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Abstract—Microfluidic biochips are replacing the conventional
biochemical analyzers and are able to integrate the necessary
functions for biochemical analysis on-chip. In this paper we
are interested in flow-based biochips, in which the flow of
liquid is manipulated using integrated microvalves. By combining
several microvalves, more complex units, such as micropumps,
switches, mixers, and multiplexers, can be built. We propose a
constraint programming (CP) based approach for the synthesis
of biochemical applications on flow-based microfluidic biochips.
We use a sequencing graph to model the biochemical application
and consider that the biochip architecture is given. We model
the architecture using a topology graph. We are interested
in synthesizing an implementation, consisting of binding and
scheduling of the biochemical operations onto the components
of the architecture, such that the resource and dependency
constraints are satisfied and the application completion time is
minimized. Our CP framework generates optimal implementa-
tions and has been evaluated using synthetic as well as real-life
case studies.
Index Terms—CAD, Microfluidics, biochips, synthesis, perfor-

mance

I. INTRODUCTION
Microfluidics-based biochips have become an actively re-

searched area in recent years. Biochips integrate different
biochemical analysis functionalities (e.g., dispensers, filters,
mixers) on-chip, miniaturizing the macroscopic chemical and
biological processes to a sub-millimetre scale [1]. Microfluidic
biochips can readily facilitate clinical diagnostics, enzymatic
and proteomic analysis, cancer and stem cell research, and
automated drug discovery [1], [2].
There are several types of microfluidic biochip platforms,

each having its own advantages and limitations [3]. In this
paper, we focus on the flow-based biochips in which the
microfluidic channel circuitry on the chip is equipped with
chip-integrated microvalves that are used to manipulate the on-
chip fluid flow [1]. By combining several microvalves, more
complex units like mixers, micropumps, multiplexers etc. can
be built up, with hundreds of units being accommodated on
one single chip. This approach is called microfluidic Large
Scale Integration (LSI) [1].
Currently, researchers manually map the applications to the

valves of the chip using some custom interface (analogous to
the exposure of gate-level details in the context of integrated
circuits) [4]. The manual process is quite tedious and needs
to be repeated every time a change is made either to the

chip architecture or the biochemical application. As the chips
grow more complex and the need of having multiple and
concurrent assays on the chip becomes more significant, these
methodologies will become highly inadequate. Therefore, new
top-down design methodologies and design tools are needed,
in order to provide the same level of CAD support to the
biochip designer as the one currently taken for granted in the
semiconductor industry.
Recently, a top-down design approach for these biochips

has been proposed [5]. The main tasks involved in the design
process are:

• (i)Modeling the biochip architecture, biochip components
and the biochemical applications.

• Once the models have been specified, the necessary
components for the implementation of the biochemical
operations need to be selected from a component library.
This is called the (ii) allocation step.

• Next the (iii) placement of these components and
(iv) channel routing for interconnecting these components
is done.

• This is followed by the decision on (v) binding of
biochemical operations to the allocated components, and
the (vi) scheduling step, which determines the time dura-
tion for each biochemical operation, while satisfying any
resource and dependency constraints.

• Finally, the chip is synthesized according to the con-
straints on resources, routing channels, area and appli-
cation completion time. During the chip synthesis, the
(vii) fluid routing paths from one component to the other
component (or from the biochip inputs or to the outputs)
also need to be determined.

We have used a topology graph-based model of the biochip
architecture and a sequencing graph to model the biochemical
application. We consider that the biochip architecture is given,
i.e., tasks (ii) to (iv) have been performed. Given a biochip
architecture and a biochemical application, we synthesize an
implementation, i.e., perform tasks (v) and (vi), such that the
application completion time is minimized. In this paper, we
do not address task (vii). Our previous research [5] addresses
the problem using a List Scheduling (LS)-based heuristic
approach. The heuristic based solution uses the sorted and pri-
oritized lists of operations and performs the synthesis (greedy
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(a) Microfluidic Valve (b) Biochip: Schematic View (c) Biochip: Functional View

Fig. 1: Flow-Based Biochip Architecture

binding and scheduling) of ready operations (operations whose
predecessor operations have been completed) in a step-wise
manner. Every time an operation is completed, the list of
ready operations is updated and the newly added operations
are synthesized onto the chip. This approach generates good
solutions but it neither guarantees solution optimality nor does
it provide any measure of the solution quality.
In this paper, we propose a constraint programming (CP) [6]

framework which, given a biochemical application and a
biochip architecture, determines an optimal solution (in terms
of application completion time) for the (v) binding and (vi)
scheduling steps. CP makes it possible to specify the resource
and timing constraints, and to capture the application binding
and scheduling within the same framework. Using the CP
formulation, a solver then searches for the optimal solution.
CP models are flexible, general and easy to extend. We use
synthetic as well as real-life cases to evaluate our approach.
The paper is organized in six sections. We present the

biochip architecture details and the biochemical application
model in Section II. The targeted problem is discussed and
formulated in Section III. The proposed CP-based synthesis
approach is presented in Section IV and is evaluated in
Section V. Section VI presents our conclusions.

