
System-Level Modeling and
Synthesis Techniques for

Flow-Based Microfluidic Very Large
Scale Integration Biochips

Wajid Hassan Minhass

Kongens Lyngby 2012

IMM-PHD-2012-286

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

To My Parents

Summary

Microfluidic biochips integrate different biochemical analysis functionalities on-
chip and offer several advantages over the conventional biochemical laboratories.
In this thesis, we focus on the flow-based biochips. The basic building block
of such a chip is a valve which can be fabricated at very high densities, e.g.,
1 million valves per cm2. By combining these valves, more complex units such
as mixers, switches, multiplexers can be built up and the technology is therefore
referred to as microfluidic Very Large Scale Integration (mVLSI).

The manufacturing technology for the mVLSI biochips has advanced faster than
Moore’s law. However, the design methodologies are still manual and bottom-
up. Designers use drawing tools, e.g., AutoCAD, to manually design the chip. In
order to run the experiments, applications are manually mapped onto the valves
of the chips (analogous to exposure of gate-level details in electronic integrated
circuits). Since mVLSI chips can easily have thousands of valves, the manual
process can be very time-consuming, error-prone and result in inefficient designs
and mappings.

We propose, for the first time to our knowledge, a top-down modeling and
synthesis methodology for the mVLSI biochips. We propose a modeling frame-
work for the components and the biochip architecture. Using these models,
we present an architectural synthesis methodology (covering steps from the
schematic design to the physical synthesis), generating an application-specific
mVLSI biochip. We also propose a framework for mapping the biochemical
applications onto the mVLSI biochips, binding and scheduling the operations
and performing fluid routing. A control synthesis framework for determining
the exact valve activation sequence required to execute the application is also
proposed. In order to reduce the macro-assembly around the chip and enhance
chip scalability, we propose an approach for the biochip pin count minimization.
We also propose a throughput maximization scheme for the cell culture mVLSI
biochips, saving time and reducing costs. We have extensively evaluated the

ii

proposed approaches using real-life case studies and synthetic benchmarks. The
proposed framework is expected to facilitate programmability and automation,
enabling the emergence of a large biochip market.

Resumé

Mikrofluidiske biochips integrerer forskellige funktionaliteter til biokemiske anal-
yser p̊a en chip og har adskillige fordele sammenlignet med konventionelle bioke-
miske laboratorier. I denne afhandling fokuserer vi p̊a flow-baserede biochips.
Den grundlæggende byggesten i s̊adan en chip er ventilen (størrelse: 6×6 µm2),
der kan fremstilles med en densitet p̊a 1 million ventiler pr cm2. Ved at kom-
binere disse ventiler kan man fremstille komplekse enheder som mixere, skiftere
og multipleksere og teknologien bliver derfor kaldt mikrofluidisk Very Large
Scale Integration (mVLSI).

Fremstillingsteknologien for mVLSI biochips har udviklet sig hurtigere end Moor-
e’s lov. Dog er designmetodologierne stadig manuelle og bottom-up. Designere
bruger tegneværktøjer, fx. AutoCAD, til manuelt at designe chippen. For at
køre eksperimenter bliver applikationen manuelt mapped p̊a chippens ventiler
(sammenligneligt med gate-level design i elektroniske ICs). Da mVLSI chips
nemt kan have tusindvis af ventiler kan denne manuelle process være meget
tidskrævende, tilbøjelig til fejl og resultere i ineffektive designs og mappings.

Vi foresl̊ar, for første gang s̊a vidt vi ved, en top-down modellerings og syntese
metodologi til mVLSI biochips. Vi foresl̊ar et modellerings framework for kom-
ponenterne og biochiparkitekturen. Ved brug af disse modeller præsenterer vi
en arkitektural syntesemetodologi (som dækker trinene fra det skematiske de-
sign til den fysiske syntese), hvilket resulterer i en applikationsspecifik mVLSI
biochip. Vi foresl̊ar ogs̊a et framework til at mappe den biokemiske applikation
p̊a mVLSI biochips, hvor vi binder og planlægger operationerne og router flu-
iderne. Et kontrolsynteseframework til at afgøre den præcise aktiveringssekvens
af ventilerne for at afvikle applikationen bliver ogs̊a foresl̊aet. For at reduc-
ere macro-assembly omkring chippen og forbedre skalerbarheden foresl̊ar vi en
metode til at minimisere pin count. Vi har evalueret de foresl̊aede metoder i
stor udstrækning ved brug af real-life case studies og syntetiske benchmarks.
Det foresl̊aede framework forventes at lette programmerbarhed og automation.

iv

Preface

This thesis was prepared at the Department of Informatics and Mathematical
Modelling, the Technical University of Denmark in partial fulfilment of the
requirements for acquiring the Ph.D. degree in engineering.

The thesis proposes a top-down synthesis methodology for the modeling and
synthesis of the flow-based microfluidic Very Large Scale Integration (mVLSI)
biochips. The work has been supervised by Associate Professor Paul Pop and
co-supervised by Professor Jan Madsen.

Kongens Lyngby, November 2012

Wajid Hassan Minhass

vi

Papers included in the thesis

• Wajid Hassan Minhass, Paul Pop and Jan Madsen. System-Level Model-
ing and Synthesis of Flow-Based Microfluidic Biochips.Proceedings of the
Compilers, Architecture, and Synthesis for Embedded Systems Conference
(CASES), pp. 225–234, 2011. Published.

• Wajid Hassan Minhass, Paul Pop, Jan Madsen, Mette Hemmingsen, Peder
Skafte-Pedersen and Martin Dufva. Cell Culture Microfluidic Biochips:
Experimental Throughput Maximization.Proceedings of the IEEE Inter-
national Conference on Bioinformatics and Biomedical Engineering (iCB-
BE), pp. 1–6, 2011. Published.

• Wajid Hassan Minhass, Paul Pop, Jan Madsen and Felician Stefan Blaga.
Architectural Synthesis of Flow-Based Microfluidic Large-Scale Integra-
tion Biochips. Proceedings of the Compilers, Architecture, and Synthesis
for Embedded Systems Conference (CASES), pp. 181–190, 2012. Pub-
lished.

• Wajid Hassan Minhass, Paul Pop and Jan Madsen. Synthesis of Biochem-
ical Applications on Flow-Based Microfluidic Biochips using Constraint
Programming.Proceedings of the IEEE Symposium on Design, Test, In-
tegration and Packaging of MEMS/MOEMS (DTIP), pp. 37–41, 2012.
Published.

• Wajid Hassan Minhass, Paul Pop, Jan Madsen and Tsung-Yi Ho. Con-
trol Synthesis for the Flow-Based Microfluidic Large-Scale Integration
Biochips. Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC), 2013. Published.

viii

• Wajid Hassan Minhass, Paul Pop and Jan Madsen.System-Level Modeling
and Application Mapping for Flow-Based Microfluidic Very Large Scale
Integration Biochips. In preparation for submission to IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD).

• Wajid Hassan Minhass, Paul Pop and Jan Madsen. Application-Specific
Architectural Synthesis for Flow-Based Microfluidic Very Large Scale In-
tegration Biochips. In preparation for submission to IEEE Transactions
on Very Large Scale Integration (VLSI) Systems.

• Wajid Hassan Minhass, Paul Pop, Jan Madsen and Tsung-Yi Ho.Control
Synthesis and Pin Count Minimization for Flow-Based Microfluidic Very
Large Scale Integration Biochips. In preparation for submission to Journal
on Emerging Technologies in Computing Systems (JETC).

Acknowledgements

I would like to start off by sending out a resounding thanks to my supervisors
Paul Pop and Jan Madsen for their exceptional guidance, invaluable close in-
volvement with the work and seemingly boundless patience. Their ability to
always find time to discuss ideas and give feedback, and to do so in the most
amicable manner, contributed dearly in the completion of the thesis work.

I would also like to thank my colleagues at ESE for the pleasant and creative
work environment. Special thanks to Elena Maftei, discussions with whom
helped me immensely in developing a much deeper understanding of the work.

Last but not least, I wish to extend my grand and deepest gratitude to my
parents, to whom this thesis is dedicated, my lovely wife and my siblings for
their love and continuous support, which served as a strong driving force.

x

Contents

Summary i

Resumé iii

Preface v

Papers included in the thesis vii

Acknowledgements ix

1 Introduction 1
1.1 Microfluidic Biochips . 1
1.2 Flow-based mVLSI Biochips . 3
1.3 Motivation . 7
1.4 Thesis Objectives and Contributions 11
1.5 Thesis Overview . 13

2 System Model 15
2.1 Biochip Architecture Model . 15
2.2 Biochemical Application Model 24
2.3 Benchmarks . 25
2.4 Summary . 32

3 Application Mapping 33
3.1 Related Work . 33
3.2 Contribution . 34
3.3 Application Mapping . 34
3.4 Constraint Programming-Based Strategy 37
3.5 List Scheduling-Based Strategy 41

xii Contents

3.6 Experimental Evaluation . 45
3.7 Summary . 48

4 Architectural Synthesis 51
4.1 Related Work . 51
4.2 Contribution . 52
4.3 Problem Formulation . 52
4.4 Biochip Architectural Synthesis 53
4.5 Synthesis Strategy . 58
4.6 Experimental Evaluation . 65
4.7 Summary . 67

5 Control Synthesis 69
5.1 Related Work . 69
5.2 Contribution . 71
5.3 Biochip Control Synthesis . 71
5.4 Synthesis Strategy . 78
5.5 Experimental Evaluation . 82
5.6 Summary . 84

6 Experimental Throughput Maximization for
Cell Culture Biochips 85
6.1 System Model . 88
6.2 Problem Formulation . 94
6.3 Experimental Throughput Optimization 97
6.4 Experimental Evaluation . 99
6.5 Summary . 101

7 Conclusions and Future Work 103
7.1 Conclusions . 103
7.2 Future Work . 105

A List of Notations 107

List of Figures

1.1 Publication Count Related to Microfluidics [11] 2
1.2 Microfluidic Biochips . 3
1.3 Flow-Based Valve and Switch . 4
1.4 Flow-Based Biochip for HIV Detection [29] 6
1.5 VLSI vs mVLSI Design Cycles 10
1.6 Design Methodology . 11

2.1 Flow-Based Biochip Architecture 16
2.2 Microfluidic Mixer . 17
2.3 Biochip Architecture . 20
2.4 Biochip Architecture . 21
2.5 Application Model . 25
2.6 Polymerase Chain Reaction (PCR) 26
2.7 In-Vitro Diagnostics (IVD) . 26
2.8 Colorimetric Protein Assay (CPA) 28
2.9 Synthetic Benchmark - 10 Operations 28
2.10 Synthetic Benchmark - 20 Operations 29
2.11 Synthetic Benchmark - 30 Operations 29
2.12 Synthetic Benchmark - 40 Operations 30
2.13 Synthetic Benchmark - 50 Operations 31

3.1 Illustrative Example . 35
3.2 Schedule . 36
3.3 Optimal Schedule . 38
3.4 Synthesis Algorithm for Flow-Based Biochips 42
3.5 Edge and Operation Events . 44

4.1 Biochip Application and Architecture Example 54

xiv List of Figures

4.2 Placement and Routing . 58
4.3 Schedule . 59
4.4 Allocation Example for Figure 4.1a 60
4.5 Schematic . 61
4.6 Physical Synthesis Algorithm for the Flow Layer 64

5.1 Microfluidic Multiplexer [55] . 70
5.2 Biochip Architecture Example . 73
5.3 Schematic View and Application Example 74
5.4 Example Schedule . 76
5.5 Synthesis Algorithm . 79
5.6 Colored Graph . 82
5.7 Complete Graph for Table 5.3 . 83

6.1 Biochip Platform and Architecture 87
6.2 PCR Biochip with AR = AC = 20 (Scale Bar 6.4 mm) [51] . . . 90
6.3 Cell Culture Chip: Schematic View 90
6.4 Motivational Example . 93
6.5 Optimization Strategy . 97
6.6 Initial Solution . 98

List of Tables

2.1 Mixer: Control Layer Model . 19
2.2 Component Library (L): Flow Layer Model 20
2.3 Flow Path Set (F) . 22
2.4 Routing Constraints K . 24

3.1 Allocated Components (M) . 35
3.2 Experimental Results: CP-Based Synthesis 46
3.3 Real-Life Assays: LS-Based Synthesis 47
3.4 Synthetic Benchmarks: LS-Based Synthesis 48

4.1 Allocated Components (U) . 54
4.2 Flow Path Set (F) and the Source-Sink Set 55
4.3 Routing Constraints (K) . 57
4.4 Design Rules . 57
4.5 Real-Life Applications . 65
4.6 Synthetic Benchmarks . 66

5.1 Biochip Flow Path Set (F), Control Layer Model and Routing
Constraints (K) . 72

5.2 Component Control Layer Model for Figure 5.2 75
5.3 Control Logic (η) Table - For Valves in Figure 5.3a 77
5.4 Experimental Results . 84

6.1 Flow Path Set (F) and the Routing Constraints (K) 91
6.2 Full Factorial Design . 100
6.3 Fractionally Factorial Design . 101

A.1 List of Notations . 107

xvi List of Tables

Chapter 1

Introduction

Microfluidics is the science of handling and manipulating very small volumes of
fluids that are in the sub-millimeter scale. It is a multidisciplinary field that
involves engineering, biotechnology, micro-technology and several others. Over
the last 10 years, more than 35,000 papers have been published on the topic of
microfluidics and the annual publication count is continuously on the rise [11]
(see Figure 1.1). According to the ISI Web of Science, these papers currently
receive over 65,000 citations per year (statistics for the citations in year 2011).
In addition, over 1,500 patents referring to microfluidics have been issued only in
USA [17]. It is evident that, in recent years, microfluidics has become a rapidly
emerging and engaging topic for both academia and industry.

1.1 Microfluidic Biochips

Microfluidic biochips integrate different biochemical analysis functionalities (e.g.,
dispensers, filters, mixers, separators, detectors) on-chip, miniaturizing the mac-
roscopic chemical and biological processes to a sub-millimetre scale [82]. These
microsystems offer several advantages over the conventional biochemical analyz-
ers, e.g., reduced sample and reagent volumes, speeded up biochemical reactions,
ultra-sensitive detection and higher system throughput, with several assays be-
ing integrated on the same chip [87].

2 Introduction

Figure 1.1: Publication Count Related to Microfluidics [11]

The roots of microfluidic technology go as far back as 1950s when the first
efforts were made to dispense nanolitre and picolitre volumes of liquids [54].
This later formed the basis of today’s ink-jet technology [46]. The year 1979 set
a milestone in terms of fluid propulsion within microchannels of sub-millimeter
cross-section by realizing a miniaturized gas chromatograph [80] on a silicon
wafer. By the early 1990s, several microfluidic structures, e.g., micropumps,
microvalves, had been realized by silicon micro-machining [50, 72]. This laid
the foundation for automating biochemical protocols by integrating microfluidic
structures and resulted in the advent of “micro total analysis systems” (µTAS)
[52], also called “lab-on-a-chip” [36] or simply “microfluidic biochips”.

There are several types of microfluidic biochip platforms, each having its own
advantages and limitations [54]. Based on how the liquid is manipulated on the
chip, biochips can be broadly divided into two types:

• Droplet-based biochips,

• Flow-based biochips.

In droplet-based biochips (also referred to as digital biochips) the liquid is ma-
nipulated as discrete droplets on a two dimensional array of electrodes [24, 79],
see Figure 1.2a. Several techniques have been proposed for on-chip droplet ma-
nipulation [31]. Electrowetting-on-dielectric (EWOD) [67] is one of the most
commonly used techniques. In EWOD, voltages are applied on the electrodes
in a predefined way and the droplet movement is achieved by creating/ collaps-
ing the electric field. The principle can be used to dispense droplets onto the
chip and route them on the electrodes [67]. Adjacent set of electrodes can be
combined together to form a virtual component, e.g., a mixer can be created by

1.2 Flow-based mVLSI Biochips 3

(a) Droplet-based Biochip [79] (b) Flow-based Biochip [16]

Figure 1.2: Microfluidic Biochips

grouping adjacent electrodes and moving the droplet around on these electrodes
in order to achieve mixing. Any set of electrodes can be used for this purpose
and therefore the chip is termed reconfigurable [24]. The same electrodes can
later be used for performing other operations as well, e.g., fluid transport, stor-
age. More components, e.g., detectors (photo-diodes), can be added to the chip
in order to achieve the desired functionality.

In this thesis, the focus is on the flow-based biochips, see Figure 1.2b. The fol-
lowing subsections explain the flow-based technology and its application areas.

1.2 Flow-based mVLSI Biochips

Flow-based biochips are manufactured using multilayer soft lithography. A
cheap, rubber-like elastomer (polydimethylsiloxane, PDMS) with good biocom-
patibility and optical transparency is used as the fabrication substrate [55].
Physically, the biochip can have multiple layers, but the layers are logically di-
vided into two types: flow layer (depicted in blue in Figure 1.3a) and the control
layer (depicted in red). The liquid in the flow layer is manipulated using the
control layer [55].

The basic building block of such a biochip is a valve (see Figure 1.3a), which
is used to manipulate the fluid in the flow layer as the valves restrict/ permit
the fluid flow. The control layer (red) is connected to an external air pressure

4 Introduction

(a) Microfluidic Valve

(b) Switch Configurations

Figure 1.3: Flow-Based Valve and Switch

source through the punch hole (called a control pin) z1. The flow layer (blue)
is connected to a fluid reservoir through a pump that generates the fluid flow.
When the pressure source is not active, the fluid is permitted to flow freely (open
valve). When the pressure source is activated, high pressure causes the elastic
control layer to pinch the underlying flow layer (point a in Figure 1.3a) blocking
the fluid flow (closed valve). A very thin membrane (<1µm2) is sandwiched
between the flow layer and the control layer providing flat geometry and hence
more stabilization to the valve. Because of their small size (6×6 µm2), these
valves can be fabricated at densities approaching 1 million valves per cm2 [23].
By combining several microvalves, more complex units such as switches, mixers,
micropumps, multiplexers, etc., can be built up, with hundreds of units being
accommodated on one single chip [54]. The technology is therefore referred to
as “microfluidic Very Large Scale Integration” (mVLSI) [23].

1.2 Flow-based mVLSI Biochips 5

One example of the valves combining to form a component is that of a switch
(a mixer formed by combining valves is shown in Section 2.1.1). As shown in
Figure 1.3b, a switch may consist of one valve (restricting/ allowing flow in a
channel) or may consist of more than one valve. Multiple valve switches are
present at the channel junctions and are used to control the path of the fluids
entering the switch from different sides. The fluid flow can be generated using
off-chip or on-chip pumps. The control layer can be placed both above and/ or
below the flow layer, creating “push-down” or “push-up” valves, respectively.
Connections to the external ports (fluidic ports and pressure sources) are made
by punching holes in the chip (gaining access to the flow and control layer by
creating flow pins and control pins) and placing external tubings (connected
to the external fluidic reservoirs through pumps or pressure sources) into the
punch holes [55]. All input ports are connected to the off-chip pumps.

The mVLSI technology allows integrating multiple varying complexity compo-
nents together in a seamless fashion (similar to digital electronics) in order to
create a highly complex design, without requiring the knowledge of detailed
properties of the manipulated liquids [55]. Using hundreds of thousands of mi-
crovalves, the chip provides exquisite control over its biological contents.

1.2.1 Application Areas

Since the advent of this technology, the designed chips have been used for a
variety of applications [35, 38, 40, 47, 53]. Some of these are discussed below:

• Drug Discovery: These chips allow massively-parallel, high throughput
testing of molecules, which is ideal for drug discovery. For example, in
order for the hepatitis C virus to proliferate, one of its proteins needs to
interact and bind with the RNA. The flow-based chip in [30] has been
used to screen over 1,200 small molecules to test if such a protein-RNA
interaction was inhibited and 14 such molecules were found. The results
were later used to develop a drug which is now in clinical trials. The same
strategy can be used for drug discovery for other diseases.

• Diagnostic Testing: The biochip shown in Figure 1.4 has been designed
for testing HIV and syphilis [29]. The chip is cheap, easy to use, requires
only micro-litres of the blood sample and it simultaneously tests for HIV
and syphilis giving out the result within 20 minutes. The chip has been
utilized successfully in Rwanda to test hundreds of locally collected human
samples. In this chip, microfluidic procedures of fluid handling and signal
detection (test does not require user interpretation of the signal) have been

6 Introduction

(a) HIV biochip (b) Reagent delivery on the chip

Figure 1.4: Flow-Based Biochip for HIV Detection [29]

integrated into a single, easy to use, point-of-care device that replicates
all the steps of the current state-of-the-art, at a lower material cost [29].

• Prenatal Screening: In the chip in [32], proof of concept studies for a chip
that can be used for non-invasive prenatal test (to test for chromosomal
abnormalities) has been reported. The mother’s blood is used to measure
the fetal DNA. This chip has been used to successfully identify cases of
trisomy 21 (Down syndrome), trisomy 18 (Edward syndrome) and trisomy
13 (Patau syndrome) [32]. A company, Verinata Health [18], was launched
earlier this year to make this technology available to general public. Many
other similar examples exist.

Microfluidic biochips can readily facilitate clinical diagnostics, especially imme-
diate point-of-care disease diagnosis. In addition, they also offer exciting appli-
cation opportunities in the realm of preventive individualized health-care, mas-
sively parallel DNA analysis, enzymatic and proteomic analysis, cancer and stem
cell research, and automated drug discovery [33, 82]. Utilizing these biochips
to perform food control testing, environmental (e.g., air and water samples)
monitoring and biological weapons detection are also interesting possibilities.

Medical industry is one of the primary beneficiaries of the advancements in
microfluidic biochips. The International Technology Roadmap for Semiconduc-
tors 2011 has listed “Medical” as a “Market Driver” for the future [10]. Many
companies related to biochips have already emerged in recent years and have

1.3 Motivation 7

reported significant profits. Major market players these days are Fluidigm Cor-
poration [7], Affymetrix Inc. [1], Agilent Technologies [2], Caliper Life Sciences
Inc. [5], GE Healthcare Ltd. [8], Illumina, Inc. [9], Life Technologies Corpora-
tion [13], among many others. According to the research report “Biochips: A
Global Strategic Business Report” released by Global Industry Analysts, Inc.
in March 2012, the global biochip market is expected to reach US $4.6 billion
by 2017 [4].

Next section presents the motivation behind our research. Section 1.4 summa-
rizes the thesis objectives and briefly outlines its contributions. An overview of
the thesis is presented at the end of this chapter.

1.3 Motivation

Currently, designers are using full-custom and bottom-up methodologies involv-
ing many manual steps to implement these chips and to run the experiments.
The following subsection gives a brief overview of the current practices.

1.3.1 Chip Design, Fabrication and Application Mapping

The mVLSI biochips are currently being designed manually using the drawing
Computer-Aided Design (CAD) programs, e.g., AutoCAD [3]. The biochip
foundries (Stanford [15], CalTech [12]) provide AutoCAD template files and a
set of design rules in order to initiate the design process. The designer does the
design manually by drawing lines representing microfluidic channels and circles
representing punch holes in the chip (for accessing flow and control layers). The
designer needs to have a complete understanding of the application in order to
design a chip that fulfils the requirements. At the same time, he also needs
to have the knowledge and skills of the chip design as it is his responsibility
to ensure that all design rules, e.g., channel thickness and height, height to
width aspect ratio, spacing between channels and punch holes, are satisfied as
he manually does the placement and routing on the chip. Doing the design
in this way is extremely time consuming and error-prone. Once the desired
microfluidic chip has been designed, the AutoCAD file is then sent to the foundry
for fabrication.

At the foundry, two separate molds (flow mold and control mold) are made using
conventional photo-lithography techniques. Next, in order to fabricate the chip

8 Introduction

(consider that the chip has push-down valves like the one shown in Figure 1.3a),
following steps are followed:

• Make Control Layer : PDMS is poured onto the control mold in order to
form a thick layer and it is then baked.

• Make Flow Layer : PDMS spinning is done onto the flow mold in order to
form a thin layer and it is then baked.

• Align Layers : Control layer PDMS is peeled off from the control mold
and is aligned on top of the flow layer on the flow mold. As shown in
Figure 1.3a, the control layer is aligned on top of the flow layer in order
ensure that the valve is formed at the right location. Note that a valve is
formed only at the intersection of the flow channel and the control channel,
provided that the area of intersection is large enough. Control channels
of smaller width can easily pass over the flow channels without forming
valves. It is the designer’s task to ensure that the control channel is of the
correct width in case a valve is desired.

