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ABSTRACT
Microfluidic biochips are replacing the conventional biochemical an-
alyzers and are able to integrate the necessary functions for biochemi-
cal analysis on-chip. There are several types of microfluidic biochips,
each having its advantages and limitations. In this paper we are in-
terested in flow-based biochips, in which the flow of liquid is ma-
nipulated using integrated microvalves. By combining several mi-
crovalves, more complex units, such as micropumps, switches, mix-
ers, and multiplexers, can be built. Although researchers have pro-
posed significant work on the system-level synthesis of droplet-based
biochips, which manipulate droplets on a two-dimensional array of
electrodes, no research on system-level synthesis of flow-based bioch-
ips has been reported so far. The focus has been on application mod-
eling and component-level simulation. Therefore, for the first time
to our knowledge, we propose a system-level modeling and synthe-
sis approach for flow-based biochips. We have developed a topology
graph-based model of the biochip architecture, and we have used a se-
quencing graph to model the biochemical applications. We consider
that the architecture of the biochip is given, and we are interested
to synthesize an implementation, consisting of the binding of opera-
tions in the application to the functional units of the architecture, the
scheduling of operations and the routing and scheduling of the fluid
flows, such that the application completion time is minimized. We
propose a List Scheduling-based heuristic for solving this problem.
The proposed heuristic has been evaluated using two real-life case
studies and a set of four synthetic benchmarks.
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1. INTRODUCTION
Microfluidics-based biochips have become an actively researched

area in recent years. Sometimes also referred to as lab-on-a-chip,
biochips integrate different biochemical analysis functionalities (e.g.,
dispensers, filters, mixers, separators, detectors) on-chip, miniatur-
izing the macroscopic chemical and biological processes to a sub-
millimetre scale [17]. These microsystems offer several advantages
over the conventional biochemical analyzers, e.g., reduced sample
and reagent volumes, speeded up biochemical reactions, ultra-sensit-
ive detection and higher system throughput, with several assays being
integrated on the same chip [20].
Microfluidic biochips can readily facilitate clinical diagnostics, es-

pecially immediate point-of-care disease diagnosis. In addition, they
also offer exciting application opportunities in the realm of massively
parallel DNA analysis, enzymatic and proteomic analysis, cancer and
stem cell research, and automated drug discovery [17, 5]. Utilizing
these biochips to perform food control testing, environmental (e.g.,
air and water samples) monitoring and biological weapons detection
are also interesting possibilities.
There are several types of microfluidic biochip platforms, each

having its own advantages and limitations [10]. In this paper, we fo-
cus on the flow-based biochips in which the microfluidic channel cir-
cuitry on the chip is equipped with chip-integrated microvalves that
are used to manipulate the on-chip fluid flow [17]. By combining
several microvalves, more complex units like mixers, micropumps,
multiplexers etc. can be built up, with hundreds of units being ac-
commodated on one single chip [10].

1.1 Related Work
During the last decade, a significant amount of work has been car-

ried out on the individual microfluidic components as well as the
microfluidic platforms [9, 10]. The manufacturing technology, soft
lithography, used for the flow-based biochips has advanced faster
than Moore’s law [6]. Although biochips are becoming more com-
plex everyday, Computer-Aided Design (CAD) tools for these chips
are still in their infancy. Most CAD research has been focussed on
device-level physical modeling of components [13, 7]. Designers
are using full-custom and bottom-up methodologies involving many
manual steps to implement these chips.
Currently, researchers manually map the applications to the valves

of the chip using some custom interface (analogous to exposure of
gate-level details) [16]. The manual process is quite tedious and
needs to be repeated every time a change is made either to the chip ar-
chitecture or the biochemical application. For larger chips and appli-
cations, the process can easily result in inefficient architectural map-
pings.
As the chips grow more complex (commercial biochips are avail-

able which use more than 25,000 valves and about a million fea-
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(a) Microfluidic Valve (b) Biochip: Schematic View (c) Biochip: Functional View

Figure 1: Flow-Based Biochip Architecture

tures to run 9,216 polymerase chain reactions in parallel [12]) and the
need of having multiple and concurrent assays on the chip becomes
more significant, these methodologies become highly inadequate [3].
Therefore, new top-down design methodologies and design tools are
needed, in order to provide the same level of CAD support to the
biochip designer as the one currently taken for granted in the semi-
conductor industry [3].
Researchers have proposed significant work on top-down synthe-

sis methodologies for droplet-based biochips [2]. In these chips, the
liquid is manipulated as discrete droplets on an electrode array. The
synthesis process, starting from a given biochemical application and a
droplet-based biochip architecture model, determines the resource al-
location, binding, scheduling and placement of the application opera-
tions. However, these techniques are not applicable to the flow-based
chips and, to the best of our knowledge, no system-level modeling
and synthesis approach has been proposed so far for the flow-based
biochips.

1.2 Contribution
We propose a topology graph-based system-level model of a bioch-

ip architecture, that is independent of the underlying biochip im-
plementation technology. Using the proposed model, we focus on
the problem of synthesizing a biochemical application, modeled as
a sequencing graph (capturing the operations and their dependency
constraints), onto a given biochip architecture. We propose a List
Scheduling-based binding and scheduling heuristic aiming at reduc-
ing the application completion time. In microfluidic biochips, rout-
ing latencies are comparable to the operation execution times, thus
having a considerable influence on the schedule. Our heuristic also
takes the routing and fluid contention into account. As an output of
the synthesis process, we generate the control sequence for a biochip
controller in order to execute the biochemical application onto the
specified biochip. We evaluate the proposed framework by synthe-
sizing two real-life case studies as well as a set of four synthetic
benchmarks.
The paper is organized in six sections. We present the proposed

component model and the biochip architecture model in Section 2.1.
Section 2.2 covers the abstract biochemical application model. The
targeted problem is discussed and formulated in Section 3. The pro-
posed synthesis approach is presented in Section 4 and is further eval-
uated in Section 5. We close by presenting our conclusions (Sec-
tion 6).