II. SYSTEM MODEL

A. Biochip Architecture
Fig. 1b shows the schematic view of a flow-based biochip

with four input ports and three output ports, a mixer, a filter
and a detector. Fig. 1c shows the functional level view of
the same chip. The biochip is manufactured using multilayer
soft lithography [1]. Physically, the biochip can have multiple
layers, but the layers are logically divided into two types: flow
layer (depicted in blue) and the control layer (depicted in
red) [1]. The liquid in the flow layer is manipulated using the
control layer.
The basic building block of such a biochip is a valve (see

Fig. 1a), which is used to manipulate the fluid in the flow

layer as the valves restrict/ permit the fluid flow. The control
layer (red) is connected to an external air pressure source
z1. The flow layer (blue) is connected to a fluid reservoir
through a pump that generates the fluid flow. When the
pressure source is not active, the fluid is permitted to flow
freely (open valve). When the pressure source is activated,
high pressure causes the elastic control layer to pinch the
underlying flow layer (point a in Fig. 1a) blocking the fluid
flow at point a (closed valve). A biochip can accommodate
thousands of valves. By combining these valves, more complex
units, such as switches, multiplexers, micropumps, mixers, can
be built [3]. We use a topology graph A in order to capture the
biochip architecture. The vertex set M in the topology graph
represents the components present in the biochip, e.g., mixer.
More details on the architecture model can be found here [5].

B. Biochemical Application Model
We model a biochemical application using a sequencing

graph. The graph G(O,E) is directed, acyclic and polar (i.e.,
there is a source vertex that has no predecessors and a sink
vertex that has no successors). Each vertex Oi ∈ O represents
an operation that can be bound to a component Mj ∈ M using
a binding function B : O → M . Each vertex has an associated
weight CMji , which denotes the execution time required for
Oi to be completed on Mj. Fig. 2a shows an example of
a biochemical application model which has seven mixing
operations (O1–O4, O6, O7, O10), one filtration operation (O9)
and two heating operations (O5, O8). The execution times for
the operations are also given in Fig. 2a (the parameter below
the operation type).

III. BIOCHIP SYNTHESIS
Implementing a biochemical application onto a biochip

architecture requires the following steps: allocation of com-
ponents from a library L , the placement of components on a
given area, binding of operations onto the allocated compo-
nents, scheduling the operations and performing the required
fluidic routing. The following subsections explain these design
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(a) Biochemical Application Model (b) Schedule

Fig. 2: Illustrative Example

tasks using the biochip architecture given in Fig. 3 and the
biochemical application in Fig. 2a.
A. Allocation and Placement
In this paper, we consider that the architecture is given,

i.e., the allocation and placement steps have already been
performed. The allocated components are captured by the
vertex set M in the architecture model A . For example, for the
architecture in Fig. 3, the set M contains 3 mixers, 2 heaters
and 1 filter. The component placement and interconnections
are captured by the remaining elements of the topology graph
A modeling the architecture [5].
B. Binding, Scheduling and Routing
Fig. 2b shows the schedule for executing the biochemical

application in Fig. 2a on the biochip architecture in Fig. 3. The
schedule is represented as a Gantt chart, where, we represent
the operations as rectangles, with their lengths corresponding
to their execution duration. During the binding step, each
vertex Oi (Oi ∈ O, representing a biochemical operation in
the application model in Fig. 2a) is bound to an available
component Mj, i.e., B(Oi) = Mj. For example, the mixing
operation O1 in the application model in Fig. 2a is bound to

Fig. 3: Biochip Architecture

the component Mixer1 as shown in Fig. 2b. For routing the
fluids, the edges of the application graph G need to be bound
to the channels on the chip. We do not consider fluid routing
in this paper.
A scheduling strategy is needed to efficiently execute the

biochemical operations on the chip components, while con-
sidering the dependency and resource constraints captured by
the biochemical application and the biochip architecture mod-
els, respectively. Dependency means that a certain operation
cannot start execution until all of its preceding operations
have been completed. For example, in Fig. 2b, operation O6
bound to Mixer2 starts after all its predecessors (O3, O4) are
complete. It starts at tstartO6 = 5 s and takes 3 s, finishing at time
t f inishO6 = 8 s. The time Ci needed to execute an operation Oi,
is given by the application model G .

