
Schedulability-Driven Frame Packing
for Multi-Cluster Distributed Embedded Systems

Paul Pop, Petru Eles, Zebo Peng

Computer and Information Science Dept.,
Linköping University,

 SE-581 83 Linköping, Sweden
{paupo, petel, zebpe}@ida.liu.se
ABSTRACT
We present an approach to frame packing for multi-cluster
distributed embedded systems consisting of time-triggered and
event-triggered clusters, interconnected via gateways. In our
approach, the application messages are packed into frames such
that the application is schedulable. Thus, we have also proposed a
schedulability analysis for applications consisting of mixed event-
triggered and time-triggered processes and messages, and a worst
case queuing delay analysis for the gateways, responsible for
routing inter-cluster traffic. Optimization heuristics for frame
packing aiming at producing a schedulable system have been
proposed. Extensive experiments and a real-life example show the
efficiency of our frame-packing approach.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management–scheduling

General Terms
Algorithms, Performance, Design, Theory

Keywords
Frame Packing, Schedulability Analysis, Multi-Clusters

1. INTRODUCTION
Depending on the particular application, an embedded system
has certain requirements on performance, cost, dependability,
size, etc. For hard real-time applications the timing
requirements are extremely important. Thus, in order to
function correctly, an embedded system implementing such an
application has to meet its deadlines.
Process scheduling and schedulability analysis has been
intensively studied for the past decades. The reader is referred
to [1, 3] for surveys on this topic. There are two basic
approaches for handling activities in real-time applications [8].
In the event-triggered approach (ET), activities are initiated
whenever a particular event is noted. In the time-triggered
(TT) approach, activities are initiated at predetermined points
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LCTES’03, June 11-13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006…$5.00.
in time. There has been a long debate in the real-time and
embedded systems communities concerning the advantages of
each approach [2, 8, 21]. Several aspects have been considered
in favour of one or the other approach, such as flexibility,
predictability, jitter control, processor utilization, testability,
etc.
The same duality is reflected at the level of the communication
infrastructure, where communication activities can be
triggered either dynamically, in response to an event, as with
the controller area network (CAN) bus [4], or statically, at
predetermined moments in time, as in the case of time-division
multiple access (TDMA) protocols and, in particular, the time-
triggered protocol (TTP) [8].
A few approaches have been proposed for the schedulability
analysis of distributed real-time systems, taking into
consideration both process and communication scheduling. In
[18] and [19] Tindell provided a framework for the analysis of
ET process sets interconnected through an infrastructure based
on either the CAN protocol or a generic TDMA protocol. In [5]
and [13] we have developed an analysis allowing for either TT
or ET process sets communicating over the TTP.
An interesting comparison of the ET and TT approaches, from
a more industrial, in particular automotive, perspective, can be
found in [10]. The conclusion there is that one has to choose
the right approach depending on the particularities of the
processes. This means not only that there is no single “best”
approach to be used, but also that inside a certain application
the two approaches can be used together, some tasks being TT
and others ET. The fact that such an approach is suitable for
automotive applications is demonstrated by the following two
trends which are currently considered to be of foremost
importance not only for the automotive industry, but also for
other categories of industrial applications:
1. The development of bus protocols which support both

static and dynamic communication [6]. This allows ET
and TT processes to share the same processor as well as
dynamic and static communications to share the same bus.
In [12] we have addressed the problem of timing analysis
for such systems.

2. Complex systems are designed as interconnected clusters
of processors. Each such cluster can be either TT or ET.
In a time-triggered cluster (TTC), processes and messages
are scheduled according to a static cyclic policy, with the
bus implementing the TTP. On an event-triggered cluster
(ETC), the processes are scheduled according to a priority
based preemptive approach, while messages are
transmitted using the priority-based CAN protocol.
Depending on their particular nature, certain parts of an
application can be mapped on processors belonging to an
ETC or a TTC. The critical element of such an

architecture is the gateway, which is a node connected to
both types of clusters, and is responsible for the inter-
cluster routing of hard real-time traffic. In [14] we have
proposed an approach to schedulability analysis for such
systems, including also buffer need analysis and worst
case queuing delay analysis of inter-cluster traffic. There
we concentrated on optimization heuristics aimed at
producing a schedulable system such that communication
buffer sizes are minimized.

We have, however, not addressed the issue of frame packing,
which is of utmost importance in cost-sensitive embedded
systems where resources, such as communication bandwidth,
have to be fully utilized [9, 16, 20]. In both TTP and CAN
protocols messages are not sent independently, but several
messages having similar timing properties are usually packed
into frames. In many application areas, like automotive
electronics, messages range from one single bit (e.g., the state
of a device) to a couple of bytes (e.g., vehicle speed, etc.).
Transmitting such small messages one per frame would create a
high communication overhead, which can cause long delays
leading to an unschedulable system. For example, 48 bits have
to be transmitted on CAN for delivering one single bit of
application data. Moreover, a given frame configuration defines
the exact behavior of a node on the network, which is very
important when integrating nodes from different suppliers.

The issue of frame packing (sometimes referred to as frame
compiling) has been previously addressed separately for the
CAN and the TTP. In [16, 20] CAN frames are created based
on the properties of the messages, while in [9] a “cluster
compiler” is used to derive the frames for a TT system which
uses TTP as the communication protocol. However,
researchers have not addressed frame packing on multi-cluster
systems implemented using both ET and TT clusters, where the
interaction between the ET and TT processes of a hard real-
time application has to be very carefully considered in order to
guarantee the timing constraints. As our multi-cluster
scheduling strategy in section 4 shows, the issue of frame
packing cannot be addressed separately for each type of
cluster, since the inter-cluster communication creates a circular
dependency.

Therefore, in this paper, we concentrate on the issue of packing
messages into frames, for multi-cluster distributed embedded
systems consisting of time-triggered and event-triggered
clusters, interconnected via gateways. We are interested to
obtain that frame configuration which would produce a
schedulable system. We have updated our schedulability
analysis presented in [14] to account for the frame packing,
and we have proposed two optimization heuristics that use the
schedulability analysis as a driver towards a frame
configuration that leads to a schedulable system.

