Scheduling and Communication Synthesis for Distributed Real-Time Systems

Paul Pop

Department of Computer and Information Science Linköpings universitet

Motivation

- System Model and Architecture
- Scheduling and Communication Synthesis
 Time Driven Systems
 - Event Driven Systems
- Real Life Example
- Conclusions

Embedded Systems

Scheduling and Communication Synthesis for Distributed Real-Time Systems Paul Pop

Distributed Real-Time Systems

Safety critical applications (e.g. Drive-by-Wire):

- timing constraints,
- data and control dependencies.
- Communication protocols: Time Triggered Protocol (TTP),

Controller Area Network (CAN).

Scheduling of processes and communication of messages: guaranteeing timing constraints.

Hardware/Software Codesign

Goals of the thesis:

Scheduling...

Scheduling of processes and messages for distributed hard real-time applications with control and data dependencies in the context of a given communication protocol.

Communication synthesis...

Optimization of the parameters of the communication protocol so that the overall system performance is increased and the imposed timing constraints are satisfied.

Related Work

Scheduling:

Static cyclic non-preemptive scheduling:
 P. Eles, G. Fohler, D. D. Gajski, H. Kasahara,
 H. Kopetz, K. Kuchcinski, J. Madsen, J. Xu.
 Fixed priority preemptive scheduling:
 J. Axelsson, S. Baruah, A. Burns, J. W. Layland, C. L. Liu,
 K. Tindell, J. A. Stankovic, , W. Wolf, T. Y. Yen.

Communication synthesis:

G. Borriello, R. Ernst, H. Hansson, J. Madsen, R. B. Ortega, K. Tindell.

Characteristics and Message

- Distributed hard real-time applications.
- Heterogeneous system architectures.
- Systems with data and control dependencies.
- Scheduling of processes:

Time triggered: Static cyclic non-preemptive scheduling,

Event triggered: Fixed priority preemptive scheduling.

- Communications using the time-triggered protocol (TPP).
- The performance of the system can be significantly improved by considering the communication protocol and the control dependencies during scheduling.

Motivation

ଧ୍ୱ System Model and Architecture

- Scheduling and Communication Synthesis
 Time Driven Systems
 - Time Driven Systems
 - Event Driven Systems
- Real Life Example
- Conclusions

Conditional Process Graph (CPG)

Scheduling and Communication Synthesis for Distributed Real-Time Systems Paul Pop

Hardware Architecture

- Hard real-time distributed systems.
- Nodes interconnected by a broadcast communication channel.
- Nodes consisting of: TTP controller, CPU, RAM, ROM, I/O interface.
- Communication between nodes is based on the time-triggered protocol.

Time Triggered Protocol

- H. Kopetz, Technical University of Vienna.
- Intended for distributed real-time control applications that require high degree of dependability and predictability.
- Recommended by the X-by-Wire Consortium for use in safety critical applications in vehicles.
- Integrates all the services required in the design of fault-tolerant distributed real-time systems.
- Bus access scheme: time-division multiple-access (TDMA).
- Schedule table located in each TTP controller: message descriptor list (MEDL).

Motivation

System Model and Architecture

තු Scheduling and Communication Synthesis

➔ Time Driven Systems

- Event Driven Systems
- Real Life Example
- Conclusions

Time Triggered Processes

Problem Formulation

Input

- Safety-critical application with several operating modes.
- Each operating mode is modelled by a CPG.
- The system architecture and mapping of processes to nodes are given.
- The worst case delay of each process is known.

Output

- Local schedule tables for each node and the MEDL for the TTP controllers.
- Delay on the system execution time for each operating mode, so that this delay is as small as possible.

Note

Processes scheduled with static cyclic non-preemptive scheduling, and messages according to the TTP.

Scheduling Strategy

- **1.** The scheduling algorithm has to take into consideration the TTP.
 - Priority function for the list scheduling.
- **2.** The optimization of the TTP parameters is driven by the scheduling.
 - Sequence and lengths of the slots in a TDMA round are determined to reduce the delay.
 - Two approaches: Greedy heuristic, Simulated Annealing (SA).
 - Two variants: Greedy 1 tries all possible slot lengths, Greedy 2 uses feedback from the scheduling algorithm.
 - SA parameters are set to guarantee near-optimal solutions in a reasonable time.

