
Abstract
We present an approach to partitioning and mapping for multi-
cluster embedded systems consisting of time-triggered and event-
triggered clusters, interconnected via gateways. We have proposed
a schedulability analysis for such systems, including a worst-case
queuing delay analysis for the gateways responsible for routing in-
ter-cluster traffic. Based on this analysis, we address design prob-
lems characteristic to multi-clusters: partitioning of the system
functionality into time-triggered and event-triggered domains, and
mapping of processes onto architecture nodes. We present a
branch-and-bound algorithm for solving these problems. Our al-
gorithm is able to find schedulable implementations under limited
resources, achieving an efficient utilization of the system. The de-
veloped algorithms are evaluated using extensive experiments and
a real-life example.

1. Introduction
Process scheduling and schedulability analysis have been inten-
sively studied in the past decades. The reader is referred to [2] for
a survey on these topics. Work in the area of scheduling and sched-
ulability analysis diversified significantly by considering particu-
lar communication protocols, such as Token-Ring [12], Controller
Area Network (CAN) [1, 5, 20], ATM [7], and time-division mul-
tiple access (TDMA) [21] protocols.

An increasing number of real-time applications are today imple-
mented using distributed architectures consisting of interconnected
clusters of processors. Each such cluster has its own communication
protocol and two clusters communicate via a gateway, a node con-
nected to both of them. This type of architectures is used in several
application areas: vehicles, factory systems, networks on chip, etc.

Considering, for example, the automotive industry, the way
functionality has been distributed on an architecture has evolved
over time. Initially, each function was implemented on a dedicated
hardware component. However, in order to use the resources more
efficiently and reduce costs, several functions have later been inte-
grated in one node and, at the same time, certain functionality has
been distributed over several nodes. Although an application is
typically distributed over one single cluster, we begin to see appli-
cations that are distributed across several clusters. This trend is
driven by the need to further reduce costs, improve resource usage,
but also by application constraints like having to be physically
close to particular sensors and actuators. Moreover, not only are
these applications distributed across networks, but their functions
can exchange critical information through the gateway nodes.
Such applications are inherently difficult to analyze and design.

There are two basic approaches for handling tasks in real-time
applications [10]. In the event-triggered (ET) approach, activities

are initiated whenever a particular event is noted. In the time-trig-
gered (TT) approach, activities are initiated at predetermined
points in time. There has been a long debate in the real-time and
embedded systems communities concerning the advantages of TT
and ET approaches [3, 10, 22]. An interesting comparison, from a
more industrial, in particular automotive, perspective, can be
found in [11]. The conclusion there is that one has to choose the
right approach depending on the particularities of the processes.
This means not only that there is no single “best” approach to be
used, but also that inside a certain application the two approaches
can be used together, some processes being TT and others ET.

In [13] we have addressed design problems for systems where the
TT and ET activities share the same processor and bus. A fundamen-
tally different architectural approach to heterogeneous TT/ET sys-
tems is that of heterogeneous multi-clusters, where each cluster can
be either TT or ET:
• In a time-triggered cluster (TTC) processes and messages are

scheduled according to a static cyclic policy, with the bus
implementing a TDMA protocol such as, the time-triggered
protocol (TTP) [10].

• On event-triggered clusters (ETC) the processes are scheduled
according to a priority based preemptive approach, while
messages are transmitted using the priority-based CAN bus [4].
In this context, in [16] we have proposed an approach to sched-

ulability analysis for multi-cluster distributed embedded systems.
Starting from such an analysis, in this paper, we address specific
design issues for multi-cluster systems: partitioning an application
between the TT and ET clusters, and mapping the functionality of
the application on the heterogeneous nodes of a cluster, such that
the timing constraints of the final implementation are guaranteed.
Our design space exploration approach is based on an efficient
branch-and-bound algorithm.

The paper is organized in seven sections. The next section pre-
sents the application model as well as the hardware and software
architecture of our systems. Section 3 presents the partitioning and
mapping problem we are addressing in this paper, and Section 4
presents the schedulability analysis for multi-clusters and our pro-
posed partitioning and mapping branch-and-bound strategy is pre-
sented in Section 5. The last two sections present the experimental
results and conclusions.

