
Abstract

In this paper we present an improved scheduling technique
for the synthesis of time-triggered embedded systems. Our
system model captures both the flow of data and that of con-
trol. We have considered communication of data and
conditions for a time-triggered protocol implementation
that supports clock synchronization and mode changes. We
have improved the quality of the schedules by introducing a
new priority function that takes into consideration the com-
munication protocol. Communication has been optimized
through packaging messages into slots with a properly
selected order and lengths. Several experiments and a real-
life example demonstrate the efficiency of our approach.

1. Introduction

Depending on the particular application, an embedded sys-
tem has certain requirements of performance, cost,
dependability, size, etc. For hard real-time applications the
timing requirements are extremely important. Thus, in
order to function correctly, an embedded system imple-
menting such an application has to meet its deadlines. One
of the application areas for such systems is that of safety-
critical automotive applications (e.g. drive-by-wire, brake-
by-wire)[17].

Due to the complexity of the systems, co-synthesis envi-
ronments are developed to assist the designer in finding the
most cost effective solution that, at the same time, meets the
design requirements. In this paper we concentrate on an
improved scheduling technique for safety-critical systems
consisting of multiple programmable processors and ASICs
interconnected by a communication channel. In this context
scheduling has a decisive influence on the correct behaviour
of the system with respect to its timing requirements.

Process scheduling for performance estimation and syn-
thesis of embedded systems has been intensively researched
in the last years. The approaches differ in the scheduling
strategy adopted, system architectures considered, handling
of the communication, and process interaction aspects.

Preemptive scheduling with static priorities using rate
monotonic scheduling analysis is performed in [16], static
non-preemptive scheduling is done in [7, 8, 15], while in

[12] scheduling is considered together with allocation and
partitioning. In order to guarantee the timing requirements
of safety-critical applications, non-preemptive static sched-
uling is preferred over the other scheduling strategies [9].

Several approaches consider spimple architectures con-
sisting of a programmable processor and an ASIC.

For process interaction (if considered) the mentioned
approaches are based on a dataflow model representation.
Communication aspects have been treated in a very simpli-
fied way during process scheduling. One typical solution is
to consider communication tasks as processes with a given
execution time (depending on the amount of information
transferred) and to schedule them as any other process [7,
12, 14], without considering issues like communication
protocol, packaging of messages, clock synchronization,
etc. These aspects are, however, essential in the context of
safety-critical distributed applications and one of the objec-
tives of this paper is to develop a strategy which takes them
into consideration for process scheduling.

In our approach an embedded system is viewed as a set
of interacting processes mapped on an architecture consist-
ing of several programmable processors and ASICs
interconnected by a communication channel. Process inter-
action captures both the flow of data and that of control,
since some processes can be activated depending on condi-
tions computed by previously executed processes. We
consider a non-preemptive environment in which the execu-
tion of processes is triggered at certain points in time, and
we generate a schedule table and a worst case delay that is
guaranteed under any conditions. We also address the clock
synchronization aspect in distributed embedded systems, in
order to guarantee the correct behaviour of the system with
respect to its timing constraints.

The way interprocess communication is modeled has a
crucial impact on the accuracy of the timing. Thus, in our
approach we consider the time-triggered protocol (TTP)
[10] as the communication protocol on the communication
channel. TTP is a communication protocol well suited for
safety-critical distributed real-time control systems and it
can be successfully applied to automotive applications.

The paper is divided into 9 sections. Section 2 presents
our graph-based abstract system representation and section
3 introduces the list scheduling algorithm for conditional

An Improved Scheduling Technique for
Time-Triggered Embedded Systems

Paul Pop, Petru Eles, and Zebo Peng

Dept. of Computer and Information Science
Linköping University

Sweden

process graphs which is the starting point of our improved
scheduling technique. The architectures considered for sys-
tem implementation are presented in section 4. Section 5
formulates the problem and section 6 and 7 present the
improved scheduling techniques proposed. The algorithms
are evaluated in section 8, and section 9 presents our
conclusions.

2. Conditional Process Graph

As an abstract model for system representation we use a
directed, acyclic polar graph with conditional edges (Fig. 1)
[3].