The paper is organized in 7 sections. The next section presents
the hardware and software architectures as well as the
application model of our systems. Section 3 introduces more
precisely the problem that we are addressing in this paper.
Section 4 presents our proposed schedulability analysis for
multi-cluster systems, and section 5 uses this analysis to drive
the optimization heuristics used for frame generation. The last
two sections present the experimental results and conclusions.

2. APPLICATION MODEL AND SYSTEM
ARCHITECTURE

2.1 Hardware Architecture
We consider architectures consisting of several clusters,
interconnected by gateways (Figure 1 depicts a two-cluster
example). A cluster is composed of nodes which share a
broadcast communication channel. Every node consists, among
others, of a communication controller, and a CPU. The
gateways, connected to both types of clusters, have two
communication controllers, for TTP and CAN. The
communication controllers implement the protocol services,
and run independently of the node’s CPU. Communication
with the CPU is performed through a message base interface
(MBI), see Figure 2.
Communication between the nodes on a TTC is based on the
TTP [8]. The TTP integrates all the services necessary for fault-
tolerant real-time systems. The bus access scheme is time-
division multiple-access (TDMA), meaning that each node Ni
on the TTC, including the gateway node, can transmit only
during a predetermined time interval, the TDMA slot Si. In such
a slot, a node can send several messages packed in a frame. A
sequence of slots corresponding to all the nodes in the
architecture is called a TDMA round. A node can have only one
slot in a TDMA round. Several TDMA rounds can be combined
together in a cycle that is repeated periodically. The sequence
and length of the slots are the same for all the TDMA rounds.
However, the length and contents of the frames may differ.
The TDMA access scheme is imposed by a message descriptor
list (MEDL) that is located in every TTP controller. The
MEDL serves as a schedule table for the TTP controller which
has to know when to send/receive a frame to/from the
communication channel.
There are two types of frames in the TTP. The initialization
frames, or I-frames, which are needed for the initialization of a
node, and the normal frames, or N-frames, which are the data
frames containing, in their data field, the application messages.
A TTP data frame (Figure 1) consists of the following fields:
start of frame bit (SOF), control field, a data field of up to 8
bytes containing one or more messages, and a cyclic

Figure 1. A System Architecture Example

S
O
F

S
O
F

I
F
D

I
F
D

Control field, 8 bits
- 1 initialization bit
- 3 mode change bits
- 4 ACK bits

Data field, up to 8 bytes

CRC field, 16 bits

TTP data frame

CAN data frame
Data field, up to 8 bytes

Arbitration field, 12 bits
- 11 identifier bits
- 1 retransmission bit

CRC field,
- 4 data length code bits
- 2 reserved bits

Control field, 6 bits ACK field,
2 bits16 bits

EOF field,
7 bits

...

...

TTC

ETC

Gateway
TTP Controller

CAN Controller

redundancy check (CRC) field. Frames are delimited by the
inter-frame delimiter (IDF, 3 bits). Thus, the data efficiency
for such a frame that carries 8 bytes of application data, i.e.,
the percentage of transmitted bits which are the actual data bits
needed by the application, is 69.5% (64 data bits transmitted in
a 92 bits frame). Note that no identifier bits are necessary, as
the TTP controllers know from their MEDL what frame to
expect at a given point in time.
On an ETC, the CAN [4] protocol is used for communication.
The CAN bus is a priority bus that employs a collision
avoidance mechanism, whereby the node that transmits the
frame with the highest priority wins the contention. Frame
priorities are unique and are encoded in the frame identifiers,
which are the first bits to be transmitted on the bus.
In the case of CAN, there are four frame types: data frame,
remote frame, error frame, and overload frame. We are
interested in the composition of the data frame, depicted in
Figure 1. A data frame contains seven fields: SOF, arbitration
field that encodes the 11 bits frame identifier, a control field, a
data field up to 8 bytes, a CRC field, an acknowledgement
(ACK) field, and an end of frame field (EOF), thus having a
data efficiency of 57.6%.

2.2 Software Architecture
A real-time kernel is responsible for activation of processes and
transmission of messages on each node. On a TTC, the processes
are activated based on the local schedule tables, and messages
are transmitted according to the MEDL. On an ETC, we have a
scheduler that decides on activation of ready processes and
transmission of messages, based on their priorities.
In Figure 2 we illustrate our message passing mechanism. Here
we concentrate on the communication between processes
located on different clusters. For message passing within a TTC
the reader is directed to [15], while the infrastructure needed for
communications on an ETC has been detailed in [18].
Let us consider the example in Figure 2, where we have an
application consisting of four processes mapped on two
clusters. Processes P1 and P4 are mapped on node N1 of the
TTC, while P2 and P3 are mapped on node N2 of the ETC.
Process P1 sends messages m1 and m2 to processes P2 and P3,
respectively, while P2 and P3 send messages m3 and m4 to P4.
All messages have a size of one byte.
The transmission of messages from the TTC to the ETC takes
place in the following way (see Figure 2). P1, which is
statically scheduled, is activated according to the schedule
table, and when it finishes it calls the send kernel function in
order to send m1 and m2, indicated in the figure by number (1).
Messages m1 and m2 have to be sent from node N1 to node N2.
At a certain time, known from the schedule table, the kernel
transfers m1 and m2 to the TTP controller by packing them into

a frame in the MBI. Later on, the TTP controller knows from its
MEDL when it has to take the frame from the MBI, in order to
broadcast it on the bus. In our example, the timing information
in the schedule table of the kernel and the MEDL is determined
in such a way that the broadcasting of the frame is done in the
slot S1 of round 2 (2). The TTP controller of the gateway node
NG knows from its MEDL that it has to read a frame from slot
S1 of round 2 and to transfer it into its MBI (3). Invoked
periodically, having the highest priority on node NG, and with a
period which guarantees that no messages are lost, the gateway
process T copies messages m1 and m2 from the MBI to the TTP-
to-CAN priority-ordered message queue OutCAN (4). Let us
assume that on the ETC messages m1 and m2 are sent
independently, one per frame. The highest priority frame in the
queue, in our case the frame f1 containing m1, will tentatively
be broadcast on the CAN bus (5). Whenever f1 will be the
highest priority frame on the CAN bus, it will successfully be
broadcast and will be received by the interested nodes, in our
case node N2 (6). The CAN communication controller of node
N2 receiving f1 will copy it in the transfer buffer between the
controller and the CPU, and raise an interrupt which will
activate a delivery process, responsible to activate the
corresponding receiving process, in our case P2, and hand over
message m1 that finally arrives at the destination (7).