2. System Architecture and Application Model

2.1 Application Model
We model an application Γ as a set of directed, acyclic, polar
graphs Gi(V, E) ∈ Γ (see Figure 1). Each node Pi ∈ V represents

Schedulability-Driven Partitioning and Mapping
for Multi-Cluster Real-Time Systems

Paul Pop, Petru Eles, Zebo Peng, Viacheslav Izosimov
Dept. of Computer and Information Science

Linköping University, SE-581 83, Linköping, Sweden
{paupo, petel, zebpe, viaiz}@ida.liu.se

one process. An edge eij ∈ E from Pi to Pj indicates that this output
of Pi is an input to Pj. A process can be activated after all its inputs
have arrived and it issues its outputs when it terminates. The com-
munication time between processes mapped on the same processor
is considered to be part of the process worst-case execution time
and is not modeled explicitly. Communication between processes
mapped to different processors is performed by message passing
over the buses and, if needed, through the gateway. Such message
passing is modeled as a communication process inserted on the arc
connecting the sender and the receiver process (depicted with
black dots in Figure 1).

The mapping of a process graph G(V, E) is given by a function
M: V → N, where N is the set of programmable processors in the archi-
tecture. For a process Pi ∈ V, M(Pi) is the node to which Pi is assigned
for execution. Each process Pi can potentially be mapped on several
nodes. Let NPi

 ⊆ N be the set of nodes to which Pi can potentially be
mapped. We consider that for each Nk ∈ NPi

, we know the worst-case
execution time CPi

Nk of process Pi, when executed on Nk. We also con-
sider that the size of the messages is given. Processes and messages
activated based on events also have a uniquely assigned priority, pPi
for processes and pmi

 for messages.
All processes and messages belonging to a process graph Gi have

the same period Ti = TGi
which is the period of the process graph. A

deadline DGi
 ≤ TGi

 is imposed on each process graph Gi. In addition,
processes can have associated individual release times and deadlines.
If communicating processes are of different periods, they are com-
bined into a hyper-graph capturing all process activations for the hy-
per-period (LCM of all periods).

2.2 Hardware Architecture
We consider architectures consisting of two interconnected clus-
ters. A cluster is composed of nodes which share a broadcast com-
munication channel. Let NT (NE) be the set of nodes on the TTC
(ETC). Every node Ni ∈ NT ∪ NE consists, among others, of a com-
munication controller and a CPU. The gateway node NG is connect-
ed to both types of clusters, and has two communication controllers,
for TTP and CAN, respectively. The communication controllers
implement the protocol services and run independently of the
node’s CPU. Communication with the CPU is performed through a
message base interface (MBI), see Figure 2.

Communication between the nodes on a TTC is based on the TTP
[10]. The bus access scheme is TDMA, where each node Ni, includ-
ing the gateway node, can transmit only during a predetermined
time interval, the so called TDMA slot Si. In such a slot, a node can
send several messages packed in a frame. A sequence of slots cor-
responding to all the nodes in the TTC is called a TDMA round. A

node can have only one slot in a TDMA round. Several TDMA
rounds can be combined together in a cycle that is repeated period-
ically. The TDMA access scheme is imposed by a message descrip-
tor list (MEDL) that is located in every TTP controller. The MEDL
serves as a schedule table for the TTP controller which has to know
when to send/receive a frame to/from the communication channel.

On an ETC the CAN [4] protocol is used for communication.
The CAN bus is a priority bus that employs a collision avoidance
mechanism, whereby the node that transmits the message with the
highest priority wins the contention. Message priorities are unique
and are encoded in the frame identifiers, which are the first bits to
be transmitted on the bus.

The approaches presented in this paper can be easily extended to
cluster configurations where there are several ETCs and TTCs in-
terconnected by gateways.

2.3 Software Architecture
A real-time kernel is responsible for the activation of processes
and transmission of messages on each node. On a TTC, the pro-
cesses are activated based on the local schedule tables, and mes-
sages are transmitted according to the MEDL. On an ETC, we have
a scheduler that decides on the activation of ready processes and
transmission of messages, based on their priorities.

In Figure 2 we illustrate our message passing mechanism. Here
we concentrate on the communication between processes located
on different clusters. For message passing details within a TTC the
reader is directed to [15], while the infrastructure needed for com-
munications on an ETC has been detailed in [20].

Let us consider the example in Figure 2, where we have the pro-
cess graph G1 from Figure 1 mapped on the two clusters. Processes
P1 and P4 are mapped on node N1 of the TTC, while P2 and P3 are
mapped on node N2 of the ETC. P1 sends messages m1 and m2 to
processes P2 and P3, respectively, while P2 sends m3 to P4.

