodes and in each
node there are m periodic tasks running on it. Each task is
denoted by Ti = {pi, ei, di, SLi

int, SLi
conf}, where pi is the

period, ei is the execution time and di is the deadline.
Since alternating and snooping are two common attacks
in distributed systems, it is mandatory to deploy integrity
and confidentiality services for every task. SLi

int and
SLi

conf represent the integrity security level and
confidentiality security level, respectively. As our
definition of security level, the SLi

int and SLi
conf can be

dynamically adjusted within [SLint
min, SLint

max] and [SLconf
min ,

SLconf
max], respectively.
The execution time of every task, ei, is decided by

three factors, the data size of the plaintext, the security
levels of integrity and confidentiality, and the execution
times of other operations with no security issue. Hence, ei
can be described as,

int int conf conf o
i i i i i ie SL SL e# #! $ % $ % (3)

The coefficients int
i# and conf

i# are relative the size of
sensitive data. The more the sensitive data, the bigger
these two coefficients are. ei

o represents the WCETs of
the other security-unrelated operations.

C. Control Model of Security-Critical DRE System
To formulate the control model, some notations need

to be introduced:
! ωi: The task set in the ith node.
! ui

s The local utilization set point in the ith node.
! ui(k): The CPU utilization of node Pi in the kth

sampling window. It ranges from 0% to 100%.
! ΔSLint(k): One of the control inputs to adjust security

level of integrity in the kth sampling window.
! ΔSLconf(k): One of the control inputs to adjust security

level of confidentiality in the kth sampling window.
! SLint(k): Security level of integrity services in the kth

sampling window.
! SLconf(k): Security level of confidentiality services in

the kth sampling window.
Note that in a very large scale distributed systems, the

host server may be confused if sensitive data is encrypted
by different cryptographic algorithm in different node, we
assume all nodes execute the same cryptographic
algorithms at the same time. Though all these nodes
change their security levels to the same new level at once,
the solution for one node cannot directly apply to all other
nodes. In the real-world applications, such as SCADA,
these nodes are heterogeneous, and the load of every node
is also disparate. Hence, we still need to design a global
and integrated distributed mechanism rather than simply
applying the one-node solution into the whole distributed
system.

As the definition in equation (3), security level is
proportional to tasks’ execution times and of course
proportional to system utilization. Similar with [4], we
define the estimated utilization, ' ()iu k , as,

' () () ()
j i

int int conf conf
i j j

T
u k C SL k C SL k

&'
! $ % $((4)

where the security levels (SLint(k), SLconf(k)) in the ith node.
Cj

int and Cj
conf are the estimated proportional factors.

Following control theory, we must establish a
dynamic model that characterizes the relationship
between the control inputs (ΔSLint(k), ΔSLconf(k)) and the
controlled variable (Δui(k)). The estimated change to
utilization (' ()iu k)) can be defined as follows,

' () () ()
j i

int int conf conf
i j j

T
u k C SL k C SL k

&'
) ! $) % $)((5)

We introduce a new parameter (gi) to model the actual
utilization ui(k) at kth sampling window.

() (1) ' ()i i i iu k u k g u k! * % $) (6)
where the system gain gi represents the ratio between the
estimated utilization change (' ()iu k)) and the actual
utilization change (Δui(k)). The smaller the gi, the more
optimistic the estimation is, and the estimation comes to
real situation more closely. However, the exact value of gi
is unknown due to the unpredictability of tasks’ execution
times and the environment.

Thus, we have established the dynamic model to
describe the relationship between the control inputs and
controlled variable. The whole equation is

(1) ()i iu k u k% !
 (() ())

j i

int int conf conf
i j j

T
g C SL k C SL k

&'
% $) % $)(

(7)

Equations (7) are used for a single node, but SAFCM
is designed for a DRE system with multiple nodes. The
following MIMO model can describe a DRE system with
n nodes,

343

() (1) (1)k k k! * % $) *u u G u' (8)
G is a diagonal matrix where gii = gi (1 ≤ i ≤ n) and gij = 0
(i≠j). Both of u(k) and (1)k *u' are n-dimensional
vectors.