• Bond Layers : The two layers are bonded together by further baking.

• Bond Device to a Flat Plate: The flow layer (that has the control layer
on top of it) is now peeled off from the flow mold and bonded and sealed
to a flat plate, typically a glass slide. Figure 1.3a shows the glass plate at
the bottom of the flow layer.

The punch holes are made in the chip using a special punching device (punch
hole locations are selected by the chip designer) in order to provide access to
the flow and control layers. If it provides access to the flow layer, it is called
a flow pin, and can be used as a fluid input or output port. The flow pins are
connected to off-chip fluid reservoirs. If the punch hole provides access to the
control layer, then it is called a control pin.

The control pins are connected to the off-chip pressure sources in order to control
the opening and closing of valves for executing the desired application on the
chip. Prof. Quake’s group at Stanford University [15] has developed a USB-
based valve control system to drive the valves in the chip from a computer
using LabView or Matlab. This means that the user has to manually map the
application onto the valves of the biochip (analogous to exposing the gate-level
details in electronic ICs) [81]. A chip can easily have thousands of valves (the
number of valves is rapidly increasing), therefore, the manual process is clearly
very tedious and for larger chips and applications, the process can easily result
in inefficient mappings. Also, the process needs to be repeated every time a
change is made either to the chip architecture or the biochemical application.

1.3 Motivation 9

As the chips grow more complex (commercial biochips are available which use
more than 25,000 valves and about a million features to run 9,216 polymerase
chain reactions in parallel [66]) and the need of having multiple and concurrent
assays on the chip becomes more significant, these manual, bottom-up method-
ologies become highly inadequate. Therefore, new top-down design methodolo-
gies and design tools are needed in order to successfully manage the increase
in design complexity. The electronic VLSI circuits have benefited heavily from
design automation and the electronic designers today work as conveniently on
the billion transistor multi-core processors as they did on the Intel 4004 proces-
sor with only 2,250 transistors in the early days. The CAD support for mVLSI
biochips is expected to enable the emergence of a large biochip market.

1.3.2 Related Work

In academia, significant amount of work has been carried out on the individual
microfluidic components [49, 54]. The manufacturing technology, soft lithog-
raphy, used for the flow-based biochips has advanced faster than Moore’s law
[39]. Although biochips are becoming more complex everyday, Computer-Aided
Design (CAD) tools for these chips are still in their infancy. Most CAD research
has been focussed on device-level physical modeling of components [43, 73].

Significant work on top-down synthesis methodologies for droplet-based biochips
has been proposed [24, 68]. However, the architecture of the droplet-based
chips differs significantly from the flow-based chips. In the flow-based biochips,
components of different types (e.g., mixers, heaters) are physically designed
on the chip and connected to each other using microfluidic channels. Once
fabricated, the number and type of the components, their placement scheme
on the chip and the routing interconnections cannot be modified [55]. Droplet-
based biochips (as discussed in Section 1.1), however, use the idea of virtual
components and are reconfigurable. Because of the architectural differences,
the models and techniques proposed for the digital biochips are not applicable
to their flow-based counterparts.

The industry has gotten around the limited CAD tools problem by limiting
the number of chips that they design and using them for multiple applications
(Fluidigm Corporation has only 4 chip designs [6]). The soft lithography based
fabrication process is, however, cheap and has a fast turn around time [55],
pointing to having application-specific chips capable of providing higher effi-
ciency instead of doing a multi-purpose design.

Figure 1.5 shows the typical electronic VLSI and mVLSI design cycles. Given
the system specifications (e.g., application requirements, chip area), the mVLSI

10 Introduction

Figure 1.5: VLSI vs mVLSI Design Cycles

design starts by designing the schematic of the required biochip. This is fol-
lowed by the physical synthesis of the flow layer, i.e., placement of components
and routing of flow channels while following the design rules. After the flow
channels have been routed, the channel lengths and therefore the routing la-
tencies for the fluids that traverse these channels can now be calculated. Next,
the given biochemical application is mapped onto this biochip architecture and
the optimized schedule for its execution is generated. Based on the schedule,
the control information (which valves to open and close at what time and for
how long) can now be extracted. Optimization schemes can be used to share
control pins between valves reducing the macro-assembly around the chip. Since
the number of control pins and their sharing between valves is now known, the
control layer can now be routed. Once the routing is complete, the chip design
is ready to be sent for fabrication.

The details of the related work, with respect to each of the design tasks described
above, are discussed in the respective chapters.

1.4 Thesis Objectives and Contributions 11

1.4 Thesis Objectives and Contributions

In order to obtain a scalable, top-down approach for the design of mVLSI
biochips, the foremost step is to devise models for the biochip components,
the biochip architecture as well as the biochemical applications that need to be
executed on the chip. These models should be such that the design problems of
synthesizing the biochip architectures, mapping of the biochemical applications
to the mVLSI biochips and synthesizing the control for automatically executing
the application on the designed biochip can be easily formulated. These models
and the design problem formulations are the primary contribution of this thesis.

Figure 1.6 shows our proposed design methodology. Our contributions are briefly
outlined below:

• Modeling and Simulation

We propose a dual-layer modeling framework for the mVLSI components.
The model captures the component operations at the flow layer as well
as the control layer valve activations that are needed in order to execute
these operations [59, 58] (the box “Component Library” in Figure 1.6).
We propose a topology graph-based model for the mVLSI biochips that
captures the chip components, their interconnections, the fluid flow paths
on the chip and also the routing constraints. These models are used in
all phases of the design methodology in Figure 1.6. For the biochemical
applications we use a sequencing graph model (similar to the one used in

Figure 1.6: Design Methodology

12 Introduction

the digital biochips [78]), see box “Biochemical Application Model” in
Figure 1.6. We have also developed simulators and editors based on these
models [62, 70].

• Application Mapping

Using our proposed models, we address the problem of mapping the bio-
chemical application onto the mVLSI biochip [59, 58], see box “Application
Mapping” in Figure 1.6. We propose a constraint programming (CP) [45]
framework which, given a biochemical application and a biochip architec-
ture, determines an optimal solution (in terms of application completion
time) for the binding and scheduling of the biochemical operations onto
the given biochip, without considering routing. We also propose a bind-
ing and scheduling heuristic that takes the fluidic routing and channel
contention into account, while aiming to generate an optimized mapping.
To the best of our knowledge, this is the first time that an application
mapping framework is being proposed for the mVLSI biochips.

• Architectural Synthesis

We propose a top-down architectural synthesis methodology for the mVLSI
microfluidic biochips [61, 57]. Given a biochemical application, a microflu-
idic component library and the chip area, the architectural synthesis (as
shown in Figure 1.6) consists of the following three steps: (i) allocation of
components from a given library, and performing the schematic design in
order to generate the netlist, the biochip (ii) flow layer physical synthesis,
i.e., deciding the placement of the microfluidic components on the chip
and performing routing of the microfluidic flow channels on the available
routing layers creating component interconnections and the (iii) control
layer physical synthesis, i.e., deciding the placement of control pins and
routing the control channels in order to connect the valves to the con-
trol pins. To the best of our knowledge, this is the first time that the
architectural synthesis framework for these chips is being proposed.

• Control Synthesis

We propose a top-down control synthesis framework for implementing bio-
chemical applications on mVLSI biochips [65, 64]. As shown in Figure 1.6,
given a biochip architecture and the mapping implementation of a bio-
chemical application on the biochip architecture, control synthesis consists
of the following two steps: (i) control logic generation and, (ii) control pin
count minimization. Control logic generation means determining which
valves need to be opened or closed, in what sequence and for how long,
in order to execute the application on the chip. We utilize the output
of control logic generation step and perform the control pin count mini-
mization by sharing the control pins between multiple valves. To the best

1.5 Thesis Overview 13

of our knowledge, this is the first time an approach for the control logic
generation for the mVLSI biochips is being proposed.

Different objective functions can be used for these design tasks. Minimizing
the application completion time is a useful objective function since it minimizes
the effects of environmental variations on the executing application and is also
directly relevant for the clinical diagnostics and environmental monitoring ap-
plications. Minimizing the chip design area (e.g., to fit it under a microscope)
or to minimize the number of control pins (to minimize the macro-assembly
surrounding the chip) are also realistic objective functions. Each chapter in the
thesis mentions its targeted objective function.

In addition to the above mentioned design tasks, we also address the problem
of maximizing the throughput of cell culture microfluidic biochips [63]. These
chips can simultaneously perform multiple experiments and their throughput is
defined as the number of non-repeating experiments performed on the chip. We
propose a strategy to maximize the number of experiments, saving cost both in
terms of time and money (the cell culture experiments are extremely expensive
to perform and it takes many days to complete one experiment).

The modeling and synthesis approach proposed is aimed at facilitating pro-
grammability and automation, reducing human effort and minimizing the design
cycle time. The target is also to decouple the development of complex bioassays
from the chip design and implementation process, allowing users to focus on
applications. The automated design flow is expected to be an enabler for the
biochip domain in the same manner as it has been for the electronic ICs in the
last three decades.

1.5 Thesis Overview

The thesis is organized in seven chapters. A brief summary of these chapters is
as follows:

Chapter 2 presents the details of the proposed models. It starts off by pre-
senting some basic concepts related to the mVLSI biochip architecture, followed
up by the details of the proposed component and architecture models. The
application model used is also introduced in this chapter.

Chapter 3 describes the application mapping problem. It discusses the pre-
vious state-of-the-art and our contribution to this design task. A constraint
programming-based optimal solution approach as well as a List Scheduling-based

14 Introduction

binding and scheduling heuristic are described here in detail. The proposed al-
gorithms are evaluated and the results are presented.

Chapter 4 provides the details of the mVLSI architectural synthesis problem.
The problem is formulated after discussing the prior work at the start of the
chapter. All the design tasks are explained in detail and then our synthesis
strategy is presented. The synthesis process involves component allocation,
design schematic generation, and the physical synthesis (placement and routing)
of the chip. The proposed strategy is experimentally evaluated using real-life as
well as synthetic benchmarks.

Chapter 5 presents the control synthesis problem in detail. Previous research
is discussed at the start followed by the problem formulation. Our algorithm
generates the control logic needed to execute the application and uses a Tabu
Search-based optimization in order to minimize the control pin count. The
approach is evaluated and the results are presented.

Chapter 6 is dedicated to the cell culture microfluidic biochips. It starts by
explaining the architecture of the cell culture biochips and our modeling frame-
work. The problem of throughput maximization for cell culture biochips is for-
mulated using a detailed motivational example. This is followed by a discussion
of our proposed solution strategy and the experimental evaluation.

The thesis is summed up by presenting the conclusions and the future work
options in Chapter 7.

Chapter 2

System Model

We propose a topology graph-based system-level model of a biochip architecture,
that is independent of the underlying biochip implementation technology. We
also propose a dual-layer component model and have created a microfluidic
component library.

2.1 Biochip Architecture Model

Figure 2.1a shows the schematic view of a flow-based biochip with 4 input ports
and 3 output ports, 1 mixer, 1 filter, 1 detector and 8 control pins (shown in red).
Figure 2.1b shows the functional view of the same chip. All fluid samples inside
the chip occupy a fixed unit length (or a multiple of it) on the flow channel, i.e.,
the fluid samples have discretized volumes. Unit length samples are obtained by
a process called metering, carried out by transporting the sample between two
valves that are a fixed length apart [85]. In general, the chip is filled with a filler
fluid (e.g., immiscible oil) and the fluid samples are emulsified in the filler fluid.
As emulsions, the samples do not touch the channel walls directly (preventing
cross-contamination) and can be moved over long channel lengths of any shape
while retaining their content [85].

16 System Model

(a) Biochip: Schematic View (b) Biochip: Functional View

Figure 2.1: Flow-Based Biochip Architecture

In order to make a fluid sample flow on the chip (e.g., Filter to the Mixer in
Figure 2.1a):

• The point of fluid sample origin (Filter) needs to be connected to a pump
(on-chip or off-chip) for generating the flow. All chip input ports are
generally equipped with an off-chip pump and the filler fluid reservoirs.
As shown in Figure 2.1a, the closest pump from the Filter is the off-chip
pump connected to the input port In1. We term the flow starting point
as the source (In1 in this case).

• The fluid sample destination point (Mixer) needs to be connected to a
fluidic output port (sink, e.g., Out1).

• A path for the fluid flow needs to be established from the source to the
sink using the microfluidic valves.

• The desired flow (Filter to Mixer) can then be achieved by activating
the pump.

For the Filter to Mixer flow in Figure 2.1a, the path is established by closing
the valve set v1, v3, v6 and v7, while the valve set v2, v4, v5 and v8 is kept open
(the path is shown in black in Figure 2.1a). The entire path already contains
the filler fluid and the sample emulsified in the filler fluid is now present inside
the Filter. A pumping action at the source (In1) then creates a filler fluid
flow towards the sink (Out1). The emulsified sample flows with the filler fluid
from the Filter towards the Mixer. The pumping action is stopped once the

2.1 Biochip Architecture Model 17

Figure 2.2: Microfluidic Mixer

fluid sample reaches its destination (the green path in Figure 2.1a shows the
flow of the sample). While the sample flows from the Filter to the Mixer, the
established path (including the source, sink points) is reserved and cannot be
used for any other flows.

2.1.1 Component Model

Consider the pneumatic mixer [25] in Figure 2.2a which is implemented using
nine microfluidic valves, v1 to v9. Figure 2.2b shows the conceptual view of the
same mixer. The valve set {v4, v5, v6} acts as an on-chip pump. The valve set
{v1, v2, v3} is termed as switch S1 and the valve set {v7, v8, v9} as switch S2.
The two switches facilitate the inputs and outputs, and the pump is used to
perform the mixing. The mixer output can either be sent to the waste or to the
other components in the chip using the switch S3, as shown in Figure 2.2a.

The mixer has five operational phases. The first two phases represent the input
of two fluid samples that need to be mixed, followed by the mixing phase. The

18 System Model

mixed sample is then transported out of the mixer in the last two phases. For
the first fluidic input (phase Ip1, depicted in Figure 2.2a), valves v1, v2, v7 and
v8 are opened (together with v4, v5, v6), the pump at the Input is activated and
the liquid fills in the upper half of the mixer.

Note that the fluid samples that are to be mixed do not need to occupy the
full channel length from the Input to the upper half of the mixer. Rather
each sample occupies a certain length on the flow channel. As described in
the previous section, the process of measuring the length of each fluid sample
is called metering and is carried out by transporting the sample between two
valves that are a fixed length apart [85].

In Figure 2.2a, the mixer output is connected to a waste outlet making a closed
loop (for the filler fluid to flow in) from the input to the waste outlet. The filler
fluid flows in from the input, goes through the mixer and into the waste outlet.
The emulsified sample flows with the filler fluid and reaches the mixer. Once
the top half is filled, the valves v7 and v2 close, stopping the filler fluid flow and
blocking the fluid sample in the upper half of the mixer. Since we know the
flow rate (mm/s) and the sample volume (in mm, measured in terms of length
through metering), the time until the mixer gets filled can be easily calculated.
Therefore, an optical feedback is not necessary in order to activate the valves.

In the next phase Ip2, the second fluid sample fills the lower half of the mixer
(Figure 2.2c(i)). Once both halves are filled, the mixer input and output valves
(v1 and v8) are closed while valves v2, v3, v7, v9 are opened and the mixing
operation is initiated (Figure 2.2c(ii)). Valve set {v4, v5, v6} acts as a peristaltic
pump. Closing valve v4 inserts some pressure on the fluid inside the mixer,
closing valve v5 creates further pressure, then as valve v6 is closed valve v4 is
opened again. This forces the liquid to rotate clockwise in the mixer. The valves
are closed and opened in a sequence such that the liquid rotates at a certain
speed accomplishing the mixing operation. Next, in phase Op1 (Figure 2.2c(iii)),
half of the mixed sample is pushed out of the mixer towards the rest of the chip
and in Op2 (Figure 2.2c(iv)), the other half is transported to the waste.

Using pressurized microfluidic valves in the control layer is the most commonly
utilized control method for the flow-based biochips. However, microfluidic com-
ponents equipped with alternate control techniques (e.g., electro-osmotic, elec-
trokinetic) have also been developed [49]. In order to have a unified design
methodology covering several underlying technologies, it is imperative to model
the component implementation technology details separately from its opera-
tional capabilities.

We propose a dual-layer component modeling framework, consisting of a flow
layer model and a control layer model. The flow layer model (P , C,H) of each

2.1 Biochip Architecture Model 19

Table 2.1: Mixer: Control Layer Model
Phase v1 v2 v3 v4 v5 v6 v7 v8 v9
1. Ip1 0 0 1 0 0 0 0 0 1
2. Ip2 0 1 0 0 0 0 1 0 0
3. Mix 1 0 0 Mix Mix Mix 0 1 0
4. Op1 0 0 1 0 0 0 0 0 1
5. Op2 0 1 0 0 0 0 1 0 0

component M is characterized by a set of operational phases P , execution time
C and the component geometrical dimensions H . The control layer model cap-
tures the valve actuation details required for the on-chip execution of all op-
erational phases of a component. For example, Table 2.1 presents the control
layer model of a pneumatic mixer, as presented in Figure 2.2, whose flow layer
model is characterized by the first row in Table 2.2. In Table 2.1, the valve ac-
tivation for each phase is shown, ‘0’ representing an open and ‘1’ a closed valve.
The status ‘Mix’ shown for the valve set {v4, v5, v6} on line 4 of Table 2.1
represents the mixing step in which these valves are opened and closed in a
specific sequence to achieve mixing. Microfluidic platforms are equipped with a
controller that manages all on-chip control, i.e., issuing signals to on-chip com-
ponents for executing a biochemical application, performing data acquisition
and signal processing operations [49]. The control layer model of a component
contains all the details required by the biochip controller.

Table 2.2 shows the component model library L = M(P , C. H) of eight com-
monly utilized microfluidic components [49, 21]. The geometrical dimensions
H are given as length×width and are scaled, with a unit length being equal
to 150µm, i.e., a length of 10 in Table 2.2 corresponds to 1500µm. Storage
unit dimensions are for a storage with 8 reservoir channels and the multiplexer
dimensions are for a 1-to-8 or 8-to-1 multiplexer. Multiplexers and their usage
is discussed in detail in Chapter 6. The different operational phases listed for
a component may or may not be executable in parallel depending on how the
component is implemented, e.g., the mixer presented here has only one input
port to receive both the input fluids, thus only one input phase can be activated
at a time.

2.1.2 Architecture Model

The research carried out for modeling the microfluidic architecture has been
focused on the device-level physical models [43, 73]. We propose a system-level
model based on a topology graph in order to capture the biochip architecture.

20 System Model

Table 2.2: Component Library (L): Flow Layer Model
Exec.

Component Phases (P) Time (C) H
Mixer Ip1/ Ip2/ Mix/ Op1/ Op2 0.5 s 30×30
Filter Ip/ Filter/ Op1/ Op2 20 s 120×30

Detector Ip/ Detect/ op 5 s 20×20
Separator Ip1/ Ip2/ Separate/ Op1/ Op2 140 s 70×20
Heater Ip/ Heat/ Op 20◦C/s 40×15

Metering Ip/ Met/ Op1/ Op2 - 30×15
Multiplexer Ip or Op - 30×10
Storage Ip or Op - 90×30

Figure 2.3: Biochip Architecture

Consider the biochip architecture shown in Figure 2.3. The chip has two in-
puts, two outputs and is equipped with three mixers, one heater, one filter and
eight storage reservoirs, i.e., the component ‘Storage-8’ contains eight reservoirs,
Res1–Res8. The biochip architecture is modeled as a topology graph A = (N ,
S, D, F , K, c), where N is a finite set of vertices, S is a subset of N , S ⊆ N , D
is a finite set of directed edges, F is a finite set of flow paths and K is a finite set
of routing constraints. A vertex N ∈ N has two distinguished types: a vertex
S ∈ S represents a switch (e.g., S1 in Figure 2.3), whereas a vertex M ∈ N ,
/∈ S, represents a component or an input/output node (e.g., Mixer1 and In1,
respectively, in Figure 2.3). A directed edge Di,j ∈ D represents a directed com-
munication channel from the vertex Ni to vertex Nj , with Ni, Nj ∈ N (e.g.,
DIn1,S1

represents a directed link from vertex In1 to vertex S1). A flow path, Fi

∈ F , is a subset of two or more directed edges of D, Fi ⊆ D, |Fi| > 1, represent-
ing a directed communication link between any two vertices ∈ N using a chain
of directed edges of D (e.g., FIn1,Mixer1 = (DIn1,S1

, DS1,Mixer1) represents a

2.1 Biochip Architecture Model 21

Figure 2.4: Biochip Architecture

directed link from vertex In1 to vertexMixer1). A routing constraint, Ki ∈ K,
is a set of flow paths that are mutually exclusive with the flow path Fi ∈ F ,
i.e., none of the flow paths in the set can be activated in parallel. For example,
F1 and F3 in Figure 2.3 are mutually exclusive as they share the vertices In1

and S1. The function c(y), where y is either a directed edge D ∈ D or a flow
path Fi ∈ F , represents its routing latency (time required by a fluid sample to
traverse y).

The set of flow paths F is the set of permissible flow routes on the biochip. The
flow path starts from a point of fluid sample origin and ends at the fluid sample
destination point. These flow paths are specified by the biochip designer but
can be easily extracted from the chip architecture as well, if all pump locations,
filler fluid inlet and waste outlet locations are known. As discussed earlier, in
order for a route to be permissible on the chip (e.g., Figure 2.3., flow from chip
input In1 to the mixerMixer1, FIn1,Mixer1 = (DIn1,S1

, DS1,Mixer1)), the point
of flow origin (In1) needs to be connected to a pump (and a filler fluid reservoir)
and the point of destination (Mixer1) needs to be connected to a waste output.

In Figure 2.4, Mixer1 and Heater1 are provided with external filler fluid inlets
(P1, P2) connected to external pumps and waste outlets (W1, W2). An external
fluid sample can now be brought into Mixer1 (In1 to Mixer1) using In1 as
the source point for the flow and W1 as the sink point, forming the complete
source-sink path (In1, S1, Sa, Mixer1, Sb, W1), depicted in blue in Figure 2.4.
Similarly, moving the fluid sample out ofMixer1 and in to Heater1 can be done
using the oil inlet P1 as the source point and the waste outlet W2 as the sink
point. The flow path is from Mixer1 to Heater1 (this is the path that the fluid
sample travels) and the complete source-sink path (closed loop paths for the
filler fluid that allows the fluid sample to flow on the chip) is (P1, Sa, Mixer1,
Sb, S5, Sc, Heater1, Sd, W2), shown in red in Figure 2.4.

Providing such an independent connection (of filler fluid inlets, pumps and waste
outlets) to every vertex requires a huge macro-assembly around the chip. There-
fore, only a limited number of vertices are provided with these connections, lim-
iting the number of allowed flows on the chip. The allowed flows are captured

22 System Model

Table 2.3: Flow Path Set (F)
F1 = (In1, S1, Mixer1), 2 s
F2 = (In1, S1, S2, Mixer2), 2.5 s
F3 = (In1, S1, S2, S3, Mixer3), 3 s
F4 = (In2, S4, S3, S2, S1, Mixer1), 3.5 s
F5 = (In2, S4, S3, S2, Mixer2), 3 s
F6 = (In2, S4, S3, Mixer3), 2.5 s
F7−x = (In1, S1, S2, S3, S4, Storage-8), 3.5 s
F8−x = (In2, S4, Storage-8), 2 s
F9 = (Mixer1, S5, Out2), 2 s
F10 = (Mixer1, S5, Heater1), 2 s
F11 = (Mixer1, S5, S6, S7, Filter1), 3 s
F12−x = (Mixer1, S5, S6, S7, S8, Storage-8), 3.5 s
F13 = (Mixer1, S5, S6, S7, S8, S10, Out1), 4 s
F14 = (Mixer2, S6, S5, Out2), 2.5 s
F15 = (Mixer2, S6, S5, Heater1), 2.5 s
F16 = (Mixer2, S6, S7, Filter1), 2.5 s
F17−x = (Mixer2, S6, S7, S8, Storage-8), 3 s
F18 = (Mixer2, S6, S7, S8, S10, Out1), 3.5 s
F19 = (Mixer3, S7, S6, S5, Out2, 3 s
F20 = (Mixer3, S7, S6, S5, Heater1), 3 s
F21 = (Mixer3, S7, Filter1), 2 s
F22−x = (Mixer3, S7, S8, Storage-8), 2.5 s
F23 = (Mixer3, S7, S8, S10, Out1), 3 s
F24−x = (Storage-8, S4, S3, S2, S1, Mixer1), 3.5 s
F25−x = (Storage-8, S4, S3, S2, Mixer2, 3 s
F26−x = (Storage-8, S4, S3, Mixer3), 2.5 s
F27−x = (Storage-8, S8, S7, S6, S5, Heater1), 3.5 s
F28−x = (Storage-8, S8, S7, Filter1), 2.5 s
F29−x = (Storage-8, S8, S10, Out1), 2.5 s
F30−x = (Heater1, S9, S10, S8, Storage-8), 3 s
F31 = (Heater1, S9, S10, Out1), 2.5 s
F32−x = (Filter1, S9, S10, S8, Storage-8), 3 s
F33 = (Filter1, S9, S10, Out1), 2.5 s

by the set of flow paths F . Table 2.3 shows a possible flow path set (permissible
route set), F , for the biochip given in Figure 2.3. A shorter representation (us-
ing the vertices traversed in the flow path) is chosen for clarity, for example, the
flow path FIn1,Mixer1 = (DIn1,S1

, DS1,Mixer1) is represented as F1 = (In1, S1,
Mixer1). Also, note that each flow path involving the storage reservoir (e.g.,
F7−x) represents a set of eight flow paths (F7−1 to F7−8), i.e., one for each of
the eight storage reservoirs. Each route (flow path) has an associated control

2.1 Biochip Architecture Model 23

layer model that contains the details required for its utilization, i.e., the switch
sequence and the pump activation details.