2. SYSTEMMODEL

2.1 Biochip Architecture Model
Fig. 1b shows the schematic view of a flow-based biochip with

four input ports and three output ports, a mixer, a filter and a de-
tector. Fig. 1c shows the functional level view of the same chip.
The biochip is manufactured using multilayer soft lithography [17].
A cheap, rubber-like elastomer (polydimethylsiloxane, PDMS) with
good biocompatibility and optical transparency is used as the fabri-
cation substrate. Physically, the biochip can have multiple layers, but
the layers are logically divided into two types: flow layer (depicted
in blue) and the control layer (depicted in red) [17]. The liquid in the
flow layer is manipulated using the control layer.
The basic building block of such a biochip is a valve (see Fig. 1a),

which is used to manipulate the fluid in the flow layer as the valves
restrict/ permit the fluid flow. The control layer (red) is connected
to an external air pressure source z1. The flow layer (blue) is con-
nected to a fluid reservoir through a pump that generates the fluid
flow. When the pressure source is not active, the fluid is permitted to
flow freely (open valve). When the pressure source is activated, high
pressure causes the elastic control layer to pinch the underlying flow
layer (point a in Fig. 1a) blocking the fluid flow at point a (closed
valve). Because of their small size (100 × 100 µm2), a biochip can
accommodate thousands of valves. Analogous to its microelectronics
counterpart, this approach is called microfluidic Large Scale Integra-
tion (LSI) [17].
By combining these valves, more complex units, such as switches,

multiplexers, micropumps, mixers, can be built [10]. For example,

Figure 2: Switch Configurations
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Figure 3: Microfluidic Mixer

the valves can be combined to represent a switch. As shown in
Fig. 2, a switch may consist of one valve (restricting/ allowing flow
in a channel) or may consist of more than one valve. Multiple valve
switches are present at the channel junctions and are used to control
the path of the fluids entering the switch from different sides. The
fluid flow can be generated using off-chip or on-chip pumps. The
path of the fluid flow is established using the microfluidic valves. For
example, in Fig. 1b, in order to create a flow path from In1 to the
Mixer unit, valves v2, v3, v4, v5 need to be closed, while valves v1, v6
and v7 must be left open. A pumping action at In1 would then direct
the fluid to flow through the established path towards the Mixer.

2.1.1 Component Model
Consider the pneumatic mixer [4] in Fig. 3a which is implemented

using nine microfluidic valves, v1 to v9. Fig. 3b shows the conceptual
view of the same mixer. The valve set {v4, v5, v6} acts as an on-chip
pump. The valve set {v1, v2, v3} is termed as switch S1 and the valve
set {v7, v8, v9} as switch S2. The two switches facilitate the inputs
and outputs, and the pump is used to perform the mixing. The mixer
output can either be sent to the waste or to the other components in
the chip using the switch S3, as shown by the paths in Fig. 3a.
The mixer has five operational phases. The first two phases repre-

sent the input of two fluid samples that need to be mixed, followed
by the mixing phase. The mixed sample is then transported out of
the mixer in the last two phases. For the first fluidic input (phase Ip1,
depicted in Fig. 3a), valves v1, v2, v7 and v8 are opened (together
with v4, v5, v6), the pump at the Input is activated and the liquid fills
in the upper half of the mixer.
Note that the fluid samples that are to be mixed do not need to

occupy the full channel length from the Input to the upper half of
the mixer. Rather each sample occupies a certain length on the flow
channel. The process of measuring the length of each fluid sample is
calledmetering and is carried out by transporting the sample between
two valves that are a fixed length apart [19].
In general, in order to avoid fluid dispersion, the samples are not

directly placed in the channel [19]. Instead, the samples are immersed
in a filler fluid (e.g., immiscible mineral oil) in order to be transported
from one part of the chip to the other. The fluid sample volumes can
be precisely controlled. In order for the filler fluid (oil) to flow on the
flow layer, the point of flow origin needs to be connected to an oil
reservoir and the point of flow termination needs to be connected to
a waste outlet where the oil can be collected after traversing through

the chip. Also, an on-chip or off-chip pump source needs to be avail-
able in order to generate the flow. All chip input ports are generally
connected to a pump and the oil reservoirs. In Fig. 3a, a flow of fluid
from the input port to the upper half of the mixer would not have been
possible if the mixer output was not connected to the waste outlet as
there would be no closed loop for the oil to flow in. But since the
mixer has a waste outlet, the oil flows from the input, goes through
the mixer and into the waste outlet. The fluid sample that needs to
be mixed rides over the oil and reaches the mixer. Once the top half
is filled, the valves v7 and v2 close, stopping the oil flow and block-
ing the fluid sample in the upper half of the mixer. Note that, since
we know the flow rate (mm/s) and the sample volume (in mm, mea-
sured in terms of length through metering), the time until the mixer
gets filled can be easily calculated, hence an optical feedback is not
necessary in order to activate the valves at the right moment.
In the next phase Ip2, the second fluid sample fills the lower half