1 2() [(), (),..., ()]Tk u k u k u kn!u

1 2'(1) [' (1), ' (1),..., ' (1)]T
nk u k u k u k) * !) *) *) *u

From equation (5), the relationship between the estimated
utilization and the security level is characterized as

() ()k k) ! $)u' C SL (9)
where ΔSL(k) is a two-dimensional vector and equals to
[(), ()]int conf TSL k SL k)) and C is a n×2 matrix defined as

1 1

2 2

i j

i i

i n i n

int conf
i i

T T

int conf
i i

T T

int conf
i i

T T

C C

C C

C C

& &

& &

& &

' '

' '

' '

+ ,
- .
- .
- .

! - .
- .
- .
- .
/ 0

((

((

((
.
.
..

C

Finally, the state equation of SAFCM is
() (1) (1)k k k! * % $ $) *u u C G SL (10)

Equation (10) cannot be directly used by the controller for
the unknown parameter G. According to control theory, if
a feedback system is stable and controllable, this G
cannot affect the final system status. Thus, we assume

(1,1, 1)diag! 1)G and design MIMO controller based on
the following system mode,

() (1) (1)k k k! * % $) *u u C SL (11)

D. Problem Formulation
Security-aware feedback control can be formulated as

a constrained optimization problem. The goal is to
minimize the difference between the utilization set points
and the actual utilization,

1
min (())

n
s

i i
i

u k u
!

*((12)

subject to following constraints

min max
int int int

iSL SL SL" " (13)

min max
conf conf conf

iSL SL SL" " (14)
These two constraints are the controlled regions of intSL
and confSL respectively. This optimization problem
concerns the system performance as an integrated one,
and dismisses the status of each single node. In our
method to assign security level,

min min 1.000int confSL SL! !

max 3.169intSL !
max 3.654confSL !

In addition, both intSL and confSL are discrete and can be
only enumerated in Table I and II.

V. MPC CONTROLLER DESIGN
In this section, we propose a novel MPC controller to

solve the problem. Firstly, we derive formulations of
MPC in our SAFCM framework. Then, we transform
these formulations into a quadratic programming problem

which can be solved by using Matlab functions [19].
Finally, we analyze the stability and controllability of
SAFCM.

A. The Formulation for MPC
A MPC controller includes a cost function, a reference

trajectory, an appropriate predicted system model and a
quadratic programming solver. In the end of every
sampling window, the controller uses the solver to
compute the control input that minimizes the cost
function under the security level constraints. Referring to
equation (11), the predictive model is:

(1 |) (|) ()k i k k i k k i% % ! % % $) %u u C SL (15)
The term controlled variable, (1|)k i k% %u , means that
the CPU utilization at (k+i+1)th sampling window relies
on the condition at kth sampling window. The ()k i) %SL
are the control inputs which represents the change of
security levels at the (k+i)th sampling window.

The MPC deployed in SAFCM can predict the system
behavior in the next P sampling windows, called the
prediction horizon. The control objective is to select the
control inputs ()k i) %SL that minimize the cost function
under the security level constraints. The input trajectory
includes the control input in the following M periods,
called control horizon. The cost function to be minimized
by MPC is

2

1 1
() [(|) ()]

P N

i j j
i j

J k q u k i k w k i
! !

! % * %((

1
2

0
([() (1)])

M
conf int

i
i

r SL k i SL k i
*

!

%) % *) % *(

1

2

0
([() (1)])

M
conf int

i
i

r SL k i SL k i
*

!

%) % *) % *((16)

where both the error weight qi and the control weight ri
are nonnegative. We assume the reference trajectory,
wj(k+i), is exponential,

() (())refS is s
j j j jw k i u e u u k* 1% ! * * (17)

where Sref is a time constant to specify the speed of
system to converge its set point. A larger Sref can
accelerate the system respond speed, as well as the
possibility of oscillation. The first term in this cost
function is tracking error, and the second and third terms
are penalty errors, which are used to prevent system from
dramatic oscillation or overstep the limited range.
Comparing to the formulated optimization problem in
(12), this cost function only has more coefficients and the
penalty errors. Hence, the method to minimize the cost
function can address this optimization problem [4].

For convenience, we transfer the scalar equation (16)
into a matrix as follows.

2

1
() || (|) (|) ||

P

Q
i

k k i k k i k
!

! % * %(J u w

1
2

0
|| () ||

M

R
i

k i
*

!