Message m3 (depicted in Figure 2 as a hashed rectangle) sent by
process P2 from the ETC will be transmitted to process P4 on
the TTC. The transmission starts when P2 calls its send function
and enqueues m3 in the priority-ordered OutN2 queue (8). When
the frame f3 containing m3 has the highest priority on the bus, it
will be removed from the queue (9) and broadcast on the CAN
bus (10). Several messages can be packed into a frame in order
to increase the efficiency of data transmission. For example, m3
can wait in the queue until m4 is produced by P3, in order to be
packed together with m4 in a frame. When f3 arrives at the
gateway’s CAN controller it raises an interrupt. Based on this
interrupt, the gateway transfer process T is activated, and m3 is
unpacked from f3 and placed in the OutTTP FIFO queue (11).
The gateway node NG is only able to broadcast on the TTC in
the slot SG of the TDMA rounds circulating on the TTP bus.
According to the MEDL of the gateway, a set of messages not
exceeding sizeSG of the data field of the frame traveling in slot
SG will be removed from the front of the OutTTP queue in every
round, and packed in the SG slot (12). Once the frame is
broadcast (13) it will arrive at node N1 (14), where all the
messages in the frame will be copied in the input buffers of the
destination processes (15). Process P4 is activated according to
the schedule table, which has to be constructed such that it
accounts for the worst-case communication delay of message
m3, bounded by the analysis in section 4, and, thus, when P4
starts executing it will find m3 in its input buffer.

As part of our frame packing approach, we generate all the
MEDLs on the TTC (i.e., the TT frames and the sequence of
the TDMA slots), as well as the ET frames and their priorities
on the ETC such that the global system is schedulable.

2.3 Application Model
We model an application Γ as a set of process graphs Gi ∈ Γ
(see Figure 3). Nodes in the graph represent processes and arcs
represent dependency between the connected processes. The
communication time between processes mapped on the same
processor is considered to be part of the process worst-case
execution time and is not modeled explicitly. Communication
between processes mapped to different processors is preformed

P1 P4

MBI

CPU

TTP controller

CPU

TTP Controller
SG S1 SG

m1

Figure 2. A Message Passing Example

N1 NG

Round 2

m2

T

O
ut

C
A

N

CAN controller

O
ut

T
T

P

P3P2

CPUN2

CAN controller

T

O
ut

N
2

S1

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

TTP bus

CAN bus

TTP bus schedule

by message passing over the buses and, if needed, through the
gateway. Such message passing is modeled as a
communication process inserted on the arc connecting the
sender and the receiver process (the black dots in Figure 3).

Each process Pi is mapped on a processor processorPi
(mapping represented by hashing in Figure 3), and has a worst
case execution time Ci on that processor (depicted to the left of
each node). For each message we know its size (in bytes,
indicated to its left), and its period, which is identical with that
of the sender process. Processes and messages activated based
on events also have a uniquely assigned priority, priorityPi for
processes and prioritymi for messages.

All processes and messages belonging to a process graph Gi
have the same period Ti=TGi which is the period of the process
graph. A deadline DGi ≤TGi is imposed on each process graph
Gi. Deadlines can also be placed locally on processes. If
communicating processes are of different periods, they are
combined into a hyper-graph capturing all process activations
for the hyper-period (LCM of the periods).

3. PROBLEM FORMULATION
As input to our problem we have an application Γ given as a
set of process graphs mapped on an architecture consisting of a
TTC and an ETC interconnected through a gateway.

We are interested to find a mapping of messages to frames (a
frame packing configuration) denoted by a 4-tuple ψ=<α, π, β
σ> such that the application Γ is schedulable. Once a
schedulable system is found, we are interested to further
improve the “degree of schedulability”, so the application can
potentially be implemented on a cheaper hardware architecture
(with slower buses and processors).

Determining a frame configuration ψ means deciding on:

• The mapping of application messages transmitted on the
ETC to frames (the set of ETC frames α), and their
relative priorities, π. Note that the ETC frames α have to
include messages transmitted from an ETC node to a TTC
node, messages transmitted inside the ETC cluster, and
those messages transmitted from the TTC to the ETC.

• The mapping of messages transmitted on the TTC to
frames, denoted by the set of TTC frames β, and the
sequence σ of slots in a TDMA round. The slot sizes are
determined based on the set β, and are calculated such that
they can accommodate the largest frame sent in that
particular slot. We consider that messages transmitted from
the ETC to the TTC are not statically allocated to frames.
Rather, we will dynamically pack messages originating
from the ETC into the “gateway frame”, for which we have
to decide the data field length (see section 2.2).

Although we consider only a two cluster system, the approach
presented in this paper can be easily extended to cluster
configurations where there are several ETCs and TTCs
interconnected by gateways.

Let us consider the example in Figure 4, where we have the
process graph G mapped on the two-cluster system as indicated

P1

P2 P3

P4

m1

m2

m3 m4 P9

P10

P11

P6

P8

P7

P12

 G1

27

30
25

24

19

30

22

2

4
2

1m5

m7

m6

m8

 G2

 Application Γ1

Figure 3. Application Model

 G3

30

30 30

30

1 1

1 1

Figure 4. Scheduling Examples

P1(C1=30)

P2(C2=30)

P3(C3=30)

m1 m2(Cm1
=Cm2

=36)

m3

SG=36S1=36

Round=72

O2=108

O3=180

J2=rm1
=116

J3=rm2
=61

I2=30

r2=176

r3=91

rG=534

TG=540
DG=450

Deadline missed!

SG S1

T

O4=180

T(CT=6)

N1

NG

N2

TTP bus

CAN bus

rm1
=Cm1

+Bm1
+wm1

 =55+55+0=110CAN

T Tm1 m2(Cm1
=Cm2

=55) m4

N1

NG

N2

TTP bus

CAN bus

N1

NG

N2

TTP bus

CAN bus

m3 m4

P4(C4=30)

Deadline missed!