Each node in this graph represents a process which is
assigned to a processing element. The graph is polar, which
means that there are two nodes, called source and sink, that
conventionally represent the first and the last task respec-
tively. These nodes are introduced as dummy processes,
with zero execution time and no resources assigned, so that
all other nodes in the graph are successors of the source and
predecessors of the sink respectively.

Each process Pi is assigned to a processor or bus and is
characterized by an execution time tPi (denoted by the val-
ues on the right side of the nodes in Fig. 1). In the process
graph depicted in Fig. 1, P0 and P15 are the source and sink
nodes respectively. The rest of the nodes denoted P1, P2, ..,
P14 are “ordinary” processes specified by the designer. They
are assigned to one of the two programmable processors or
to the hardware component (ASIC). The rest of the nodes
are so called communication processes and they are repre-
sented in Fig. 1 as filled circles. They are introduced during
the generation of the system representation for each connec-
tion which links processes mapped to different processors.

An edge from process Pi to Pj indicates that the output of
Pi is the input of Pj. Unlike a simple edge, a conditional
edge (depicted with thicker lines in Fig. 1) has an associated

condition. Transmission of a message on a conditional edge
will take place only if the associated condition is satisfied
and not, like on simple edges, for each activation of the
input process Pi.

We call a node with conditional edges at its output a dis-
junction node (and the corresponding process a disjunction
process). Alternative paths starting from a disjunction node,
which correspond to a certain condition, are disjoint and
they meet in a so called conjunction node (with the corre-
sponding process called conjunction process). In Fig. 1,
conjunction and disjunction nodes are depicted with trian-
gles. The alternative paths starting from disjunction node
P7, corresponding to the different values of condition D,
meet in the conjunction node P12.

According to our model, we assume that a process,
which is not a conjunction process, can be activated after all
its inputs have arrived. A conjunction process can be acti-
vated after messages coming on one of the alternative paths
have arrived. Once activated, a process can not be pre-
empted by other processes. All processes issue their outputs
when they terminate.

Release times of some processes as well as multiple
deadlines can be easily modeled by inserting dummy nodes
between certain processes and the source or the sink node
respectively. These dummy nodes represent processes with
a certain execution time but which are not allocated to any
resource.

3. Scheduling of Conditional Process Graphs

In [2, 3] our goal was to derive a worst case delay by
which the system completes execution, so that this delay is
as small as possible, and to generate the schedule which guar-
antees this delay. For this, we have considered a simplified
communication model in which the execution time of the
communication processes was a function only of the
amount of data exchanged by the processes engaged in the
communication. Also, we have treated the communication
processes exactly as ordinary processes during the schedul-
ing of the conditional process graph. Thus, we have
modeled the buss similar to a programmable processor that
can “execute” one communication at a time as soon as the
communication becomes “ready”.

The output produced by our scheduling algorithm is a
schedule table that contains all the information needed by a
distributed run time scheduler to take decisions on activation
of processes. We consider that during execution a very sim-
ple non-preemptive scheduler located in each processing
element decides on process and communication activation
depending on the actual values of conditions. Only one part
of the table has to be stored in each processor, namely the
part concerning decisions which are taken by the corre-
sponding scheduler.

Under these assumptions, Table 1 presents a possible
schedule (produced by the algorithm in Fig. 2) for the condi-

P0

P6

P8

P9P10

P11

P2

P4

P3P14

P15

P1

P5

P7

P12

P13

C

D

C

D

3

8

30

2

4

2

2

330

3

4

38

1

3

1

1

1

1

1

ASIC
Processor 1
Processor 2
Buss

Figure 1. Conditional Process Graph

tional process graph in Fig. 1. In Table 1 there is one row for
each “ordinary” or communication process, which contains
activation times corresponding to different values of condi-
tions. Each column in the table is headed by a logical
expression constructed as a conjunction of condition values.
Activation times in a given column represent starting times
of the processes when the respective expression is true.