The fluid transport latencies, c(F), associated with each flow path are also listed
in Table 2.3. For calculating the latencies, we abstract away from absolute
fluid volumes and utilize the concept of a unit fluid volume instead (captured
by metering as explained in Section 2.1.1). Each fluidic I/O (input/output
phase of a component) is characterized by a volume weight wv, which is used
to calculate the transport latency of a certain flow path when utilized for that
specific fluidic I/O. Similarly, each component also has an associated capacity
weight wc, representing its volume capacity. For this example, we assume a
volume weight of one for all fluidic I/Os. The capacity weight of all microfluidic
components is assumed to be the same as its number of input phases, e.g., a
mixer has two input phases, therefore it has a capacity weight equal to two.
Also, a fluid with volume weight one occupies a fixed channel length wl on the
chip. In the thesis, we assume this channel length to be equal to 10 mm.

The latencies for the flow paths have been calculated using a typical flow rate
of 10 mm/s [49] and the chip dimensions of 5 mm between any two network
vertices, Ni and Nj (termed as a segment), with Ni, Nj ∈ N . For example,
F1 = (In1, S1,Mixer1) traverses two segments, i.e., In1 to S1 and S1 toMixer1,
thus a total channel length of 10 mm. With a flow rate of 10 mm/s, a fluid with
volume weight one (occupying a total channel length of 10 mm) would have a
total latency of 2 seconds from the time the fluid tip enters from In1 till the
fluid tail disappears into the mixer Mixer1.

Analogous to a circuit-switched network, when a flow path gets activated, the
entire route (from the source to the sink) is reserved until the completion of
the fluid transfer. This imposes routing constraints on the chip. All those flow
paths in the set F that have a network vertex Ni in common in their source-
sink paths are considered as mutually exclusive, i.e., the routes represented by
these flow paths can only be utilized in a serialized fashion. For example in
Figure 2.3, FIn1,Mixer1 and FIn1,Mixer2 are mutually exclusive as they share the
vertices In1 and S1. The routing constraints associated with the flow path set
in Table 2.3 are shown in Table 2.4. The first row in the routing constraints
(K1 : (F2, F3, F4, F7, F24)) shows that F1 cannot be executed in parallel with
F2, F3, F4, F7 and F24.

Since fluid samples are expendable and cannot be reused limitless number of
times (unlike the operands in computers), the fluid volumes need to be managed
inside the chip. Researchers have proposed methods for carefully distributing the
liquid volume, preventing overflow and underflow of the fluid samples [20]. We
assume that the designer does this beforehand while designing the biochemical
application, ensuring that both overflow and underflow are avoided.

24 System Model

Table 2.4: Routing Constraints K
K1 : (F2, F3, F4, F7, F24)
K2 : (F1, F3, F4, F5, F7, F24, F25)
K3 : (F1, F2, F4, F5, F6, F7, F24, F25, F26)
K4 : (F1, F2, F3, F5, F6, F7, F8, F24, F25, F26)
K5 : (F2, F3, F4, F6, F7, F8, F24, F25, F26, F27)
K6 : (F3, F4, F5, F7, F8, F24, F25, F26)
K7−x : (F1, F2, F3, F4, F5, F6, F8 , F24, F25, F26)
...
K33 : (F13, F18, F23, F29, F30, F31, F32)

2.2 Biochemical Application Model

Biochemical applications have traditionally been described through a sequence
of steps given in free-flowing English-language text. Such descriptions are often
ambiguous and incomplete and are not adequate for automation of biochemical
protocols. Researchers have proposed standardizing programming languages in
order to express biochemical applications [22].

We model a biochemical application using a sequencing graph [88]. Real-life
assays can be converted to this model using [22]. The graph G(O, E) is directed,
acyclic and polar (i.e., there is a source vertex that has no predecessors and a
sink vertex that has no successors). Each vertex Oi ∈ O represents an opera-
tion that can be bound to a component using a binding function B : O → M.

Each vertex has an associated weight C
Mj

i , which denotes the execution time
required for the operation Oi to be completed on componentMj . The execution
times provided in Table 2.2 are of the actual functional phase (given in bold in
the table, e.g., Mix). These execution times are taken as the typical execution
times for the said component types, i.e., typical mixing time is 0.5 s but a bio-
chemical application description may specify a longer time (e.g., 5 s) if required
for a particular operation. This value does not include the time required to
fetch the input fluids or to remove the output fluids from the component. The
input/output (I/O) phases are dependent on the chip architecture and are thus
captured by the set of flow paths F in the biochip architecture model A. The
edge set E models the dependency constraints in the assay, i.e., an edge ei,j ∈ E
from Oi to Oj indicates that the output of Oi is the input of Oj . All inputs need
to arrive before an operation can be activated. We assume that the biochem-
ical application has been correctly designed, such that all operations will have
the correct volume of liquid available for their execution. Figure 2.5 shows an
example of a biochemical application model which has seven mixing operations
(O1–O4, O6, O7, O10), one filtration operation (O9) and two heating operations

2.3 Benchmarks 25

Figure 2.5: Application Model

(O5, O8). The execution times for the operations are given in Figure 2.5 (the
parameter below the operation type).

2.3 Benchmarks

We use both real-life and synthetic benchmarks in order to evaluate our proposed
design methodology.

2.3.1 Real-Life benchmarks

We consider three real-life benchmarks that are also used for the digital biochips.

2.3.1.1 Polymerase Chain Reaction (PCR)

The first real-life assay is the PCR (polymerase chain reaction) mixing stage
that has 7 mixing operations and is used in DNA amplification. In PCR, several
thermal cycles are used to replicate a piece of DNA, creating thousands of copies.
This protocol is very useful when the available DNA sample is not in sufficient

26 System Model

Figure 2.6: Polymerase Chain Reaction (PCR)

enough quantity for performing the analysis. The first step of the polymerase
chain reaction consists of seven mixing operations, denoted in Figure 2.6 by
O1 to O7. The output of this stage undergoes a series of thermal cycles for
performing DNA amplification [44].

2.3.1.2 In-vitro Diagnostics (IVD)

Multiplexed IVD (in-vitro diagnostics) has a total of 12 operations. Figure 2.7
describes the protocol for an in-vitro diagnostics assay (IVD) in which the level

Figure 2.7: In-Vitro Diagnostics (IVD)

2.3 Benchmarks 27

of different metabolites in human physiological fluids are measured. The assays
requires the input of samples (urine, plasma, and serum), reagents (glucose
oxidase, lactate oxidase) and buffer substance. The level of glucose and oxidase
are measured for each type of physiological fluid using the detection operations.

2.3.1.3 Colorimetric Protein Assay (CPA)

The application graph in Figure 2.8 describes a protein assay which is used for
determining the concentration of a certain protein in a solution. The procedure
causes a reaction between the protein of interest and a dye. The concentra-
tion of the protein is determined by measuring the absorbance of a particular
wavelength in the resulted substance. The protocol consists of 55 microfluidic
operations and uses three types of liquids: physiological fluid (sample contain-
ing the protein), Coomassie Brilliant Blue G-250 dye as reagent and NaOH as
buffer substance. Before being mixed with the dye, the sample is first diluted
with the NaOH buffer. Dilution is represented as mixing in the application
graph. The protocol finishes with detection operations, in which the protein
concentration for the resultant solution is measured. The letter “S” in the ap-
plication graph represents the Source, which means that the input comes from
the off-chip reservoirs.

2.3.2 Synthetic benchmarks

We consider five different synthetic benchmarks. The benchmark applications
are composed of 10, 20, 30, 40 and 50 operations. Figure 2.9 – 2.13 present the
synthetic benchmarks.

28 System Model

Figure 2.8: Colorimetric Protein Assay (CPA)

Figure 2.9: Synthetic Benchmark - 10 Operations

2.3 Benchmarks 29

Figure 2.10: Synthetic Benchmark - 20 Operations

Figure 2.11: Synthetic Benchmark - 30 Operations

3
0

S
y
st
e
m

M
o
d
e
l

Figure 2.12: Synthetic Benchmark - 40 Operations

2
.3

B
e
n
c
h
m
a
rk
s

3
1

Figure 2.13: Synthetic Benchmark - 50 Operations

32 System Model

2.4 Summary

In this chapter we have presented our proposed biochip architecture and com-
ponent models. The model used for the biochemical application has also been
introduced. We have also given the details of the benchmarks considered in this
thesis. Using these models, in the next chapter, we propose our approach for
mapping the biochemical applications onto the mVLSI biochips and evaluate
the approach using the mentioned benchmark applications.

Chapter 3

Application Mapping

The block diagram of our proposed design methodology is shown in Figure 1.6.
In this chapter, we focus on the “Application Mapping” block. It takes the
biochemical application model and the models of the biochip architecture and
the biochip components as input. As output, it generates the implementation
Ψ < B,X > which contains the binding and scheduling details of the operations
as well as the fluid routing information.

3.1 Related Work

Currently, researchers manually map the applications to the valves of the chip
using some custom interface (analogous to exposure of gate-level details) [81].
The manual process is quite tedious and needs to be repeated every time a
change is made either to the chip architecture or the biochemical application.
For larger chips and applications, the process can easily result in inefficient
application mappings.

Researchers have proposed significant work on top-down synthesis techniques
for droplet-based biochips [24]. However, as discussed in Chapter 1, these tech-
niques are not applicable to the flow-based chips and, to the best of our knowl-

34 Application Mapping

edge, no automated application mapping approach has been proposed so far for
the flow-based biochips.

3.2 Contribution

Using the models proposed in the previous chapter, we focus on the problem of
mapping a biochemical application, modeled as a sequencing graph (capturing
the operations and their dependency constraints), onto a given biochip architec-
ture. We propose a constraint programming (CP) [45] framework which, given
a biochemical application and a biochip architecture, determines an optimal
solution (in terms of application completion time) for the binding and schedul-
ing of the biochemical operations onto the given biochip. CP makes it possible
to specify the resource and timing constraints, and to capture the application
binding and scheduling within the same framework. Using the CP formulation,
a solver then searches for the optimal solution.

In microfluidic biochips, routing latencies are comparable to the operation execu-
tion times, thus having a considerable influence on the schedule. The CP-based
solutions, although optimal, require a large computation time when more com-
plex chips are introduced and fluidic routing is included inside the implementa-
tion. We propose a List Scheduling (LS)-based binding and scheduling heuristic
that also takes the fluidic routing and channel contention into account, while
aiming to generate an implementation that minimizes the application comple-
tion time. The heuristic produces good quality solutions in small time. We
evaluate the proposed framework by synthesizing real-life case studies as well as
synthetic benchmarks.

Next section discusses the design tasks involved in the biochip synthesis. The
targeted problem is formulated at the end of this section. The proposed CP-
based synthesis approach is presented in Section 3.4 and the LS-based approach
in Section 3.5. We evaluate our framework in Section 3.6

3.3 Application Mapping

Mapping the application onto the architecture involves binding of operations
onto the allocated components, scheduling the operations and performing the
required fluidic routing. This section explains these design tasks using the bio-
chemical application in Figure 3.1a and the biochip architecture given in Fig-
ure 3.1b. The architecture is modeled as described in Section 2.1. Thus, the

3.3 Application Mapping 35

(a) Application Graph (b) Biochip Architecture

Figure 3.1: Illustrative Example

allocated components are captured by the vertex set M, M ∈ N , in the archi-
tecture model A. Table 3.1 shows the set M for the biochip given in Figure 3.1b.
The component placement and interconnections are also given, and are captured
by the remaining elements of the topology graph A modeling the architecture,
as discussed in Section 2.1. Table 2.3 shows the flow path set (permissible
route set), F , for the biochip given in Figure 3.1b. The routing constraints (as
discussed in Section 2.1.2) extracted from the set are shown in Table 2.4.

Figure 3.2 shows the schedule for executing the biochemical application in Fig-
ure 3.1a on the biochip architecture in Figure 3.1b. The schedule is represented
as a Gantt chart, where, we represent the operations and fluid routing phases as
rectangles, with their lengths corresponding to their execution duration. Each
operation is placed in a separate row. During the binding step, each vertex Oi,
Oi ∈ O, representing a biochemical operation in the application model in Fig-

Table 3.1: Allocated Components (M)
Function Units Notations
Input port 2 In1, In2

Output port 2 Out1, Out2
Mixer 3 Mixer1, Mixer2, Mixer3
Heater 1 Heater1
Filter 1 Filter1

Storage Reservoir 8 Res1–Res8

36 Application Mapping

Figure 3.2: Schedule

ure 3.1a is bound to an available componentMj , i.e., B(Oi) =Mj . For example,
the mixing operation O1 in the application model in Figure 3.1a is bound to
the component Mixer1 as shown in Figure 3.2. Since the fluid transport laten-
cies in microfluidic chips are comparable to the operation execution times, fluid
routing also needs to be considered during the synthesis phase. This means that
the binding function must also capture the binding of the edge set E ∈ G to an
available route. The available route can be a flow path, F ∈ F , or a collection
of flow paths called a composite route. A composite route is used if the source
and destination components are such that no direct flow path exists between
them.

A scheduling strategy is needed to efficiently execute the biochemical operations
on the chip components, while considering the dependency and resource con-
straints captured by the biochemical application and the biochip architecture
models, respectively. In Figure 3.2, operation O6 bound to Mixer2 starts im-
mediately after all its predecessors (O3, O4) are complete and the input fluids
have been routed to Mixer2. It starts at t

start
O6

= 20.5 s and takes 3 s, finishing

at time tfinishO6
= 23.5 s.

Together with the set of operations O ∈ G given in the application model, the
edge set E ∈ G also needs to be scheduled on the chip, while taking the rout-
ing constraints into account. Before scheduling the edge, the implementation
needs to evaluate if a flow path F ∈ F is sufficient to bind the edge, or if a
collection of flow paths (composite route) is needed. For example, the edge e6,8,
modeling the transport of the output of O6(Mixer2) (operation O6 bound to
componentMixer2) to O8(Heater1), can be directly bound to the flow path F15

(Table 2.3). The edge e5,7 models the output of O5(Heater1) being transported
to O7(Mixer3). However, there is no flow path F ∈ F that connects Heater1 to

3.4 Constraint Programming-Based Strategy 37

Mixer3. Therefore, a composite route (consisting of a collection of flow paths)
needs to be generated. The edge e5,7 is bound to the composite route (F30−1,
F26−1) as shown in Figure 3.2.

During the scheduling phase, the storage requirement analysis needs to be per-
formed as well. This means that after completion of an operation, a decision
on whether the output fluid (analogous to the operand) should be moved to the
storage reservoir or not, needs to be made.

3.3.1 Problem Formulation

The problem addressed here can be formulated as follows: Given (1) a biochem-
ical application modeled as a sequencing graph G, (2) a biochip architecture
modeled as a topology graph A, and (3) a characterized component library L,
we are interested in synthesizing an implementation Ψ that minimizes the ap-
plication completion time while satisfying the dependency, resource and routing
constraints. Synthesizing an implementation Ψ = < B, X > means deciding on
(1) the binding B of each operation Oi ∈ O to a component Mj ∈ M, and each
edge ei,j ∈ E to a flow path Fi ∈ F (or to a composite flow path generated by
the implementation), and (2) the schedule X of the operations and the edges,
which contains the start time tstart of each operation Oi and edge ei,j on its
corresponding component and (composite) flow path.

3.4 Constraint Programming-Based Strategy

The problem can be considered equivalent to the resource constrained scheduling
problem with non-uniform weights, which is NP-complete [83, 60]. CP offers
very good performance for such problems [45]. Typically, a problem defined in
CP has three primary elements: (1) a set of variables capturing the system, (2) a
set of finite domains of the values for these variables and (3) a set of constraints
imposed on these variables. The solution of such a problem is the assignment
of values to all variables from their respective domains such that all constraints
are satisfied. If an optimal solution is desired, then a cost function also needs
to be defined in terms of the variables. The solver then tries to find the optimal
solution in terms of the cost function that satisfies all constraints.

Our CP-based implementation generates optimal solutions for the binding and
scheduling of operations onto the biochip architecture. This approach ignores
the fluidic routing, which we address in Section 3.5. Figure 3.3 shows the optimal

38 Application Mapping

schedule for executing the application in Figure 3.1a onto the architecture in
Figure 3.1b. We have used the constraint programming environment Gecode
[71] for our implementation.

3.4.1 Finite Domain Variables

We use the following primary finite domain variables (FDV) to model the bind-
ing and scheduling of all biochemical operations:

• tstartOi
:: {0..∞} defines the start time of operation Oi. For example, oper-

ation O5 in Figure 3.3 has the start time tstartO5
= 4 s.

• Mi :: {0.. |M|−1} defines the resource (component) to which the operation
Oi is bound where |M| is the total number of components on the chip.
For example, in Figure 3.3 |M| = 5. Each resource is assigned a unique
numeric identifier (ID) and the range of the identifiers is 0.. |M|−1, i.e.,
0..4 for the current example. For Figure 3.3, ID of Mixer1 is 0, Mixer2
is 1, Mixer3 is 2, Heater1 is 3 and Filter1 is 4. So for operation O5,
M5 = 3, which is the ID of Heater1.

• δG :: {0..∞} defines the cost function (application completion time). Ap-
plication completion time is the end-to-end time taken by the application
to complete its execution, i.e., from the start time of the first executed
operation to the finish time of the last executed operation. For example
in Figure 3.3, the application completion time is δG = 17 s, which is the
finish time of the last executed operation O10.

Figure 3.3: Optimal Schedule

3.4 Constraint Programming-Based Strategy 39

Secondary FDVs are introduced, where needed, in order to implement the con-
straints.

3.4.2 Resource Binding Constraints

An operation can only be bound to a component which is capable of executing
it, i.e., a mix operation must be bound to one of the mixers and not to any other
component, e.g., heaters. Based on the type of the operations, we constrain the
domain of the FDV Mi in order to exclude the forbidden components. Each
operation is treated as a tuple (Oi, αi), where Oi ∈ O is an operation and αi

⊆ M is a set of available components capable of performing the operation. A
binding must respect,

Mi ∈ αi, ∀i ∈ {1.. |O|} (3.1)

where |O| defines the total number of operations in the application graph G,
e.g., application given in Figure 3.1a has 10 operations. For operation O1 (a
mix operation), α1 = {0, 1, 2} which represents the IDs of the three mixers.
For O1 in Figure 3.3, M1 = 0 (ID for Mixer1) which is a member of the set α1,
thus satisfying the resource binding constraint.

3.4.3 Resource Sharing Constraints

Operations bound to the same component (e.g., O3 and O6 are bound toMixer2
in Figure 3.3) must not overlap in time. We use three disjunctive constraints in
order to implement this for all possible combinations of operations.

∀i, ∀(j > i)

(tstartOi
+ Ci ≤ tstartOj

) ∨ (tstartOj
+ Cj ≤ tstartOi

) ∨ (Mi 6=Mj),

∀(i, j) ∈ {1.. |O|} (3.2)

where Ci represents the execution time of operation Oi. We consider two op-
erations (Oi, Oj) at a time. At least, one of the three constraints given in
the above equation needs to be true in order to ensure that the resources are
correctly shared.

The first constraint, (tstartOi
+ Ci ≤ tstartOj

), means that the finish time of oper-
ation Oi should be less than or equal to the start time of operation Oj . For

40 Application Mapping

example for (O1, O2) in Figure 3.3, the finish time for O1 (4 s) is equal to the
start time of O2, thus the constraint is satisfied. If the first constraint is not
satisfied (consider (O7, O2) in Figure 3.3, the finish time for O7 (12 s) is not
less than or equal to the start time of O2 (4 s)), then the second constraint,
(tstartOj

+ Cj ≤ tstartOi
), is considered. For (O7, O2) in Figure 3.3, the finish time

for O2 (8 s) is equal to the start time of O7 (8 s), thus the constraint is satisfied
for this pair of operations. The third constraint, Mi 6=Mj, is considered if both
the first and second constraint are not satisfied. Consider (O1, O3), the finish
time for O1 (4 s) is not less than or equal to the start time of O3 (0 s) and the
finish time for O3 (4 s) is also not less than or equal to the start time of O1 (0 s).
In this case, the third constraint must be true. Here, M1 = 0 (Mixer1) and
M3 = 1 (Mixer2), satisfying the resource sharing constraint.

3.4.4 Precedence Constraints

During scheduling, an operation must not start executing until its predecessor
has completed its execution, e.g., in Figure 3.1a, O6 must finish before O8 can
start. The following constraint is added for each required precedence:

tstartOi
+ Ci ≤ tstartOj

(3.3)

where operation Oi is a predecessor of operation Oj .

3.4.5 Cost Function

We are interested in a solution that minimizes the application completion time
(cost function δG). We constrain the cost function to be greater than or equal
to the finish time of the operation Oi, i.e.,

tstartOi
+ Ci ≤ δG , ∀i ∈ {1.. |O|} (3.4)

minimize δG (3.5)

Minimization of the δG generates the optimal solution, which satisfies all the
imposed constraints. In order to reduce the search space and speed up the
result generation, we place an upper and lower bound on δG . The upper bound
is the sum of execution times of all operations as that is the largest possible
application completion time. For the example in Figure 3.1a, the upper bound
is 36. The lower bound is equal to the duration of the critical path in the given
application graph G. Critical path is defined as the path in the application

3.5 List Scheduling-Based Strategy 41

graph, going from the source nodes to the sink nodes, that has the largest
duration. For example in Figure 3.1a, the critical path consists of the nodes
{O4, O6, O8, O9, O10} and has the duration equal to 17 s. The lower bound
value (lower bound) is provided as an input to our CP framework.

δG ≤
∑

Ci, ∀i ∈ {1.. |O|} (3.6)

δG ≥ lower bound (3.7)

3.5 List Scheduling-Based Strategy

The manufacturing technology for the flow-based chips has advanced faster
than Moore’s law [39], resulting in ever increasing complexity for these chips.
Although CP-based approach generates optimal solutions but as the problem
becomes larger and more complex, the CP-based approach becomes computa-
tionally too intensive.

We propose a heuristic approach to solve the problem in a computationally effi-
cient manner. Together with the operation binding and scheduling, our heuristic
approach also considers the fluidic routing and channel contention.

The requirement of scheduling the routing together with the task operations,
while satisfying the routing constraints, makes the problem analogous to the
communication contention aware scheduling in parallel computing systems. We
utilize the well-known List Scheduling Algorithm (LS) [56] and extend it with
contention awareness [74] by also scheduling the edges (E in G) onto the com-
munication channels during the synthesis process.