P1

m3 m4

rG=426 Deadline met!

rG=466

m1 m2

m1 m2

S1=44SG=36

m3 m4

T

T T T

T

P1

P2

P3

P4

P2

P3

P4

S1=44SG=44

SG S1

SG S1

m1 m2

m1 m2

m3 m4

m3 m4

f1

f1 f2

high m1
m3
m4
m2

P3
P2

low

Priority

high m4
m3
f1

P3
P2

low

Priority

high f2
f1

P3
P2low

Priority

a) Messages not packed, deadline missed

b) m1 and m2 packed in f1, m3 and m4 not packed, deadline missed

c) m1 and m2 packed in f1, m3 and m4 packed in f2, deadline met

Data field

Other frame fields

Running process

Interference

Jitter

in Figure 2. In the system configuration of Figure 4a we
consider that, on the TTP bus, the node N1 transmits in the first
slot (S1) of the TDMA round, while the gateway transmits in
the second slot (SG). The priorities of processes and messages
in the ETC are illustrated in the figure. In such a setting, G will
miss its deadline, which was set at 450 ms. Changing the frame
configuration as in Figure 4b, so that messages m1 and m2 are
packed into frame f1 and slot SG of the gateway comes first,
processes P2 and P3 will receive m1 and m2 sooner and thus
reduce the response time to 466, which is still larger than the
deadline. In Figure 4c, we also pack m3 and m4 into f2. In such
a situation, the sending of m3 will have to be delayed until m4
is queued by P2. Nevertheless, the response time of the
application is further reduced to 426, which means that the
deadline is met, thus the system is schedulable.

However, packing more messages will not necessarily reduce
the response times further, as it might increase too much the
response times of messages that have to wait for the frame to
be assembled, like is the case with message m3 in Figure 4c.
We are interested to find that frame packing which would lead
to a schedulable system.

4. MULTI-CLUSTER SCHEDULING
In [14] we have proposed an analysis for hard real-time
applications mapped on multi-cluster systems. We have,
however, not addressed the issue of frame packing. In this
section we briefly present the analysis developed in [14],
showing how it can be extended to handle frames.

The aim of such an analysis is to find out if a system is
schedulable, i.e., all the timing constraints are met. On the
TTC an application is schedulable if it is possible to build a
schedule table such that the timing requirements are satisfied.
On the ETC, the answer whether or not a system is schedulable
is given by a schedulability analysis.

For the ETC we use a response time analysis, where the
schedulability test consists of the comparison between the
worst-case response time ri of a process Pi and its deadline Di.
Response time analysis of data dependent processes with static
priority preemptive scheduling has been proposed in [11, 17,
22], and has been also extended to consider the CAN protocol
[18]. The authors use the concept of offset in order to handle
data dependencies. Thus, each process Pi is characterized by
an offset Oi, measured from the start of the process graph, that
indicates the earliest possible start time of Pi. For example, in
Figure 4a, O2=108, as process P2 cannot start before receiving
m1 which is available at the end of slot S1 in round 2. The same

is true for messages, their offset indicating the earliest possible
transmission time.

Determining the schedulability of an application mapped on a
multi-cluster system cannot be addressed separately for each
type of cluster, since the inter-cluster communication creates a
circular dependency: the static schedules determined for the
TTC influence through the offsets the response times of the
processes on the ETC, which on their turn influence the
schedule table construction on the TTC. In Figure 4b packing
m1 and m2 in the same frame leads to equal offsets for P2 and
P3. Because of this, P3 will interfere with P2 (which would not
be the case if m2 sent to P3 would be scheduled in round 4) and
thus the placement of P4 in the schedule table has to be
accordingly delayed to guarantee the arrivals of m3 and m4.

In our analysis we consider the influence between the two
clusters by making the following observations:

• The start time of process Pi in a schedule table on the TTC
is its offset Oi.

• The worst-case response time ri of a TT process is its
worst case execution time, i.e. ri=Ci (TT processes are not
preemptable).

• The response times of the messages exchanged between
two clusters have to be calculated according to the
schedulability analysis described in section 4.1.

• The offsets have to be set by a scheduling algorithm such
that the precedence relationships are preserved. This
means that, if process PB depends on process PA, the
following condition must hold: OB ≥ OA+rA. Note that for
the processes on a TTC which receive messages from the
ETC this translates to setting the start times of the
processes such that a process is not activated before the
worst-case arrival time of the message from the ETC. In
general, offsets on the TTC are set such that all the
necessary messages are present at the process invocation.

The MultiClusterScheduling algorithm in Figure 5 receives as
input the application Γ, the frame configuration ψ, and
produces the offsets φ and response times ρ. The algorithm
starts by assigning to all offsets an initial value obtained by a
static scheduling algorithm applied on the TTC without
considering the influence from the ETC. The response times of
all processes and messages in the ETC are then calculated
according to the analysis in section 4.1 by using the
ResponseTimeAnalysis function. Based on the response times,
offsets of the TT processes can be defined such that all
messages received from the ETC cluster are present at process
invocation. Considering these offsets and the TTC frame
configuration (the mapping β of TTC messages to frames and
the slot sequence σ) as constraints, a static scheduling
algorithm can derive the schedule tables and MEDLs of the
TTC cluster. For this purpose we use a list scheduling based
approach presented in [5]. Once new values have been
determined for the offsets, they are fed back to the response
time calculation function, thus obtaining new, tighter (i.e.,
smaller, less pessimistic) values for the worst-case response
times. The algorithm stops when the response times cannot be
further tightened and, consequently, the offsets remain
unchanged. Termination is guaranteed if processor and bus
loads are smaller than 100% (see section 4.2) and deadlines are
smaller than the periods.