The transmission of messages from the TTC to the ETC takes
place in the following way (see Figure 2). P1, which is statically
scheduled, is activated according to the schedule table, and when
it finishes it calls the send kernel function in order to send m1 and
m2, indicated in the figure by number (1). Messages m1 and m2

have to be sent from node N1 to node N2. At a certain time, known
from the schedule table, the kernel transfers m1 and m2 to the TTP
controller by packing them into a frame in the MBI. Later on, the
TTP controller knows from its MEDL when it has to take the frame
from the MBI, in order to broadcast it on the bus. In our example,
the timing information in the schedule table of the kernel and the
MEDL is determined in such a way that the broadcasting of the

P10

P11

P2P3
P12

P14

P7

P9

P8

P13

P6P1

P4

 G2
 G1

27

30

25

24

19

30

22

20 20

P5

30

30

8 8

8

4

16

4

8
m2

m1

m3

m4

m6

m5

m7

Figure 1. An Application Model Example

Figure 2. A Message Passing Example

P1 P4

MBI

CPU

TTP controller

CPU

TTP Controller
SG S1 SG

m1

N1 NG

Round 2

m2

T

O
ut

C
A

N

CAN controller

O
ut

T
T

P

P3P2

CPUN2

CAN controller

T

O
ut

N
2

S1

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

TTP bus

CAN bus

TTP bus schedule

frame is done in the slot S1 of round two (2). The TTP controller of
the gateway node NG knows from its MEDL that it has to read a
frame from slot S1 of round two and to transfer it into its MBI (3).
Invoked periodically, having the highest priority on node NG, and
with a period which guarantees that no messages are lost, the gate-
way process T copies messages m1 and m2 from the MBI to the
TTP-to-CAN priority-ordered message queue OutCAN (4). The
highest priority message in the queue, in our case m1, will tenta-
tively be broadcast on the CAN bus (5). Whenever message m1

will be the highest priority message on the CAN bus, it will suc-
cessfully be broadcast and will be received by the interested nodes,
in our case node N2 (6). The CAN communication controller of
node N2 receiving m1 will copy it in the transfer buffer between the
controller and the CPU, and raise an interrupt which will activate
a delivery process, responsible to activate the corresponding re-
ceiving process, in our case P2, and hand over message m1 that fi-
nally arrives at the destination (7).

Message m3 (depicted in Figure 2 as a hashed rectangle) sent by
process P2 from the ETC will be transmitted to process P4 on the
TTC. The transmission starts when P2 calls its send function and
the delivery process D, which manages the priority-ordered OutN2
queue, enqueues m3 in OutN2

 (8). When m3 has the highest priority
on the bus, it will be removed from the queue (9) and will be broad-
cast on the CAN bus (10), arriving at the gateway’s CAN control-
ler where it raises an interrupt. Based on this interrupt, the gateway
transfer process T is activated, and m3 is placed in the OutTTP FIFO
queue (11). The gateway node NG is only able to broadcast on the
TTC in the slot SG of the TDMA rounds circulating on the TTP
bus. According to the MEDL of the gateway, a set of messages not
exceeding sizeSG

 of the slot SG will be removed from the front of
the OutTTP queue in every round, and will be packed in the SG slot
(12). Once the frame is broadcast (13) it will arrive at node N1 (14),
where all the messages in the frame will be copied in the input
buffers of the destination processes (15). Process P4 is activated
according to the schedule table, which has to be constructed such
that it accounts for the worst-case communication delay of mes-
sage m3, bounded by the analysis in Section 4.1 and thus when P4

starts executing it will find m3 in its input buffer.
As part of our schedulability-driven partitioning and mapping ap-

proach, we determine a partitioning and mapping of processes to the
nodes of the architecture, generate all the local schedule tables and
MEDLs on the TTC and the message and process priorities for the
activities on the ETC, such that the global system is schedulable.

3. Multi-Cluster Partitioning and Mapping
Considering the type of applications and systems described in
Section 2, and using the multi-cluster scheduling approach out-
lined in the next section, several design optimization problems can
be addressed. In this paper, we address problems which are char-
acteristic to applications distributed across multi-cluster systems
consisting of heterogeneous TT and ET networks. In particular, we
are interested in the following issues:
1. partitioning of the processes of an application into time-

triggered and event-triggered domains, and their mapping to the
nodes of the clusters;

2. scheduling of processes and messages;
The goal is to produce an implementation which meets all the tim-
ing constraints of the application.