The schedule shown in Figure 3.2 has been generated using our LS-based synthe-
sis algorithm shown in Figure 3.4. The operations of the biochemical application
are topologically sorted based on the dependency constraints. At each control
step, operations are evaluated and the ready ones are found (the operations
whose predecessor operations have been completed). Each new control step
marks an operation event generation, with the operation event being defined as
the completion of a scheduled operation. The list of ready operations is prior-
itized using the urgency criteria. The urgency of an operation is specified by
the length of the longest path from the operation to the sink, i.e., summing up
the execution weights of the vertices and the latency times for the edges. An
average latency of 3 s is considered per edge based on the biochip architecture
given in Figure 3.1b. An average is used since it is unclear on which flow paths
the edges would be bound, unless binding of all operations has been completed

42 Application Mapping

BiochipSynthesis(G, A, L)

1 Initialize < B, Bo, X > to φ
2 while <all operations and edges are not scheduled> do
3 // Phase I: Bind Operations and Edges
4 while <all possible ready operations are not bound> do
5 Bo = BindOperations(G, A)
6 Bo = BindStorage(Bo, B, X)
7 Bo = GenRouteAndBindEdges(Bo, A, L)
8 end while
9 B = Record(Bo)

10 // Phase II: Schedule Operations and Edges
11 while <an operation event does not occur> do
12 X = ScheduleOperationsAndEdges(B, X , A)
13 Advance time to next event
14 end while
15 end while
16 return Ψ = < B, X >

Figure 3.4: Synthesis Algorithm for Flow-Based Biochips

(defining the source and destination component for each edge). The urgency
value for O1 in Figure 3.1a is 25. If the number of ready operations exceeds
the number of available resources, the most urgent operations (having higher
urgency value) are scheduled and the remaining ones are deferred.

We perform the implementation synthesis in two phases. In Phase-I, we start
off by binding the ready operations to the available resources (line 5). The
algorithm tries all possible bindings and chooses the one that produces the
shortest completion time for that operation. For example after control step 5,
both Mixer1 and Mixer3 are available as the mixing operation O7 is released,
i.e., both its predecessor operations O2 and O5 have been completed. As shown
in Figure 3.2, O2 was bound to Mixer3 and its output is still inside the mixer
unit when O7 is released (i.e., its output has not been moved to the storage
unit). The algorithm binds O7 to Mixer3 preventing the routing delay that
would have occurred had O7 been bound to Mixer1.

Next, we evaluate if a reservoir is required to store the output of the operations
that finished in the previous control step (line 6) and if so, bind it to a particular
reservoir. A storage reservoir is utilized only (1) if the component to which the
previous operation was bound is needed for performing another operation and
(2) the successor of the previous operation is not scheduled during the current
control step. For example in Figure 3.2, O4 (bound to Mixer3) was completed
in control step 1. Its successor (O6) is not scheduled in control step 2 and

3.5 List Scheduling-Based Strategy 43

Mixer3 is needed to perform O2. Based on the above given criteria, output of
O4 is bound to the storage reservoir Res1 at the start of control step 2.

Next we generate the routes (single flow path or composite route) for performing
these operations and bind the edges to the generated routes (line 7). We start
by fetching the phase information of the components (e.g., Mixer3 for O4) from
the library L (Table 2.2) and bind the I/O phases (Ip1, Ip2, Op1, Op2) to
the corresponding generated routes (e.g., F3 for Ip1 of Mixer3). If a route is
not found, the operation is deferred. The algorithm jumps back to line 5 in
order to modify the binding for the current control step (Bo), by binding a low
priority operation that was earlier deferred because of lack of resources. Once
the binding has been finalized, it is recorded into the binding information B
(line 9). More details about route generation are given in following subsection.

In Phase-II (lines 11–14), we generate the schedule for the operations and the
edges bound in Phase-I. Starting from the input edges associated with the op-
eration of the highest priority (based on the urgency criteria, O4 in this case),
we start scheduling the edges one by one (here the first one is F3). In order to
reduce the schedule length, we try to schedule as many bound edges as possible
in parallel. All the ready edges that do not violate the routing constraints (listed
in Table 2.4) can be utilized in parallel. An edge is considered a ready edge
if it does not violate any inter- or intra-operation dependency constraints. The
inter-operation dependency constraints are given by the application model G
(e.g., O3 and O4 need to complete before O6). The intra-operation dependency
constraints means that the inputs of an operation and the operation itself need
to be completed before its outputs can be issued (e.g., F3, F6 and the mixing
operation in Mixer3 need to complete before F22−1 and F19 can be scheduled).
Multiple inputs/ outputs for the same operation (F3, F6 for Mixer3) are inde-
pendent of each other and can be parallelized if the routing constraints permit.

Figure 3.5 shows the schedule for the first control step (Figure 3.2 shows the
complete schedule). Since O4 (bound on Mixer3) has the highest priority, F3

is the first bound edge that is scheduled. None of the other edges (bound
to flow paths) in the ready set < F6, F2, F5, F1, F4 > can be scheduled in
parallel with F3 because of the routing constraints given in Table 2.4, thus
F3 is scheduled alone as shown in Figure 3.5. Once all possible edges and
operations are scheduled (only F3 in this case), we advance time to the next
event (operation event marking completion of an operation, or an edge event
representing completion of an edge execution) (line 13). An operation event
triggers a new control step and the algorithm switches back to Phase-I, whereas
an edge event means that the next edge needs to be scheduled. Completion of
F3 thus triggers an edge event. We schedule F6 (next edge in the highest priority
operation O4) and try to optimize the schedule again (F2 can be scheduled in
parallel with F6). The operations are scheduled as soon as all their input edges

44 Application Mapping

Figure 3.5: Edge and Operation Events

have been executed (e.g., O4 after F3 and F6). When an operation finishes (e.g.,
O4 onMixer3 in control step 1) it triggers an operation event and the algorithm
jumps back to Phase-I.

The process is repeated until all operations/ edges are scheduled. The imple-
mentation Ψ, consisting of binding B and scheduling X information, is then
returned (line 16).

3.5.1 Route Generation

GenRouteAndBindEdges (line 7) is used to generate the fluid route from the
selected source to the selected destination (e.g., from In1 to Mixer1). If a flow
path exists, then it binds the edge to that flow path and returns the binding
information. If the selected operation has the selected source and destination
such that no flow path exists to route the fluid from the source to the des-
tination (e.g., Heater1 → Mixer3, control step 5–7 in Figure 3.2), then the
algorithm searches for a composite route, i.e., a route linking the desired source
and destination using more than one flow path.

If multiple composite routes exist, the shortest one (in terms of cumulative
latencies) is selected. For (Heater1 → Mixer3), the composite route (Heater1
→ Res1, Res1 → Mixer3) is selected. Note that this requires all intermediate
destinations (Res1 — reservoir 1 in the storage) to be available.

If no direct route is available and no composite route can be specified as well
(e.g., intermediate destinations not available), then the operation is deferred.

3.6 Experimental Evaluation 45

Phase-I (lines 4–8) is repeated again to see if any of the other low priority
operations (that were not scheduled earlier because of resource constraints) can
now be scheduled instead. Once all possible operations and edges are bound,
the algorithm switches to Phase-II.

3.6 Experimental Evaluation

We evaluate our proposed CP- and LS-based approaches by synthesizing real
life assays as well as synthetic benchmarks onto different biochip architectures.
The CP framework was implemented in Gecode constraint programming envi-
ronment [71] and the LS-based algorithm was implemented in C++, running on
Lenovo T400s ThinkPad with Core 2 Duo Processors at 2.53 GHz and 4 GB of
RAM.

Table 3.2 shows our experimental results for the CP-based synthesis approach.
Column 1 presents the application and column 2 shows the list of allocated com-
ponents in the following format (Mixers, Heaters, Filters, Detectors). Column 3
presents the optimal application completion time δG obtained using CP. We
compare the results to our list scheduling based approach by ignoring the flu-
idic routing in the LS-based approach as well. Column 4 shows the application
completion time generated using the LS-based approach. Column 5 presents the
time taken by CP to generate the solution and column 6 gives the time taken
by the LS-based approach.

The first real-life assay is the PCR (polymerase chain reaction) mixing stage.
We synthesize the assay on three different biochip architectures varying the
number of mixers. Each mixing operation is considered to have an execution
time of 4 s on the mixing units used in the biochips. As shown in Table 3.2,
both CP and LS generate optimal solutions.

Next real-life assay is the multiplexed IVD (in-vitro diagnostics). As given in
Table 3.2, IVD is synthesized onto three different biochip architectures. Each
mixing operation is considered to have an execution time of 4 s and the detection
operation 7 s. Increasing the number of components reduces δG for IVD from
25 s to 11 s.

The example application (EA) given in Figure 3.1a is used as a synthetic bench-
mark. We vary the number of resources and generate optimal values of δG . The
CP framework facilitates design space exploration enabling biochip designers to
take early design decisions. For example in Table 3.2, the result (row 8 and
row 9) shows that increasing the number of mixers from 3 to 4 and the heaters

46 Application Mapping

Table 3.2: Experimental Results: CP-Based Synthesis

Appl. Allocated δG−CP δG−LS CP Exec. LS Exec.
Components Time Time

(2, 0, 0, 0) 16 s 16 s 0.2 s < 0.1 s
PCR (3, 0, 0, 0) 16 s 16 s 0.2 s < 0.1 s

(4, 0, 0, 0) 12 s 12 s 0.2 s < 0.1 s

(2, 0, 0, 2) 25 s 25 s 2.6 < 0.1 s
IVD (5, 0, 0, 5) 18 s 18 s 38 min 28 s < 0.1 s

(6, 0, 0, 6) 11 s 11 s 1 min 38 s < 0.1 s

(2, 1, 1, 0) 19 s 19 s 0.3 s < 0.1 s
EA (3, 1, 1, 0) 17 s 17 s 0.4 s < 0.1 s

(4, 2, 1, 0) 17 s 17 s 0.5 s < 0.1 s

from 1 to 2 does not result in any improvement in δG , allowing the designer to
use lesser components and reduce chip area.

As given in Table 3.2, LS-based approach also generates the same solution as
the CP-based approach. The CP-based approach, however, takes longer than
the LS-based approach as it spends time in ensuring the solution optimality.
Even in these small example cases, the CP-based approach can take as much
as 38 minutes longer than the LS-based approach (row 5 in Table 3.2). For
larger, more complex problems the CP-based approach is expected to take an
even longer computation time. Therefore, we switch to our LS-based approach
for generating good quality solutions in small time.

Table 3.3 shows our experimental results for the LS-based synthesis approach.
These results are for the approach discussed in Section 3.5, which also considers
fluidic routing and the number of chip I/O ports used to dispense or remove
fluid samples from the chip. Columns 2 and 3 give the number of input and
output ports. Column 4 presents the details of the architectures considered, in
terms of (Mixers, Heaters, Filters, Detectors) and column 5 gives the number
of storage units utilized. The last column in the table presents the completion
time, in seconds.

We synthesize the PCR assay on three different biochip architectures varying
the number of I/O ports and mixer units. As given in Table 3.3, increasing
the number of mixers and the I/O ports directly influences the application
completion time δG−LS bringing it down to 27.5 s in the second architecture.
Increasing the resources further only results in more routing constraints, taking
the completion time up to 28.2 s.

3.6 Experimental Evaluation 47

Table 3.3: Real-Life Assays: LS-Based Synthesis

Application I/p O/p Allocated Storage δG−LS

Ports Ports Components Units

2 2 (2, 0, 0, 0) 3 30.3 s
PCR 3 3 (3, 0, 0, 0) 1 27.5 s

4 4 (4, 0, 0, 0) 3 28.2 s

IVD 2 2 (2, 0, 0, 2) 4 31.3 s
6 6 (6, 0, 0, 6) 0 13 s

Multiplexed IVD is synthesized onto two different biochip architectures. As we
can see, increasing the number of mixers and detectors that can work in parallel,
from 2 to 6, brings down δG−LS from 31.3 s to 13 s.

Varying the number of resources directly influences the chip area and also the
schedule length. Chip area is an important parameter for the chips that need
to be placed in small chambers, e.g., under microscopes for detection. Our
methodology captures the design at the top level and can be utilized by the
designer to evaluate their designed architectures and make design decisions at
an early stage, minimizing the design cycle time and associated cost.

In a final set of experiments we have evaluated our proposed LS-based method
using a set of different synthetic benchmarks. The benchmark applications are
composed of 10 up to 50 operations. Table 3.4 shows the details of the architec-
tures considered and the respective application completion times achieved. No
storage units were utilized by the applications in these experiments.

As shown in Table 3.4, we only vary the number of input ports in the considered
architectures and note the impact on the application completion time δG−LS .
For the 10 node application, reducing the number of input ports from 2 to
1 has a minor influence (0.6 % increase) on δG−LS. However, for the 20 node
application benchmark, the completion time increases by approximately 19.2 %,
going from 28.1 s to 33.5 s. For the 30, 40 and 50 node applications, for the first
case we consider only 2 input ports. In the second architecture, we consider the
optimal number of chip input ports, i.e., providing all the inputs required from
off-chip reservoirs in parallel. For the 30 node application, increasing the input
ports to the optimal number produces a reduction of approximately 8 % in the
completion time. For the 40 and 50 node applications, the reduction is slightly
more significant, around 11.2 % and 11.5 % respectively.

There are many factors that influence the application completion time, e.g.,
component interconnection scheme, application operation types and their se-

48 Application Mapping

Table 3.4: Synthetic Benchmarks: LS-Based Synthesis

Nodes Input Output Allocated Components δG−LS

Ports Ports

10 2 2 (4, 2, 2, 2) 31.3 s
1 1 (4, 2, 2, 2) 31.5 s

20 2 2 (12, 4, 3, 1) 28.1 s
1 1 (12, 4, 3, 1) 33.5 s

30 2 1 (17, 6, 4, 3) 39 s
12 1 (17, 6, 4, 3) 35.9 s

40 2 1 (21, 9, 6, 4) 36.4 s
15 1 (21, 9, 6, 4) 32.3 s

50 2 1 (26, 12, 7, 5) 39.8 s
17 1 (26, 12, 7, 5) 35.2 s

EA 2 2 (3, 1, 1, 0) 56 s
4 1 (7, 2, 1, 0) 21.7 s

quence, operation execution times. The last two rows in Table 3.4 show the
results for the example application (EA) given in Figure 3.1a. We vary the I/O
ports as well as the number of components resulting in a new completion time
of 21.7 s (61 % less than the previous completion time of 56 s). The models can
be used to further explore the relationships between these parameters, resulting
in aiding design of optimal application-specific biochip architectures.

All of the experiments presented in this section took less than 1 s of run time
to complete. All benchmarks can be found in Section 2.3.

3.7 Summary

We have proposed a constraint programming (CP)-based approach that opti-
mally synthesizes a biochemical application onto the specified biochip architec-
ture with the application completion time minimization as the target objective.
The synthesis process involves performing binding and scheduling of operations
while satisfying the dependency and resource constraints. Our CP approach
ignores fluid routing. We have also proposed a more computationally efficient
heuristic approach that also takes into account fluidic routing (contention aware
edge scheduling) together with the operation mapping. Real-life case studies and
a set of synthetic benchmarks have been synthesized on different architectures
for validating the proposed approach. The proposed approach is expected to
reduce human effort, enabling designers to take early design decisions by being

3.7 Summary 49

able to evaluate their proposed architecture, minimizing the design cycle time
and also facilitating programmability and automation.

The next chapter presents our top-downmethodology for designing the application-
specific architecture for the flow-based mVLSI biochips.

50 Application Mapping

Chapter 4

Architectural Synthesis

This chapter focuses on the “Architectural Synthesis” block of our proposed
design methodology (see Figure 1.6). It takes the biochemical application and
the component library as input and synthesizes the application-specific biochip
architecture. We start off by presenting the related work and describing our
contributions. The problem is formulated in Section 4.3 and the tasks involved
in architectural synthesis are explained in Section 4.4. Our solution strategy is
presented in Section 4.5 and evaluated in Section 4.6.

4.1 Related Work

Designers are using manual and bottom-up methodologies to implement these
chips. Microfluidic components are designed and connected together to match
the steps of the desired biochemical application using technical drawing tools
such as AutoCAD [3]. The placement and routing is also done manually [15]
and then the chip is fabricated using soft lithography. Recent work has proposed
automation techniques for the placement and routing of the control layer [21].

Manual design of application-specific mVLSI chips is very time-consuming and
requires significant design effort. In order to overcome this, a general-purpose

52 Architectural Synthesis

biochip architecture has been proposed [19]. The soft lithography based fabri-
cation process is, however, cheap and has a fast turn around time [55], pointing
to having application-specific chips capable of providing higher efficiency in-
stead of doing a general-purpose design. No scheme for the application-specific
architectural synthesis has been proposed.

4.2 Contribution

We propose a top-down architectural synthesis methodology for the flow-based
mVLSI biochips. Given a biochemical application modeled as a sequencing
graph, a microfluidic component library and the chip area, the architectural
synthesis consists of the following two steps: (i) allocation of components from
a given library and performing the schematic design in order to generate the
netlist, and the biochip (ii) physical synthesis, i.e., deciding the placement of the
microfluidic components on the chip and performing routing of the microfluidic
channels on the available routing layers creating component interconnections
(for both flow and control layers).

The synthesis problem is NP-complete. We use an approach similar to High-
Level Synthesis [26] for performing allocation and netlist generation. The com-
ponent placement is done using Simulated Annealing and we tailor the Hadlock’s
algorithm [69] from the Very Large-Scale Integrated (VLSI) circuits domain for
performing the microfluidic channel routing. Synthesis is done in such a way
that the application completion time is minimized and the imposed constraints
(e.g., resource, dependency) are satisfied.

To the best of our knowledge, this is the first time an approach for the automatic
synthesis of a biochip architecture is being presented. The main contributions
here are the formulation of the architectural synthesis problem and the proposed
synthesis framework, which show how the well-known algorithms from the High-
Level Synthesis of VLSI circuits can be tailored to tackle the mVLSI biochips.

4.3 Problem Formulation

The problem addressed here can be formulated as follows: Given a biochemical
application modeled as a sequencing graph G and a characterized component
library L, we are interested in synthesizing a biochip architecture A, such that
the application completion time is minimized and the imposed constraints are

4.4 Biochip Architectural Synthesis 53

satisfied. The synthesis approach can handle several constraints, such as overall
chip area, maximum number of components of a certain type and the number of
external input and output ports. The number of external ports is also limited
by the maximum number of punch holes possible on the chip under the given
design rules [15].

Synthesizing an architectureAmeans deciding on (1) the allocation U of compo-
nents from the component library L, (2) the configuration for interconnection
of these components (netlist), (3) placement Zf of the components onto the
chip layout area and interconnecting them by flow channel routing Rf , and (4)
placement Zc of control valves and control pins on the chip and interconnecting
them by control channel routing Rc. The flow path set F , associated latencies
and the corresponding routing constraints K also need to be extracted from the
synthesized architecture.

As mentioned, the objective of the problem is to minimize the application com-
pletion time under the given constraints. However, other objectives can also be
handled, such as the minimization of the architecture cost under a given timing
constraint. Reliability of an mVLSI biochip depends directly on the reliability
of the valves (the valves can operate reliably only up to a few thousand ac-
tuations). Therefore, in order to achieve enhanced reliability, an optimization
step can be added directed at balancing the load on the valves, i.e., each valve
goes through approximately the same number of valve actuations during the
application execution.

4.4 Biochip Architectural Synthesis

The following subsections explain the design tasks involved in the biochip syn-
thesis using Figure 4.1 as an illustrative example. Next section presents our
proposed synthesis framework for these tasks.

4.4.1 Allocation and Schematic Design

In this step, the microfluidic components required for implementing the given
biochemical application G are allocated from the component library L, while
taking into account the imposed resource constraints. Next, based on the given
application, a chip schematic is designed and the netlist is generated. For ex-
ample, to implement the biochemical application from Figure 4.1a under the
constraints given in Table 4.1 columns 1 and 2, we could use an allocation U

54 Architectural Synthesis

(a) Application Graph (b) Biochip Architecture

Figure 4.1: Biochip Application and Architecture Example

as captured by the last two columns in Table 4.1. The schematic design corre-
sponding to such an application and allocation is presented in Figure 4.1b. Note
that the storage units are needed in order to save the output of a component
so that it can be used at a later stage. The flow path set is also generated
in this step. A flow path, as discussed in Section 2.1.2, is the path starting
from the point of fluid sample origin and ending at the fluid sample destination
point, e.g., Heater1 to Mixer2 in Figure 4.1b. Source-sink paths associated
with each flow path are also defined, e.g., for the flow path Heater1 to Mixer2
in Figure 4.1b, the source-sink path is (In4, S10, Heater1, S11, S5, Mixer2, S6,
Out2). Routing constraints are also extracted at this stage. Two flow paths,
whose corresponding source-sink paths have a common vertex are mutually ex-
clusive and need to be listed under the routing constraints, e.g., F7 and F2 in
Figure 4.1b are mutually exclusive since they share common vertices (e.g., S5)
in their source-sink paths. Table 4.2 shows the flow path set, the source-sink set
and Table 4.3 shows the routing constraints associated with the architecture in

Table 4.1: Allocated Components (U)
Allocated

Function Constraints Units Notations
Input port 5 5 In1 ... In5

Output port 5 5 Out1 ... Out5
Mixer 3 3 Mixer1 ... Mixer3
Heater 2 1 Heater1
Filter 1 1 Filter1

Metering Units 3 3 Met1 ... Met3
Storage Units 4 4 Storagex

4
.4

B
io
c
h
ip

A
rc
h
ite

c
tu
ra
l
S
y
n
th
e
sis

5
5

Table 4.2: Flow Path Set (F) and the Source-Sink Set
Flow Path Set Source-Sink Set

F0 = (Mixer3, S9, S10, Heater1), 0.7 s F ′
0 = (In3, Met3, S7, S8, Mixer3, S9, S10, Heater1, S11,

F1 = (Mixer2, S6, S2, Mixer1), 0.4 s Out2)
F2 = (Heater1, S11, S5, Mixer2), 0.5 s F ′

1 = (In2, Met2, S4, S5, Mixer2, S6, S2, Mixer1, S3,
F3 = (Mixer1, S3, S10, Heater1), 0.6 s Out1)
F4 = (Heater1, S11, S12, Filter1), 2.1 s F ′

2 = (In4, S10, Heater1, S11, S5, Mixer2, S6, Out2)
F5 = (Filter1, S13, S5, Mixer2), 0.8 s F ′

3 = (In1, S16, Met1. S1, S2, Mixer1, S3, S10, Heater1,
F6 = (In1, S16, Met1, S1, S2, Mixer1), 1.3 s S11, Out2)
F7 = (In2, Met2, S4, S5,Mixer2), 1.9 s F ′

4 = (In4, S10, Heater1, S11, S12, Filter1, Out3)
F8 = (In3, Met3, S7, S8, Mixer3), 2.1 s F ′

5 = (In1, S16, S12, Filter1, S13, S5, Mixer2, S6, Out2)
F9 = (Mixer1, S3, Out1), 1.2 s F ′

6 = (In1, S16, Met1, S1, S2, Mixer1, S3, Out1)
F10 = (Mixer2, S6, Out2), 0.3 s F ′

7 = (In2, Met2, S4, S5,Mixer2, S6, Out2)
F11 = (Mixer3, S9, Out3), 0.6 s ...
... F ′

28−x = (In1, S16, S12, Filter1, S13, S14, Storage, S15,
F28−x = (Filter1, S13, S14, Storage), 0.5 s Out5)

56 Architectural Synthesis

Figure 4.1b. Additional routing constraints may be imposed during the place-
ment and routing phases, resulting in an updated routing constraints list.

4.4.2 Physical Synthesis

In this step, the allocated components are placed on a chip layout area and the
interconnections between components are routed as channels on the chip such
that the application completion time is minimized. The placement and routing
phases are governed by design rules (see Table 4.4) imposed by the fabrication
process carried out in a standard microfluidic foundry [15, 21]. During place-
ment, the components are treated as fixed size blocks, represented by rectangles,
each having a fixed length and width (dimensions given in the component li-
brary in Table 2.2). The placement is done in such a way that all design rules
are satisfied and no two components overlap on the chip.

For mVLSI-based biochips, the placement and routing phases can be divided
into two stages, one for each logical layer in the chip: the flow layer and the
control layer.

4.4.2.1 Flow Layer

This stage involves determining the placement of microfluidic components and
the fluidic inlet/ outlet ports Zf on the chip layout area, and then routing the
interconnecting nets Rf as microfluidic flow channels. Only one layer is avail-
able for performing the flow channel routing [55]. In VLSI chips, the intersection
of nets is considered a short-circuit and is thus not permitted. However, net in-
tersection is possible in the biochip flow layer. A switch is placed at the location
of the intersection so that both nets (a net represents a microfluidic channel)
can be used, at different points in time, without unintended fluid mixing. Con-
sidering that only one layer is available for routing all flow channel nets, the
possibility of net intersection helps in achieving 100% routability. However, net
intersections cause routing constraints, resulting in longer application comple-
tion times. Figure 4.2 shows the placement and routing scheme for the flow
layer of the biochip architecture shown in Figure 4.1b. The entire placement
and routing shown is done in one layer.