MultiClusterScheduling(Γ, ψ=<α, π, β σ>)
-- assign initial values to offsets
for each Oi ∈ φ do Oi =initial value end for
-- iteratively improve the offsets and response times
repeat

-- determine the response times based on the current values for the offse
ρ=ResponseTimeAnalysis(Γ, φ, α, π)
-- determine the offsets based on the current values for the response tim
φ=StaticScheduling(Γ, ρ, β, σ)

until φ not changed
return φ, ρ

end MultiClusterScheduling

Figure 5. The MultiClusterScheduling Algorithm

4.1 Schedulability Analysis
The analysis in this section is used in the ResponseTimeAnalysis
function in order to determine the response times for processes
and messages on the ETC. It receives as input the application
Γ, the offsets φ, the ETC frame configuration (the mapping α
of ETC messages to frames, and the frame priorities π), and it
produces the set ρ of the worst case response times. For the
priorities of processes used in the response time calculation we
use the “heuristic optimized priority assignment” (HOPA)
approach in [7], where priorities for processes in a distributed
real-time system are determined, using knowledge of the
factors that influence the timing behavior, such that the
“degree of schedulability” of the system is improved.

We have extended the framework provided by [17, 18] for an
ETC. Thus, the response time of a process Pi on the ETC is
ri=Ji+wi+Ci, where Ji is the jitter of process Pi (the worst case
delay between the activation of the process and the start of its
execution), and Ci is its worst case execution time. The
interference wi from other processes running on the same
processor is given by:

.

In the previous equation, the blocking factor Bi represents
interference from lower priority processes that are in their
critical section and cannot be interrupted. The second term
captures the interference from higher priority processes Pj ∈
hp(Pi), where Oij is a positive value representing the relative
offset of process Pj to Pi. The operator is the positive
ceiling, which returns the smallest integer greater than x, or 0
if x is negative.

The same analysis can be applied for frames on the CAN bus:
rf=Jf+wf+Cf, where

is the jitter of frame f which in the worst case is equal to the
largest worst case response time rS(m) of a sender process PS(m)
which sends message m packed into frame f, wf is the worst-
case queuing delay experienced by f at the communication
controller, and Cf is the worst-case time it takes for a frame f to
reach the destination controller. On CAN, Cf depends on the
frame configuration and the size of the data field, sf, while on
TTP it is equal to the slot size in which f is transmitted.
Moreover, the response time of message m packed into a frame
f can be determined by observing that rm=rf.

The response time analysis for processes and messages are
combined by realizing that the jitter of a destination process
depends on the communication delay between sending and
receiving a message. Thus, for a process PD(m) that receives a
message m from a sender process PS(m), the release jitter is
JD(m)=rm.

The worst-case queueing delay for a frame is calculated
depending on the type of message passing employed:

1. From an ETC node to another ETC node (in which case
wf

Ni represents the worst-case time a frame f has to spend
in the OutNi queue on ETC node Ni),

2. From a TTC node to an ETC node (wf
CAN is the worst-case

time a frame f has to spend in the OutCAN queue).

3. From an ETC node to a TTC node (where wf
TTP captures

the time f has to spend in the OutTTP queue).

The frames sent from a TTC node to another TTC node are
taken into account when determining the offsets
(StaticScheduling, Figure 5), and thus are not involved directly
in the ETC analysis. The next sections show how the worst
queueing delays are calculated for each of the previous three
cases.

4.1.1 From ETC to ETC and from TTC to ETC
The analyses for wf

Ni and wf
CAN are similar. Once f is the

highest priority frame in the OutCAN queue, it will be sent by
the gateway’s CAN controller as a regular CAN frame,
therefore the same equation for wf can be used:

.

The intuition is that f has to wait, in the worst case, first for the
largest lower priority frame that is just being transmitted (Bf)
as well as for the higher priority j ∈ hp(f) frames that have to
be transmitted ahead of f (the second term). In the worst case,
the time it takes for the largest lower priority message k ∈ lp(f)
to be transmitted to its destination is:

 .

Note that in our case, lp(f) and hp(f) also include messages
produced by the gateway node, transferred from the TTC to the
ETC.

4.1.2 From ETC to TTC
The time a frame f has to spend in the OutTTP queue in the
worst case depends on the total size of messages queued ahead
of f (OutTTP is a FIFO queue), the size SG of the data field of
the frame fitting into the gateway slot responsible for carrying
the CAN messages on the TTP bus, and the frequency TTDMA
with which this slot SG is circulating on the bus:

where If is the total size of the frames queued ahead of f. Those
frames j ∈ hp(f) are ahead of f, which have been sent from the
ETC to the TTC, and have higher priority than f:

where the frame jitter

is the largest worst case the response time among the processes
that send a message m packed in f.

wi Bi
wi Jj Oij–+

Tj

0
Cj

j∀ hp Pi()∈
∑+=

x 0

Jf
max
m∀ f∈

rS m()()=

wf Bf
wf Jj Ofj–+

Tj

0
Cj

j∀ hp f()∈
∑+=

Bf
max

k∀ lp f()∈
Ck()=

wf
TTP Bf

Sf If+
SG

-------------- TTDMA+=

If
wf

TTP Jf Ofj–+
Tj

0j∀ hp f()∈

∑ sj=

Jf
max
m∀ f∈

rS m()()=

The blocking factor Bf is the time interval in which f cannot be
transmitted because the slot SG of the TDMA round has not
arrived yet, and is determined as TTDMA-Of mod TTDMA+OSG,
where OSG is the offset of the gateway slot in a TDMA round.

4.2 Response Time Analysis Example
Figure 4a presents the values of the analysis parameters (worst
case response time, offset, jitter, interference) for the system in
Figure 2. The jitter of P2 depends on the response time of
message m1, J2=rm1. Similarly, J3=rm2. We have considered
that Jm1=Jm2=rT=6 (where rT is the response time of the
gateway transfer process T). Note that despite the fact that m1
is the highest priority message in Figure 4a, it can be blocked
by lower priority messages which are just being sent, and thus
Bm1=55, resulting rm1=6+55+55=116.

The response time equations are recurrent, and they will
converge if the processor and bus utilization are under 100%
[19]. Considering a TDMA round of 72 ms, with two slots each
of 36 ms as in Figure 4a, rT=6 ms, 55 ms for the transmission
times on CAN for each message, and using the offsets in the
figure, the equations will converge to the values indicated in
Figure 4a (all values are in milliseconds). Thus, the response
time of application G will be rG=O4+r4=534, which is greater
than DG=450, thus the system is not schedulable.