In this paper, by partitioning we denote the decision whether a cer-
tain process should be assigned to the TT or the ET domain (and, im-
plicitly, to a TTC or an ETC, respectively). Mapping a process means
assigning it to a particular node inside a cluster.

Very often, the partitioning decision is taken based on the experi-
ence and preferences of the designer, considering aspects like the
functionality implemented by the process, the hardness of the con-
straints, sensitivity to jitter, legacy constraints, etc. Let P be the set of
processes in the application Γ. We denote with PT ⊆ P the subset of
processes which the designer has assigned to the TT cluster, while
PE ⊆ P contains processes which are assigned to the ET cluster.

Many processes, however, do not exhibit certain particular features
or requirements which obviously lead to their implementation as TT
or ET activities. The subset P+ = P \ (PT ∪ PE) of processes could be
assigned to any of the TT or ET domains. Decisions concerning the
partitioning of this set of activities can lead to various trade-offs con-
cerning, for example, the schedulability properties of the system, the
amount of communication exchanged through the gateway, the size
of the schedule tables, etc.

For part of the partitioned processes, the designer might have al-
ready decided their mapping. For example, certain processes, due to
constraints like having to be close to sensors/actuators, have to be
physically located in a particular hardware unit. They represent the
sets PT

M ⊆ PT and PE
M ⊆ PE of already mapped TT and ET processes,

respectively. Consequently, we denote with PT
* = PT \ PT

M the TT pro-
cesses for which the mapping has not yet been decided, and similarly,
with PE

* = PE \ PE
M the unmapped ET processes. The set P* = PT

* ∪ PE
*

∪ P+ then represents all the unmapped processes in the application.
The mapping of messages is decided implicitly by the mapping of

processes. Thus, a message exchanged between two processes on the
TTC (ETC) will be mapped on the TTP bus (CAN bus) if these pro-
cesses are allocated to different nodes. If the communication takes
place between two clusters, two message instances will be created,
one mapped on the TTP bus and one on the CAN bus. The first mes-
sage is sent from the sender node to the gateway, while the second
message is sent from the gateway to the receiving node.

Let us illustrate some of the issues related to partitioning in such
a context. In the example presented in Figure 3 we have an appli-
cation1 with six processes, P1 to P6, and four nodes, N1 and N2 on
the TTC, N3 on the ETC and the gateway node NG. The worst-case
execution times on each node are given to the right of the applica-

1. Communications are ignored for this example.

Figure 3. Partitioning Example

P3

P4 P4

P6
TTC: N2

(faster)

ETC: N3

(slower)

Deadline
for P6: D6

Metc)
P5P2

P4

P5

P3
TTC: N2

(faster)

ETC: N3

(slower)

P6 Meta)
P2

Deadline
for P5: D5

P1TTC: N1

P1TTC: N1

P4

P5

P3
TTC: N2

(faster)

ETC: N3

(slower)

P6 Metb)
P2

P1TTC: N1

P4

Preemption
not allowed

Preempted

Missed

Met

Met

Preempted

P3

P4 P4

P6
TTC: N2

(faster)

ETC: N3

(slower)

Deadline
for P6: D6

Metc)
P5P2

P4

P5

P3
TTC: N2

(faster)

ETC: N3

(slower)

P6 Meta)
P2

Deadline
for P5: D5

P1TTC: N1

P1TTC: N1

P4

P5

P3
TTC: N2

(faster)

ETC: N3

(slower)

P6 Metb)
P2

P1TTC: N1

P4

Preemption
not allowed

PreemptedPreempted

Missed

Met

Met

Preempted

N2 N3N3

TTC ETC

N1 NG

CAN

TTP

P1
P2
P3
P4

N1 N2

X X
X
50
70

40

90
X

P5 X 40

P3

P6P5

P4

P2P1

P3

P6P5

P4

P2P1 N3

P6

70
X

X
X

X
X 40 X

tion graph. Note that N2 is faster than N3, and an “X” in the table
means that the process is not allowed to be mapped on that node.
The mapping of P1 is fixed on N1, P3 and P6 are mapped on N2, P2

and P5 are fixed on N3, and we have to decide how to partition P4
between the TT and ET domains. Let us also assume that process
P5 is the highest priority process on N3. In addition, P5 and P6 have
each a deadline, D5 and D6, respectively, as illustrated in the figure
by thick vertical lines.