According to the schedule in Table 1 process P1 is acti-
vated unconditionally at the time 0, given in the first column
of the table. However, activation of some processes at a cer-
tain execution depends on the values of the conditions,
which are unpredictable. For example, process P11 has to be
activated at t=44 if C∧D is true and t=52 if C∧D is true. At a
certain moment during the execution, when the values of
some conditions are already known, they have to be used in
order to take the best possible decisions on when and which
process to activate. Therefore, after the termination of a pro-
cess that produces a condition, the value of the condition is
broadcasted from the corresponding processor to all other
processors. This broadcast is scheduled as soon as possible
on the communication channel, and is considered together
with the scheduling of the messages.

To produce a deterministic behaviour, which is correct for
any combination of conditions, the table has to fulfill several
requirements:

1. No process will be activated if, for a given execution,

the conditions required for its activation are not fulfilled.
2. Activation times have to be uniquely determined by the

conditions.
3. Activation of a process Pi at a certain time t has to

depend only on condition values which are determined at the
respective moment t and are known to the processing
element which executes Pi.

As the starting point for our improved scheduling tech-
nique that is tailored for time-triggered embedded systems
we consider the list scheduling based algorithm in Fig. 2 [2].

List scheduling heuristics [4] are based on priority lists
from which processes are extracted in order to be scheduled
at certain moments. In our algorithm, presented in Fig. 2, we
have such a list, ReadyList, that contains the processes which
are eligible to be activated on the respective processor at time
CurrentTime. These are processes which have not been yet
scheduled but have all predecessors already scheduled and
terminated.

The ListScheduling function is recursive and calls itself
for each conjunction node in order to separately schedule the
nodes in the true branch, and those in the false branch respec-
tively. Thus, the alternative paths are not activated
simultaneously and resource sharing is correctly achieved
[2].

An essential component of a list scheduling heuristic is
the priority function used to solve conflicts between ready
processes. The highest priority process will be extracted by
function GetReadyProcess from the ReadyList in order to be
scheduled. The priority function will be further discussed in
section 6.

Table 1: Schedule Table for Graph in Figure 1

process true C C∧D C∧D C C∧D C∧D

P1 0

P2 5

P3 14 14

P4 45 45

P5 51 50 55 47

P6 3 3

P7 7 7

P8 9 9

P9 11 11

P10 13 13

P11 44 52

P12 47 9 55 9

P13 48 13 56 11

P14 14 9

P1,2 4

P4,5 48 47

P2,3 13 13

P3,4 44 44

P12,13 47 10 55

P8,10 12 12

P10,11 43 43

C 3 11 9

D 11 9 11 9

ListScheduling(CurrentTime, ReadyList, KnownConditions)
repeat

Update(ReadyList)
for each processing element PE

if PE is free at CurrentTime then
Pi = GetReadyProcess(ReadyList)
if there exists a Pi then

Insert(Pi, ScheduleTable, CurrentTime, KnownConds)
if Pi is a conjunction process then

Ci = condition calculated by Pi

ListScheduling(CurrentTime,
ReadyList ∪ ready nodes from the true branch,
KnownConditions ∪ true Ci)

ListScheduling(CurrentTime,
ReadyList ∪ ready nodes from the false branch,
KnownConditions ∪ false Ci)

end if
end if

end if
end for
CurrentTime = time when a scheduled process terminates

until all processes of this alternative path are scheduled
end ListScheduling

Figure 2. List Scheduling Based Algorithm

4. Time-Triggered Systems

We consider architectures consisting of nodes connected by
a broadcast communication channel. Every node consists of
a TTP controller [10], a CPU, a RAM, a ROM and an I/O
interface to sensors and actuators. A node can also have an
ASIC in order to accelerate parts of its functionality.

On top of each node runs a real-time kernel that has a
schedule table which contains all the information needed to
take decisions on activation of processes and transmission
of messages, based on the values of conditions.

Communication between nodes is based on the TTP [9].
TTP was designed for distributed real-time applications that
require predictability and reliability (e.g, drive-by-wire). It
integrates all the services necessary for fault-tolerant real-
time systems. The TTP services of importance to our prob-
lem are: message transport with acknowledgment and
predictable low latency, clock synchronization within the
microsecond range and rapid mode changes.