5. FRAME PACKING STRATEGY
Once we have a technique to determine if a system is
schedulable, we can concentrate on optimizing the packing of
messages to frames.

Such an optimization problem is NP complete [16], thus
obtaining the optimal solution is not feasible. We propose two
frame packing optimization strategies, one based on a
simulated annealing approach, while the other is based on a
greedy heuristic that uses intelligently the problem-specific
knowledge in order to explore the design space.

In order to drive our optimization algorithms towards
schedulable solutions, we characterize a given frame packing
configuration using the degree of schedulability of the
application. The degree of schedulability [13] is calculated as:

where n is the number of processes in the application. If the
application is not schedulable, the term c1 will be positive,
and, in this case, the cost function is equal to c1. However, if
the process set is schedulable, c1 = 0 and we use c2 as a cost
function, as it is able to differentiate between two alternatives,
both leading to a schedulable process set. For a given set of
optimization parameters leading to a schedulable process set, a
smaller c2 means that we have improved the response times of
the processes, so the application can potentially be
implemented on a cheaper hardware architecture (with slower
processors and/or buses).

5.1 Frame Packing with Simulated Annealing
The first algorithm we have developed is based on a simulated
annealing (SA) strategy. The main feature of a SA strategy is
that it tries to escape from a local optimum by randomly
selecting a new solution from the neighbors of the current
solution. The new solution is accepted if it is an improved
solution. However, a worse solution can also be accepted with
a certain probability that depends on the deterioration of the
cost function and on a control parameter called temperature.

In Figure 6 we give a short description of this algorithm. An
essential component of the algorithm is the generation of a new
solution x’ starting from the current one xnow. The neighbors of
the current solution xnow are obtained by performing
transformations (called moves) on the current frame
configuration ψ. We consider the following moves:

• moving a message m from a frame f1 to another frame f2
(or moving m into a separate single-message frame);

• swapping the priorities of two frames in α;

• swapping two slots in the sequence σ of slots in a TDMA
round.

For the implementation of this algorithm, the parameters TI
(initial temperature), TL (temperature length), ε (cooling
ratio), and the stopping criterion have to be determined. They
define the “cooling schedule” and have a decisive impact on
the quality of the solutions and the CPU time consumed. We
are interested to obtain values for TI, TL and ε that will
guarantee the finding of good quality solutions in a short time.

We performed very long and expensive runs with the SA
algorithm, and the best ever solution produced has been
considered as the optimum. Based on further experiments we
have determined the parameters of the SA algorithm so that the
optimization time is reduced as much as possible but the near-
optimal result is still produced. For example, for the graphs
with 320 nodes, TI is 700, TL is 500 and ε is 0.98. The
algorithm stops if for three consecutive temperatures no new
solution has been accepted.

δΓ =

c2 = , if c1 = 0Ri Di–()
i 1=

n

∑

c1 = , if c1 > 0max 0 R, i Di–()
i 1=

n

∑

SimulatedAnnealing(Γ)
-- given an application Γ finds out if it is schedulable and produces
-- the configuration ψ=<α, π, β, σ> leading to the smallest δΓ

construct an initial frame configuration xnow

temperature = initial temperature TI
repeat

for i = 1 to temperature length TL do

generate randomly a neighboring solution x’ of xnow

δ = MultiClusterScheduling(Γ, x’) -
MultiClusterScheduling(Γ, xnow)

if δ < 0 then xnow = x’
else

generate q = random (0, 1)

if q < e- δ / temperature then xnow = x’ end if
end if

end for
temperature = ε * temperature;

until stopping criterion is met
return SchedulabilityTest(Γ, ψbest), solution ψbest

corresponding to the best degree of schedulablity δΓ
end SimulatedAnnealing

Figure 6. The Simulated Annealing Algorithm

5.2 Frame Packing Greedy Heuristic
The OptimizeFramePacking greedy heuristic (Figure 7)
constructs the solution by progressively selecting the best
candidate in terms of the degree of schedulability.

We start by observing that all activities taking place in a multi-
cluster system are ordered in time using the offset information,
determined in the StaticScheduling function based on the
response times known so far and the application structure (i.e.,
the dependencies in the process graphs). Thus, our greedy
heuristic outlined in Figure 7, starts with building two lists of
messages ordered according to the ascending value of their
offsets, one for the TTC, messagesβ, and one for ETC,
messagesα. Our heuristic is to consider for packing in the same
frame messages which are adjacent in the ordered lists. For
example, let us consider that we have three messages, m1 of 1
byte, m2 2 bytes and m3 3 bytes, and that messages are ordered
as m3, m1, m2 based on the offset information. Also, assume
that our heuristic has suggested two frames, frame f1 with a
data field of 4 bytes, and f2 with a data field of 2 bytes. The
PackMessages function will start with m3 and pack it in frame
f1. It continues with m2, which is also packed into f1, since
there is space left for it. Finally, m3 is packed in f2, since there
is no space left for it in f1. The OptimizeFramePacking tries to
determine, using the for-each loops in Figure 7, the allocation
of frames, i.e., the number of frames and their sizes, for each

cluster. The actual mapping of messages to frames will be
performed by the PackMessages function as described.
As an initial TDMA slot sequence σinitial on the TTC,
OptimizeFramePacking assigns nodes to the slots and fixes the
slot length to the minimal allowed value, which is equal to the
length of the largest message generated by a process assigned
to Ni, sizeSi=sizelargest message.
Then, the algorithm looks, in the innermost for-each loops, for
the optimal frame configuration α. This means deciding on
how many frames to include in α, and which are the best sizes
for them. In α there can be any number of frames, from one
single frame to nα frames (in which case each frame carries
one single message). Thus, several numbers of frames are
tried, each tested for RecomendedSizes to see if it improves the
current configuration. The RecomendedSizes(messagesα) list is
built recognizing that only messages adjacent in the messagesα
list will be packed into the same frame. Sizes of frames are
determined as a sum resulted from adding the sizes of
combinations of adjacent messages, not exceeding 8 bytes. For
the previous example, with m1, m2 and m3, of 1, 2 and 3 bytes,
respectively, the frame sizes recommended will be of 1, 2, 3, 4,
and 6 bytes. A size of 5 bytes will not be recommended since
there are no adjacent messages that can be summed together to
obtain 5 bytes of data.
Once a configuration αbest for the ETC, minimizing δΓ, has
been determined (considering for π, β, σ the initial values