%) %(SL (18)

The tracking error weight Q and the control penalty
weight R are P-dimension and M-dimension matrix,
respectively,

1 2(, ,...,)Pdiag q q q!Q
1 2(, ,...,)Mdiag r r r!R

344

In addition,
1 2(|) [(|), (|),..., (|)]T

Nk i k w k i k w k i k w k i k% ! % % %w
Thus, we have established the formulation of MPC. The
system optimization problem can now be described as
finding a best input trajectory to minimize the cost
function in (18) under the security level constraints in (13)
and (14).

B. Solving the MPC Problem
Quadratic Programming (QP) is a classical approach

to solve the mathematical optimization problem. Matlab
has integrated a function, named QUADPROG, to solve
this QP problem,

1 2
1min(() () ()), ()
2

T Tk k k k$ $ % $ " "e H e H e LC e RC (19)

e(k) is a vector of control inputs and H1, H2, LC, RC are
coefficient. Therefore, in order to solve the MPC problem,
we only need transform the formulation of MPC to the
standard QP problem.

The first step to solve the MPC problem is to create a
relationship between the controlled variable (|)k i k%u
and the current system status ()ku . (|)k i k%u can be
described as equation (20) by recursions of equation (15).

(|) (1|) (1|)k i k k i k k i k% ! % * % $) % *u u C SL

 () (1|)k k i k! % % $) % *u C SL (20)
The utilization for given prediction horizon, P, can be
written as,

() () ()k k k! % $u u A e (21)
() [(), (1),..., (1)]Tk k k k P!)) %) % *e SL SL SL ,

(1 |)
(2 |)

()

(|) P

k k
k k

k

k P k

%+ ,
- .%- .!
- .
- .%/ 0

.

.

..

u
u

u

u

,

()
()

() ()

() P

k
k

k k

k

+ ,
- .
- .
- .!
- .
- .
- ./ 0

.

.

..

u
u

u u

u

0 0 0
0 0

0
0

P P1

+ ,
- .
- .
- .!
- .
- .
- ./ 0

,0
.
,,
.0 .0 ..0
.0
.

0 ..0
.0 .0 ..0

P P
.0..

C
C C

A C C C

C C C C

e(k) denotes the changing vector of control inputs in the
control horizon. If [(1|),..., (|)]Tk k k P k! % %w w w and

2

2 2

1,...,1,0,...,0
M

P P

diag
1

2 3
! 4 54 56 7

88 , cost function (18) can be

rewritten and simplified as the following equation,
2 2() || () () || || () ||k k k k! $ % %99 8Q RJ A e e

() [] ()T T Tk k%88 8= e A QA R e
2 () () () ()T Tk k k k% %QAe Q99 9 9 (22)

where () ()k k! *u w99 .
If 1 2*()T T! %88 8H A QA R , 2 (2 ())T Tk!H QA99 and

3 () ()Tk k! 99 9H Q , the cost function can be transformed
to the standard form finally as

1 2 3
1() () () ()
2

T Tk k k k! % %J e H e H e H (23)

In this equation, H1 and H2 are certain values and can be
considered as coefficients in the kth sampling window. For
H3 is independent for e(k), it can be considered as a
constant and ignored when solving the optimization
problem.

The next step is to transform the constraints.
Constraints (13) and (14) can be transformed to the linear
inequality constraint form as x$ "LC RC . Constraints
can be described by matrix

2

0 0
0 0
0 0 (1)
0 0 (2)

0 0
0 0 ()
0 0
0 0

max

max

max

min

min

minP P

k
k

k P

1

+ ,+ ,
- .- .
- .- .
- .- . %+ ,
- .- . - .% - .- . - . " - .- . - .*
- .- . - .* % - .- . / 0
- .- .
- .- .

* - .- ./ 0 / 0

,0
.
,,
.0 .0 ..0

.

.

... +
.

" -.0 - .
- min
--

.
0 ..0

- .
- .- .

.
0
..

0
.
.
...

.

..

2.0..*

SLE
SLE

SL
SLE SL
-SLE
-SLE SL

-SLE

where E is a unit matrix, (1,1)diag!E . SLmin and SLmax
represent the upper and lower bound.

min
min

min

[]
int

conf

SL
SL

!SL , max
max

max

[]
int

conf

SL
SL

!SL

Due to () () (1)k P k k P% ! % %) % *(((SL SL SL ,
constraints can be described as

()k$ "LC e RC (24)

2

0 0
0 0

0 0
0 0 0

0 0
0 0

0 0

P P

P P

1

1

+ ,
- .
- .
- . + ,
- . - .
- . - .! - . - .*
- . - .*- . / 0
- .
- .