The communication channel is a broadcast channel, so a
message sent by a node is received by all the other nodes. The
bus access scheme is time-division multiple-access
(TDMA) (Fig. 3). Each node Ni can transmit only during a
predetermined time interval, the so called TDMA slot Si. In
such a slot, a node can send several messages packaged in a
frame. We consider that a slot Si is at least large enough to
accommodate the largest message generated by any process
assigned to node Ni, so the messages do not have to be split
in order to be sent. A sequence of slots corresponding to all
the nodes in the architecture is called a TDMA round. A
node can have only one slot in a TDMA round. Several
TDMA rounds can be combined together in a cycle that is
repeated periodically. The sequence and length of the slots
are the same for all the TDMA rounds. However, the length
and contents of the frames may differ.

Every node has a TTP controller that implements the
protocol services, and runs independently of the node’s
CPU. Communication with the CPU is performed through a
so called message base interface (MBI) which is usually
implemented as a dual ported RAM.

The TDMA access scheme is imposed by a so called
message descriptor list (MEDL) that is located in every TTP
controller. The MEDL basically contains: the time when a
frame has to be sent or received, the address of the frame in
the MBI and the length of the frame. MEDL serves as a
schedule table for the TTP controller which has to know
when to send or receive a frame to or from the communica-
tion channel.

The TTP controller provides each CPU with a timer
interrupt based on a local clock, synchronized with the local
clocks of the other nodes. The clock synchronization is
done by comparing the a-priori known time of arrival of a
frame with the observed arrival time. By applying a clock
synchronization algorithm, TTP provides a global time-
base of known precision, without any overhead on the
communication.

Information transmitted on the bus has to be properly
formatted in a frame. A TTP frame has the following fields:
start of frame, control field, data field, and CRC field. The
data field can contain one or more application messages.

5. Scheduling for Time-Triggered Systems

As an input to our problem we consider a safety-critical
application that has several operating modes, and each
mode is modeled by a conditional process graph.The archi-
tecture of the system is given as described in the previous
section. Each process of the process graph is mapped on a
CPU or an ASIC of a node. The worst case execution time
(WCET) for each process mapped on a processing element
is known, as well as the length bmi of each message.

We are interested to derive a worst case delay on the sys-
tem execution time for each operating mode, so that this
delay is as small as possible, and to synthesize the local
schedule tables for each node, as well as the MEDL for the
TTP controllers, which guarantee this delay.

Considering the concrete definition of our problem, the
communication time is no longer dependent only on the
length of the message, as assumed in our previous
approaches [2, 3]. Thus, if the message is sent between two
processes mapped onto different nodes, the message has to
be scheduled according to the TTP protocol. Several mes-
sages can be packaged together in the data field of a frame.
The number of messages that can be packaged depends on
the slot length corresponding to the node. The effective time
spent by a message mi on the bus is where bSi is
the length of the slot Si and T is the transmission speed of the
channel. Therefore, the communication time tmi does not
depend on the bit length bmi of the message mi, but on the
slot length corresponding to the node sending mi.

The important impact of the communication parameters
on the performance of the application is illustrated in Fig. 4
by means of a simple example.

In Fig. 4 d) we have a process graph consisting of four
processes P1 to P4 and four messages m1 to m4. The archi-
tecture consists of two nodes interconnected by a TTP
channel. The first node, N0, transmits on the slot S0 of the
TDMA round and the second node, N1, transmits on the slot
S1. Processes P1 and P4 are mapped on node N0, while pro-
cesses P2 and P3 are mapped on node N1. With the TDMA
configuration in Fig. 4 a), where the slot S1 is scheduled first
and slot S0 is second, we have a resulting schedule length of
24 ms. However, if we swap the two slots inside the TDMA
round without changing their lengths, we can improve the

TDMA Round
Cycle of two rounds

Slot

S0 S1 S2 S3 S0 S1 S2 S3

Frames

Figure 3. Buss Access Scheme

tmi
bSi

T⁄=

schedule by 2 ms, as seen on Fig. 4 b). Further more, if we
have the TDMA configuration in Fig. 4 c) where slot S0 is
first, slot S1 is second and we increase the slot lengths so
that the slots can accommodate both of the messages gener-
ated on the same node, we obtain a schedule length of 20 ms
which is optimal. However, increasing the length of slots is
not necessarily improving a schedule, as it delays the commu-
nication of messages generated by other nodes.