OptimizeFramePacking(Γ)
-- given an application Γ finds out if it is schedulable and produces the configuration ψ=<α, π, β, σ> leading to the smallest δΓ
-- build the message lists ordered ascending on their offsets
messagesβ=ordered list of nβ messages on the TTC; messagesα=ordered list of nα messages on the ETC
-- build an initial frame configuration ψ=<α, π, β, σ>
β=messagesβ; α=messagesα -- initially, each frame carries one message
for each slot Si ∈σ do Si=Ni; sizeSi=sizelargest message end for -- determine an initial TDMA slot sequence σ
πinitial=HOPA -- calculate the priorities π according to the HOPA heuristic

for each slot Si ∈ σcurrent do -- find the best allocation of slots, the TDMA slot sequence σcurrent
for each node Nj ∈TTC do

σcurrent.Si=Nj; σcurrent.Sj=Ni-- allocate Nj tentatively to Si, Ni gets slot Sj
for each βcurrent having a number of 1 to nβ frames do -- determine the best frame packing configuration β for the TTC

for each frame fi ∈βcurrent do
for each frame size Sf ∈ RecomendedSizes(messagesβ) do -- determine the best frame size for fi

βcurrent.fi.S=Sf
for each αcurrent having a number of 1 to nα frames do -- determine the best frame packing configuration α for the ETC

for each frame fj ∈αcurrent do
for each frame size Sf ∈ recomended_sizes(messagesα) do -- determine the best frame size for fj

αcurrent.fj.S=Sf
ψcurrent=<αcurrent, πinitial, βcurrent, σcurrent>
PackMessages(ψcurrent, messagesβ ∪ messagesα)
δΓ=MultiClusterScheduling(Γ, ψcurrent)
-- remember the best configuration so far
if δΓ(ψcurrent) is best so far then ψbest = ψcurrent end if

end for
end for; if ψbest exists then αcurrent.fj.S=size of frame fj in the configuration ψbest end if

end for; if ψbest exists then αcurrent=frame set α in the configuration ψbest end if
end for

end for; if ψbest exists then βcurrent.fi.S=size of frame fi in the configuration ψbest end if
end for; if ψbest exists then βcurrent=frame set β in the configuration ψbest end if

end for; if ψbest exists then σcurrent.Si=node in the slot sequence σ in the configuration ψbest end if
end for
return SchedulabilityTest(Γ, ψbest), ψbest

end OptimizeFramePacking
Figure 7. The OptimizeFramePacking Algorithm

determined at the beginning of the algorithm), the algorithm
looks for the frame configuration β which will further improve
δΓ. The degree of schedulability δΓ (the smaller the value, the
more schedulable the system) is calculated based on the
response times produced by the MultiClusterScheduling
algorithm. After a βbest has been decided, the algorithm looks
for a slot sequence σ, starting with the first slot and tries to
find the node which, when transmitting in this slot, will reduce
δΓ. The algorithm continues in this fashion, recording the best
ever ψbest configurations obtained, in terms of δΓ, and thus the
best solution ever is reported when the algorithm finishes. In
the inner loops of the heuristic we will not change the frame
priorities πinitial set at the beginning of the algorithm.

6. EXPERIMENTAL RESULTS
For the evaluation of our algorithms we first used process
graphs generated for experimental purpose. We considered
two-cluster architectures consisting of 2, 4, 6, 8 and 10 nodes,
half on the TTC and the other half on the ETC, interconnected
by a gateway. 40 processes were assigned to each node,
resulting in applications of 80, 160, 240, 320 and 400
processes. Message sizes were randomly chosen between 1 bit
and 2 bytes. 30 examples were generated for each application
dimension, thus a total of 150 applications were used for
experimental evaluation. Worst-case execution times and
message lengths were assigned randomly using both uniform
and exponential distribution. For the communication channels
we considered a transmission speed of 256 Kbps and a length
below 20 meters. All experiments were run on a SUN Ultra 10.

The first result concerns the ability of our heuristics to produce
schedulable solutions. We have compared the degree of
schedulability δΓ obtained from our OptimizeFramePacking
(OFP) heuristic (Figure 7) with the near-optimal values
obtained by SA (Figure 6). Obtaining solutions that have a
higher degree of schedulability means obtaining tighter
response times, increasing the chances of meeting the
deadlines.

Figure 8a presents the average percentage deviation of the
degree of schedulability produced by OFP from the near-
optimal values obtained with SA. Together with OFP, a

straightforward approach (SF) is presented. The SF approach
does not consider frame packing, and thus each message is
transmitted independently in a frame. Moreover, for SF we
considered a TTC bus configuration consisting of a
straightforward ascending order of allocation of the nodes to
the TDMA slots; the slot lengths were selected to
accommodate the largest message frame sent by the respective
node, and the scheduling has been performed by the
MultiClusterScheduling algorithm in Figure 5.

Figure 8a shows that when packing messages to frames, the
degree of schedulability improves dramatically compared to
the straightforward approach. The greedy heuristic
OptimizeFramePacking performs well for all the graph
dimensions, having run-times which are more than two orders
of magnitude smaller than with SA.

When deciding on which heuristic to use for design space
exploration or system synthesis, an important issue is the
execution time. In average, our optimization heuristics needed
a couple of minutes to produce results, while the simulated
annealing approach had an execution time of up to 6 hours.

Finally, we considered a real-life example implementing a
vehicle cruise controller. The process graph that models the
cruise controller has 40 processes, and it was mapped on an
architecture consisting of a TTC and an ETC, each with 2
nodes, interconnected by a gateway. The “speedup” part of the
model has been mapped on the ETC while the other processes
were mapped on the TTC. We considered one mode of
operation with a deadline of 250 ms. The straightforward
approach SF produced an end-to-end response time of 320 ms,
greater than the deadline, while both the OFP and SA
heuristics produced a schedulable system with a worst-case
response time of 172 ms.