of the mixer (Fig. 3c-i). Once both halves are filled, the mixer input
and output valves (v1 and v8) are closed while valves v2, v3, v7, v9
are opened and the mixing operation is initiated (Fig. 3c-ii). Valve
set {v4, v5, v6} acts as a peristaltic pump. Closing valve v4 inserts
some pressure on the fluid inside the mixer, closing valve v5 creates
further pressure, then as valve v6 is closed valve v4 is opened again.
This forces the liquid to rotate clockwise in the mixer. The valves
are closed and opened in a sequence such that the liquid rotates at
a certain speed accomplishing the mixing operation. Next, in phase
Op1 (Fig. 3c-iii), half of the mixed sample is pushed out of the mixer
towards the rest of the chip and in Op2 (Fig. 3c-iv), the other half is
transported to the waste.
Using pressurized microfluidic valves in the control layer is the

most commonly utilized control method for the flow-based biochips.
However, microfluidic components equipped with alternate control
techniques (e.g., electro-osmotic, electrokinetic) have also been de-
veloped. In order to have a unified design methodology covering sev-
eral underlying technologies, it is imperative to model the component
implementation technology details separately from its operational ca-
pabilities.
We propose a dual-layer component modeling framework, consist-

ing of a flow layer model and a control layer model. The flow layer
model (P ,C) of each componentM is characterized by a set of oper-
ational phases P and execution timeC. The control layer model cap-
tures the valve actuation details required for the on-chip execution of
all operational phases of a component. For example, Table 1 presents
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Table 1: Mixer: Control Layer Model
Phase v1 v2 v3 v4 v5 v6 v7 v8 v9
1. Ip1 0 0 1 0 0 0 0 0 1
2. Ip2 0 1 0 0 0 0 1 0 0
3. Mix 1 0 0 Mix Mix Mix 0 1 0
4. Op1 0 0 1 0 0 0 0 0 1
5. Op2 0 1 0 0 0 0 1 0 0

Table 2: Component Library (L): Flow Layer Model
Execution

Component Phases (P) Time (C)
Mixer [9] Ip1/ Ip2/Mix/ Op1/ Op2 0.5s
Filter [9] Ip/ Filter/ Op1/ Op2 20s
Detector [9] Ip/ Detect/ op 5s
Separator [9] Ip1/ Ip2/ Separate/ Op1/ Op2 140s
Heater [8] Ip/ Heat/ Op 20◦C/s

the control layer model of a pneumatic mixer, as presented in Fig. 3,
whose flow layer model is characterized by the first row in Table 2. In
Table 1, the valve activation for each phase is shown, ‘0’ represent-
ing an open and ‘1’ a closed valve. The status ‘Mix’ shown for the
valve set {v4, v5, v6} on line 4 of Table 1 represents the mixing step
in which these valves are opened and closed in a specific sequence
to achieve mixing. Microfluidic platforms are equipped with a con-
troller that manages all on-chip control, i.e., issuing signals to on-chip
components for executing a biochemical application, performing data
acquisition and signal processing operations [9]. The control layer
model of a component contains all the details that a biochip controller
requires for executing the operational phases of that component.
Table 2 shows the flow layer model library L = M (P , C) of five

commonly utilized microfluidic components. The different opera-
tional phases listed for a component may or may not be executable in
parallel depending on how the component is implemented, e.g., the
mixer presented here has only one input port to receive both the input
fluids, thus only one input phase can be activated at a time.

2.1.2 Architecture Model
Most of the research work carried out for modeling the microflu-

idic architecture has been focused on the device-level physical mod-
els [7, 13]. These are inadequate for system-level top-down design
methodologies and new modeling frameworks need to be developed.
We propose a system-level model based on a topology graph in order
to capture the biochip architecture.
Consider the biochip architecture shown in Fig. 4. The chip has

two inputs, two outputs and is equipped with three mixers, one heater,
one filter and eight storage reservoirs, i.e., the component ‘Storage-
8’ contains eight reservoirs, Res1–Res8. The biochip architecture is
modeled as a topology graph A = (N , S , D , F , c), where N is a
finite set of vertices, S is a subset of N , S ⊆ N , D is a finite set
of directed edges and F is a finite set of flow paths. A vertex N ∈
N has two distinguished types: a vertex S ∈ S represents a switch
(e.g., S1 in Fig. 4), whereas a vertexM ∈ N , ! S , represents a com-
ponent or an input/output node (e.g., Mixer1 and In1, respectively,
in Fig. 4). A directed edge Di, j ∈ D represents a directed com-
munication channel from the vertex Ni to vertex Nj, with Ni, Nj ∈
N (e.g., DIn1,S1 represents a directed link from vertex In1 to vertex
S1). A flow path, F ∈ F , is a subset of two or more directed edges
of D , F ⊆ D , |F| > 1, representing a directed communication link
between any two vertices ∈ N using a chain of directed edges of D
(e.g., FIn1,Mixer1 = (DIn1,S1 ,DS1,Mixer1 ) represents a directed link from

Figure 4: Biochip Architecture

vertex In1 to vertexMixer1). The weight c associated with a directed
edge D ∈ D or a flow path F ∈ F represents its transport latency.
The set of flow paths F is the set of permissible flow routes on the

biochip. These flow paths are specified by the biochip designer but
can be easily extracted from the chip architecture as well, if all pump
locations, oil inlet and waste outlet locations are known. As discussed
in the previous section, in order for a route to be permissible on the
chip (e.g., Fig. 4., flow from chip input In1 to the mixer Mixer1,
FIn1,Mixer1 =(DIn1,S1 ,DS1,Mixer1 )), the point of flow origin (In1) needs
to be connected to a pump (and an oil reservoir) and the point of flow
termination (Mixer1) needs to be connected to a waste output. This
means that in order for independent two way flows (one direction at
a time since the same channel is used for the flow in both directions)
to be possible between any two vertices, e.g., S1 to S2, both S1 and
S2 would need to have an independent connection to a pump, a waste
outlet and an oil inlet. Providing such an independent connection to
every vertex requires a very high number of pumps, oil inlets and
waste outlets. Thus only a limited number of vertices are provided
with these connections, limiting the number of allowed flows on the
chip. The allowed flows are captured by the set of flow paths F . Each
route (flow path) has an associated control layer model that contains
the details required for its utilization, i.e., the switch sequence and
the pump activation details.
Analogous to a circuit-switched network, the entire flow route is