6. Synthesis of local schedule tables and MEDL

In this section our goal is to synthesize the local schedule
table of each node and the MEDL of the TTP controller for
a given order of slots in the TDMA round and given slot
lengths. The ordering of slots and the optimization of slot
lengths will be discussed in the following section.

We propose several extensions to our scheduling algo-
rithm described in section 3. The extension considers a
realistic communication and execution infrastructure, and
includes aspects of the communication protocol in the opti-
mization process.

Thus, if the ready process Pi returned by the
GetReadyProcess function in Fig. 2 is a message, then
instead of scheduling Pi like an “ordinary” process we will
schedule Pi according to the TTP protocol using the

ScheduleMessage function in Fig. 5.
Depending on the CurrentTime and the given TDMA

configuration, the function determines the first TDMA
round where the message can be scheduled in the slot cor-
responding to the sender node. If the slot is full in the first
selected round because of previously scheduled messages,
the message has to wait for the next round.

For the scheduling algorithm outlined in section 3 we
initially used the Partial Critical Path (PCP) priority func-
tion [2, 4]. PCP uses as a priority criterion the length of that
part of the critical path corresponding to a process Pi which
starts with the first successor of Pi that is assigned to a pro-
cessor different from the processor running Pi. The PCP
priority function is statically computed once at the begin-
ning of the scheduling procedure.

However, considering the concrete definition of our
problem, significant improvements of the resulting schedule
can be obtained by including knowledge of the buss access
scheme into the priority function. This new priority function
will be used by the GetReadyProcess (Fig. 2) in order to
decide which process to select from the list of ready process.

Let us consider the process graph in Fig. 6, and suppose
that the list scheduling algorithm has to decide between
scheduling process P1 or P2 which are both ready to be
scheduled on the same programmable processor. Process P0
is a dummy process, inserted in order for the graph to be
polar. The worst case execution time of the processes is
depicted on the right side of the respective node and is
expressed in ms. The architecture consists of two nodes
interconnected by a TTP channel. Processes P1 and P2 are
mapped on node N0, while processes P3 and P4 are mapped
on node N1. The first node, N0, transmits on the slot S0 of
the TDMA round and the second node, N1, transmits on the
slot S1. Slot S0 has a “length” of 10 ms while slot S1 has a
length of 8 ms.

PCP assigns a higher priority to P1 because it has a par-
tial critical path of 14 ms, starting from P3, longer than the
partial critical path of P2 which is 10 ms and starts from m.
This results in a schedule length of 40 ms depicted in Fig. 6
a). On the other hand, if we schedule P2 first, the resulting
schedule, depicted in Fig. 6 b), is only of 36 ms.

This apparent anomaly is due to the fact that the PCP

P1

P2 P3

P4

m1 m2

m3 m4

m1 m2 m3 m4

m1 m2 m3 m4

m1 m2 m3 m4

P2 P3

P2 P3

P2 P3

P1 P4

P1 P4

P1

S1 S0

S1S0

S1S0

Round 1 Round 2 Round 3 Round 4 Round 5

Round 1 Round 2 Round 3 Round 4

Round 1 Round 2 Round 3

a) Schedule length of 24 ms

b) Schedule length of 22 ms

c) Schedule length of 20 ms
d) Graph example

P4

Figure 4. Scheduling Example

ScheduleMessage
slot = slot of the node sending the message
round = CurrentTme / RoundLength
if CurrentTime - round * RoundLength > start of slot in round then

round = next round
end if
if not message fits in the slot of round then

round = next round
end if
Insert (message, round, slot, ScheduleTable)

end ScheduleMessage

Figure 5. The ScheduleMessage Function Figure 6. Priority Function Example

m

P2

P3

P1

S1=8S0=10

Round 1 Round 2

a) Schedule length of 40 ms

m

m

P1

Round 1 Round 2

b) Schedule length of 36 ms

m

P4

P2

P3

S0=10 S1=8

P4
P0

P1

P2

P4

m

c) Graph example

P3

14

8

10 6

4

function is not based on the realistic communication model,
but considers communication as an “ordinary” process
which is allocated to the bus.