*- ./ 0

,0
.
,,
.0 .0 ..0
. + ,0 0
.
..

- .
+ ,+ ,

. - .0. - .0 ..0

.0 - .

.
0 ..0

- .
- .- .

.

.0

..

..

.

.

..

2.0..*

E
E

E
E E E

LC
E

E E E E E

E
0 0

0 0
()

0 0 ()
0 0

0 0 ()

0 0

max

max

max

min

min

min

k
k

k

+ , + ,
- . - .
- . - .
- . - . + ,
- . - . - .
- . - . - .! *- . - . - .*
- . - . - .*- . - . / 0
- . - .
- . - .

*- . - ./ 0/ 0

,0
.
,,
.0 .0 ..0

. -

.

..
-
-- . + ()

.

..
-

()++ ()
. -

.0 - .

.
0 ..0

- .
- .- .
. -0
..

. -

.

..
-
-- .

.

..

.0..*

SL E
SL E

SL
SL E SL

RC
-SL E
-SL E SL

-SL E
Therefore, the MPC problem has been transformed to

a standard QP problem. The Matlab built-in function,
QUADPROG can minimize the equation (23) under the
constraint in equation (24).

QUADPROG can address the MPC problem
efficiently, but there is one shortage of this solution.
From our method to determine the security level, the
integrity level can have the following discrete values
{1.000, 1.098, 1.551, 3.169}, and the confidentiality level
can be in the set {1.000, 1.826, 2.352, 2.450, 2.665, 2.906,
3.654}. They are all discrete, but the control inputs

345

computed by MPC controller are a continuous value.
Hence, we define a minimization disciple as: the actual
security level can never be bigger than the computed
security level. For example, if the computed security
levels are 1.05intSL ! and 1.05confSL ! , the actual security
levels in the next window are both 1.000, rather than

1.098intSL ! , 1.826confSL ! . We will use this disciple in
our experiments.

C. Stability Analysis
SAFCM is a linear time-invariant discrete system and

the state equation is
() (1) (1)k k k! * % $ $) *u u C G SL

The operation of MPC is to find the most appropriate
ΔSL(k) to optimize the cost function J(k). Hence, we can
get

() 0
()
k

k
: !
:)

J
SL

 (25)

by derivation of J(k). Equation (25) can be described as,
() (())k X k) !SL u

where X is an abstract function. Hence, the closed-loop
system model is like

() ' (1) 'k k! $ * %u A u B (26)
where 'A and 'B are matrixes. According to control theory,
a system is asymptotically stable if and only if all the
eigenvalues of matrix 'A are located inside the unit
circle in the complex space.

The above methodology gives a general way to judge
the stability. Given specific C and gi, we can always
analyze the stability. However, when C and gi become
larger, stability analysis becomes more complicated and
time consuming.

D. Controllability Analysis
Controllability is a weaker concept than stability,

which denotes the ability to move a system around in its
entire configuration space using only certain admissible
manipulations.
Controllability Condition: the condition to guarantee
controllability is

() ,| | 0rank n$! $;C G C G (27)
or the matrix $C G is full rank.
Proof: If the $C G is full rank, it is,

1() (,)nrank rank n*$! $ $ $!1n 1C G C G E C G
where the E is an unit matrix. From control theory and
the system state equation in (10), the sufficient and
necessary condition of controllability is,

1(, ,) ,| | 0nrank n*$ $ $ $ $! $;1n 11C G E C G E C G C G
Hence the sufficient condition of controllability is
equation (27).

VI. EXPERIMENTATAL EVALUATION
In this section, we conduct extensive simulations to

evaluate SAFCM. Firstly, we test the system performance
beyond different loads. Next, we try to confirm if
SAFCM can be used in both optimistic and pessimistic
estimation situations. Thirdly, we compare our proposed
system with open-loop and FCS [1] mechanisms to prove
the advancement of SAFCM. Finally, we measure the

overhead of the MPC controller.

