Minimizing System Modification in an Incremental Design Approach

Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Department of Computer and Information Science Linköpings universitet, Sweden

Incremental Design Process

- Start from an already existing system with applications
 Implement new functionality on this system
 Mapping and Scheduling
- To reduce design and testing time:
 As few as possible modifications of the existing applications
- After the new functionality has been implemented: It should be easy to add functionality in the future

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Mapping and Scheduling Problem

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Problem Formulation

Input

- A set of *existing* applications modelled using process graphs.
- A current application to be mapped modelled using process graphs.
- Each process graph in the application has its own *period* and *deadline*.
- Each process has a potential set of nodes to be mapped on and a WCET.
- The system architecture is given.

Output

A mapping and scheduling of the current application, so that: <u>Requirement a</u>: constraints of the current application are satisfied and minimal modifications are performed to the existing applications. <u>Requirement b</u>: new future applications can be mapped on the resulted system.

Notes

- Hard real-time applications
- Static cyclic scheduling of processes and messages
- Time-triggered protocol, TDMA

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Mapping and Scheduling Strategy

- Initial mapping and scheduling
- a) Satisfying the constraints for the current application
 Minimizing the modification cost
- b) Prediction of success in adding future applications
 Minimizing the objective function

"An Incremental Approach to the Design of Embedded Systems", DAC 2001

$$C = w_1^P(C_1^P) + w_1^m(C_1^m) + w_2^P \max(0, t_{need} - C_2^P) + w_2^m \max(0, b_{need} - C_2^m)$$

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Characterizing Existing Applications

R({Γ₇})=20, R({Γ₃})=50, R({Γ₃, Γ₇})=70, R({Γ₄, Γ₇})=90 (the modification of Γ₄ triggers the modification of Γ₇), R({Γ₂, Γ₃})=120, R({Γ₃, Γ₄, Γ₇})=140, R({Γ₁})=150,

The total number of possible subsets is 16.

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Mapping and Scheduling, Requirement a)

Mapping and scheduling of the current application, so that: Constraints of the current application are satisfied and minimal modifications are performed to the existing applications.

Subset selection problem

Select that subset Ω of existing applications which guarantees that the current application fits and the modification cost $R(\Omega)$ is minimized:

$$R(\Omega) = \sum_{\Gamma_i \in \Omega} R_i$$

Mapping and Scheduling Strategy

- Initial mapping and scheduling
- Requirement a) Minimizing the modification cost R(Ω), subset selection:
 - Exhaustive Search (ES)
 - Ad-Hoc Solution (AH)
 - Subset Selection Heuristic (SH)
- Requirement b) Minimizing the objective function:

"An Incremental Approach to the Design of Embedded Systems", DAC 2001

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Experimental Results

Ň

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng

- Mapping and scheduling of distributed embedded systems for hard-real time applications.
- Incremental design process
 - Already existing system,
 - Implement new functionality,
 - a) Existing system modified as little as possible,
 b) new functionality can be easily added to the system.
- Mapping strategy
 - a) Subset selection to minimize modification cost,
 - b) Two design criteria, objective function.

Minimizing System Modification in an Incremental Design Approach Paul Pop, Petru Eles, Traian Pop, Zebo Peng