However, if we consider the particular TDMA configu-
ration in Fig. 6, we note that P4 can only be started at the end
of the slot S1 in which m is scheduled. Thus, if we account
for the TDMA configuration in the partial critical path of P2
we get a partial critical path of S0+S1=18 ms. Based on this
value, process P2 should be selected first for scheduling
resulting in a schedule of 36 ms.

We introduce a new priority function, namely PCP2, that
includes knowledge about the particular TDMA
configuration:

where πik is the kth path from the first successor of Pi,
that is assigned to a processor different from the processor
running Pi, to the sink node. In the previous equation tPi is:

The end time of the slot in which Pi is scheduled depends
on the particular ordering of the slots and their lengths, on
the current time, which determines the TDMA round in
which Pi is scheduled, and on the scheduling decisions
taken before scheduling Pi (for example, a slot might be full
because of previously scheduled messages, thus Pi has to be
scheduled in the next round).

Thus, priority function PCP2 has to be dynamically
determined during the scheduling algorithm for each ready
process, every time the GetReadyProcess function is acti-
vated in order to select a process from the ReadyList. The
computation of PCP2 is performed inside the GetReadyPro-

cess function and involves a partial traversal of the graph,
as presented in Fig. 7.

As the experimental evaluation in section 8 shows, PCP2
performs better that PCP resulting in shorter schedule
lengths. The cost is a slight increase in the execution time of
the ListScheduling algorithm, since PCP2 is determined
dynamically during the scheduling process.

7. Synthesis of TDMA Buss Access

In order to get an optimized schedule it is not enough to
consider the communication protocol during the scheduling
of the conditional process graph. As the example in Fig. 4
shows, the ordering of the slots and the slot lengths have a
big impact on the schedule quality.

In this section, we propose a heuristic to determine an
ordering of the slots and the slot lengths so that the execu-
tion delay of the application is as small as possible.

A short description of the algorithm is shown in Fig. 8.
The algorithm starts with the first slot of the TDMA round
and tries to find the node which, by transmitting in this slot,
will produce the smallest delay on the system execution
time. Once a node has been selected to transmit in the first
slot, the algorithm continues in the same manner with the
next slots.

The selection of a node for a certain slot is done by trying
out all the nodes not yet allocated to a slot. Thus, for a can-
didate node, the schedule length is calculated considering
the TDMA round given so far using the ListScheduling
algorithm as described in sections 3 and 6.

All the possible slot lengths are considered for a slot
bound to a given candidate node. In order to find the slot
length that will minimize the delay, the algorithm starts with
the minimum slot length determined by the largest message
to be sent from the candidate node. Then, it continues incre-
menting with the smallest data unit (e.g. 2 bits) up to the
largest slot length determined by the maximum allowed
data field in a TTP frame (e.g., 32 bits, depending on the
controller implementation).

Since our heuristic is based on a greedy approach, it does
not guarantee the finding of the optimal TDMA configura-

λPi max
k

tPj
P j πik∈
∑=

WCET of Pi, if Pi is not a message

end time of the slot in which Pi is scheduled, if Pi is a message
tPi=

Lambda(lambda, CurrentProcess)
if CurrentProcess is a message then

slot = slot of node sending CurrentProcess
round = lambda / RoundLength
if lambda - RoundLength * round > start of slot in round

round = next round;
end if
while slot in round is full

round = next round
end while
lambda = round * RoundLength +

start of slot in round + length of slot
else

lambda = lambda + WCET of CurrentProcess
end if
if lambda > MaxLambda

 MaxLambda = lambda
end if
for each successor of CurrentProcess

Lambda(lambda, successor)
end for
return MaxLambda

end Lambda

Figure 7. The Lambda Function

SythesizeTDMA
for each slot

for each node not yet allocated to a slot
Bind(node, slot, minimum possible length for this slot)
for every possible slot length

do ListScheduling in the context of current TDMA round
remember the best schedule for this slot

end for
end for
Bind(node, slot and length corresponding to the best schedule)

end for
return TDMA configuration

end

Figure 8. Heuristic for Synthesis of TDMA

tion. However, as the experimental results in section 8 show,
the heuristic produces good results in a very short time.