A. Experiment Configuration
The simulator is implemented in C# (in Visual Studio

2010) and the MPC controller is implemented in Matlab
(R2009b). The system initializes at 0T ! and executes
the feedback algorithm once every 100 time units. For
every task, we assume each of the two estimated
proportional factors, Cj

int and Cj
conf, are set to 0.2, and

both int
i# and conf

i# (in equation (3)) are random in the
range from 1.0 to 1.2. We assume all the
security-unrelated operations are independent. They can
be executed by some periphery components and do not
participate in system scheduling. The periodic tasks
concern only security-related operations. Hence, the ei

o
can be set to 0 in experiments. Every node executes same
number of periodic tasks, and the system gain gi is a
random value ranging from 5 to 6. Parameters in the
MPC controller, M and P, are 1 and 3, respectively.

In order to describe the overall performance of whole
system, we introduce the concept, global utilization,
which is defined as the average utilization of all nodes.
Corresponding to this concept, local utilization represents
the utilization of a single node. At every 100 time units,
which is defined as one sampling window, we calculate
this couple of utilizations. In real-time scheduling theory,
the schedulable utilization bounds derive from the
different scheduling polices. It has been established that
the schedulable utilization bound of EDF is 100%, and
the bound of RM is relied on the number of tasks [16].
For the soft real-time system, it’s allowed the CPU
utilization exceeds the schedulable bound sometime, but
at most time, the CPU utilization must be bounded by
these schedulable bounds. Similar as [1], the set point of
each node, ui

s, is better to set smaller than the schedulable
bound. In addition, we assume all the ui

s are equal to the
global set point, US. For EDF, 85%sU ! , and for RM,

1/((2 1) 0.10) 100%s mU m! $ * * 1
where m represents the number of tasks in a processor.

B. Exp. 1: Runtime Performance
We test the system performance under two different

conditions (in TABLE III). The global utilization and
local utilization of the 1st processor under the Condition-A
are shown in Fig. 6.

TABLE III. LOAD CONDITIONS

Condition Scheduling Tasks Nodes
Condition-A RM 10 4
Condition-B EDF 14 8

Fig. 6. Global (left) and Local (right) Utilization under Condition-A

0
10
20
30
40
50
60
70
80

0 100 200 300

 U
til

iz
at

io
n

(%
)

 Time (Sampling Window)

0
10
20
30
40
50
60
70
80

0 100 200 300
 Time (Sampling Window)

U
til

iz
at

io
n

(%
)

346

Fig. 7. Global (left) and Local (right) Utilization under Condition-B

From Fig. 6, we can see no matter the global or local
utilization can fluctuate with the set point 62%sU ! .
When the utilization is higher than the set point, SAFCM
will automatically decrease the security level to make the
utilization back to the desired value. If the utilization is
lower than the desired, SAFCM will use the available
processor resources to increase security level. In the
further analysis, the average security levels are

3.13int
avgSL ! and 3.52conf

avgSL ! , which are close to the
highest (max 3.169intSL ! and max 3.654confSL !), and the
average global utilization is 59.2%, and the peak is 68%.
It can be concluded that under these conditions, SAFCM
can provide high protection as well as try to control the
utilization under the Us. For the security level is discrete
and limited, the system cannot completely stabilize at the
desire situation.

Fig. 7 shows the global and local (at 1st processor)
utilization fluctuation under the Condition-B. In
Condition-B, the average security levels are

3.03int
avgSL ! and 3.58conf

avgSL ! . The average global
utilization is 81.8% and the peak is 93.9%. Hence, the
performance of SAFCM in this condition is also
advanced.

From this couple of experiments, we can observe that
SAFCM can achieve the specified goals and make a good
trade-off between real-time and security. On one hand, it
meets the soft real-time requirement via controlling the
utilization; on the other hand, it provides the security
protection as strong as possible.

C. Exp. 2: Optimistic or Pessimistic Estimation
From control theory, system gain gi can be ignored

during the design of MPC controller, but it does not mean
this parameter is insignificant. Actually, it represents the
feature of our estimation: a small gi means the estimation
accurate and optimistic. However, it is difficult to
determine whether our estimation is optimistic or
pessimistic, so we want to measure the performance with
different system gains in this set of experiments.