reserved until the completion of the fluid transfer (e.g., until the fluid
reaches Mixer1), imposing routing constraints on the chip. These
constraints can be extracted from the set F . All those flow paths in
the set F that have a network vertex Ni in common as a source or
destination vertex of any of their directed edges D, are considered as
mutually exclusive, i.e., the routes represented by these flow paths
can only be utilized in a serialized fashion. For example in Fig. 4,
FIn1,Mixer1 and FIn1,Mixer2 are mutually exclusive as they share the
vertices In1 and S1.
Since fluid samples are expendable and cannot be reused limit-

less number of times (unlike the operands in computers), the fluid
volumes need to be managed inside the chip. We assume that the
designer does this beforehand while designing the biochemical ap-
plication [1], ensuring that both overflow and underflow are avoided.

2.2 Biochemical Application Model
We model a biochemical application using a sequencing graph [3].

The graph G(O,E) is directed, acyclic and polar (i.e., there is a
source vertex that has no predecessors and a sink vertex that has no
successors). Each vertex Oi ∈ O represents an operation that can be
bound to a component using a binding function B : O → M . Each
vertex has an associated weight CMj

i , which denotes the execution
time required for the operation Oi to be completed on componentMj.
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(a) Application Graph (b) Schedule

Figure 5: Illustrative Example

The execution times provided in Table 2 are of the actual functional
phase (given in bold in the table, e.g., Mix). These execution times
are taken as the typical execution times for the said component types,
i.e., typical mixing time is 0.5 s but a biochemical application descrip-
tion may specify a longer time (e.g., 5 s) if required for a particular
operation. This value does not include the time required to fetch the
input fluids or to remove the output fluids from the component. The
input/output (I/O) phases are dependent on the chip architecture and
are thus captured by the set of flow paths F in the biochip architec-
ture model A . The edge set E models the dependency constraints in
the assay, i.e., an edge ei, j ∈ E fromOi toOj indicates that the output
of Oi is the input of Oj . All inputs need to arrive before an operation
can be activated. We assume that the biochemical application has
been correctly designed, such that all operations will have the correct
volume of liquid available for their execution. Fig. 5a shows an ex-
ample of a biochemical application model which has seven mixing
operations (O1–O4, O6, O7, O10), one filtration operation (O9) and
two heating operations (O5, O8). The execution times for the opera-
tions are given in Fig. 5a (the parameter below the operation type).

3. BIOCHIP SYNTHESIS
Implementing a biochemical application onto a biochip architec-

ture requires the following steps: allocation of components from a
library L , the placement of components on a given area, binding of
operations onto the allocated components, scheduling the operations
and performing the required fluidic routing. The following subsec-
tions explain these design tasks using the biochip architecture given
in Fig. 4 and the biochemical application in Fig. 5a.

3.1 Allocation and Placement
In this paper, we consider that the architecture is given, i.e., the

allocation and placement steps have already been performed. The

Table 3: Allocated Components (M )
Function Units Notations
Input port 2 In1, In2
Output port 2 Out1, Out2
Mixer 3 Mixer1, Mixer2, Mixer3
Heater 1 Heater1
Filter 1 Filter1

Storage Reservoir 8 Res1–Res8

architecture is modeled as described in Section 2.1. Thus, the allo-
cated components are captured by the vertex set M , M ∈ N , in the
architecture model A . Table 3 shows the setM for the biochip given
in Fig. 4. The component placement and interconnections are also
given, and are captured by the remaining elements of the topology
graph A modeling the architecture.

3.2 Binding, Scheduling and Routing
Fig. 5b shows the schedule for executing the biochemical applica-

tion in Fig. 5a on the biochip architecture in Fig. 4. The schedule is
represented as a Gantt chart, where, we represent the operations and
fluid routing phases as rectangles, with their lengths corresponding to
their execution duration. Each operation is placed in a separate row.
During the binding step, each vertex Oi, Oi ∈ O, representing a bio-
chemical operation in the application model in Fig. 5a is bound to an
available component Mj, i.e., B(Oi) =Mj. For example, the mixing
operation O1 in the application model in Fig. 5a is bound to the com-
ponentMixer1 as shown in Fig. 5b. Since the fluid transport latencies
in microfluidic chips are comparable to the operation execution times,
fluid routing also needs to be considered during the synthesis phase.
This means that the binding function must also capture the binding
of the edge set E ∈ G to an available route. The available route can
be a flow path, F ∈ F , or a collection of flow paths called a com-
posite route. A composite route is used if the source and destination
components are such that no direct flow path exists between them.
A scheduling strategy is needed to efficiently execute the biochem-

ical operations on the chip components, while considering the depen-
dency and resource constraints captured by the biochemical applica-
tion and the biochip architecture models, respectively. In Fig. 5b,
operation O6 bound to Mixer2 starts immediately after all its prede-
cessors (O3, O4) are complete and the input fluids have been routed
to Mixer2. It starts at tstartO6 = 20.5 s and takes 3 s, finishing at time
t f inishO6 = 23.5 s.
The different phases during the execution of an operation Oi on a

componentMj are captured by the set of operational phases, P, in the
component model (Table 2). The time needed to execute an operation
Oi on componentMj,C