7. CONCLUSIONS
We have presented in this paper an approach to schedulability-
driven frame packing for the synthesis of multi-cluster
distributed embedded systems consisting of time-triggered and
event-triggered clusters, interconnected via gateways. We have
also presented an update of the schedulability analysis for

0
10
20
30
40
50
60
70
80
90

100

80 160 240 320 400

SF
OFP
SA

Number of ProcessesNumber of Processes

A
ve

ra
ge

 p
er

ce
nt

ag
e

de
vi

at
io

n
[%

]

A
ve

ra
ge

 e
xe

cu
ti

on
 ti

m
es

 (
se

co
nd

s)

Figure 8. The Frame Packing Heuristics

a) Average Percentage Deviation from SA b) Average Execution Time

SF
OFP
SA

0

3600

7200

80 160 240 320 400

5h

6h

7h

multi-cluster systems to handle frames, including determining
the worst-case queuing delays at the gateway nodes.

The main contribution is the development of two optimization
heuristics for frame configuration synthesis which are able to
determine frame configurations that lead to a schedulable
system. We have shown that by considering the frame packing
problem, we are able to synthesize schedulable hard-real time
systems and to potentially reduce the overall cost of the
architecture. The greedy approach is able to produce accurate
results in a very short time, therefore it can be used for performance
estimation as part of a larger design space exploration cycle.
SA is able to find near-optimal results in reasonable time, and
can be used for the synthesis of the final implementation of the
system.

ACKNOWLEDGEMETNS
The authors are grateful to the industrial partners at Volvo
Technology Corporation in Gothenburg, for their close
involvement and precious feedback during this work.

REFERENCES
[1] N. Audsley, A. Burns, R. Davis, K. Tindell, A. Wellings,

“Fixed Priority Preemptive Scheduling: An Historical
Perspective”, Real-Time Systems, 8(2/3), 173-198, 1995.

[2] N. Audsley, K. Tindell, A. Burns, “The End of Line for Static
Cyclic Scheduling?”, Euromicro Workshop on Real-Time
Systems, 36-41, 1993.

[3] F. Balarin, L. Lavagno, P. Murthy, A. Sangiovanni-
Vincentelli, “Scheduling for Embedded Real-Time Systems”,
IEEE Design and Test of Computers, January-March, 71-82,
1998.

[4] Robert Bosch GmbH, “CAN Specification, Version 2.0”,
http://www.can.bosch.com/, 1991.

[5] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with Bus
Access Optimization for Distributed Embedded Systems”,
IEEE Transactions on VLSI Systems, 472-491, 2000.

[6] The FlexRay Group, “FlexRay Requirements Specification,
Version 2.0.2”, http://www.flexray-group.com/, 2002.

[7] J. J. Gutiérrez García, M. González Harbour, “Optimized
Priority Assignment for Tasks and Messages in Distributed
Hard Real-Time Systems”, Proceedings of the Workshop on
Parallel and Distributed Real-Time Systems, 124-132, 1995.

[8] H. Kopetz, “Real-Time Systems – Design Principles for
Distributed Embedded Applications”, Kluwer Academic
Publishers, 1997.

[9] H. Kopez, R. Nossal, “The Cluster-Compiler – A Tool for the
Design of Time Triggered Real-Time Systems”, Proceedings
of the ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Real-Time Systems, 108-116, 1995.

[10] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and
Static Cyclic Scheduling for Distributed Automotive Control
Applications”, Euromicro Conference on Real-Time Systems,
142-149, 1999.

[11] J. C. Palencia, M. González Harbour, “Schedulability
Analysis for Tasks with Static and Dynamic Offsets”,
Proceedings of the 19th IEEE Real-Time Systems
Symposium, 26-37, 1998.

[12] T. Pop, P. Eles, Z. Peng, “Holistic Scheduling and Analysis of
Mixed Time/Event-Triggered Distributed Embedded
Systems”, International Symposium on Hardware/Software
Codesign, 187-192, 2002.

[13] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for
Distributed Embedded Systems Based on Schedulability
Analysis”, Proceedings of the Design Automation and Test in
Europe Conference, 567-574, 2000.

[14] P. Pop, P. Eles, Z. Peng, “Schedulability Analysis and
Optimization for the Synthesis of Multi-Cluster Distributed
Embedded Systems”, Design Automation and Test in Europe
Conference, 2003 (to be published).

[15] P. Pop, P. Eles, Z. Peng, “Scheduling with Optimized
Communication for Time Triggered Embedded Systems”,
International Workshop on Hardware-Software Codesign,
178-182, 1999.

[16] K. Sandström, C. Norström, “Frame Packing in Real-Time
Communication”, Proceedings of the International
Conference on Real-Time Computing Systems and
Applications, 399-403, 2000.

[17] K. Tindell, “Adding Time-Offsets to Schedulability
Analysis”, Department of Computer Science, University of
York, Report No. YCS-94-221, 1994.

[18] K. Tindell, A. Burns, A. Wellings, “Calculating CAN
Message Response Times”, Control Engineering Practice,
3(8), 1163-1169, 1995.

[19] K. Tindell, J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems”, Microprocessing &
Microprogramming, Vol. 50, No. 2-3, 1994.

[20] A. Rajnak, K. Tindell, L. Casparsson, “Volcano
Communications Concept”, Volcano Communication
Technologies AB, 1998.

[21] J. Xu, D. L. Parnas, “On satisfying timing constraints in hard-
real-time systems”, IEEE Transactions on Software
Engineering, 19(1), 1993.

[22] T. Y. Yen, W. Wolf, “Hardware-Software Co-Synthesis of
Distributed Embedded Systems”, Kluwer Academic
Publishers, 1997.

	Schedulability-Driven Frame Packing for Multi-Cluster Distributed Embedded Systems
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	2. Application Model and System Architecture
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Application Model

	3. Problem Formulation
	4. Multi-Cluster Scheduling
	4.1 Schedulability Analysis
	4.1.1� From ETC to ETC and from TTC to ETC
	4.1.2� From ETC to TTC

	4.2 Response Time Analysis Example

	5. Frame Packing Strategy
	5.1 Frame Packing with Simulated Annealing
	5.2 Frame Packing Greedy Heuristic

	6. Experimental Results
	7. Conclusions
	ACKNOWLEDGEMETNS
	REFERENCES