Under the Condition-A, we measure and analyze the
system performance when gi ranges in different regions.
The statistical data for different gains is shown in Fig. 8.
Based on the measured data, we find that our
requirements can still be satisfied even when the

estimation is pessimistic ((7.5,8)g'). In this set of
experiments, the average utilization is only varied in a
small range around 50%, which is lower than the set point,
62%. However, following the rising gi, the peak
utilization increased, which means the possibility of more
tasks might be deadline missed. At the same time, the
security level of integrity and confidentiality services
decreases gradually.

In addition, we compare the global utilization
fluctuation when the gain ranges in different regions. In
Fig. 9(a), the gain ranges from 7 to 7.5, and gain ranges
from 4 to 4.5 in Fig. 9(b).

(a) (b)

Fig. 9. Global Utilization When (a) (7,7.5)g' , (b) (4.5,5)g'

When gi ranges from 7.0 to 7.5, system has already
become unstable and dramatically oscillates. Undoubtedly,
the dramatic variations of utilization and security level
are not we expected and can even make system unusable.
Based on these analyses, it can be concluded the system
performance can be better if gi is small. So, careful
analysis of the execution environments and optimistic
estimation are still necessary to improve the performance
of SAFCM.

D. Exp. 3: Steady Execution Times
We verify the advantages of SAFCM via comparing

with open-loop and FCS mechanism in experiment 3 and
4. In experiment 3, we assume that the execution times of
tasks do not change rapidly. In experiment 4, the
execution times vary dynamically at runtime. Through
these two experiments, we analyze the performance of
SAFCM in the steady and changeable environments.

The open-loop mechanism is the most traditional and
simplest strategy that uses fixed security level. For this
mechanism, the administrator requires a priori
knowledge of tasks’ WCETs and assigns an appropriate
security level before system initialization. If there are m
tasks in a single node, the constraint of security level is,

1

m
si

i i

WCET U
p!

"((28)

where pi is the period of task Ti. In our experiment, we
assume 10m ! , 100ip ! , and the basic scheduling policy
is RM. Under the inequality (28), the highest security
level is,

1.551intSL ! , 3.654confSL !

0

20

40

60

80

100

0 100 200 300

 U
til

iz
at

io
n

(%
)

 Time (Sampling Window)

0

20

40

60

80

100

0 100 200 300

 U
til

iz
at

io
n

 Time (Sampling Window)

0

20

40

60

80

100

0 100 200 300
 Time (Sampling Window)

 U

til
iz

at
io

n
(%

)

0

10

20

30

40

50

60

70

0 100 200 300
 Time (Sampling Window)

U
til

iz
at

io
n

(%
)

347

Fig. 8. System Performance When System Gain Range in Different Regions

 (a) (b) (c)

Fig. 10. Global Utilization of (a) Open System. (b) FCS System. (c) SAFCM System When Execution Time is Steady

TABLE IV. Performance Comparison between Open FCS and SAFCM System When Execution Time is Steady

 Average Utilization Peak Utilization Integrity SL Confidentiality SL
Open 46.5% 53.3% 1.55 3.654
FCS 56.8% 67.5% 3.162 3.34

SAFCM 59.2% 68.3% 3.13 3.52
FCS is a feedback controlled QoS management

mechanism with three important components [1]. The
Monitor measured the controlled variables and feeds the
samples back to the Controller. Relying on these samples,
Controller compares the performance reference with
corresponding controlled variables to computes a change.
The QoS Actuator dynamically adjusts the QoS levels of
tasks according to the change computed by the Controller.

Though the FCS is designed for a stand-alone system,
it can still be used in DRE system via monitoring the
global utilization. The policy deployed in the Actuator to
change the security level is similar with open-loop
mechanism. We evaluate SAFCM, FCS and open-loop
mechanism under the same assumptions. At the runtime,
the execution times of tasks are steady

The results are shown in Fig. 10 and TABLE IV. It is
obvious the FCS and SAFCM have better performance
than open-loop. In open-loop, although the confidentiality
level is highest, the average security level is lowest and
utilization is far lower than desired, which means
processor resources have been wasted. Analyzing the
utilization curve, SAFCM is more stable than FCS. FCS
and SAFCM have similar performance, while the security
level of SAFCM is a little higher. The peak utilizations of
these three systems do not exceed the schedulable
utilization bound of RM, 71% which means all the
systems can guarantee the real-time.

As a conclusion, SAFCM is more stable and can
provide stronger security protection than FCS when
executing in a steady environment.