Mj
i , is given by the application model G . The

input/output (I/O) phases are dependent on the chip architecture and
are thus captured by the set of flow pathsF in the biochip architecture
model A .
Together with the set of operations O ∈ G given in the appli-

cation model, the edge set E ∈ G also needs to be scheduled on

229



Table 4: Flow Path Set (F ) and Routing Constraints
F1 = (In1, S1, Mixer1), 2 s F18 = (Mixer2, S6, S7, S8, S10, Out1), 3.5 s Routing Constraints:
F2 = (In1, S1, S2, Mixer2), 2.5 s F19 = (Mixer3, S7, S6, S5, Out2, 3 s
F3 = (In1, S1, S2, S3, Mixer3), 3 s F20 = (Mixer3, S7, S6, S5, Heater1), 3 s F1 : F2 ∨ F3 ∨ F4 ∨ F7 ∨ F24
F4 = (In2, S4, S3, S2, S1, Mixer1), 3.5 s F21 = (Mixer3, S7, Filter1), 2 s F2 : F1 ∨ F3 ∨ F4 ∨ F5 ∨ F7 ∨ F24 ∨ F25
F5 = (In2, S4, S3, S2, Mixer2), 3 s F22−x = (Mixer3, S7, S8, Storage-8), 2.5 s F3 : F1 ∨ F2 ∨ F4 ∨ F5 ∨ F6 ∨ F7 ∨ F24
F6 = (In2, S4, S3, Mixer3), 2.5 s F23 = (Mixer3, S7, S8, S10, Out1), 3 s ∨ F25 ∨ F26
F7−x = (In1, S1, S2, S3, S4, Storage-8), 3.5 s F24−x = (Storage-8, S4, S3, S2, S1, Mixer1), 3.5 s F4 : F1 ∨ F2 ∨ F3 ∨ F5 ∨ F6 ∨ F7 ∨ F8
F8−x = (In2, S4, Storage-8), 2 s F25−x = (Storage-8, S4, S3, S2, Mixer2, 3 s ∨ F24 ∨ F25 ∨ F26
F9 = (Mixer1, S5, Out2), 2 s F26−x = (Storage-8, S4, S3, Mixer3), 2.5 s F5 : F2 ∨ F3 ∨ F4 ∨ F6 ∨ F7 ∨ F8 ∨ F24
F10 = (Mixer1, S5, Heater1), 2 s F27−x = (Storage-8, S8, S7, S6, S5, Heater1), 3.5 s ∨ F25 ∨ F26 ∨ F27
F11 = (Mixer1, S5, S6, S7, Filter1), 3 s F28−x = (Storage-8, S8, S7, Filter1), 2.5 s F6 : F3 ∨ F4 ∨ F5 ∨ F7 ∨ F8 ∨ F24 ∨ F25
F12−x = (Mixer1, S5, S6, S7, S8, Storage-8), 3.5 s F29−x = (Storage-8, S8, S10, Out1), 2.5 s ∨ F26
F13 = (Mixer1, S5, S6, S7, S8, S10, Out1), 4 s F30−x = (Heater1, S9, S10, S8, Storage-8), 3 s F7 : F1 ∨ F2 ∨ F3 ∨ F4 ∨ F5 ∨ F6 ∨ F8
F14 = (Mixer2, S6, S5, Out2), 2.5 s F31 = (Heater1, S9, S10, Out1), 2.5 s ∨ F24 ∨ F25 ∨ F26
F15 = (Mixer2, S6, S5, Heater1), 2.5 s F32−x = (Filter1, S9, S10, S8, Storage-8), 3 s ...
F16 = (Mixer2, S6, S7, Filter1), 2.5 s F33 = (Filter1, S9, S10, Out1), 2.5 s F33 : F13 ∨ F18 ∨ F23 ∨ F29 ∨ F30 ∨ F31
F17−x = (Mixer2, S6, S7, S8, Storage-8), 3 s ∨ F32

the chip, while taking the routing constraints into account. Table 4
shows the flow path set (permissible route set), F , for the biochip
given in Fig. 4. A shorter representation (using the vertices tra-
versed in the flow path) is chosen for clarity, for example, the flow
path FIn1,Mixer1 = (DIn1,S1 , DS1,Mixer1 ) is represented as F1 = (In1, S1,
Mixer1). Also, note that each flow path involving the storage reser-
voir (e.g., F7−x) represents a set of eight flow paths (F7−1 to F7−8),
i.e., one for each of the eight storage reservoirs. The routing con-
straints (as discussed in Section 2.1.2) extracted from the set are also
shown in Table 4. The first row in the routing constraints (F1 : F2
∨ F3 ∨ F4 ∨ F7 ∨ F24) shows that F1 cannot be executed in parallel
with F2, F3, F4, F7 and F24. Before scheduling the edge, the im-
plementation needs to evaluate if a flow path F ∈ F is sufficient to
bind the edge, or if a collection of flow paths (composite route) is
needed. For example, the edge e6,8, modeling the transport of the
output of O6(Mixer2) (operation O6 bound to component Mixer2) to
O8(Heater1), can be directly bound to the flow path F15 (Table 4).
The edge e5,7 models the output of O5(Heater1) being transported
to O7(Mixer3). However, there is no flow path F ∈ F that connects
Heater1 toMixer3. Therefore, a composite route (consisting of a col-
lection of flow paths) needs to be generated. The edge e5,7 is bound
to the composite route (F30−1, F26−1) as shown in Fig. 5b.
The fluid transport latencies, cF , associated with each flow path are