In [12] two other heuristics which synthesize the TDMA
buss access were presented.

8. Experimental Evaluation

For evaluation of our scheduling algorithms we first used
conditional process graphs generated for experimental pur-
pose. We considered architectures consisting of 2, 4, 6, 8
and 10 nodes. 40 processes were assigned to each node,
resulting in graphs of 80, 160, 240, 320 and 400 processes.
30 graphs were generated for each graph dimension, thus a
total of 150 graphs were used for experimental evaluation.
Execution times and message lengths were assigned ran-
domly using both uniform and exponential distribution. For
the communication channel we considered a transmission
speed of 256 kbps and a length below 20 meters. The max-
imum length of the data field was 8 bytes, and the frequency
of the TTP controller was chosen to be 20 MHz. All exper-
iments were run on a SPARCstation 20.

The first result concerns the quality of the schedules pro-
duced by the list scheduling based algorithm using PCP and
PCP2 priority functions. In order to compare the two prior-
ity functions we have calculated the average percentage
deviations of the schedule length produced with PCP and
PCP2 from the length of the best schedule between the two.
The results are depicted in Fig. 9. In average the deviation
with PCP2 is 11.34 times smaller than with PCP. However,
due to its dynamic nature, PCP2 has in average a bigger exe-
cution time than PCP. The average execution times for the
ListScheduling function using PCP and PCP2 are depicted in
Fig. 10 and are under half a second for graphs with 400
processes.

The next result concerns the quality of the heuristics for
ordering slots and slot length selection. We compare the
schedule length produced by the greedy algorithm
SynthesizeTDMA (Fig. 7) with results obtained using a
simulated annealing (SA) based algorithm which is
presented in [12]. The SA algorithm has been tuned to

produce (near)optimal schedules at the cost of relatively
large execution times. Table 2 presents the average and
maximum percentage deviation of the schedule lengths
produced by the SynthesizeTDMA algorithm from the
(near)optimal schedules. The table also shows the average
execution times in seconds.

Together with the greedy heuristic, a naive designer’s
approach is presented. The naive designer performs sched-
uling without trying to optimize the access to the
communication channel, namely the TDMA round and the
slot lengths. For the naive designer’s approach we consid-
ered a TDMA round consisting of a straightforward
ascending order of allocation of the nodes to the TDMA
slots; the slot lengths were selected to accommodate the
largest message sent by the respective node.

Table 2 shows that when considering the optimization of
the access to the communication channel, the results
improve dramatically compared to the naive designer’s
approach. The greedy heuristic performs very well for all
the graph dimensions in relatively short time.

Finally, we considered a real-life example implementing
a vehicle cruise controller. The conditional process graph
that models the cruise controller has 32 processes, and it
was mapped on an architecture consisting of 4 nodes,
namely: Anti Blocking System, Transmission Control Mod-
ule, Engine Control Module and Electronic Throttle
Module. We considered one mode of operation with a dead-

0

1

2

3

4

5

6

7

8

9

10

80 160 240 320 400

PCP

PCP2

Figure 9. Quality of Schedules with PCP and PCP2
Number of processes

A
ve

ra
ge

 p
er

ce
nt

ag
e

de
vi

at
io

n

Table 2: Percentage Deviation and Exec. Times

No. of
processes

Naive Designer SynthesizeTDMA

average max. average max. time

80 3.16% 21% 0.02% 0.5% 0.25s

160 14.4% 53.4% 2.5% 9.5% 2.07s

240 37.6% 110% 7.4% 24.8% 0.46s

320 51.5% 135% 8.5% 31.9% 34.69s

400 48% 135% 10.5% 32.9% 56.04s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400 450

PCP
PCP2

Number of processes

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Figure 10. Average Exec. Times of PCP and PCP2

line of 110 ms. The naive designer’s approach resulted in a
schedule corresponding to a delay of 114 ms (which does
not meet the deadline) using PCP as a priority function,
while using PCP2 we obtained 109 ms. The greedy heuristic
produced a delay of 103 ms on the worst case execution
time of the system for both PCP and PCP2.