Experimental Results

Deviations from the near-optimal schedule lengths obtained by SA:

Scheduling and Communication Synthesis for Distributed Real-Time Systems Paul Pop

Motivation

System Model and Architecture

තු Scheduling and Communication Synthesis

- Time Driven Systems
- Event Driven Systems
- Real Life Example
- Conclusions

Event Triggered Processes Problem Formulation

Input

- An application modelled using conditional process graphs.
- Each process has an execution time, a period, a deadline, and a priority.
- The system architecture and mapping of processes are given.

Output

- **Schedulability analysis** for systems modelled using CPGs.
- Schedulability analysis for the time-triggered protocol.
- The MEDL for the TTP controllers so that the process set is schedulable on an as cheap (slow) as possible processor set.

Note

Processes scheduled with fixed priority preemptive scheduling, and messages according to the TTP.

G₁: 200 Deadline: 110

Scheduling and Communication Synthesis for Distributed Real-Time Systems Paul Pop

Experimental Results

Scheduling and Communication Synthesis for Distributed Real-Time Systems Paul Pop

Experimental Results (Cont.)

Scheduling of Messages over TTP

- 1. Single message per frame, allocated statically: Static Single Message Allocation (SM)
- 2. Several messages per frame, allocated statically: Static Multiple Message Allocation (MM)
- 3. Several messages per frame, allocated dynamically: Dynamic Message Allocation (**DM**)
- 4. Several messages per frame, split into packets, allocated dynamically Dynamic Packets Allocation (**DP**)

Experimental Results

Cost function: degree of schedulability

Scheduling and Communication Synthesis for Distributed Real-Time Systems Paul Pop

Optimizing Bus Access (SM and MM)

OptimizeDM

OptimizeDM: Find the slot sizes that maximize the "degree of schedulability"

for each node N_i do $MinSize_{Si} = max(size of messages m_j$ sent by node N_i)

end for

for each slot S_i

 $BestSize_{Si} = MinSize_{Si}$

for each *SlotSize* in [*MinSize*_{Si}...*MaxSize*] do

calculate the CostFunction

if the *CostFunction* is best so far then

 $BestSize_{Si} = SlotSize_{Si}$

end if

end for

 $size_{Si} = BestSize_{Si}$

end for

end OptimizeDM

Scheduling and Communication Synthesis for Distributed Real-Time Systems Paul Pop

Initialization:

the size of a slot in a TDMA round has to accommodate the largest message sent by the corresponding node.

Greedy heuristic: finds the local optimum for each slot.

Local optimum: find the best size for this slot, the size that leads to the "best so far" cost function.

Experimental Results

The quality of the greedy optimization heuristics:

Motivation

- System Model and Architecture
- Scheduling and Communication Synthesis
 Time Driven Systems
 - Event Driven System
- ଧ୍ୱ Real Life Example
- Conclusions

Real Life Example

Vehicle cruise controller.

- Modelled with a CPG of 32 processes and two conditions.
- Mapped on 5 nodes: CEM, ABS, ETM, ECM, TCM.
- Time triggered processes: (deadline 400 ms)
 - Ad-hoc: 429 ms
 Greedy 1: 314 ms
 Greedy 2: 323 ms
 - SA: **302** ms
- Event triggered processes: (no messages, deadline 130 ms)
 - Ignoring Conditions: 138 ms
 - Conditions Separation: 132 ms
 - Relaxed Tightness 1, 2: 124 ms
 - Brute Force:

124 ms

Conclusions and Future Work

Time triggered processes:

- Extension to static scheduling for CPGs to handle TTP.
- Improved schedule quality by using new priority function that considers the time triggered protocol.
- Significant performance improvements can be obtained by optimizing the access to the communication channel.

Event triggered processes:

- Schedulability analysis with the TTP: four message scheduling approaches compared based on the issue of schedulability.
- Significant improvements to the "degree of schedulability" through the optimization of the bus access scheme.
- The pessimism of the analysis can be drastically reduced by considering the conditions.

Mapping of processes and architecture selection.

Contributions

Time triggered processes:

- Static scheduling strategy for systems with both control and data dependencies.
- Optimization strategies for the synthesis of the bus access scheme.

Event triggered processes:

- Less pessimistic schedulability analysis for hard real-time systems with both control and data dependencies
- Schedulability analysis for the time-triggered protocol.
- Optimization strategies for the synthesis of the bus access scheme.