4.4 Biochip Architectural Synthesis 57

Table 4.3: Routing Constraints (K)
K0 : (F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14

F15, F16, F17, F18, F19, F20, F21, F24, F25, F26, F27, F28)
K1: (F0, F2, F3, F4, F5, F6, F7, F8, F9, F10, F12, F13, F14, F15,

F16, F17, F24, F25, F26)
...
...
K28−x: (F0, F3, F4, F5, F6, F7, F9, F11, F14, F15, F16, F17,

F18, F19, F20, F21, F22, F23, F25, F26, F27)

Table 4.4: Design Rules
Parameter Suggested Value
Width of flow channel 100 µm
Minimum spacing between flow channels 40 µm
Width of control channel 30 µm
Width of control valve 100 µm
Minimum spacing between control channels 40 µm
Minimum spacing between external ports 1500 µm

4.4.2.2 Control Layer

In this stage, the placement of the control valves and the control pins Zc is
decided, and then the valves are connected to the control pins through control
channel routing Rc. In Figure 1b, the control layer is shown in red, with the
control valves labelled as vx and the control pins as zy. Positions of the valves
that are used inside a microfluidic component can be obtained directly from the
component library. The positions of the valves that need to be placed on the
flow channels are inferred from the flow routing information (e.g., valves need
to be placed at all flow channel intersections). As explained in Chapter 2, one
logical control layer can have two physical layers that can be used for placement
and routing (above and below the flow layer) [55]. Contrary to the flow channels,
control channels are not allowed to intersect.

After the placement is complete, the next step is to connect the valves to the
ports using control channels. The control channels can be routed over/ under
any flow channel/ component without forming a valve. The crossing of the
control channel over a flow channel forms a valve only if the control channel has
a large width (100 µm) [15]. The flow path channel lengths (used to calculate
the routing latencies) and any additional routing constraints (imposed because
of net intersections in the flow layer) can now be extracted from the layout

58 Architectural Synthesis

Figure 4.2: Placement and Routing

and captured in the biochip architecture model A. Table 4.3 shows the routing
constraints and Table 4.2 shows the list of flow paths for the biochip architecture
in Figure 4.1b together with their corresponding routing latencies.

Once the architecture is synthesized and the model is extracted, we can use the
approach given in Chapter 3 to map the given application onto the synthesized
architecture. Figure 4.3 shows the schedule when the application in Figure 4.1a
is scheduled on the architecture in Figure 4.1b. The schedule is represented as
a Gantt chart, where, we represent the operations and fluid routing phases as
rectangles, with their lengths corresponding to their execution time.

4.5 Synthesis Strategy

The biochip synthesis problem presented in Section 4.3 is NP-complete [84].
Our synthesis strategy is to solve each design task separately, by adapting well-
known heuristic algorithms from VLSI domain. The heuristics do not guarantee
obtaining the optimal solution. Obtaining the optimal results (in terms of ap-
plication completion time) is infeasible even for small examples. The following

4.5 Synthesis Strategy 59

Figure 4.3: Schedule

subsections present the chosen heuristics and describe our strategy using Figure
4 as an illustrative example.

4.5.1 Allocation and Schematic Design

This stage receives the application graph G, component library L and the re-
source constraints as input and determines the allocation U and generates the
netlist. All components of the architecture model A are captured here except
the routing latency c.

4.5.1.1 Allocation

The most common approach for allocation in High-Level Synthesis (HLS) [26]
is to use resource-constrained List-Scheduling and binding. We start off by
topologically sorting the operations of the biochemical application based on
their dependency constraints and then prioritizing them using an urgency cri-
teria [26]. The urgency of an operation is specified by the length of the longest
path from the operation to the end node in the application graph. An operation
is considered ready, if all of its predecessors have finished execution. All the
operations in the application are evaluated, the ready ones are found and are
placed in a ready list RL. For example in Figure 4.1a, operations O1 to O4 have
no predecessors and are thus considered ready, whereas O6 cannot be executed
until O3 and O4 are complete. For each ready operation we allocate a compo-

60 Architectural Synthesis

Figure 4.4: Allocation Example for Figure 4.1a

nent of the required type, considering the imposed constraints (see Table 4.1,
column 2). The operation is bound greedily to the allocated component and
scheduled.

Figure 4.4 shows the allocation schedule for the application in Figure 4.1a. The
schedule is divided into 8 schedule steps. The start of an operation marks the
start of a schedule step (O1, O3, O4 start at time t = 0 s, thus starting schedule
step 1) and an operation completion marks the end of a schedule step (schedule
step 1 ends at 4 s as operations O1 and O3 finish, and schedule step 2 ends at
5 s when operation O4 finishes). Unlike the control steps in HLS [26] (where all
control steps represent a fixed time duration, a clock cycle), the schedule steps
are of varying time lengths.

The binding of each operation is also shown in Figure 4.4, the component name
is placed next to the operation (e.g., O1 is bound to Mixer3). If the number
of ready operations exceeds the number of available components, then the least
urgent operations (i.e., greedy binding based on the urgency criteria) are de-
ferred, e.g., in Figure 4.4, O2 is deferred to schedule step 2 as there are only
three mixers available for usage in schedule step 1.

As soon as an operation completes, it marks the end of a schedule step. The
operations are then re-evaluated to find the new list of ready operations and

4.5 Synthesis Strategy 61

Figure 4.5: Schematic

the process is repeated. Table 4.1 shows the list of allocated components. All
imposed resource constraints have been fulfilled. All components have been
used in their maximum allowed number except the heater. Only one heater
has been allocated considering the requirement, compared to the 2 heater units
that were allowed by the user. At this stage, the routing latencies are not
yet known. The actual values of the routing latency are generated after the
placement and routing is complete. A set of input and output ports is allocated
for each component in order to serve as the source and sink point during flow
path execution. Metering units are used to create discretized samples of unit
volume. The number of metering units allocated depends on the maximum
possible external inputs that can be executed in parallel. In the current case,
a maximum of three external inputs are taken in parallel in schedule step 1
(Figure 4.4) and thus three metering units have been allocated.

4.5.1.2 Schematic Design

In the next step, we extract the schematic design from the generated binding and
scheduling information (analogous to data path generation in HLS [26]). Each
schedule step (Figure 4.4) is scanned to find the input source of the utilized com-
ponents and a corresponding net is placed between the component and the input
source. For example, Heater1 in schedule step 5 gets an input from Mixer1
and gives an output to Filter1, therefore it is connected to both components.
The extracted component interconnection scheme is shown in Figure 4.5.

Next we connect input and output ports to each component to serve as the source
and sink point. Metering units are placed at the fluidic sample input ports.
Storage units are needed to store intermediate results of operations [85]. Unlike
in HLS (where registers are required at every control step [26]), biochips require
storage only under special conditions. Consider an operation Ox bound to a
componentMy that finishes execution. If another operation gets bound toMy in
the next schedule step and the successor operation of Ox has not been scheduled

62 Architectural Synthesis

yet, then the output of Ox will need to be moved to the storage. Each storage
unit is capable of storing multiple fluid unit samples, depending on the number of
storage channels inside the unit. Since the routing latencies are not yet known, it
is not possible to accurately assess which components would require the storage
unit usage. For now, the storage unit is is connected to all components and the
designer specifies the maximum capacity of the unit. Unnecessary connections
and extra storage channels are removed after the application mapping step. The
final component interconnection configuration is shown in Figure 4.1b.

The flow path set F and the corresponding routing constraints K are also gen-
erated in this step. The flow path set for the biochip architecture in Figure 4.1b
is shown in Table 4.2. The source-sink path for each flow path and the routing
constraints are also shown.

4.5.2 Physical Synthesis

This stage takes the allocation U , the netlist, component library L and the
desired layout size as input and performs placement and routing (Zf , Rf , Zc,
Rc), determining any additional constraints in the set K and the routing lengths
of the flow paths (that are used to calculate the routing latencies c). We use a
grid-based approach to perform physical synthesis. The grid size is dictated by
the design rules and the component sizes on the grid are calculated accordingly
using their dimensions given in the component library. The design rules imposed
by the foundry and followed during the physical synthesis are summarized in
Table 4.4. The placement and routing phases are divided into two stages:

4.5.2.1 Flow Layer

According to the problem formulation from Section 4.3, the placement and rout-
ing should be done such that the application completion time is minimized.
However, this would require using the mapping and scheduling (Section 4.5.3)
as the cost function, which is too time-consuming. Instead, we use the to-
tal channel length and the number of net intersections as the cost function.
Minimizing the channel length minimizes the routing latencies, in turn mini-
mizing the application completion time. Similarly, minimizing the number of
net intersection minimizes the number of routing constraints, allowing more flow
paths to be executed in parallel. This will not lead to the optimal result, but
will reduce the application completion time. Furthermore, performing actual
routing to compare various placement solutions is impractical as routing is a
time-consuming process. Therefore, we perform placement and routing in sepa-

4.5 Synthesis Strategy 63

rate steps and use an estimation method (Manhattan distance between two pins
is the estimated channel length needed to connect them) to estimate the total
channel length in order to judge the quality of the placement solution.

The placement of components such that the total channel length is minimized
is an NP-complete problem, for which a number of good heuristic techniques
have been developed [69]. Considering the problem at hand, we use Simulated
Annealing (SA) (one of the most used methods for cell placement in VLSI [69])
for performing component placement on the chip. Various algorithms have been
proposed for routing over the years. We use Hadlock’s Algorithm (HA) [69] and
extend it for the flow layer routing. HA is suitable for the current problem since
it also uses a grid model approach, finds the shortest path between two vertices
(if such a path exists) and is faster than the other algorithms in this category
[69]. We extend HA to also consider the possibility of net intersections, ensuring
a 100% routability. The quality of the solution is judged by the number of net
intersections and the total channel length. Since HA is sensitive to the order in
which the nets are routed, we iterate on HA, providing it a re-ordered netlist for
every iteration in order to achieve a routing solution that minimizes the total
channel length and net intersections.

The routing latency corresponding to each flow path is also generated in this
step. Routing latencies are calculated by using the routing length of each flow
path extracted from the architecture and the flow rate used on the chip. We
consider a flow rate of 10 mm/s for all experiments in this chapter. If the flow
path length is 10 mm and the flow rate is set at 10 mm/s, then a unit volume of
liquid (10 mm length on the channel) traverses this flow path in 2 s, i.e., from
the time the tip of the 10 mm unit sample enters the flow path till the time the
tail leaves from it. The latency values are required while performing application
mapping. Latency values generated for each flow path are shown in Table 4.2.

Physical Synthesis Algorithm.

Figure4.6 shows our algorithm for the physical synthesis of the flow layer. The
algorithm takes the allocated component set M , the generated netlist List and
the component library L as an input, and returns the placement and routing
information of the flow layer. The objective is to place all the components on
the chip and minimize the total channel length in order to reduce the routing
latencies, while satisfying the design rules. Figure 4.2 shows the flow layer
placement and routing scheme that comes out of our algorithm.

Simulated Annealing [69] (lines 1−17 in Figure4.6) is used for generating the
placement scheme. SA is a metaheuristic, which, starting from a random initial
placement of components (line 3), iteratively obtains a better placement scheme
by performing moves (line 6), i.e., design transformations, (swapping, rotating

64 Architectural Synthesis

FlowPlaceAndRoute(M , List, L)

1 // Phase I: Flow Layer Placement
2 Initialize T
3 Znow

f = InitialPlacement(M , L)
4 repeat
5 for i=1 to TL do
6 Z ′

f = moves(Znow
f)

7 δ = cost(Z ′
f) − cost(Znow

f)
8 if δ < 0 then
9 Znow

f = Z ′
f

10 else
11 if random(0,1) < e−δ/T then
12 Znow

f = Z ′
f

13 end if
14 end if
15 end for
16 T = α × T
17 until <stop criterion is met>
18 // Placement returns the best solution Zf in terms of the cost function
19 // Phase II: Flow Channel Routing
20 Rnow

f = RouteFlowLayer(Zf , List)
21 cnow = cost(Rnow

f)
22 repeat
23 List = Re-order(List)
24 R′

f = RouteFlowLayer(Zf , List)
25 c′ = cost(R′

f)
26 if c′ < cnow then
27 cnow = c′

28 Rnow
f = R′

f

29 end if
30 until <stop criterion is met>
31 return < Zf , Rnow

f >

Figure 4.6: Physical Synthesis Algorithm for the Flow Layer

or randomly changing component location on the chip) to modify the current
solution. SA also accepts deteriorations in cost (lines 11−13) to a limited extent
in an effort to obtain global optimum, in terms of the cost function used. The
placement generated by SA Zf is given as input to the Hadlock’s Algorithm
[69] (lines 20−30) to iteratively generate the routing. A re-ordered netlist is
generated (line 23) in every iteration in order to cater for HA’s sensitivity to
the order in which the nets are routed. The best solution for the placement Zf

and the routing Rnow
f is then returned (line 31).

4.6 Experimental Evaluation 65

4.5.2.2 Control Layer

Control layer placement and routing can be done using the same algorithms as
described for the flow layer. We aim to target this step in our future research.
Since the number of control valves on these chips can be extremely high (com-
mercial chip having more than 25,000 valves [66]) and the number of punch
holes that can be made on the chip for connecting the control pins is limited
by the design rules [15], each valve cannot be connected to a separate control
pin. In the next chapter, we propose an approach for sharing the control pins
between valves in order to minimize the number of control pins.

Next, we map the application onto the synthesized architecture using the ap-
proach given in Chapter 3. We use the same binding as the one generated during
the schematic design (Figure 4.4). As shown in Figure 4.3, the application re-
quires only one storage reservoir. The output of operation O5 is moved to the
storage since the heater needs to be reused for operation O8 before the successor
operation of O5 (which is operation O7) is released. The application execution
is completed in 32.2 s.

4.6 Experimental Evaluation

We evaluate our proposed approach by synthesizing biochip architectures for
three real life assays and a set of four synthetic benchmarks (all given in Ap-
pendix B). We implement these applications onto the synthesized chips and
determine the application completion time. The algorithm was implemented in
C#, running on a Pavilion laptop (HP dv6-2155dx) with Core i3, Dual Proces-
sors at 2.13 GHz and 4 GB of RAM.

Table 4.5 shows our experimental results for real-life case studies. Column 1
presents the application and column 2 shows the list of allocated components,

Table 4.5: Real-Life Applications

Allocated Chip Net Total Total

Appl. Units Area Length Inters. Valves δG

PCR (3, 3, 3, 0, 0, 0) 250 × 250 198 4 67 19.7 s

IVD (5, 5, 3, 0, 0, 3) 250 × 250 393 10 101 20 s

CPA (5, 5, 5, 0, 0, 3) 250 × 250 1360 51 295 72.7 s

EA (5, 5, 3, 1, 1, 0) 150 × 150 1917 63 311 32.2 s

66 Architectural Synthesis

in the following format: (Input ports, Output ports, Mixers, Heaters, Filters,
Detectors). Columns 3−6 present the desired chip area, total length of the flow
channels, total number of net intersections and the total number of valves on
the chip, respectively. Chip area represents the area given by the user as input.
Chip area and total channel lengths are scaled, with a unit length being equal
to 150 µm, i.e., a total length of 10 given in Table 4.5 corresponds to 1500 µm.
The number of valves are calculated by considering 1 valve for each I/O port,
4 valves for each intersection (switch), 9 valves for each mixer, 6 valves for
each metering unit and 2 valves each for all remaining components. The last
column presents the completion time δG of the application, in seconds, on the
synthesized architecture.

The first real-life assay we use is the PCR (polymerase chain reaction) mixing
stage. The architecture details and the corresponding application completion
time are shown in row 1 of Table 4.5. Row 2 shows the architecture generated for
Multiplexed IVD (in-vitro diagnostics). The third row shows a larger real-life
application, a colorimetric protein assay (CPA, 55 operations). It uses a chip
equipped with 295 valves to complete its execution in 72.7 s. The architectural
details given in row 4 are for the example application (EA) given in Figure 4.1a.

In the second set of experiments we have evaluated our proposed method using
a set of four synthetic benchmarks. The benchmark applications are composed
of 10, 30, 40 and 50 operations. Table 4.6 shows the details of the synthesized
architectures considered and the respective application completion times.

For each application in Table 4.6, two sets of architectures were synthesized. The
first row presents results for the architecture synthesized under designer-given
constraints (maximum number of components of a certain type is constrained),
whereas, the second row presents the results of an unconstrained architecture,

Table 4.6: Synthetic Benchmarks

Allocated Chip Net Total Total

|O| Units Area Length Inters. Valves δG

10 (2, 2, 1, 1, 1, 1) 150 × 150 1813 45 211 39.9 s
(5, 5, 2, 1, 1, 1) 150 × 150 1926 68 324 35.7 s

30 (6, 6, 3, 2, 2, 1) 250 × 250 3575 122 573 64.5 s
(15, 18, 6, 4, 3, 1) 350 × 350 5243 124 665 46.1 s

40 (8, 8, 4, 3, 1, 2) 350 × 350 4799 151 716 69.8 s
(18, 20, 7, 5, 2, 3) 350 × 350 7452 171 889 59.5 s

50 (10, 10, 5, 2, 2, 2) 350 × 350 6522 177 839 81.25 s
(21, 24, 10, 4, 3, 3) 400 × 400 9366 213 1109 60.1 s

4.7 Summary 67

i.e., no constraints were placed on the number of components to be used. Al-
location step for the unconstrained architecture case can be considered similar
to ASAP Scheduling [56]. For all applications, the unconstrained architecture
produces a completion time that is smaller than that of the constrained archi-
tecture. All experiments presented in this section took between 3 to 30 minutes
to complete, depending on the complexity of the application. All benchmarks
and architecture details can be found here [14].

4.7 Summary

In this chapter we have presented a top-down architectural synthesis approach
for flow-based microfluidic biochips. The proposed approach synthesizes a biochip
architecture for a given biochemical application, such that the application com-
pletion time is minimized. The synthesis process involves component allocation,
design schematic generation, and the physical synthesis (placement and rout-
ing) of the chip. The approach has been evaluated by synthesizing biochip
architectures for three real-life assays and a set of synthetic benchmarks. The
proposed approach is expected to facilitate programmability and automation
in the microfluidics domain, reducing human effort and minimizing the design
cycle time.

Once the biochip architecture has been synthesized and the application map-
ping step has been completed, the output of the application mapping block can
be used to synthesize input for the biochip controller. This will enable auto-
matic execution of the given biochemical application on the synthesized biochip
architecture. The following chapter discusses this topic in detail.

68 Architectural Synthesis

Chapter 5

Control Synthesis

In this chapter we focus on the “Control Synthesis” block of our proposed design
methodology (see Figure 1.6). We start off by presenting the related work
and describing our contributions. The tasks involved in control synthesis are
explained in Section 5.3 and our solution strategy is presented in Section 5.4.
We experimentally evaluate our strategy in Section 5.5.

5.1 Related Work

There are two steps of control synthesis: (i) control logic generation and (ii)
control pin count minimization. Control logic generation means determining
which valves need to be opened or closed, in what sequence and for how long,
in order to execute the application on the chip [65]. Currently, this is done
manually by the designers [81]. Generating control logic manually is inefficient
and error-prone (similar to exposing the gate-level details in microelectronics).
Moreover, as the chips become more complex and the assays more concurrent,
the manual process will not scale.

The second step is the control pin count minimization. As discussed in Sec-
tion 1.3.1, a valve is connected to a pressure source through a control pin (e.g.,

70 Control Synthesis

Figure 5.1: Microfluidic Multiplexer [55]

in Figure 1.3a, valve va is connected to the pressure source through control pin
z1). A valve is pressurized (closed valve) or de-pressurized (open valve) by the
pressure source connected to the control pin. Having a separate control pin for
every valve directly translates to a large pin-count for the chip, resulting in (i)
high consumption of the chip area, and (ii) requirement of large, expensive and
complex macro-assembly around the chip (each valve requiring its own pressure
source). High pin-count is a bottleneck to the scalability of these chips and
therefore needs to be minimized.

Microfluidic multiplexers [55] have previously been used to minimize the control
pin count. Consider that there are N flow channels on the chip requiring N
valves to close them. If every valve gets a separate pin and therefore a separate
pressure source, N pressure sources will be required. However, if it is known that
only one of the N flow channels needs to be open at a time (all others need to
be closed), then a microfluidic multiplexer can be used. Such a multiplexer will
require only 2log2N control pins for controlling N such flow channels [21], e.g.,
8 pins will be sufficient to control 16 such flow channels as shown in Figure 5.1.
Valves are vreated only where a wide control channel (red) intersects with a
flow channel (blue). Narrow intersections do not create valves. In Figure 5.1,
control channels with status 1 have the associated valves closed and the ones
with status 0 have the associated valves open. For the case shown, the valves
are activated such that flow channel 14 is open and all others are closed.

In order to perform the multiplexer-based optimization, the user is asked to
manually specify which flows on the chip will be used and if they will be used
in parallel or not [21]. Once the flows have been specified, then the multiplexer
is used for sharing the control pins between flow channels that satisfy the above
criteria. Manual flow specification requires the user to have complete under-

5.2 Contribution 71

standing of the chip as well as the application requirements. The manual input
provided by the user can also easily result in under or over-constrained specifi-
cations, resulting in inefficient minimization. Moreover, the multiplexers-based
minimization is only applicable if the criteria of “only one out of N flow chan-
nels needs to be open at a time” is fulfilled. The control pin count minimization
problem has been reduced to the graph-coloring problem (which is NP-hard) [21]
but no solution or experimental results have been presented.

5.2 Contribution

We propose a top-down control synthesis framework for implementing biochem-
ical applications on flow-based biochips. Given a biochip architecture and the
mapping implementation of a biochemical application on the biochip architec-
ture, control synthesis consists of the following two steps: (i) control logic gener-
ation and, (ii) control pin count minimization. We utilize the output of control
logic generation step and perform the minimization by sharing the control pins
between multiple valves, provided that those valves operate in unison through-
out the entire application execution. Pin count minimization using multiplexers
and our proposed approach can be performed one after the other in order to
reach a good solution. Here, we do not perform multiplexing but consider that
this may already have been done in the given biochip architecture.

Considering the computational complexity of the problem, we propose a Tabu
Search [48] based optimization in order to minimize the pin count. Our frame-
work does not require manual flow specifications from the user, decoupling the
application design from control synthesis. To the best of our knowledge, this
is the first time an approach for the control logic generation for the mVLSI
biochips is being presented.

5.3 Biochip Control Synthesis

The following subsections explain the tasks involved in the biochip control syn-
thesis. Our proposed solution is discussed in Section 5.4.

We use the biochip architecture given in Figure 5.2 and the application given
in Figure 5.3b as an illustrative example. The biochip has 4 mixers, 2 heaters,
2 filters and 2 detectors. Table 5.1 shows the list of flow paths, their routing
latencies and the routing constraints for the architecture in Figure 5.2. Each

7
2

C
o
n
tr
o
l
S
y
n
th
e
si
s

Table 5.1: Biochip Flow Path Set (F), Control Layer Model and Routing Constraints (K)
Flow Paths Control Layer Model Routing

Flow Path Closed Valves Open Valves Constraints
F0−x = (In1, Mixer1), 2 s F0−1 4, 7, 67 1, 2, 3, 5, 6, 8, 9, 10, 68 K3−x : F10−x

F1−x = (Mixer1, Filter1), 2 s F0−2 3, 5, 67 1, 2, 4, 6, 7, 68, 8, 9, 10 K8−x : F12−x

F2 = (Filter1, Heater2), 2 s ... K10−x : F3−x

... F6−1 30, 33, 71 27, 28, 29, 34, 35, 36, 31, 32, 72 K12−x : F8−x

F6−x = (In2, Mixer2), 2 s F6−2 29, 31, 71 27, 28, 30, 33, 32, 72, 34, 35, 36
... ...
F11 = (In3, Heater1), 2 s F11 64 42, 43, 44, 63
F12−x = (Heater1, S1, Mixer3), 3 s ...