9. Conclusions

We have presented an improved scheduling technique for
synthesis of safety-critical distributed embedded systems.
Our system model captures both the flow of data and that of
control. We have considered communication of data and
conditions for a time-triggered protocol implementation
that supports clock synchronization and mode changes. We
have improved the quality of the schedule by introducing a
new priority function that takes into consideration the com-
munication protocol. Also, we have improved
communications through packaging of messages into slots
with a properly selected order and lengths.

The algorithms have been evaluated based on experi-
ments using a large number of graphs generated for
experimental purpose as well as a real-life example.

Acknowledgments

The authors are grateful to Jakob Axelsson from Volvo
Technological Development for his support and for provid-
ing the automotive electronics case study. The research has
been partly supported by the Swedish Foundation for Stra-
tegic Research.

References

[1] Chou, P. , Boriello, G. Interval Scheduling: Fine-
Grained Code Scheduling for Embedded Systems. Proc.
DAC, 1995, 462-467.

[2] Doboli, A., Eles, P. Scheduling under Control Depen-
dencies for Heterogeneous Architectures. International
Conference on Computer Design, 1998

[3] Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., Pop, P.
Scheduling of Conditional Process Graphs for the Syn-
thesis of Embedded Systems. Proc. Des. Aut. & Test in
Europe, 1998.

[4] Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., Pop, P.
Process Scheduling for Performance Estimation and
Synthesis of Hardware/Software Systems. Proc. of
24th Euromicro, 1998.

[5] Gupta, R. K., De Micheli, G. A Co-Synthesis
Approach to Embedded System Design Automation.
Design Automation for Embedded Systems, V1, 1/2,
1996, 69-120.

[6] Jorgensen, P.B., Madsen, J. Critical Path Driven Cosyn-
thesis for Heterogeneous Target Architectures. Proc.
Int. Workshop on Hardware-Software Co-design, 1997,

15-19.
[7] Kasahara, H., Narita, S. Practical Multiprocessor

Scheduling Algorithms for Efficient Parallel Process-
ing. IEEE Trans. on Comp., V33, N11, 1984, 1023-
1029.

[8] Kopetz, H. Real-Time Systems-Design Principles for
Distributed Embedded Applications. Kluwer Aca-
demic Publ., 1997

[9] Kopetz, H., Grünsteidl, G. TTP-A Protocol for Fault-
Tolerant Real-Time Systems. IEEE Computer, Vol: 27/
1, 14-23.

[10]Kopetz H., et al. A Prototype Implementation of a
TTP/C, Controller. SAE Congress and Exhibition,
1997.

[11]Kuchcinski, K. Embedded System Synthesis by Tim-
ing Constraint Solving. Proc. Int. Symp. on System
Synthesis, 1997.

[12]Pop, P., Eles, P., Peng, Z. Scheduling with Optimized
Communication for Time-Triggered Embedded Sys-
tems. Proc. Int. Workshop on Hardware-Software Co-
design, 1999.

[13]Prakash, S., Parker, A. SOS: Synthesis of Application-
Specific Heterogeneous Multiprocessor Systems. Journal
of Parallel and Distributed Computing, V16, 1992, 338-
351.

[14]Wu, M.Y., Gajski, D.D. Hypertool: A Programming
Aid for Message-Passing Systems. IEEE Trans. on
Parallel and Distributed Systems, V. 1, N. 3, 1990,
330-343.

[15]Yen, T. Y., Wolf, W. Hardware-Software Co-Synthesis of
Distributed Embedded Systems. Kluwer Academic Pub-
lisher, 1997.

[16]X-by-Wire Consortium. URL:http://
www.vmars.tuwien.ac.at/projects/xbywire/xby-
wire.html