C. Problem Formulation
The problem addressed in this paper can be formulated as

follows: Given (1) a biochemical application modeled as a
sequencing graph G and (2) a biochip architecture modeled
as a topology graph A , we are interested in synthesizing an
implementation Ψ that optimally minimizes the application
completion time while satisfying the dependency and resource
constraints. Synthesizing an implementation Ψ = <B , X>

means deciding on (1) the binding B of each operation
Oi ∈ O to a component Mj ∈ M and (2) the schedule X
of the operations, which contains the start time tstartOi of each
operation Oi on its corresponding component.

IV. CONSTRAINT PROGRAMMING-BASED SYNTHESIS
The problem can be considered equivalent to the resource

constrained scheduling problem with non-uniform weights,
which is NP-complete [7]. CP offers very good performance
for such problems [6]. Typically, a problem defined in CP
has three primary elements: (1) a set of variables capturing
the system, (2) a set of finite domains of the values for
these variables and (3) a set of constraints imposed on these
variables. The solution of such a problem is the assignment of
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values to all variables from their respective domains such that
all constraints are satisfied. If an optimal solution is desired,
then a cost function also needs to be defined in terms of
the variables. The solver then finds the optimal solution in
terms of the cost function that satisfies all constraints. We
have implemented our synthesis approach using the constraint
programming environment Gecode [8].

A. Finite Domain Variables
We use the following primary finite domain variables (FDV)

to model the binding and scheduling of all biochemical oper-
ations:

• tstartOi :: {0..∞} defines the start time of operation Oi.
For example, operation O5 in Fig. 2b has the start time
tstartO5 = 4 s.

• Mi :: {0..
∣

∣M
∣

∣−1} defines the resource (component) to
which the operation Oi is bound where

∣

∣M
∣

∣ is the total
number of components on the chip. For example, in
Fig. 2b

∣

∣M
∣

∣ = 5. Each resource is assigned a unique
numeric identifier (ID) and the range of the identifiers is
0..

∣

∣M
∣

∣−1, i.e., 0..4 for the current example. For Fig. 2b,
ID of Mixer1 is 0, Mixer2 is 1, Mixer3 is 2, Heater1 is
3 and Filter1 is 4. So for operation O5, M5 = 3, which
is the ID of Heater1.

• δG :: {0..∞} defines the cost function (application com-
pletion time). Application completion time is the end-
to-end time taken by the application to complete its
execution, i.e., from the start time of the first executed
operation to the finish time of the last executed operation.
For example in Fig. 2b, the application completion time
is δG = 17 s, which is the finish time of the last executed
operation O10.

Secondary FDVs are introduced, where needed, in order to
implement the constraints.

B. Resource Binding Constraints
An operation can only be bound to a component which is

capable of executing it, i.e., a mix operation must be bound to
one of the mixers and not to any other component, e.g., heaters.
Based on the type of the operations, we constrain the domain
of the FDV Mi in order to exclude the forbidden components.
Each operation is treated as a tuple (Oi, αi), where Oi ∈ O
is an operation and αi ⊆ M is a set of available components
capable of performing the operation. A binding must respect,

Mi ∈ αi, ∀i ∈ {1.. |O|} (1)

where |O| defines the total number of operations in the
application graph G , e.g., application given in Fig. 2a has 10
operations. For operation O1 (a mix operation), α1 = {0, 1, 2}
which represents the IDs of the three mixers. For O1 in Fig. 2b,
M1 = 0 (ID for Mixer1) which is a member of the set α1, thus
satisfying the resource binding constraint.

C. Resource Sharing Constraints
Operations bound to the same component (e.g., O3 and O6

are bound to Mixer2 in Fig. 2b) must not overlap in time. We

use three disjunctive constraints in order to implement this
for all possible combinations of operations.

∀i,∀( j > i)
(tstartOi + Ci ≤ tstartO j )∨ (tstartO j +Cj ≤ tstartOi )∨ (Mi (=Mj),

∀(i, j) ∈ {1.. |O|} (2)

where Ci represents the execution time of operation Oi. We
consider two operations (Oi, Oj) at a time. At least, one of
the three constraints given in the above equation needs to be
true in order to ensure that the resources are correctly shared.
The first constraint, (tstartOi +Ci ≤ tstartO j ), means that the finish

time of operation Oi should be less than or equal to the start
time of operation Oj. For example for (O1, O2) in Fig. 2b, the
finish time for O1 (4 s) is equal to the start time of O2, thus
the constraint is satisfied. If the first constraint is not satisfied
(consider (O7, O2) in Fig. 2b, the finish time for O7 (12 s) is
not less than or equal to the start time of O2 (4 s)), then the
second constraint, (tstartO j +Cj ≤ tstartOi ), is considered. For (O7,
O2) in Fig. 2b, the finish time for O2 (8 s) is equal to the start
time of O7 (8 s), thus the constraint is satisfied for this pair
of operations. The third constraint, Mi (=Mj, is considered if
both the first and second constraint are not satisfied. Consider
(O1, O3) in Fig. 2b, the finish time for O1 (4 s) is not less
than or equal to the start time of O3 (0 s) and the finish time
for O3 (4 s) is also not less than or equal to the start time of
O1 (0 s). In this case, the third constraint must be true. Here,
M1 = 0 (Mixer1) and M3 = 1 (Mixer2), satisfying the resource
sharing constraint.