5.3 Biochip Control Synthesis 73

Figure 5.2: Biochip Architecture Example

flow path has an associated control layer model (given in Table 5.1) that contains
the details required for its utilization, i.e., the switch and the pump activation
details. Figure 5.3a shows the schematic view for the area marked as Region A
in Figure 5.2. For the flow path F0−1 (1 for referring to the upper half of the
mixer) that goes from In1 to Mixer1 (as shown in Figure 5.3a), the valve set
{4, 7} needs to be closed and the valve set {1, 2, 3, 8, 9, 10, 5, 6} needs to be
opened. The same is given as the control layer model of F0−1 in Table 5.1. A
pumping action then moves the fluid from In1 to the Mixer1 upper half. For
the biochip architecture in Figure 5.2, we consider that all the flow paths have
their own dedicated off-chip pumps. The pumps can, however, be easily shared
between flow paths. In that case, the flow paths that share a pump will become
mutually exclusive and will be listed as such under the routing constraints.

The components in the architecture also have control layer models. For exam-
ple, Mixer1 in Figure 5.3a is a pneumatic mixer (introduced in Section 2.1.1)
implemented using nine microfluidic valves, numbered 2 to 10. The valve set
{8, 9, 10} acts as an on-chip pump. The valve set {2, 3, 4} and the valve set
{5, 6, 7} act as switches. The two switches facilitate the inputs and outputs,
and the pump performs mixing.

The mixer has five operational phases. The first two phases represent the input
of two samples for mixing (filling the upper and lower half of the mixer), followed
by the mixing phase (Mix). The mixed sample is then transported out of the
mixer in the last two phases, emptying the two halves.

In order to perform mixing (once both halves are filled), the mixer input and
output valves {2, 6} are closed while valves {3, 4, 5, 7} (see Figure 5.3a) are

74 Control Synthesis

(a) Region A in Figure 5.2 (b) Application Graph

Figure 5.3: Schematic View and Application Example

opened and the mixing operation is initiated. Valve set {8, 9, 10} acts as a
peristaltic pump. Closing valve 8 inserts some pressure on the fluid inside the
mixer, closing valve 9 creates further pressure, then as valve 10 is closed valve
8 is opened again. This forces the liquid to rotate clockwise in the mixer. The
valves are closed and opened in a sequence such that the liquid rotates at a
certain speed accomplishing the mixing operation. The control layer of the
mixing phase is a part of the component model. Table 5.2 shows the control
layer model for all components in the biochip in Figure 5.2. The control layer
details are only for the functional phase of the component. For example for
Mixer1, the control details are for the Mix operation for which the valve set
{2, 6} is closed, {3, 4, 5, 7} is opened and {8, 9, 10} is in the mixing state
(opening and closing in a predefined sequence). Valve sequences for the heaters,
filters and detectors are also given. In addition to these valve activations, the
relevant component also needs to be activated, e.g., optical sensor present in
the detector needs to start operation as soon as the associated valves have been
activated.

The input and output phases of the components are modeled using flow paths
(and their associated control layers) in the architecture model. For example, the
input to Mixer1 from In1 in Figure 5.3a is modeled by the flow path F0−x (see
Table 5.1) and its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer1) need to stay open for
the input and output phases of the mixer. Mix valves are active only when the

5.3 Biochip Control Synthesis 75

Table 5.2: Component Control Layer Model for Figure 5.2
Component Open Closed Mixing

Valves Valves Valves
Mixer1 3, 4, 5, 7 2, 6 8, 9, 10
Mixer2 29, 30, 31, 33 28, 32 34, 35, 36
Mixer3 49, 50, 51, 53 48, 52 54, 55, 56
Mixer4 19, 20, 21, 23 18, 22 37, 38, 39
Heater1 - 43, 44 -
Heater2 - 13, 14 -
Filter1 - 11, 12 -
Filter2 - 57, 58 -
Detector1 - 40, 41 -
Detector2 - 24, 25 -

mixing is intended and need to be kept open after the mixing is done, until the
desired mixed fluid has been taken out emptying the mixer.

5.3.1 Control Logic Generation

Generating the control logic η means deciding which valves to close/ open, in
what sequence, at what time and for how long, in order to implement a bio-
chemical application G on the chip architecture A. A mapping ψ =< B,X >
(binding and scheduling information) of the application on the biochip archi-
tecture is given as input. Figure 5.4 shows the schedule X after mapping the
application in Figure 5.3b on the biochip in Figure 5.2. The schedule is depicted
as a Gantt chart, where we represent the operations and fluid routing phases as
rectangles, with the lengths corresponding to their execution times. The start
time and the end time for the flow paths and operations in the schedule are
called time steps, i.e., 0 s and 2 s in Figure 5.4 are considered time steps since
they mark the start/ end time of the flow paths, whereas, 1 s is not a time step.

The control logic η is represented in a tabular form and contains the activation
status of all valves on the chip, for all time steps of the schedule. The control
logic presented in Table 5.3 gives the activation status of the valves shown in
Figure 5.3a for the schedule (given in Figure 5.4) duration 0 to 8 s.

Each row in the Table 5.3 represents the activation status of a valve. First
column contains the valve number and the remaining columns represent the
activation status of the valve for the time steps present in the schedule. For
example, the first row in Table 5.3 represents the activation status of valve 1. A

76 Control Synthesis

Figure 5.4: Example Schedule

0 as activation status represents an open valve, 1 a closed valve and X represents
a don’t-care, i.e., the valve may be opened or closed without having any influence
on the application execution. For example, valve 1 (row 1 in Table 5.3), is
opened at time 0 s, stays open at 2 s and then its status changes to a don’t-care
at 4 s. This is because from 0 to 4 s, F0−1 and F0−2 are executed, as shown
in the schedule in Figure 5.4, filling the upper and lower halves of Mixer1 (see
Table 5.1). At 4 s, both fluid samples are inside the mixer, therefore valve 2
closes in order to start the mixing operation (valve 2 status changes to 1 at
4 s in Table 5.3). Once valve 2 is closed, the status of valve 1 switches to a
don’t-care. This is because valve 1 and valve 2 are placed in series on the flow
channel (see Figure 5.3a) and once valve 2 is closed, opening or closing of valve
1 has no impact on the application execution. The mix valves (e.g., valve 8, 9,
10 in Mixer1) act as a pump in order to achieve mixing [55]. This pumping is
also included in η and for simplicity, it is shown as “Mix” in Table 5.3. The mix
valves are opened and closed at a certain frequency in order to achieve mixing,
and this opening and closing continues even between time steps.

5.3.2 Pin Count Minimization

The biochip architecture may contain some valves that are never closed during
the application execution. These valves are redundant and can be removed re-
ducing the pin count, e.g., valve 1 in Table 5.3 is never closed and is therefore
redundant. Connecting each valve to a separate control pin results in too many

5.3 Biochip Control Synthesis 77

Table 5.3: Control Logic (η) Table - For Valves in Figure 5.3a
Valve Time Steps (s) Color
No. 0 2 4 5 8 ...
1 0 0 X X 0 ... -
2 0 0 1 1 0 ... Color - 0
3 0 1 0 0 1 ... Color - 11
4 1 0 0 0 0 ... Color - 1
5 0 1 0 0 1 ... Color - 11
6 0 0 1 1 0 ... Color - 0
7 1 0 0 0 0 ... Color - 1
8 0 0 Mix Mix 0 ... Color - 14
9 0 0 Mix Mix 0 ... Color - 8
10 0 0 Mix Mix 0 ... Color - 2
...
27 0 0 X X X ... -
28 0 0 1 1 1 ... Color - 3
29 0 1 0 0 0 ... Color - 6
30 1 0 0 0 0 ... Color - 1
31 0 1 0 0 0 ... Color - 6
32 0 0 1 1 1 ... Color - 3
33 1 0 0 0 0 ... Color - 1
34 0 0 Mix Mix Mix ... Color - 9
35 0 0 Mix Mix Mix ... Color - 4
36 0 0 Mix Mix Mix ... Color - 7
...
42 0 X X X X ... -
43 0 1 1 X X ... Color - 13
44 0 1 1 X X ... Color - 13
...
89 X X X X X ... Color - 4

pin-outs from the chip limiting the chip scalability. In order to minimize the pin
count, a strategy is needed in order to share the control pins between different
valves that perform in unison with each other throughout the application exe-
cution schedule. For example in Table 5.3, valve 2 and valve 6 have identical
activation sequence in all time steps and therefore, can share the same control
pin. Similarly, valve 1 and 2 also have the same sequence (X for valve 1 at time
steps 4 and 5 means that valve 1 can be switched to 1 or 0 without affecting the
application execution) and can share the control pins.

78 Control Synthesis

5.3.3 Problem Formulation

Given (1) a biochip architecture modeled as a topology graph A, and (2) a
mapping ψ = < B,X > (binding and scheduling information) of an application
G on the biochip architecture A, we are interested in performing the control
synthesis for the given chip. Control synthesis consists of the following steps:
(1) generating the control logic η needed to execute the application on the chip,
and (2) minimizing the control pin count of the chip.

5.4 Synthesis Strategy

Figure 5.5 shows our algorithm which is explained in the following subsections.

5.4.1 Control Logic Generation

Control logic η is generated by fetching the control layer model of the biochip
flow paths F and components M (part of the biochip architecture model A),
and utilizing them to translate the mapping ψ into the valve activation sequence
(line 2 in Figure 5.5). At every time step of the schedule X , we look at the
active flow paths and operations, fetch the associated control layer models and
populate the table representing the control logic. The valves that need to be
opened are given a status 0, the ones that need to be closed 1 and to the set
of valves that are mixing the status “Mix” is allotted. All other valves are set
as X (don’t-care) for this time step and then the algorithm moves on to the
next time step. For example at time step 2, operation O3 and flow paths F0−2,
F6−2 are active, as shown in the schedule in Figure 5.4. Operation O3 is bound
to Heater1, so we fetch the control layer model for Heater1 from Table 5.2
according to which valves 43, 44 should be closed. The status for these valves
is therefore set to 1 at time step 2 in the control logic (Table 5.3). Similarly
the control layer models for the flow paths F0−2 and F6−2 are fetched from
Table 5.1 and the valves involved are set to either 1 or 0, depending on whether
they needed to be closed or opened. All other valves (except the mix valves)
are set to the status X for time step 2.

The mix valves are assigned a don’t care status X only when either both halves
of the mixer are empty, or when the mixed fluid in only one half of the mixer
was required for the application and that half has been emptied. When mix
valves (e.g., {8, 9, 10} for Mixer1) are set to X, the input and output valves of
the respective mixer ({2, 6} for Mixer1) need to be closed. This ensures that

5.4 Synthesis Strategy 79

ControlSynthesis(A, ψ, k, maxIter)

1 // Generate control logic
2 η = GenCtrlLogic(F , M , ψ)
3 // Algorithm for pin count minimization
4 Gc = GenGraph(η)
5 k = |Gc|, kIterate = 1
6 while f(s) > 0 and kIterate = 1 do
7 // Generate initial solution
8 s = Random(Gc)
9 Initialize TL to φ, nrIter = 0, s∗ = s

10 while f(s) > 0 and nrIter < maxIter do
11 BestMove(s′) = GenNbrSelectMove(s, TL)
12 Update TL
13 if f(s∗) > f(s′) then
14 s∗ = s′, nrIter = 0
15 else
16 nrIter++
17 end if
18 PerformMove {s = s′}
19 end while
20 (k, kIterate) = BSearch(f(s), k)
21 end while
22 return < η, GC , s∗, k>

Figure 5.5: Synthesis Algorithm

if these mix valves (e.g., {8, 9, 10} of Mixer1) share control pins with other
mix valves (e.g., {34, 35, 36} for Mixer2) and a pumping action is performed
because of this, the pumping affect is contained inside the mixer and does not
affect the rest of the chip operation.

5.4.2 Pin Count Minimization

The pin count minimization problem has previously been reduced to a graph
coloring problem (GCP) [21]. In GCP, the nodes in the graph need to be
colored using minimum number of colors, in such a way that no two adjacent
nodes have the same color. Finding the exact chromatic number (the minimum
number of colors that can be used to color the graph nodes) is an NP-hard
problem [21]. Finding out if the graph can be covered with k colors is an NP-
complete problem [48]. The problem has previously been reduced to a GCP,
however, no solution or experimental results have been proposed.

80 Control Synthesis

5.4.2.1 Graph Generation

Before we generate the graph, we remove redundant valves, if any, from the
biochip architecture. Redundant valves are the ones that are never closed dur-
ing the entire application execution, e.g., valve 1, 27 and 42 in Table 5.3 are
redundant valves as their status is never set to 1. These valves can be removed
from the biochip as their presence has no effect on the application execution.

Next, we create the graph GC(VC , EC) (line 4 of Figure 5.5) by considering each
valve in Table 5.3 as a separate node V c in the graph (redundant valves are
not considered). An edge Ec is made between two nodes if a time step exists
in the schedule for which the valves (represented by the nodes) have a different
activation status. For example, the nodes representing valve 2 and valve 6
will not have an edge between them as they operate in unison throughout the
schedule as shown in Table 5.3, but an edge will be made between valve 2 and
3 since their activation status vary at time step 2 (valve 2 is open and valve 3
is closed). The graph is complete once all edges have been drawn. The graph
for Table 5.3 has 83 nodes (total valves were initially 89, 6 were found to be
redundant and were removed) and 1312 edges.

5.4.2.2 Pin Count Minimization Algorithm

The problem for pin count minimization is now represented in the form of a
classical graph coloring problem (GCP). Once the colors have been assigned,
the nodes that have the same color will share the same control pin.

GCP has been studied extensively and different approaches have been proposed
to find a good quality solution. The simplest approach is the Greedy method [48]
which takes the ordering of the nodes as input and colors them with the smallest
color number, while satisfying the constraint that no two adjacent nodes should
have the same color. Greedy often performs poorly in practice since a good node
ordering is difficult to decide. DSATUR is another commonly utilized approach
that uses a heuristic to dynamically change the ordering of the nodes and then
uses the Greedy method for coloring [48]. Branch and bound algorithms [48]
and semi-definite programming solutions for approximate graph coloring [41]
have also been proposed. Considering the complexity of the problem, different
metaheuristic techniques have also been used extensively for finding good graph
coloring solutions, especially when there is a large number of nodes [48]. We
use a Tabu Search-based optimization scheme in order to perform the pin count
minimization.

5.4 Synthesis Strategy 81

Tabu Search (TS) is a metaheuristic, based on the neighbourhood search, which
uses design transformations (moves) applied to the current solution in order
to generate a set of neighbouring solutions that can be further explored by the
algorithm [34, 37]. Our algorithm targets a k-GCP, i.e., finding a graph coloring
using k number of colors and then iterates to find the smallest value of k.

Given the graph GC(VC , EC) to be colored, the target of the algorithm is to
partition the nodes into a fixed k number of subsets, such that no two adjacent
nodes belong to the same subset. We start with a random solution s for the
k-coloring (line 8 in Figure 5.5), which (typically) contains a high number of
edges in a conflict, i.e., the nodes connected by these edges have the same color.
Using this as an initial solution the algorithm iterates to explore the solution
space S, which is the set of all possible k-colorings of the graph.

In order to efficiently perform the search, TS uses memory to record moves that
are not allowed at the present iteration (called tabu list (TL)). The aim is to
exclude moves that would cycle the search back to the local optima that has
already been evaluated. A move remains tabu for a certain number of iterations
(called the size of tabu list). Our algorithm starts with an empty TL and the
best known solution s∗ is initialized with the initial solution s (line 9).

Next, the algorithm generates neighbourhoods for the current solution s and
picks the best one from these based on a certain objective function (line 11). A
neighbour s′ is generated by selecting a random node x that is adjacent to an
edge in conflict. Assuming x ∈ VCi, we choose a random color j 6= i and replace
i with j to obtain s′. The objective function f(s) is given as:

f(s) =
k∑

i=1

|ECi| (5.1)

(it measures the number of edges in conflict), where s ∈ S is the solution under
evaluation, and ECi is the set of edges in conflict, having color i. The objective
of the algorithm is to determine a k-coloring such that f(s) = 0. The best move
is the one that is not tabu and has the lowest f(s) value.

Our algorithm generates the tabu list as follows: whenever a node x is moved
from VCi to VCj , the pair (x, i) becomes tabu, i.e., node x cannot be returned
to VCi for a certain number of iterations. However, in order to not prohibit
attractive moves, our algorithm uses the aspiration criteria of allowing the tabu
moves if they result in a solution s′ that is better than the currently known best
solution s∗. The best move is selected and the tabu list is updated (line 11, 12).

The algorithm continues searching until it finds a solution for which f(s) = 0
or until it reaches the maximum number of iterations without an improvement

82 Control Synthesis

Figure 5.6: Colored Graph

in the solution (number of iterations nrIter is reset and incremented in line 14
and 16 respectively). Our algorithm uses binary search (half-interval search) to
select new value of k, as it iterates to find the minimum value of k for which
f(s) = 0 (line 20). When the minimum k is found, the algorithm stops and
the control logic η and the pin sharing information (Gc, s∗, k) is returned (line
22). The graph generated for Table 5.3 has 83 nodes, i.e., 83 valves requiring
83 control pins and therefore 83 off-chip pressure sources. After performing
the pin count minimization, only 15 control pins were found to be needed to
control these 83 valves and to execute the control logic given in Table 5.3. Last
column in Table 5.3 shows the colors assigned to the valves (valves with the
same color share the control pin). A small section of the colored graph is shown
in Figure 5.6 representing the pin sharing, e.g., valve 2 and valve 6 do not have
an edge between them, hence they share the same color (and therefore the same
control pin). Complete graph is shown in Figure 5.7.

5.5 Experimental Evaluation

We evaluate our proposed approach by synthesizing real-life assays as well as
synthetic benchmarks. The algorithm was implemented in C++, running on
Lenovo T400s ThinkPad with Core 2 Duo 2.53 GHz Processors and 4 GB RAM.

Table 5.4 shows the results. Column 1 shows the application name (for a real-
life assay) or the number of operations in the application (in case of a synthetic
benchmark). The second column gives details of the biochip architecture in the
following format: (Mixers, Heaters, Filters, Detectors). The third column shows
the number of control pins originally needed and column 4 shows the number
of control pins needed once the redundant valves have been removed (the term
NR in the table means Non-Redundant). Column 5 gives the final pin count
after the minimization has been performed.

The first real-life assay is PCR (polymerase chain reaction) mixing stage that
has 9 mix operations and is used in DNA amplification [14]. Next, real-life ass-

5
.5

E
x
p
e
rim

e
n
ta
l
E
v
a
lu
a
tio

n
8
3

Figure 5.7: Complete Graph for Table 5.3

84 Control Synthesis

Table 5.4: Experimental Results
Appl./ Allocated Total NR Optimized
Nodes Units Pins Pins Pins
PCR (4, 0, 0, 0) 73 52 12
IVD (6, 0, 0, 6) 65 65 12
10 (4, 2, 2, 2) 87 83 15
20 (12, 4, 3, 1) 164 145 38
30 (17, 6, 4, 3) 212 201 47
40 (21, 9, 6, 4) 269 197 74
50 (26, 12, 7, 5) 329 240 61

ay Multiplexed IVD (in-vitro diagnostics) has a total of 12 operations and is
used to test fluid samples from the human body. The synthetic benchmark
applications are composed of 10 up to 50 operations. In all cases, the pin count
is reduced by more than 70%, e.g., for the 10 node application it goes down from
87 to 15, an 82% reduction in pin count. The parameter values were determined
by tuning. Size of TL was set to 7 and the number of neighbours/ sample to 15.
The algorithm execution time depends on the chosen value of k and the size of
the problem. On average, for each value of k, the algorithm iterates for 2 to 4
minutes. All architectures and benchmarks can be found here [14].

5.6 Summary

In this chapter, a top-down control synthesis framework for implementing the
biochemical applications on the flow-based biochips has been proposed. Our
algorithm generates the control logic needed to execute the application and uses
a Tabu Search-based optimization in order to minimize the control pin count.
The minimization is targeted at efficiently utilizing the chip area and reducing
the macro-assembly around the chip. The framework has been evaluated using
real-life applications as well as a set of synthetic benchmarks. The proposed
approach is expected to facilitate programmability and automation, and enhance
scalability of the flow-based biochips.

Chapter 6

Experimental Throughput

Maximization for

Cell Culture Biochips

The term “cell culturing” refers to the process of growing cells outside their
natural environment (in vitro). This allows the study of complex cellular mech-
anisms without requiring the usage of laboratory animals. Cell culturing pro-
vides biological insights into cells and tissues bringing exciting opportunities for
stem cell research, drug discovery (e.g., for cancer) and a wide range of other
applications in the biomedical and pharmaceutical industry.

In cell culturing, an experiment is defined as the exposure of a cell colony to
a sequence of fluidic compounds and monitoring its response. For example,
cancer cells can be exposed to a sequence of fluidic compounds (possible drugs)
in order to monitor which compounds (or which sequence of compounds) has
the most desired effect. Exposing cells to all possible sequences of the fluidic
compounds is called a full factorial experiment and exposing them to a fraction
of all sequences is called a fractionally factorial experiment [63].

Drug discovery is one of the foremost applications of cell culturing. The first
step to drug discovery is to screen millions of compounds for effects on one tar-
get (e.g., a cell colony). Since there are millions of compounds to screen for,

86

Experimental Throughput Maximization for

Cell Culture Biochips

only a fractional factorial design is utilized. Once the lead compounds have
been identified, a full factorial design is initiated. Full factorial experiments
are expensive in terms of time and cost and hence need to be performed using
high throughput techniques to conserve resources [75]. Having high through-
put means performing as many experiments as possible using the available cell
colonies and fluidic compounds, within the limited amount of time.

Biologists have traditionally used cell culture platforms equipped with microwell
plates, where the cells are cultured inside the wells. Seeding, growing, feeding
and analysing the cell cultures inside the wells manually, requires many hours
of repetitive and painstaking work. Therefore, cell culture platforms have been
automated using robotics. Robotics-based automated cell culture systems are
being used today to increase the throughput by using their ability to manage
a large number of experiments, e.g., a cell culture system featuring a CRS 465
robotic arm can handle up to 504 microwell plates [42]. Flow-based biochips offer
a promising alternative to robotic microwell cell culture systems [27]. Biochips
can mimic both the complex biochemistries and the geometry of environments
found in organisms. At the same time, transport of fluids and soluble compounds
is regulated through the microfluidic channels creating new opportunities for the
spatial and temporal control of cell growth and stimuli [28].

Our focus in this chapter is on modeling a cell culture biochip architecture and
optimizing how a biochemical application is executed on these biochips, such
that the experimental throughput is maximized. The architecture modeling is
presented in Section 6.1.1 and the optimization problem in Section 6.1.2.

Several microfluidic cell culture platforms have been proposed. A large number
of cell culture platforms contain biochips that have been fabricated using PMMA
(polymethyl methacrylate) as the substrate. PMMA is more suitable than
PDMS in culturing certain cell types. We start by considering PMMA-based
cell culture biochips and later explain the mVLSI-based ones. The techniques
proposed in this chapter are applicable to both PMMA and mVLSI biochips.

Consider the platform shown in Figure 6.1 [76]. It has a PMMA biochip on
which the cells are cultured, inlet reservoirs containing compounds to which the
cells are exposed, pumps that are used to push the compounds into the chip and
outlet reservoirs that collect the compounds when they come out after passing
over the cells. The system is programmable, providing simultaneous software
control of the pumps and the microscope for automated image analysis.

The cell culture biochip architecture, shown in Figure 6.1b, provides the op-
portunity for performing these high throughput experiments. The architecture
shown in the figure can hold 64 cell colonies and therefore 64 experiments simul-
taneously (8×8 matrix, see Section 6.1.1 for details). All the experiments being

87

(a) Biochip Platform [86]

(b) Laminar Flow Biochip

Figure 6.1: Biochip Platform and Architecture

carried out (64 in this case) in the chip are collectively considered as one experi-
mental stage. An experiment is considered unique if it is not repeated anywhere
on the chip. The biochip throughput depends on the number of unique experi-
ments carried out on the chip. Note that several experimental stages might be
necessary to achieve a certain target objective. A new chip (or the same chip
might be washed and reused) has to be used for the next experimental stage.