E. Exp. 4: Varying Execution Times
Besides the security level, tasks’ execution times are

also affected by the data size of plaintext. Hence, in this
experiment, we mainly test the system performance of
FCS and SAFCM under various plaintext and execution
times. We assume the execution times dramatically
increase k times than the original at the 100th sampling
window, and back to normal at the 200th sampling
window. The global utilization fluctuation when 5k ! is
shown in Fig. 11.

(a) SAFCM (b) FCS

Fig. 11. Global Utilization When Execution Times Fluctuate at Runtime.

As shown in Fig. 11a, SAFCM makes effort to
converge the set point despite the significant variations in
execution times. At the 100th window, nodes are suddenly
overloaded due to the execution times dramatically
increase 5 times than normal, and utilization becomes
maximum. Beginning at 125th sampling window, the
global utilization drops for SAFCM dynamically
decreases the security level to converge the set point.
Since the values of tasks’ execution times are so big even
with lowest security level, global utilization stabilizes at

0

50

100

(4.5, 5) (5, 5.5) (5.5, 6) (6, 6.5) (6.5, 7) (7, 7.5) (7.5, 8)

Average Utilization Peak Utilization

Range of System Gain

U
til

iz
at

io
n

(%
)

0

2

4

6

(4.5, 5) (5, 5.5) (5.5, 6) (6, 6.5) (6.5, 7) (7, 7.5) (7.5, 8)

Integrity SL Confidentiality SL

Range of System Gain

0

20

40

60

0 100 200 300

 U

til
iz

at
io

n

 Time (Sampling Window)

0

20

40

60

80

0 100 200 300

U
til

iz
at

io
n

 Time (Sampling Windows)

0

20

40

60

80

0 100 200 300

 U
til

iz
at

io
n

 Time (Sampling Window)

0

20

40

60

80

100

120

0 100 200 300

 Time (Sampling Window)

U
til

iz
at

io
n

(%
)

0

20

40

60

80

100

120

0 100 200 300

U

til
iz

at
io

n
(%

)

 Time (Sampling Window)

348

90% during the period from 125th to 200th window. At end
of this period, nodes are suddenly underutilized, and then
the utilization quickly returns to normal situation within 5
sampling windows. By contrast, the performance of FCS
is very poor in this overloaded period (in Fig. 11b). The
utilization of FCS always stabilizes at 100%, so it can be
recognized as losing its adaptivity. FCS has become
invalid in this situation, but SAFCM is still adaptive and
enforces to avoid long time of full loaded.
F. Exp. 5: Overhead of MPC

The MPC controller has stronger ability than
traditional PID controller at the cost of complexity. As
discussed in Section V, the MPC problem can be
transformed to a quadratic programming problem. To
estimate the overhead of the MPC controller, we can
measure the execution time of the quadratic programming
solver function, QUADPROG in Matlab. MPC controller
is generally deployed in the host server, such as SCADA
Master, which has powerful processing capacity. Thus,
we conduct this simulation on a 2.8GHz CPU with 2GB
memory platform to test the performance of MPC. The
results (in TABLE V) indicate the method to solve the
MPC problem has low overhead. We consider the
overhead is acceptable even in the large scale field like
200 distributed nodes.

TABLE V. MPC Controller Overhead

Nodes 10 20 50 100 200

Time (ms) 35 41 43 50 380

VII. CONCLUSION
This paper has presented a security-aware scheduling

mechanism for distributed real-time embedded systems.
Inspired from the feedback control theory, SAFCM is
designed to dynamically manage the security level based
on the handled utilization of multiple nodes to guarantee
the soft real-time requirements and make security
protection as strong as possible. To make our system
model more practical, we measure the time costs of some
cryptographic algorithms on a real embedded platform.
Based on the system model, the designed MIMO
feedback control loop can increase the security level and
make the system more secure when system is in low
workload state, or decrease the security level to satisfy
the soft real-time requirement if system is busy. As the
core component of SAFCM, an advanced and more
suitable controller, MPC, is deployed. Through
mathematic transformation and simplification, the MPC
problem can be converted into a quadratic programming
problem and solved using Matlab. Extensive simulations
demonstrate that SAFCM can maintain the desired
utilizations on multiple nodes as well as provide higher
security protection than open-loop and FCS. Moreover,
when the tasks’ execution times change dramatically at
runtime, SAFCM has also a better overall performance
than FCS.