also listed in Table 4. For calculating the latencies, we abstract away
from absolute fluid volumes and utilize the concept of a unit fluid
volume instead (captured by metering as explained in Section 2.1.1).
Each fluidic I/O (input/output phase of a component) is characterized
by a volume weight wv, which is used to calculate the transport la-
tency of a certain flow path when utilized for that specific fluidic I/O.
Similarly, each component also has an associated capacity weight wc,
representing its volume capacity. For this example, we assume a vol-
ume weight of one for all fluidic I/Os. The capacity weight of all
microfluidic components is assumed to be the same as its number of
input phases, e.g., a mixer has two input phases, thus it has a capacity
weight equal to two. Also, a fluid with volume weight one occupies a
fixed channel length wl on the chip. For the example, we assume this
channel length to be equal to 10 mm.
The latencies for the flow paths have been calculated using a typ-

ical flow rate of 10 mm/s [9] and the chip dimensions of 5 mm be-
tween any two network vertices, Ni and Nj (termed as a segment),
with Ni, Nj ∈ N . For example, F1 = (In1, S1,Mixer1) traverses two
segments, i.e., In1 to S1 and S1 toMixer1, thus a total channel length

of 10 mm. With a flow rate of 10 mm/s, a fluid with volume weight
one (occupying a total channel length of 10 mm) would have a total
latency of 2 seconds from the time the fluid tip enters from In1 till
the fluid tail disappears into the mixer Mixer1. During the schedul-
ing phase, the storage requirement analysis needs to be performed as
well. This means that after completion of an operation, a decision on
whether the output fluid (analogous to the operand) should be moved
to the storage reservoir or not, needs to be made.

3.3 Problem Formulation
The problem addressed in this paper can be formulated as follows:

Given (1) a biochemical application modeled as a sequencing graph
G , (2) a biochip architecture modeled as a topology graph A , and
(3) a characterized component library L , we are interested in syn-
thesizing an implementation Ψ that minimizes the application com-
pletion time while satisfying the dependency, resource and routing
constraints. Synthesizing an implementation Ψ = <B , X> means de-
ciding on (1) the binding B of each operation Oi ∈ O to a component
Mj ∈ M , and each edge ei, j ∈ E to a flow path Fi, j ∈ F (or to a
composite flow path generated by the implementation), and (2) the
schedule X of the operations and the edges, which contains the start
time tstart of each operation Oi and edge ei, j on its corresponding
component and (composite) flow path.

4. LIST SCHEDULING-BASED SYNTHESIS
The problem can be considered equivalent to the resource con-

strained scheduling problem with non-uniform weights, which is NP-
complete [18]. We use a heuristic approach to solve the problem in
a computationally efficient manner. Fig. 6 shows the block diagram
of the proposed design methodology. In this paper, we focus on the
‘Synthesis’ box. It takes the biochemical application model and the
flow layer models of the biochip architecture and the biochip compo-
nents as input. As output, it produces the implementation Ψ which,
together with the control layer models of the flow path set, F , and
the on-chip components, is used to generate the control sequence for
executing the bioassay on the specified biochip.
The requirement of scheduling the routing together with the task

operations, while satisfying the routing constraints, makes the prob-
lem analogous to the communication contention aware scheduling in
parallel computing systems. Hence, we utilize the well-known List
Scheduling Algorithm (LS) [11] and extend it with contention aware-

230



Figure 6: Design Methodology

ness [14] by also scheduling the edges (E in G ) onto the communi-
cation channels during the synthesis process.
The schedule shown in Fig. 5b has been generated using our LS-

based synthesis algorithm shown in Fig. 7. The operations of the
biochemical application are topologically sorted based on the depen-
dency constraints. At each control step, operations are evaluated and
the ready ones are found (the operations whose predecessor opera-
tions have been completed). Each new control step marks an opera-
tion event generation, with the operation event being defined as the
completion of a scheduled operation. The list of ready operations is
prioritized using the urgency criteria. The urgency of an operation is
specified by the length of the longest path from the operation to the
sink, i.e., summing up the execution weights of the vertices and the
latency times for the edges. An average latency of 3 s is considered
per edge based on the biochip architecture given in Fig. 4. An aver-
age is used since it is unclear on which flow paths the edges would be
bound, unless binding of all operations has been completed (defining
the source and destination component for each edge). The urgency
value for O1 in Fig. 5a is 25. If the number of ready operations ex-
ceeds the number of available resources, the most urgent operations
(having higher urgency value) are scheduled and the remaining ones
are deferred.
We perform the implementation synthesis in two phases. In Phase-

I, we start off by binding the ready operations to the available re-
sources (line 5). The algorithm tries all possible bindings and chooses
the one that produces the shortest completion time for that operation.
For example after control step 5, both Mixer1 and Mixer3 are avail-
able as the mixing operation O7 is released, i.e., both its predecessor
operations O2 and O5 have been completed. As shown in Fig. 5b, O2
was bound toMixer3 and its output is still inside the mixer unit when
O7 is released (i.e., its output has not been moved to the storage unit).
The algorithm binds O7 to Mixer3 preventing the routing delay that
would have occurred had O7 been bound to Mixer1.
Next, we evaluate if a reservoir is required to store the output of the

operations that finished in the previous control step (line 6) and if so,
bind it to a particular reservoir. A storage reservoir is utilized only
(1) if the component to which the previous operation was bound is
needed for performing another operation and (2) the successor of the
previous operation is not scheduled during the current control step.
For example in Fig 5b, O4 (bound to Mixer3) was completed in con-
trol step 1. Its successor (O6) is not scheduled in control step 2 and
Mixer3 is needed to perform O2. Based on the above given criteria,
output of O4 is bound to the storage reservoir Res1 at the start of
control step 2.