An experimental stage has two steps. (1) In the first step the cell colonies are
inserted and placed on the chip. The placement is fixed for an entire experi-

88

Experimental Throughput Maximization for

Cell Culture Biochips

mental stage. For example, in Figure 6.1b, different cell colonies (Q) are placed
on the chip. (2) In the second step, the soluble compounds are inserted using
either the top-to-bottom route (insertion from the top inlets: In1 to In8 in
Figure 6.1b, exit using the bottom outlets) or the left-to-right route. When a
compound is inserted from an inlet (e.g., In2), it traverses through all colonies
in its way till it reaches the outlet (e.g., the colony set (Q−, Q9, Q7, Q1, Q6,
Q1, Q6, Q

+) in the second column in Figure 6.1b), influencing all 8 experiments
(every cell colony is a separate experiment). The soluble compounds are manu-
ally placed in inlet reservoirs (see reservoirs in Figure 6.1a). However, they are
transported to the biochip automatically using pumps according to the insertion
schedule determined offline, i.e., the schedule is decided before the experiment
is performed. The pump can fetch from any desired inlet reservoir. The pumps
are controlled using a programmable custom-made electrical controller. The cell
placement pattern (1) and the compound insertion schedule (2) determine the
number of unique experiments in an experimental stage. The serialized insertion
of compounds (i.e., a compound inserted from an inlet affects all colonies placed
between that inlet and the designated outlet) reduces the probability of having
a high number of unique experiments.

Today the experimental design, i.e., deciding the placement pattern of the cell
colonies on the biochip and the schedule of the stimuli insertion (which com-
pounds to insert, in what sequence, and from which inlets), is done manually
resulting in undesired repetitions of experiments on the chip, reducing the overall
throughput. We propose an optimization approach to automate the cell culture
biochip experimental design such that the experimental throughput is maxi-
mized. Maximizing the throughput increases system productivity, saving time
(one cell culture experiment can take days to complete) and reducing costs; the
purified proteins and compounds used in the experiments are highly expensive.

6.1 System Model

6.1.1 Biochip Architecture

Figure 6.1b gives a high-level representation of a biochip architecture [76] for cell
culturing. The biochip itself is one big chamber (imagine a very wide microfluidic
channel) with 8 inlets at the left and 8 at the top, and 8 outlets at the right
and 8 at the bottom. The biochip uses the laminar flow property [86] which is
defined as the flow of fluids in parallel layers without any disruption between the
layers. This means that when different compounds are pushed in from different
inlets (e.g., from In1 to In8), because of the microscale volumes they flow in

6.1 System Model 89

parallel without mixing thus creating 8 parallel flows. Similar effect is obtained
when inlets on the left (In9 to In16) are used. Only one set of inlets can be
used at a time. The biochip is represented as an AR×AC matrix (AR rows and
AC columns, e.g., for the chip in Figure 6.1b, AR = AC = 8). Each element of
the AR ×AC matrix hosts a cell colony. The off-chip valves V1 and V2 control
the flow to the outlets.

Before starting an experiment, the locations on the chamber where the cell
colonies are to be placed are tagged using DNA spotting technique. Then, to
carry out the experiment, first, valve V2 is opened and valve V1 is closed, allow-
ing different cell types to be pumped into the large chamber. Due to laminar
flows, eight corresponding stripes of cells are produced. After sedimentation,
cells adhere to the bottom of the chip according to the DNA spotting. Then,
valve V2 is closed and valve V1 is opened, allowing eight soluble compounds
to perfuse over the cells in the perpendicular direction creating simultaneous
experiments in the chip. It is also possible to insert soluble compounds using
the same inlets from which the cells were initially inserted (valve V1 closed, V2
open), but only one type of inlets can be open at a time.

Two special types of cell colonies, positive (Q+) and negative (Q−) controls
(selected based on the application being executed on the chip, i.e., depending
on the cell colonies and the input compounds), are used to ensure the quality of
compounds being inserted into the chamber and to guarantee that the conditions
in the chamber are uniform [77]. The actual size of the chip here is 8×8, but
since the controls need to be placed at the boundary locations, therefore the
active area (on which the cell colonies under test are placed) is reduced to 6×6.

As mentioned, the biochip shown in Figure 6.1b has one large chamber and relies
on the laminar flow properties of the liquids for ensuring that the inserted cells
and compounds do not mix with each other. This is prone to different faults,
e.g., if an air bubble enters the chip from one of the inlets, it will not just affect
the cell colonies in front of the inlet it entered from but instead all cell colonies
on the chip can become enclosed in the air bubble. This will result in the failure
of of all experiments on the chip.

Another option would be to isolate the rows and columns in the chip, i.e., have
independent chambers instead of one large chamber. The mVLSI technology
provides such an option offering more control, as is the case with the biochip
shown in Figure 6.2. The biochip shown in the figure is shaped in the form of
a 20×20 matrix and is used to perform 400 distinct PCR reactions (i.e., it is
not used for cell culturing) [51]. Each vertex in the matrix contains a reactor,
so there are 400 reactors (20×20) in total. Each row of reactors is connected to
a separate input port through which primers may be loaded. Each column can
similarly load the reactors with different DNA templates [51].

90

Experimental Throughput Maximization for

Cell Culture Biochips

Figure 6.2: PCR Biochip with AR = AC = 20 (Scale Bar 6.4 mm) [51]

Figure 6.3: Cell Culture Chip: Schematic View

6.1 System Model 91

Table 6.1: Flow Path Set (F) and the Routing Constraints (K)
Flow Path Set Routing Constraints
F1 = (In1, S1, Ch1, S9, Ch2, S17, Ch3, S25, Ch4,) K1: (K9 to K16)
S33, Ch5, S41, Ch6, S49, Ch7, S57, Ch8, S65, Out1) ...
F2 = (In2, ..., Out2) K8: (K9 to K16)
... K9: (K1 to K8)
F15 = (In15, ..., Out15) ...
F16 = (In16, ..., Out16) K16: (K1 to K8)

The chip has 2,680 valves in total, placed horizontally and vertically. Since the
flows are activated either vertically (top to bottom) or horizontally (right to
left) therefore all these valves are controlled by only two control pins connected
to two independent pressure sources, i.e., all valves required to be closed for
vertical flows are controlled by one pressure source since they are always closed
at the same time. Same applies to the valve activation for horizontal flows [51].

Figure 6.3 shows the schematic view of the mVLSI architecture that we consider
for a cell culture biochip, based on the architecture discussed above (Figure 6.2).
The architecture shown has 64 chambers (8×8) for placing 64 cell colonies (same
number of cell colonies as for the chip in Figure 6.1b). This architecture offers
isolated chambers and more control. The chip uses a network of 144 switches
to control 64 cell culture chambers. The flow paths and the associated routing
constraints are shown in Table 6.1. Switch set {S73 to S144} is closed for ex-
ecuting flow paths F1 to F8 and switch set {S1 to S72} is closed for executing
flow paths F9 to F16. Therefore all 144 switches can be controlled using only 2
control pins, i.e., only 2 external pressure sources are needed. We consider that
the chip shown in Figure 6.3 is used in the platform in Figure 6.1b.

6.1.2 Experimental Design

As stated earlier, exposure of a cell colony to a sequence of soluble compounds
and monitoring its reaction is termed as an experiment. All the experiments
being carried out in a chip are collectively considered as one experimental stage.
In order to explain the experimental design process, we consider a 6×6 cell
culture biochip that has an active area of 4×4. The chip is used to carry out
experiments in n = 3 experimental stages, Figure 6.4 (a) to (c).We consider a
set Q of two cell colonies (Q1 and Q2) and a set J of three compounds to be
inserted (J1 to J3). We would like to expose the cells to the compounds, in any
order. The exposure time per compound is fixed. However, since we allow the
compound to be repeated in an exposure sequence, we can thus increase the

92

Experimental Throughput Maximization for

Cell Culture Biochips

exposure time for the same compound. The maximum number of experimental
stages to be used is generally decided based on the available budget (experiments
are highly expensive).

The placement of cell colonies on the biochip is given by the matrix Z; see
for example Z1 in Figure 6.4a. The sequence of compounds is captured by the
schedule Y, composed of < YR, YC , YZ >. The compounds can be inserted
either from left to right (row-wise) or from top to bottom (column-wise). Two
matrices YR and YC represent the compound placement at the insertion point,
row-wise and column-wise, respectively. The set YZ represents the sequence in
which the compounds are inserted. A “1” in YZ marks a column-wise insertion
whereas a “0” represents a row-wise insertion, see for example Y1 = < Y 1

R, Y
1
C ,

Y 1
Z > in Figure 6.4a.

Through experiments, we have to find out the sequence of compounds that
provide the desired result for a specific cell colony. To maximize the number of
combinations applied to a cell colony, it is important to perform as many unique
experiments on the chip as possible. A unique experiment is one which is not
repeated (in another part of the chip, or during another experimental stage).

Consider the cell colony Q2 placed in the top left corner in Figure 6.4a. The
number of compounds to which the colonies are to be exposed is considered
to be fixed to 3 by the biologist. Y 1

Z in Figure 6.4a is {1, 0, 1}. This means
that the first compound insertion will be made from YC , the second from YR
and the third again from YC . Therefore, Q2 placed at the top left corner will
be exposed to the following compounds: J1 (from YC), J3 (from YR), J2 (from
YC), denoted as “132”. There are 16 colonies placement location on the chip,
8 are filled with Q1 and 8 with Q2. Based on the schedule Y1 = < Y 1

R, Y
1
C ,

Y 1
Z > given in Figure 6.4a, following experiments are performed (sequence of

the experiments listed below is a row by row listing from the matrix):

Q1 : 233, 331, 122, 122, 112, 112, 233, 331

Q2 : 132, 132, 223, 321, 213, 311, 132, 132 (6.1)

where we have underlined the experiments that have been repeated. Repeti-
tion of experiments results in inefficient utilization of the chip. This results in
diminished system productivity and increased expenses, both in terms of time
and cost. Therefore, efficient experimental design is essential. Note that al-
though our model uses two matrices, YR and YC to capture the compounds,
only one such matrix is used in the implementation. The set YZ will determine
if a particular row in this matrix is fed row-wise or column-wise.

Considering an AR ×AC biochip, the maximum number of unique experiments
that can be carried out in one experimental stage is given by the active chip

6
.1

S
y
ste

m
M
o
d
e
l

9
3Figure 6.4: Motivational Example

94

Experimental Throughput Maximization for

Cell Culture Biochips

area: A′
R × A′

C , where A
′
R = (AR − 2) and A′

C = (AC − 2). Therefore, for
Figure 6.4a, the maximum utilization Umax of the biochip is: Umax = 4×4 =
16. The maximum number of combinations possible for a given colony depends
on the experimental specifications, captured by the set of compounds J and
the number of compounds I in an exposure sequence and is equal to (|J |I),
where |J | is the number of elements in the set J . For the experiments in
Figure 6.4a, (|J |I) = 27, the total number of combinations of I = 3 items
taken from a set of three elements J = J1, J2, J3. The number of possible
compound combinations (|J |I) for a certain cell colony is typically larger than
the maximum chip capacity Umax, which has to be divided among several cell
colonies. For the placement in Figure 6.4a, colony Q1 can use only half of the
total capacity, Umax / 2 = 8. Therefore, to achieve a wider coverage from the set
of 27 unique experiments per colony, it is imperative to have more experimental
stages even if the chip is fully utilized for the first stage, i.e., all 16 experiments
(8 per colony) carried out in the first stage are unique. In the current case, the
biologist has specified 3 experimental stages. This means that in the ideal case,
24 out of the 27 unique experiments can be achieved for each colony. The same
biochip may be washed and manually reloaded with cell colonies for reuse in
multiple experimental stages.

6.2 Problem Formulation

The problem we are addressing in this chapter can be formulated as follows.
Given (1) a cell culture biochip architecture model consisting of an AR × AC

matrix representing the cell culture chip chambers, (2) a set of compounds J
that are to be inserted from the inlets, (3) a set of cell colonies Q that are to be
placed on the cell culture chambers, (4) the number of compounds per exposure
sequence I, and (5) the total number of experimental stages n to be performed,
we are interested in designing each experimental stage Ωi, i = 1...n, such that
the experimental throughput γ is maximized.

Designing an experimental stage Ωi < Zi, Yi > means deciding for each stage
i on: (1) the placement Zi of the cell colonies from the set Q and (2) the
compound exposure schedule Yi = < Y i

R, Y
i
C , Y

i
Z >. The throughput of a cell

culture biochip is defined as:

γ =
|EU |

min(n× Umax, (|J |)I × |Q|)
(6.2)

where |EU | is the number of elements in the set EU of unique experiments over n
stages, considering the synthesized design Ω. The maximum number of unique
experiments is bounded by (i) the chip capacity, n × Umax, and by (ii) the total

6.2 Problem Formulation 95

number of possible combinations, considering all cell colonies Q, (|J |I) × |Q|,
whichever of the two values is smaller. Therefore, γ represents a percentage of
unique experiments obtained through our design Ω to the maximum possible,
given the chip capacity or the number of combinations. Note that a 100%
throughput might not be possible to obtain, and we have no way of knowing
maximum possible throughput unless we obtain the optimal design.

Let us use the example in Figure 6.4 to illustrate our problem. In Figure 6.4,
we have A′

R = A′
C = 6 − 2 = 4, Q = Q1, Q2, J = J1, J2, J3, I = 3 and n = 3.

Let us suppose we start from the configuration shown in Figure 6.4a, where we
assume that the placement Z1 and schedule Y1 have been decided as depicted
in the figure. All the experiments obtained in this first stage Ω1 = < Z1, Y1 >
have been listed in eq. 6.1. As shown, for Q2 5 out of the total 8 experiments
carried out are unique and for Q1 only 4 experiments are unique. The remaining
experiments (underlined) are repetitions. Therefore, the chip capacity for this
stage is poorly utilized.

In order to increase to number of unique experiments we have to carefully design
the second stage Ω2 = < Z2, Y2 >. For the second stage, the same biochip can
be used but, as stated earlier, it needs to be washed and reloaded with cell
colonies at the decided placements. A simple way to generate a stage Ωi is
to modify a previous stage Ωi−1 using a certain set of rules. We have decided
to roll over the placement Zi−1 and the contents of the schedule Yi−1 in the
hope to increase the number of unique combinations. Thus, we obtain the stage
design Ω2 given in Figure 6.4b, where Z1, Y

1
R, Y

1
C and Y 1

Z from Figure 6.4a are
all rolled to the right, i.e., all the contents are shifted right and the ones in the
right most position are moved to the first entries on the left. The experiment is
run again and the following experiments are generated:

Q1 : 232, 312, 121, 121, 123, 123, 232, 312

Q2 : 122, 122, 231,311, 233, 313, 122, 122 (6.3)

The experiments underlined are repeated in the same stage and the ones marked
in bold have already been covered in the previously conducted experimental
stage listed in eq. 6.1. Each cell colony, Q1 and Q2, now has 4 more unique
experiments, whereas ideally, 8 unique experiments could have been achieved in
this experimental stage. Again, the chip capacity has been utilized poorly for
this stage as well and needs to be improved.

More variations are now required in the experimental settings in order to in-
crease the probability of covering more unique experiments. Thus, for the third
experimental stage, a top-to-bottom roll is performed on the settings in Fig-
ure 6.4b, i.e., all the contents are shifted one step towards the bottom and the
ones at the bottom position are moved to the first entries on the top. Since the

96

Experimental Throughput Maximization for

Cell Culture Biochips

top-to-bottom roll cannot be performed on the Y 2
Z (1-D array), it is rolled to

the right instead. The new settings are shown in Figure 6.4c. The generated
experiments for these new settings are:

Q1 : 231, 212, 231, 212,123,123, 323, 323

Q2 : 223,223,223,223, 131, 112, 331, 312 (6.4)

As shown above, only 3 new unique experiments for Q1 and 4 for Q2 have been
generated and the remaining experiments are repetitions.

For all three experimental stages listed above, the joint experimental throughput
γ can be calculated using eq. 6.2. For the cell colony Q1, the number of unique
experiments in Stage1 (eq. 6.1), Stage2 (eq. 6.3) and Stage3 (eq. 6.4) are 4,
4 and 3 respectively. For Q2, these are 5, 4 and 4. Sum of all these unique
experiments,(4+5+4+4+3+4)= 24, is the numerator of eq. 6.2 when calculating
the throughput. For the denominator, n = 3, Umax = 16, |J | = 3, I = 3, and
|Q| = 2. The throughput, therefore, is equal to (4+5+4+4+3+4)/ min(3×16,
33×2) = 24/ 48 = 50%. Therefore, only half of the system experimental capacity
is being utilized.

A lower chip throughput translates into reduced system productivity and wastage
of resources. We are interested in designing an optimized experimental design
Ω such that the throughput γ is maximized. Such an optimized Ω is presented
in Figure 6.4(d–f), where the throughput obtained is 91.6% instead of 50%.
Figure 6.4(d–f) show the settings for the three experimental stages designed for
higher throughput. The experiments generated using these settings are:

Stage1 Q1 : 233, 131, 122, 322, 132, 332, 213, 111

Q2 : 132, 332, 223, 121, 233, 131, 112, 312

Stage2 Q1 : 311, 212, 313, 211, 323, 221, 321, 222

Q2 : 313, 211, 311, 212, 321, 222, 323, 221

Stage3 Q1 : 113, 112, 123, 121, 223,221, 333,332

Q2 : 113, 111, 123, 122,223,222, 333, 331 (6.5)

resulting in γ = (8+8+8+8+6+6) / 48 = 91.6%.

Finding such a solution, even for this simple case, can be quite tedious and
complex. The next section presents our optimization strategy for automatically
deriving the experimental design Ω which maximizes the throughput γ.

6.3 Experimental Throughput Optimization 97

6.3 Experimental Throughput Optimization

The problem presented in the previous section is NP-complete. To maximize the
throughput γ over all the n stages, we would have to simultaneously optimize
all the matrices Ωi = < Zi, Yi > for all stages i = 1...n, since the uniqueness of
an experiment is defined across all stages. Instead, our Experimental Through-
put Optimization (ETO) strategy, presented in Figure 6.5, is to optimize the
stages incrementally, one stage at a time. Therefore, when optimizing a stage
Ωi, we aim to maximize the number of unique experiments considering all the
experiments generated in stages Ω1 to Ωi. This approach does not guarantee
to find the optimal experimental design, but as the evaluation in Section 6.4
shows, it can obtain very good results in a short time.

The initial solution is generated using a heuristic presented in Section 6.3.1
(line 1 in Figure 6.5). The final stages are generated iteratively (lines 3–6 in
Figure 6.5) using an approach based on the Simulated Annealing (SA) meta-
heuristic (presented in detail in Section 6.3.2). SA takes as input the configu-
ration of the previous stage < Zi−1, Yi−1 > and the set of unique experiments
EU generated so far, and determines the configuration Ωi = < Zi, Yi > such
that the number of unique experiments generated are maximized. The set EU
contains all the unique experiments generated, from Ω1 to Ωi−1.

6.3.1 Initial Solution

The initial configuration is created using a Descend-Ascend scheme. Figure 6.6
shows the initial solution for a 4×4 chip hosting 6 colonies, to be inserted with
a total of 4 compounds and having 3 compounds per exposure sequence. The
configuration starts by placing the colony/ compound with the highest value
identifier at the top left location. Then, the second highest identifier (descend)

ETO(AR, AC , Q, J , I, n)

1 < Y0 , Z0 > = InitialSolution(AR, AC , Q, J , I)
2 EU = Ø
3 for i = 1 → n do
4 < Zi, Yi, EUi > = SimulatedAnnealing (Zi−1, Yi−1, EU)
5 EU = EU U EUi

6 end for
7 return Ω = < Z, Y >

Figure 6.5: Optimization Strategy

98

Experimental Throughput Maximization for

Cell Culture Biochips

Figure 6.6: Initial Solution

is placed at the next row position and so on. At the end of each row, the
sequence moves to the start of the next row. On reaching the smallest value
identifier, the scheme switches to ascend, i.e., the identifier placement is now
made in the ascending order.

6.3.2 Simulated Annealing

Simulated Annealing (SA) (introduced in Section 4.5.2.1) is an optimization
metaheuristic inspired from the annealing process in metallurgy and is a variant
of the neighborhood search technique. This is our first attempt to solve the
problem of optimizing the experimental throughput, therefore we have decided
to use SA because of its simplicity. The right choice of optimization approach
depends on the particular problem and we plan to investigate which is the best
approach in our future work.

SA uses design transformations (“moves”) to transform the current solution
(Znow, Ynow) in order to explore the design space. There are three types of
moves: (i) moves that change the inputs YR and YC , (ii) moves that change YZ ,
i.e., whether to give input from YR or YC , and (iii) moves that change placement
Z of the colonies on the chamber. The moves are explained in more detail below:

• For changing the matrix YC of I × A′
R elements, we randomly select two

elements (compounds Ji and Jj) and swap them. These are the type
of moves performed most often, since they have a large impact on the
generation of new combinations of compounds applied to the cell colonies.
Similar moves are performed on YR.

6.4 Experimental Evaluation 99

• Moves that transform YZ are applied when the value of the temperature
goes below 1, significantly reducing the acceptance probability of the de-
teriorated cost solutions. The temperature is then reset and a random
move in YZ is made. Since YZ has only 0 or 1 as member elements, the
maximum number of unique moves is limited.

• Moves in Z are applied the least often, only when moves in YZ have been
exhausted. A move in the A′

R × A′
C matrix Z is performed by randomly

selecting the elements (Qi 6= Qj) and swapping them with each other.

The algorithm stops if either the maximum number of unique experiments ob-
tained in one stage considering the biochip capacity is found or the termination
time is reached.

6.4 Experimental Evaluation

In order to evaluate our Experimental Throughput Optimization (ETO) ap-
proach, we have performed two sets of experiments. The algorithms were im-
plemented in C++, running on Lenovo T400s ThinkPad with Core 2 Duo Pro-
cessors at 2.53 GHz and 4 GB of RAM.

For comparison purposes during evaluation, we have also implemented a straight-
forward (SF) approach. This is an approach that a good engineer may use when
no optimization tools are available. SF starts from an initial solution obtained
with the Descend-Ascend scheme given in Section 6.3.1 and then performs a
left-to-right roll on the placement Z and the contents of the schedule Y in the
hope to increase the number of unique combinations, e.g., in Figure 6.4b we
obtain the stage design Ω2 by rolling over the settings in Figure 6.4a. Next, a
top-to-bottom roll is performed. Since the top-to-bottom roll cannot be per-
formed on YZ , it is rolled to the right instead, as shown in the transition from
the settings in Figure 6.4b to Figure 6.4c. For each experimental stage, SF alter-
nately performs a left-to-right and top-to-bottom roll, until termination criteria
is reached. On termination, SF returns the best solution found, i.e., the one
that maximized the system throughput.

In the first set of experiments shown in Table 6.2, we are interested in evalu-
ating the quality of ETO in terms of its ability to maximize the experimental
throughput across all desired stages. We have used a total of 9 experimental
settings as presented in column 1 to 4 in Table 6.2 ranging the experimental
chip area from 6×6 to 14×14, the number of compounds from 2 to 8, the num-
ber of cell colonies from 2 to 9 and the number of experimental stages from 2

100

Experimental Throughput Maximization for

Cell Culture Biochips

Table 6.2: Full Factorial Design
SF Best Average

ETO ETO
γ γ γ Standard

A′
R ×A′

C |J | |Q| n (%) (%) (%) Deviation
2 9 2 50 83.3 78.7 3.46

6×6 3 7 6 43.9 88.4 84.2 3.04
4 5 9 27.8 82.8 77.8 3.43
4 3 2 12.5 78.1 74.3 2.89

10×10 5 2 3 42.4 85.2 78.4 2.57
6 3 7 48.3 74.8 71.8 2.17
6 3 4 44.9 76.2 73.5 1.72

14×14 7 4 7 22.4 68.9 66.8 1.36
8 4 11 46.5 69.8 68.3 1.12

to 11. The number of compounds per exposure sequence I was set to 3 for all
cases. We have determined the combinations of parameters (each row in the
table) such that all possible combinations of compounds for each cell colony
may be achievable within the imposed chip area and the number of stages. It is
important to note here that even if the chip capacity is equal to (or more than)
the maximum possible combinations of compounds for all cell colonies placed
on the chip, 100% throughput might still not be achievable. This is because the
compounds that we feed into the chip affect an entire row (or column), therefore
there might be situations where a schedule and placement that would guarantee
100% throughput across all stages may not exist.

Table 6.2 gives the throughput γ achieved by SF and ETO. ETO generated
solutions provide experimental throughput as high as 88% and it does not go
below 65% in any of the cases. As shown, ETO performs significantly better
than SF. Together with the best solution, Table 6.2 also presents the average and
the standard deviation obtained after 10 runs of ETO, exploring the solution
space differently in every run. As presented, the standard deviation is quite
small indicating that ETO consistently finds solutions that are close to the best
solution. We have used a time limit of 10 minutes for ETO.