ACKNOWLEDGEMENT
This work was partly supported by the National

Natural Science Foundation of China under Grant No.
61003032, the Fundamental Research Fund for the

Central Universities of China under Grant No.
ZYGX2011J061, and the Research Fund of National Key
Laboratory of Computer Architecture under Grant No.
CARCH201104.

REFERENCE
[1]. C. Lu, J. A. Stankovic, G. Tao, S. H. Son, "Feedback Control

Real-Time Scheduling: Framework, Modeling, and Algorithms,"
Journal of Real-Time Systems, Special Issus on
Control-Theoretical Approaches to Real-Time Computing, 2002.

[2]. V. Varadharajan, S. Black, "A multilevel security model for a
distributed object-oriented system", Proceedings of the Sixth
Annual Computer Security Applications Conference, pp. 68-78,
1990.

[3]. D. Bailey, E. Wright, "Practical SCADA for Industry," Elsevier,
2003.

[4]. C. Lu, X. Wang, X. Koutsoukos, "Feedback Utilization Control in
Distributed real-Time Systems with End-to-End Tasks," IEEE
Transactions on Parallel and Distributed Systems, vol. 16, Issue. 6,
pp. 550 – 561, 2005.

[5]. D. Chopra, H. Schulzrinne, E. Marocco, E. Ivov, “Peer-to-Peer
Overlays for Real-Time Communication: Security Issues and
Solutions,” IEEE Communications Surveys & Tutorials, vol. 11,
Issue. 1, pp. 4 -12, 2009.

[6]. M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, M. Qiu,
“Static Security Optimization for Real-Time Systems,” IEEE
Transactions on Industrial Informatics, vol. 5, Issue.1, pp. 22 – 37,
2009.

[7]. K. Jang, P. Eles, Z. Peng, “Co-design techniques for distributed
real-time embedded systems with communication security
constraints,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 947 – 952, 2012.

[8]. X. Qin, M. Alghamdi, M. Nijim, Z. Zong, K. Bellam, X. Ruan,
“Improving Security of Real-Time Wireless Networks through
Packet Scheduling,” IEEE Transactions on Wireless
Communications, vol. 7, issue. 9, pp. 3273 – 3279, 2008.

[9]. T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, Y. Lu,
“Feedback Performance Control in Software Services,” IEEE
Transactions on Control Systems, vol. 23, issue. 3, 2003.

[10]. Y. Zhu, F. Mueller, "Feedback EDF Scheduling Exploiting
Dynamic Voltage Scaling," Real-Time and Embedded Technology
and Applications Symposium, pp. 84-93, 2004.

[11]. R. Sridharan, N. Gupta, R. Mahapatra, "Feedback-Controlled
Reliability-Aware Power Management for Real-Time Embedded
Systems," ACM/IEEE on Design Automation Conference, pp.
185-190, 2008.

[12]. Y. Fu, Y. Chen, C. Lu, “Feedback Thermal Control for Real-Time
Systems,” Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 111 - 120, 2009.

[13]. T. Xie, X. Qin, "Scheduling Security-Critical Real-Time
Applications on Clusters," IEEE Transaction on Computers, vol.
55, Issus. 7, pp. 864-879, 2006.

[14]. X. Wang, X. Fu, X. Liu, Z. Gu, “Power-Aware CPU Utilization
Control for Distributed Real-Time Systems,” Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp.
233 - 242, 2009.

[15]. V. M. Igure, S. A. Laughter, R. D. Williams, “Security Issues in
SCADA Networks,” Elsevier Computers & Security, vol. 25,
Issue. 7, pp. 498 – 506, 2006.

[16]. C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,” Journal
of ACM, vol.20, pp. 46 - 61, 1973.

[17]. O. Elkeelany, M. M. Matalgah, K. P. Sheikh, M. Thaker,
“Performance Analysis of IPSec Protocol: Encryption and
Authentication,” IEEE International Conference on
Communications, vol. 2, pp. 1164 – 1168, 2002.

[18]. Peter Gutmann, Cryptlib Security Toolkit Version
3.4.http://www.cryptlib.com.

[19]. MATLAB Manual, Version 6.5, Mathworks, Inc.

349