BiochipSynthesis(G , A , L)
1 Initialize <B , Bo, X> to φ
2 while <all operations and edges are not scheduled> do
3 // Phase I: Bind Operations and Edges
4 while <all possible ready operations are not bound> do
5 Bo = BindOperations(G , A)
6 Bo = BindStorage(Bo, B , X )
7 Bo = GenRouteAndBindEdges(Bo, A , L)
8 end while
9 B = Record(Bo)
10 // Phase II: Schedule Operations and Edges
11 while <an operation event does not occur> do
12 X = ScheduleOperationsAndEdges(B , X , A)
13 Advance time to next event
14 end while
15 end while
16 return Ψ = <B , X>

Figure 7: Synthesis algorithm for flow-based biochips

Next we generate the routes (single flow path or composite route)
for performing these operations and bind the edges to the generated
routes (line 7). We start by fetching the phase information of the
components (e.g., Mixer3 for O4) from the library L (Table 2) and
bind the I/O phases (Ip1, Ip2, Op1, Op2) to the corresponding gen-
erated routes (e.g., F3 for Ip1 of Mixer3). If a route is not found, the
operation is deferred. The algorithm jumps back to line 5 in order
to modify the binding for the current control step (Bo), by binding
a low priority operation that was earlier deferred because of lack of
resources. Once the binding has been finalized, it is recorded into the
binding information B (line 9). More details about route generation
are given in Section 4.1.
In Phase-II (lines 11–14), we generate the schedule for the opera-

tions and the edges bound in Phase-I. Starting from the input edges
associated with the operation of the highest priority (based on the ur-
gency criteria, O4 in this case), we start scheduling the edges one by
one (here the first one is F3). In order to reduce the schedule length,
we try to schedule as many bound edges as possible in parallel. All
the ready edges that do not violate the routing constraints (listed in
Table 4) can be utilized in parallel. An edge is considered a ready
edge if it does not violate any inter- or intra-operation dependency
constraints. The inter-operation dependency constraints are given by
the application model G (e.g., O3 and O4 need to complete before
O6). The intra-operation dependency constraints means that the in-
puts of an operation and the operation itself need to be completed
before its outputs can be issued (e.g., F3, F6 and the mixing opera-
tion in Mixer3 need to complete before F22−1 and F19 can be sched-
uled). Multiple inputs for the same operation (F3, F6 for Mixer3)
are independent of each other and can be parallelized if the routing
constraints permit. The same is applicable to the multiple outputs.
Fig. 8 shows the schedule for the first control step (Fig. 5b shows

the complete schedule). Since O4 (bound on Mixer3) has the highest
priority, F3 is the first bound edge that is scheduled. None of the other
edges (bound to flow paths) in the ready set <F6, F2, F5, F1, F4> can
be scheduled in parallel with F3 because of the routing constraints
given in Table 4, thus F3 is scheduled alone as shown in Fig. 8. Once
all possible edges and operations are scheduled (only F3 in this case),
we advance time to the next event (operation event marking comple-
tion of an operation, or an edge event representing completion of an
edge execution) (line 13). An operation event triggers a new con-
trol step and the algorithm switches back to Phase-I, whereas an edge
event means that the next edge needs to be scheduled. Completion of
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Figure 8: Edge and operation events

F3 thus triggers an edge event. We schedule F6 (next edge in the high-
est priority operation O4) and try to optimize the schedule again (F2
can be scheduled in parallel with F6). The operations are scheduled
as soon as all their input edges have been executed (e.g., O4 after F3
and F6). When an operation finishes (e.g., O4 on Mixer3 in control
step 1) it triggers an operation event and the algorithm jumps back to
Phase-I.
The process is repeated until all operations/ edges are scheduled.

The implementation Ψ, consisting of binding B and scheduling X
information, is then returned (line 16).

4.1 Route Generation
GenRouteAndBindEdges (line 7) is used to generate the fluid route

from the selected source to the selected destination (e.g., from In1 to
Mixer1). If a flow path exists, then it binds the edge to that flow
path and returns the binding information. If the selected operation
has the selected source and destination such that no flow path exists
to route the fluid from the source to the destination (e.g., Heater1
→ Mixer3, control step 5–7 in Fig. 5b), then the algorithm searches
for a composite route, i.e., a route linking the desired source and
destination using more than one flow path.
If multiple composite routes exist, the shortest one (in terms of

cumulative latencies) is selected. For (Heater1 → Mixer3), the com-
posite route (Heater1 → Res1, Res1 → Mixer3) is selected. Note
that this requires all intermediate destinations (Res1 — reservoir 1 in
Storage−8 in the current case) to be available.
If no direct route is available and no composite route can be spec-

ified as well (e.g., intermediate destinations not available), then the
operation is deferred. Phase-I (lines 4–8) is repeated again to see
if any of the other low priority operations (that were not scheduled
earlier because of resource constraints) can now be scheduled in-
stead. Once all possible operations and edges are bound, the algo-
rithm switches to Phase-II.

4.2 Optimization
We try to reduce the schedule length by considering the impact of

fluid transport latencies on the routing constraints. As discussed in
Section 2, the flow paths that share vertices cannot be utilized in par-
allel. This also covers the shared-resource constraints, i.e., a resource
needs to be emptied before it can be reused. For example, as seen in
Table 4, input flow paths of component Heater1 (F10, F15, F20, F27)
cannot be executed before or in parallel with its output flow paths
(F30, F31), since Heater1 needs to be emptied (output of the previous

Table 5: Experimental Results
Appl. I/p O/p Mixer Heater Filter Detector Storage δG