We have also evaluated our proposed approach for the case when the maximum
possible number of combinations exceeds the capacity of the available number
of chips. A real world example would be that of the fractionally factorial exper-
imental design performed in the first phase of drug discovery. Table 6.3 presents
the results. We have considered an active biochip area of 6×6 with n = 3 stages
and have progressively increased the number of combinations by varying the
number of compounds |J | and the number of cell colonies |Q|. I was set to 5

6.5 Summary 101

Table 6.3: Fractionally Factorial Design
SF ETO

|J | |Q| |EU | γ (%) |EU | γ (%)
A′

R ×A′
C = 6×6, n = 3, I = 5

2 5 30 27.7 89 82.4
2 6 36 33.3 97 89.8
2 7 36 33.3 102 94.4
2 8 36 33.3 104 96.2
2 9 54 50 106 98.1
2 10 60 55.5 106 98.1
3 2 36 33.3 108 100
3 3 36 33.3 108 100

for all cases. As we can see from Table 6.3, ETO can get close to the 100%
throughput in most of the cases, which means that the biochip is utilized to its
full capacity over all the n stages.

In order to determine the quality of our SA-based ETO strategy, we have used an
exhaustive search to determine the optimal solutions. Since the runtime of the
exhaustive search is prohibitively large, we were only able to run it for smaller
examples, lines 1, 4 and 7 in Table 6.2. In these cases, our ETO approach
is capable of obtaining solutions which are very close to the optimum. For
the experimental setups in lines 1, 4 and 7, the difference in terms of the cost
function is only 1.4%, 2.1% and 2.3%, respectively.

6.5 Summary

In this chapter, we have presented a Simulated Annealing based approach in or-
der to design high throughput experiments for cell culture microfluidic biochips.
The proposed approach considers multiple parameters (e.g., chip size, number
of cell colonies, and number of soluble compounds) as inputs and generates de-
sign settings (placements and schedules) for the desired number of experimental
stages such that the system throughput is maximized. Multiple experimental
setups have been used for evaluating the effectiveness of the proposed approach.
We have shown that by optimizing the experimental design, significant improve-
ments in the experimental throughput (and chip utilization) can be achieved,
increasing the system productivity, saving time and reducing costs.

102

Experimental Throughput Maximization for

Cell Culture Biochips

Chapter 7

Conclusions and Future Work

This chapter presents the conclusions and possible future extensions of the work
presented in this thesis.

7.1 Conclusions

In this thesis we have proposed, for the first time to our knowledge, a top-down
design methodology for the flow-based mVLSI biochips. The current design
practice for these chips is primarily manual. With the fabrication technology
for the mVLSI biochips, soft lithography, advancing faster than Moore’s law
(densities approaching 1 million valves per cm2), top-down methodologies and
design automation tools are absolutely essential in order to manage the design
complexity and exploit full potential of these devices.

We have proposed models for the biochip architecture as well as the microflu-
idic components. Using these models, we have proposed the framework for
the application-specific architectural synthesis of these chips, mapping of bio-
chemical applications onto the mVLSI architectures and generation of optimized
schedules as well as control synthesis for these chips in order to automatically ex-
ecute the applications on mVLSI architectures. We have also proposed pin count
minimization schemes to enhance chip scalability and throughput maximization

104 Conclusions and Future Work

techniques to increase chip productivity. We have extensively evaluated our
approach using real-life assays as well as synthetic benchmarks.

The primary conclusion of this thesis is that by using the proposed models, top-
down design automation methods for the mVLSI biochips can be successfully
formulated. This has been shown using the proposed synthesis frameworks. The
proposed methods are expected to facilitate programmability and automation,
resulting in full utilization of the mVLSI potential and emergence of a large
biochip market. The conclusions of the individual chapters are summarized
below:

• In Chapter 2, we have proposed a dual-layer modeling framework for the
mVLSI components. We have shown how the model captures the compo-
nent operational phases at the flow layer as well as the control layer valve
activations needed to execute these operational phases. We have proposed
a topology graph-based model for the mVLSI biochips and shown how it
can capture the chip components, their interconnections, the fluid flow
paths on the chip and also the routing constraints.

• In Chapter 3, we have formulated the problem of mapping the biochemi-
cal application onto the mVLSI architectures using the models proposed
in Chapter 2. First, we have shown how the problem of mapping the
biochemical operations onto the mVLSI biochips can be solved optimally
(in terms of application completion time) using a constraint programming
(CP) framework. Since the CP approach turns out to be computationally
very intensive, we have then proposed a binding and scheduling heuris-
tic (based on List Scheduling) that performs the operation binding and
scheduling as well as fluidic routing. We have shown that the heuristic ap-
proach produces good results in short time. This is the first time that an
application mapping approach has been proposed for the mVLSI biochips.

• In Chapter 4, a new problem of application-specific architectural synthesis
has been formulated. Our proposed solution strategy starts by allocating
the required components from the library, then generates the schematic
and finally, performs the physical synthesis (placement and routing) of the
chip. We have shown how the algorithms from the VLSI domain can be
tailored and applied to the mVLSI biochips. This is the first time that an
application-specific architectural synthesis framework has been proposed
for the mVLSI architectures.

• We have proposed a top-down control synthesis approach for implementing
the biochemical applications on the mVLSI architecture in Chapter 5. We
have shown how, using the proposed models, control logic (valve activation
sequence for executing the application) can be automatically synthesized.

7.2 Future Work 105

The high pin count of mVLSI chips is a bottleneck to the chip scalability.
We have shown how optimization schemes can be used to minimize the
pin count, enhancing scalability and reducing the macro-assembly around
the chip.

• Chapter 6 deals with the cell culture biochips. These chips perform ex-
periments that take weeks to complete and are highly expensive. We have
proposed models for the cell culture chips and have shown how the experi-
mental design can be optimized, such that the number of experiments can
be maximized enhancing the chip productivity.

7.2 Future Work

The thesis has presented top-down design methods for the mVLSI biochips. The
work can be extended in many ways in order to address the remaining challenges
in the mVLSI domain. Some possible extensions are as follows:

• As discussed in Section 1.4, the primary design objective of this thesis has
been the application completion time minimization. Further research can
be carried out using other objectives, e.g., pin-constrained mVLSi design.

• The control pin minimization (presented in Chapter 5) is done by sharing
the control pins between multiple valves. The minimization scheme re-
duces the pin count but does not guarantee a routable control layer. This
is because only two layers are available for performing the control layer
routing and the control channels are not allowed to intersect, limiting the
routability. A feedback system can be used between the pin count mini-
mization and the control layer physical synthesis, in order to guarantee a
routable control layer.

• Since the synthesis strategies are designed based on the requirements cap-
tured by the application model, more research can be carried out on the
application model itself in order to ensure that it accurately captures the
application requirements. For example, an application may impose a tim-
ing constraint that two fluids must be mixed within x number of seconds
after being heated. This kind of constraint is not captured by the current
application model.

106 Conclusions and Future Work

Appendix A

List of Notations

Table A.1: List of Notations

Notation Description
ψ Mapping implementation
η Control logic
δG Application completion time
γ Biochip throughput
EU Unique experiments
Umax Maximum chip capacity
GC Control coloring graph
VC Vertices in GC

EC Edges in GC

A Biochip architecture model
B Binding function
C Execution time
D Set of directed edges
E Set of edges in G
F Set of flow paths
G Biochemical application model
H Geometrical dimensions of a component
I Number of compounds/ exposure sequence

108 List of Notations

J Set of compounds
K Set of routing constraints
L Component library
M Set of components
N Set of vertices in A
O Set of operations in G
P Operational phases in a component
Q Set of colonies
Rf Flow layer routing
Rc Control layer routing
S Set of switches
T Temperature
U Component allocation
wc Capacity weight
wv Volume weight
X Schedule
Y Component insertion schedule
Zf Flow layer placement
Zc Control layer placement
Z Cell colony placement

Bibliography

[1] Affymetrix Inc. http://www.affymetrix.com/.

[2] Agilent Technologies. http://www.home.agilent.com/.

[3] AutoCAD Products. http://usa.autodesk.com/autocad-products/.

[4] Biochips: A Global Strategic Business Report.
http://www.strategyr.com/Biochips_Market_Report.asp.

[5] Caliper Life Sciences Inc. http://www.caliperls.com/.

[6] Fluidigm: Chips and Kits. http://www.fluidigm.com/chips-kits.html.

[7] Fluidigm Corporation. http://www.fluidigm.com/.

[8] GE Healthcare Ltd. http://www.gehealthcare.com/.

[9] Illumina, Inc. http://www.illumina.com/.

[10] International Technology Roadmap for Semiconductors 2011 Edition.
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf.

[11] ISI Web of Science, search for topic “microfluidic”.
http://www.isiknowledge.com.

[12] KNI Microfluidic Foundry - CalTech. http://www.kni.caltech.edu/foundry/.

[13] Life Technologies Corporation. http://www.lifetechnologies.com/.

[14] mLSI Biochips. https://sites.google.com/site/mlsibiochips/.

[15] Stanford Microfluidic Foundry. http://www.stanford.edu/group/foundry/.

http://www.affymetrix.com/
http://www.home.agilent.com/
http://usa.autodesk.com/autocad-products/
http://www.strategyr.com/Biochips_Market_Report.asp
http://www.caliperls.com/
http://www.fluidigm.com/chips-kits.html
http://www.fluidigm.com/
http://www.gehealthcare.com/
http://www.illumina.com/
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf
http://www.isiknowledge.com
http://www.kni.caltech.edu/foundry/
http://www.lifetechnologies.com/
https://sites.google.com/site/mlsibiochips/
http://www.stanford.edu/group/foundry/

110 BIBLIOGRAPHY

[16] Stephen Quake’s Group at Stanford University.
http://thebigone.stanford.edu/.

[17] United States Patent and Trademark office, search issued patents for “mi-
crofluidic” in title or abstract. http://patft.uspto.gov.

[18] Verinata Health. http://www.verinata.com/.

[19] A. M. Amin, M. Thottethodi, T. N. Vijaykumar, S. Wereley, and S. C.
Jacobson. Aquacore: A programmable architecture for microfluidics. In
Proceedings of the 34th annual international symposium on Computer ar-
chitecture, pages 254–265, 2007.

[20] A. M. Amin, M. Thottethodi, T. N. Vijaykumar, S. Wereley, and S. C.
Jacobson. Automatic volume management for programmable microfluidics.
In Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, 2008.

[21] N. Amin, W. Thies, and S. Amarasinghe. Computer-aided design for mi-
crofluidic chips based on multilayer soft lithography. In Proceedings of the
IEEE International Conference on Computer Design, 2009.

[22] V. Ananthanarayanan and W. Thies. Biocoder: A programming language
for standardizing and automating biology protocols. Journal of Biological
Engineering, 4(13), 2010.

[23] I. E. Araci and S. R. Quake. Microfluidic very large scale integration (mvlsi)
with integrated micromechanical valves. Lab Chip, 12:2830–2806, 2012.

[24] K. Chakrabarty and T. Xu. Digital Microfluidic Biochips: Design Automa-
tion and Optimization. CRC Press, Boca Raton, FL, 2010.

[25] H. Chou, M. Unger, and S.R. Quake. A microfabricated rotary pump.
Biomedical Microdevices, 3, 2001.

[26] P. Coussy and A. Morawiec. High-level synthesis: From algorithm to digital
circuit. Springer, 2008.

[27] P. S. Dittrich and A. Manz. Lab-on-a-chip: microfluidics in drug discovery.
Nature Reviews, Drug Discovery, 5:210–218, 2006.

[28] J. El-Ali, P. K. Sorger, and K. F. Jensen. Cells on chips. Nature, 442:403–
411, 2006.

[29] C. D. Chin et. al. Microfluidics-based diagnostics of infectious diseases in
the developing world. Nature Medicine, 17:1015–1019, 2011.

http://thebigone.stanford.edu/
http://patft.uspto.gov
http://www.verinata.com/

BIBLIOGRAPHY 111

[30] S. Einav et. al. Discovery of a hepatitis c target and its pharmacological
inhibitors by microfluidic affinity analysis. Nature Biotechnology, 12:1019–
1027, 2008.

[31] R. B. Fair. Digital microfluidics: is a true lab-on-a-chip possible? Microflu-
idics and Nanofluidics, 3(3):245–281, 2007.

[32] H. C. Fan, Y. J. Blumenfeld, U. Chitkara, L. Hudgins, and S. R. Quake.
Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing dna from
maternal blood. Proceedings of the National Academy of Sciences USA,
105(42):16266–16271, 2008.

[33] C. Fang, Y. Wang, N. T. Vu, W. Lin, Y. Hsieh, L. Rubbi, M. E. Phelps,
M. Mueschen, Y. Kim, A. F. Chatziioannou, H. Tseng, and T. G. Grae-
ber. Integrated microfluidic and imaging platform for a kinase activity
radioassay to analyze minute patient cancer samples. Cancer Research,
70(21):8299–8308, November 2010.

[34] F. Glover and M.Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[35] C. L. Hansen, M. O. A. Sommer, and S. R. Quake. Systematic investigation
of protein phase behavior with a microfluidic formulator. Proceedings of the
National Academy of Sciences USA, 101(40):14431–14436, 2004.

[36] D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz.
Micromachining a miniaturized capillary electrophoresis-based chemical
analysis system on a chip. Science, 261:895–897, 1993.

[37] A. Hertz and D. Werra. Using Tabu search techniques for graph coloring.
Journal of Computing, 39:345–351, 1987.

[38] J. W. Hong, Y. Chen, W. F. Anderson, and S. R. Quake. Molecular biology
on a microfluidic chip. Journal of Physics: Condensed Matter, 18(18):691–
701, 2006.

[39] J. W. Hong and S. R. Quake. Integrated nanoliter systems. Nature Biotech-
nology, 21:1179–1183, 2003.

[40] J. W. Hong, V. Studer, G. Hang, W. F. Anderson, and S. R. Quake. A
nanoliter-scale nucleic acid processor with parallel architecture. Nature
Biotechnology, 22(4):435–439, 2004.

[41] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by
semidefinite programming. Journal of the ACM (JACM), 45:246–265, 1998.

[42] M. E. Kempner and R. A. Felder. A review of cell culture automation. The
Journal of the Association for Laboratory Automation (JALA), 7(2):56–62,
2002.

112 BIBLIOGRAPHY

[43] I. Klammer, A. Buchenauer, H. Fassbender, R. Schlierf, G. Dura,
W. Mokwa, and U. Schnakenberg. Numerical analysis and characterization
of bionic valves for microfluidic pdms-based systems. Journal of Microme-
chanics and Microengineering, 17(7):S122–S127, 2007.

[44] M. F. Kramer and D. M. Coen. Enzymatic amplification of dna by pcr:
Standard procedures and optimization. Current Protocols in Molecular
Biology), pages 15.1.1–15.1.14, 2001.

[45] K. Kuchcinski. Constraints-driven scheduling and resource assignment.
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 8(3):355–383, 2003.

[46] H. P. Le. Progress and trends in ink-jet printing technology. Journal of
Imaging Science and Technology, 42:49–62, 1998.

[47] C. C. Lee, A. Elizarov, C. J. Shu, Y. S. Shin, and A. N. Dooley. Multistep
synthesis of a radiolabeled imaging probe using integrated microfluidics.
Science, 310:1793–1796, 2005.

[48] A. Lim, Y. Zhu, and Q. Lou. Heuristic methods for graph coloring problems.
In ACM symposium on Applied Computing, pages 933–939, 2005.

[49] Y. C. Lim, A. Z. Kouzani, and W. Duan. Lab-on-a-chip: a component
view. Journal of microsystems technology, 16(12), December 2010.

[50] H. T. G. Lintel. A piezoelectric micropump based on micromachining of
silicon. Sensors and Actuators, 15(2):153–167, 1988.

[51] J. Liu, C. Hansen, and S. R. Quake. Solving the “world-to-chip” interface
problem with a microfluidic matrix. Analytical Chemistry, 75(18):4718–
4723, 2003.

[52] A. Manz, N. Graber, and H. M. Widmerl. Miniaturized total chemical anal-
ysis systems: A novel concept for chemical sensing. Sensors and Actuators
B: Chemical, 1:244–248, 1990.

[53] J. S. Marcus, W. F. Anderson, and S. R. Quake. Microfluidic single-cell
mrna isolation and analysis. Analytical Chemistry, 78(9):3084–3089, 2006.

[54] D. Mark, S. Haeberle, G. Roth, F. Stetten, and R. Zengerle. Microflu-
idic lab-on-a-chip platforms: requirements, characteristics and applications.
Chem. Soc. Rev., 39:1153–1182, 2010.

[55] J. Melin and S. Quake. Microfluidic large-scale integration: The evolution
of design rules for biological automation. Annual Reviews in Biophysics
and Biomolecular Structure, 36:213–231, 2007.

BIBLIOGRAPHY 113

[56] G. D. Micheli. Synthesis and optimization of digital circuits. McGraw-Hill,
New York, 1994.

[57] W. H. Minhass, P. Pop, and J. Madsen. Application-specific architectural
synthesis for the flow-based microfluidic large-scale integration biochips.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (preparing for submission).

[58] W. H. Minhass, P. Pop, and J. Madsen. System-level modeling and appli-
cation mapping on the flow-based microfluidic very large scale integration
biochips. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems (preparing for submission).

[59] W. H. Minhass, P. Pop, and J. Madsen. System-level modeling and syn-
thesis of flow-based microfluidic biochips. In Proc. of the International
Conference on Compilers, Architectures and Synthesis of Embedded Sys-
tems (CASES), 2011.

[60] W. H. Minhass, P. Pop, and J. Madsen. Synthesis of Biochemical Applica-
tions on Flow-Based Microfluidic Biochips using Constraint Programming.
In Proc. of the IEEE Symposium on Design, Test, Integration and Packag-
ing of MEMS/MOEMS (DTIP), pages 37–41, 2012.

[61] W. H. Minhass, P. Pop, J. Madsen, and F. S. Blaga. Architectural synthesis
of flow-based microfluidic large-scale integration biochips. In Proceedings
of the International Conference on Compilers, Architectures and Synthesis
of Embedded Systems (CASES), pages 181–190, 2012.

[62] W. H. Minhass, P. Pop, J. Madsen, M. Hemmingsen, and M. Dufva.
System-level modeling and simulation of the cell culture microfluidic
biochip ProCell. In Proc. of the IEEE Symposium on Design, Test, In-
tegration and Packaging of MEMS/MOEMS (DTIP), pages 91–98, 2010.

[63] W. H. Minhass, P. Pop, J. Madsen, M. Hemmingsen, P. Skafte-Pedersen,
and M. Dufva. Cell Culture Microfluidic Biochips: Experimental Through-
put Maximization. In Proc. of the IEEE International Conference on Bioin-
formatics and Biomedical Engineering (iCBBE), 2011.

[64] W. H. Minhass, P. Pop, J. Madsen, and T. Ho. Control synthesis and
pin count minimization for the flow-based microfluidic large-scale integra-
tion biochips. Journal on Emerging Technologies in Computing Systems
(preparing for submission).

[65] W. H. Minhass, P. Pop, J. Madsen, and T. Ho. Control Synthesis for the
Flow-Based Microfluidic Large-Scale Integration Biochips. In Proc. of the
Asia and South Pacific Design Automation Conference (ASP-DAC), 2013.

114 BIBLIOGRAPHY

[66] J. M. Perkel. Microfluidics - bringing new things to life science. Science,
November 2008.

[67] M. G. Pollack, A. D. Shenderov, and R. B. Fair. Electrowetting-based
actuation of droplets for integrated microfluidics. Lab Chip Journal, 2:96–
101, 2002.

[68] P. Pop, E. Maftei, and J. Madsen. Recent research and emerging challenges
in the system-level design of digital microfluidic biochips. In Proc. of the
IEEE International SOC Conference (SOCC), 2011.

[69] S. M. Sait and H. Youssef. VLSI physical design automation: theory and
practice. World Scientific Publishing Co. Pte. Ltd., 1999.

[70] M. F. Schmidt, W. H. Minhass, P. Pop, and J. Madsen. Modeling and simu-
lation framework for flow-based microfluidic biochips. In Proc. of the IEEE
Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
(DTIP), 2013.

[71] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and programming
with gecode. http://www.gecode.org/.

[72] S. Shoji, M. Esashi, and T. Matsuo. Prototype miniature blood gas analyser
fabricated on a silicon wafer. Sensors and Actuators, 14(2):101–107, 1988.

[73] J. Siegrist, M. Amasia, N. Singh, D. Banerjee, and M. Madou. Numerical
modeling and experimental validation of uniform microchamber filling in
centrifugal microfluidics. Lab Chip, 10:876–886, 2010.

[74] O. Sinnen. Task Scheduling for Parallel Systems. John Wiley & Sons Inc.,
Hoboken, New Jersey, 2007.

[75] G. Sittampalam, S. Kahl, and W. Janzen. High-throughput screening:
advances in assay technologies. Curr Opin Chem Biology, 1(3):384–391,
1997.

[76] P. Skafte-Pedersen, M. Hemmingsen, D. Sabourin, F. S. Blaga, H. Bruus,
and M. Dufva. A self-contained, programmable microfluidic cell culture
system with real-time microscopy access. Biomed Microdevices, 14(2):385–
399, 2012.

[77] A. Stacey and G. Stacey. Routine quality control testing of cell cultures,
Antiviral Methods and Protocols (3). Springer, 2000.

[78] F. Su and K. Chakrabarty. High-level synthesis of digital microfluidic
biochips. Journal on Emerging Technologies in Computing Systems, 3(4),
January 2008.

http://www.gecode.org/

BIBLIOGRAPHY 115

[79] F. Su, S. Ozev, and K. Chakrabarty. Concurrent testing of droplet-based
microfluidic systems for multiplexed biomedical assays. In Proceedings of
the International Test Conference (ITC), pages 883–892, 2004.

[80] S. C. Terry, J. H. Jerman, and J. B. Angell. A gas chromatographic air
analyzer fabricated on a silicon wafer. IEEE Transactions on Electron
Devices, 26(12):1880–1886, 1979.

[81] W. B. Thies. Programmable microfluidics. presented at Stanford University,
October 2007.

[82] T. Thorsen, S. J. Maerki, and S. R. Quake. Microfluidic large-scale inte-
gration. Science, 298(5593):580–584, October 2002.

[83] D. Ullman. Np-complete scheduling problems. Journal of Computing Sys-
tem Science, 10:384–393, 1975.

[84] D. Ullman. NP-complete scheduling problems. Journal of Computing Sys-
tem Science, 10:384–393, 1975.

[85] J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen.
Digital microfluidics using soft lithography. Lab Chip, 6:96–104, 2006.

[86] V. T. Vanchikov. Special form of laminar liquid flow in hydraulic devices.
Russian Engineering Research, 28(9):854–855, 2008.

[87] G. M. Whitesides. The origins and the future of microfluidics. Nature,
442:368–373, July 2006.

[88] Y. Zhao and K. Chakrabarty. Cross-contamination avoidance for droplet
routing in digital microfluidic biochips. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 31:817–830, June 2012.

	Summary
	Resumé
	Preface
	Papers included in the thesis
	Acknowledgements
	1 Introduction
	1.1 Microfluidic Biochips
	1.2 Flow-based mVLSI Biochips
	1.3 Motivation
	1.4 Thesis Objectives and Contributions
	1.5 Thesis Overview

	2 System Model
	2.1 Biochip Architecture Model
	2.2 Biochemical Application Model
	2.3 Benchmarks
	2.4 Summary

	3 Application Mapping
	3.1 Related Work
	3.2 Contribution
	3.3 Application Mapping
	3.4 Constraint Programming-Based Strategy
	3.5 List Scheduling-Based Strategy
	3.6 Experimental Evaluation
	3.7 Summary

	4 Architectural Synthesis
	4.1 Related Work
	4.2 Contribution
	4.3 Problem Formulation
	4.4 Biochip Architectural Synthesis
	4.5 Synthesis Strategy
	4.6 Experimental Evaluation
	4.7 Summary

	5 Control Synthesis
	5.1 Related Work
	5.2 Contribution
	5.3 Biochip Control Synthesis
	5.4 Synthesis Strategy
	5.5 Experimental Evaluation
	5.6 Summary

	6 Experimental Throughput Maximization for Cell Culture Biochips
	6.1 System Model
	6.2 Problem Formulation
	6.3 Experimental Throughput Optimization
	6.4 Experimental Evaluation
	6.5 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	A List of Notations