D. Precedence Constraints
During scheduling, an operation must not start executing

until its predecessor has completed its execution, e.g., in
Fig. 2a, O6 must finish before O8 can start. The following
constraint is added for each required precedence:

tstartOi +Ci ≤ tstartO j (3)

where operation Oi is a predecessor of operation Oj.

E. Cost Function
We are interested in a solution that minimizes the applica-

tion completion time (cost function δG ). We constrain the cost
function to be greater than or equal to the finish time of the
operation Oi, i.e.,

tstartOi +Ci ≤ δG , ∀i ∈ {1.. |O|} (4)

minimize δG (5)

Minimization of the δG generates the optimal solution, which
satisfies all the imposed constraints. In order to reduce the
search space and speed up the result generation, we place an
upper and lower bound on δG . The upper bound is the sum of
execution times of all operations as that is the largest possible
application completion time. For the example in Fig. 2a, the
upper bound is 36. The lower bound is equal to the duration of
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TABLE I: Experimental Results

Application Allocated components δG CP execution time
(2, 0, 0, 0) 16 s 0.2 s

PCR (3, 0, 0, 0) 16 s 0.2 s
(4, 0, 0, 0) 12 s 0.2 s
(2, 0, 0, 2) 25 s 2.6 s

IVD (5, 0, 0, 5) 18 s 38 min 28 s
(6, 0, 0, 6) 11 s 1 min 38 s
(2, 1, 1, 0) 19 s 0.3 s

EA (3, 1, 1, 0) 17 s 0.4 s
(4, 2, 1, 0) 17 s 0.5 s

the critical path in the given application graph G . Critical path
is defined as the path in the application graph, going from the
source nodes to the sink nodes, that has the largest duration.
For example in Fig. 2a, the critical path consists of the nodes
{O4, O6, O8, O9, O10} and has the duration equal to 17 s. The
lower bound value (lower bound) is provided as an input to
our CP framework.

δG ≤ ∑Ci, ∀i ∈ {1.. |O|} (6)

δG ≥ lower bound (7)

V. EXPERIMENTAL EVALUATION
We evaluate our proposed approach by synthesizing two real

life assays and a synthetic benchmark onto different biochip
architectures. The CP framework was implemented in Gecode
constraint programming environment [8], running on Lenovo
T400s ThinkPad with Core 2 Duo Processors at 2.53 GHz and
4 GB of RAM.
Table I shows our experimental results. Column 1 presents

the application and column 2 shows the list of allocated
components in the following format (Mixers, Heaters, Filters,
Detectors). Column 3 presents the optimal application com-
pletion time δG obtained using CP and column 4 presents the
time taken by CP to generate the solution.
The first real-life assay is the PCR (polymerase chain

reaction) mixing stage that has 7 mixing operations and is used
in DNA amplification [9]. We synthesize the assay on three
different biochip architectures varying the number of mixers.
Each mixing operation is considered to have an execution time
of 4 s on the mixing units used in the biochips. As shown in
Table I, CP generates optimal solutions using little time.
Multiplexed IVD (in-vitro diagnostics) has a total of 12

operations and is used to test different fluid samples from the
human body [9]. As given in Table I, IVD is synthesized onto

three different biochip architectures. Each mixing operation is
considered to have an execution time of 4 s and the detection
operation 7 s. Increasing the number of components reduces
δG for IVD from 25 s to 11 s.
The example application (EA) given in Fig. 2a is used as

a synthetic benchmark. We vary the number of resources and
generate optimal values of δG . The CP framework facilitates
design space exploration enabling biochip designers to take
early design decisions. For example in Table I, the result
(row 8 and row 9) shows that increasing the number of mixers
from 3 to 4 and the heaters from 1 to 2 does not result in
any improvement in δG , allowing the designer to use lesser
components and reduce chip area. The CP framework can be
extended to also consider fluid routing between components.

VI. CONCLUSIONS
In this paper we have presented a constraint programming

framework for the synthesis of biochemical applications on
the flow-based microfluidic biochips. Our approach performs
binding and scheduling of the biochemical operations onto the
microfluidic components in such a way that all resource and
dependency constraints are satisfied. In this work, we generate
optimal solutions in terms of minimizing the application
completion time. Synthetic as well as real-life examples have
been used for evaluating the approach.
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