Port Port Units
2 2 2 NR NR NR 3 42 s

PCR 3 3 3 NR NR NR 1 40.5 s
4 4 4 NR NR NR 2 34 s

IVD 2 2 2 NR NR 2 0 63 s
6 6 6 NR NR 6 0 21 s

SB 2 2 3 1 1 NR 1 56 s
4 8 7 2 1 NR 0 29.5 s

operation) before it can be reused. However, considering the flow-
rate (10 mm/s) and the fluidic unit volume (10 mm of the channel
length), we can see that Heater1 would be emptied within 1 s, i.e.,
after 1 s of the output flow path activation the fluid would be out of
Heater1 and traversing the segment Heater1 to S9. None of the input
flow paths of Heater1 have a latency of less than 1 s. This means that
the input and output flow paths of the heater can in fact be utilized
in parallel with each other. Same applies to all other resources in the
current chip as well, i.e., input flow paths of a resource can be utilized
in parallel with (but not before) the output flow paths of the same re-
source. The schedule in Fig. 5b considers this in order to reduce the
schedule length, e.g., for Mixer3 (between control step 1 and 2) F3
and F22−1 are executed in parallel.

5. EXPERIMENTAL EVALUATION
We evaluate our proposed approach by synthesizing two real life

assays and a synthetic benchmark onto different biochip architec-
tures. The algorithm was implemented in C++, running on Lenovo
T400s ThinkPad with Core 2 Duo Processors at 2.53 GHz and 4 GB
of RAM.
Table 5 shows our experimental results. Columns 2-7 present the

details of the architectures considered, in terms of input/ output ports,
number of mixers, heaters, filters, detectors and storage units, respec-
tively. The term NR in the table means that the component is not re-
quired for this application. The last column presents the completion
time δG , in seconds, on the particular architecture.
The first real-life assay is the PCR (polymerase chain reaction)

mixing stage that has 9 mixing operations and is used in DNA am-
plification [15]. We synthesize the assay on three different biochip
architectures varying the number of I/O ports and mixer units. Each
mixing operation is considered to have an execution time of 4 s on the
mixing units used in the biochips. As given in Table 5, increasing the
number of mixers and the I/O ports directly influences the application
completion time δG bringing it down to 34 s in the third architecture.
Multiplexed IVD (in-vitro diagnostics) has a total of 24 operations

and is used to test different fluid samples from the human body [15].
As given in Table 5, IVD is synthesized onto two different biochip ar-
chitectures. Each mixing operation is considered to have an execution
time of 4 s and the detection operation 7 s. As we can see, increasing
the number of mixers and detectors that can work in parallel, from 2
to 6, brings down δG from 63 s to 21 s.
The example application given in Fig. 5a is used as a synthetic

benchmark here and takes 56 s and 29.5 s on two different architec-
tures. All of the experiments presented in this section took less than
1 s of run time to complete.
Varying the number of resources directly influences the chip area

and also the schedule length. Chip area is an important parameter
for the chips that need to be placed in small chambers, e.g., under
microscopes for detection. Our methodology captures the design at
the top level and can be utilized by the designer to evaluate their
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Table 6: Results for Synthetic Benchmarks
Nodes I/p O/p Mixer Heater Filter Detector δG

Port Port
10 2 2 7 2 1 NR 31 s

1 1 7 2 1 NR 31 s
20 2 2 7 2 1 NR 38 s

1 1 7 2 1 NR 47 s
30 2 2 16 6 3 5 55 s

17 19 16 6 3 5 54 s
40 2 2 17 10 10 3 69.5 s

18 27 17 10 10 3 60 s

designed architectures and make design decisions at an early stage,
minimizing the design cycle time and associated cost.
In a final set of experiments we have evaluated our proposed method

using a set of four different synthetic benchmarks. The benchmark
applications are composed of 10 up to 40 operations. Table 6 shows
the details of the architectures considered and the respective applica-
tion completion times achieved. No storage units were utilized by the
applications in these experiments.
As shown in Table 6, we only vary the number of I/O ports in the

considered architectures and note the impact on the application com-
pletion time δG . For the 10 node application, reducing the number
of I/O ports from 2 to 1 has no influence on δG . However, when the
same architecture is used for a different 20 node application bench-
mark, the completion time increases by approximately 23 %, going
from 38 s to 47 s. For the 30 and 40 node applications, we first con-
sider only 2 input and 2 output ports. And in the next architecture, we
consider the optimal number of chip I/O ports, i.e., providing all the
inputs required from off-chip reservoirs in parallel. We get varying
results. For the 30 node application, increasing the I/O ports to the
optimal number produces a gain of approximately 2 % in the com-
pletion time (55 s to 54 s), where as, for the 40 node application, the
gain is slightly more significant, around 16 % (69.5 s to 60 s).
There are many factors that influence the application completion

time, e.g., component interconnection scheme, application operation
types and their sequence, operation execution times. The models
presented in this paper can be used to further explore the relation-
ships between these parameters, resulting in aiding design of optimal
application-specific biochip architectures.

6. CONCLUSIONS
In this paper we have presented a system-level modeling and syn-

thesis approach for flow-based microfluidic biochips. We have pro-
posed a topology graph-based model to capture the biochip architec-
ture and use a sequencing graph to model the biochemical applica-
tion. The proposed approach synthesizes a biochemical application
onto the specified biochip architecture with the application comple-
tion time minimization as the target objective. The synthesis process
involves performing binding and scheduling of operations together
with the routing (contention aware edge scheduling), while satisfying
the dependency and resource constraints. Two real-life case studies
and a set of four synthetic benchmarks have been synthesized on dif-
ferent architectures for validating the proposed approach. To the best
of our knowledge, this is the first time such a system-level framework
has been proposed for this type of chips. The proposed approach is
expected to reduce human effort, enabling designers to take early de-
sign decisions by being able to evaluate their proposed architecture,
minimizing the design cycle time and also facilitating programmabil-
ity and automation.
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