We can observe that although P3 and P4 do not have individual
deadlines, their mapping and scheduling have a strong impact on
their successors, P5 and P6, respectively, which are deadline con-
strained. Thus, we would like to map P4 such that not only P3 can
start on time, but P4 also starts soon enough to allow P6 to meet its
deadline.

As we can see from Figure 3a, this is impossible to achieve by
mapping P4 on the TTC node N2. It is interesting to observe that,
if preemption would be allowed in the TT domain, as in Figure 3b,
both deadlines could be met. This, however, is impossible on the
TTC where preemption is not allowed. Both deadlines can be met
only if P4 is mapped on the slower ETC node N3, as depicted in
Figure 3c. In this case, although P4 competes for the processor
with P5, due to the preemption of P4 by the higher priority P5, all
deadlines are satisfied.

It is to be noted that, in principle, an effect similar to preemption
can be achieved on the TTC, by deciding offline the preemption
points, e.g., dividing process P4 in two parts. However, deciding
offline the preemption points on the TTC such that the application
is schedulable, is a computationally very complex procedure. On
the ETC, however, the preemption is handled automatically by the
scheduler.

For a multi-cluster architecture the communication infrastructure
has an important impact on the design and, in particular, the mapping
decisions. Let us consider the example in Figure 4. We assume that
P1 is mapped on node N1 and P3 on node N3 on the TTC, and we are
interested to map process P2. P2 is allowed to be mapped on the TTC
node N2 or on the ETC node N4, and its execution times are depicted
in the table to the right of the application graph.

In order to meet the deadline, one would map P2 on the node it ex-
ecutes fastest, N2 on the TTC, see Figure 4a. However, this will lead
to a deadline miss due to the TTP slot configuration which introduces

communication delays. The application will meet the deadline only
if P2 is mapped on the slower node, i.e., node N4 in the case in
Figure 4b1. Not only is N4 slower than N2, but mapping P2 on N4 will
place P2 on a different cluster than P1 and P3, introducing extra com-
munication delays through the gateway node. However, due to the
actual communication configuration, the mapping alternative in
Figure 4b is desirable.

4. Multi-Cluster Scheduling
Once a partitioning and a mapping is decided, the processes and
messages have to be scheduled. For the TTC this means building
the schedule tables, while for the ETC the priorities of the ET pro-
cesses and messages have to be determined and their schedulabil-
ity analyzed. The aim is to find out if a system is schedulable, i.e.
all the timing constraints are met.

For the ETC we use a response time analysis technique, where the
schedulability test consists of the comparison between the worst-case
response time ri of a process Pi and its deadline Di. Response time
analysis of data dependent processes with static priority preemptive
scheduling has been proposed in [18, 19], and has been also extended
to consider the CAN protocol [20]. The authors use the concept of
offset in order to handle data dependencies. Thus, each process Pi is
characterized by an offset Oi, measured from the start of the process
graph, that indicates the earliest possible start time of Pi.

Let us consider the example in Figure 4. In the system configura-
tion considered in Figure 4b we consider that, on the TTP bus, node
N1 transmits in the third slot (S1) of the TDMA round. In this setting,
the offset O2 is determined as depicted in Figure 4b, since process P2

cannot start before receiving m1. The same is true for messages, their
offset indicating the earliest possible transmission time.

Determining the schedulability of an application mapped on a
multi-cluster system cannot be addressed separately for each type of
cluster, since the inter-cluster communication creates a circular de-
pendency: the static schedules determined for the TTC influence
through the offsets the worst-case response times of the processes on
the ETC, which on their turn influence the schedule table construc-
tion on the TTC.

In our response time analysis we consider the influence between
the two clusters by making the following observations:
• The start time of process Pi in a schedule table on the TTC is its

offset Oi.
• The worst-case response time ri of a TT process is its worst-case

execution time, i.e. ri = Ci (TT processes are not preemptable).
• The worst-case response times of the messages exchanged

between two clusters have to be calculated according to the
schedulability analysis described in Section 4.1.

• The offsets have to be set by a scheduling algorithm such that
the precedence relationships are preserved. This means that, if
process PB depends on process PA, the following condition must
hold: OB ≥ OA + rA. Note that for the processes on a TTC
receiving messages from the ETC this translates to setting the
start times of the processes such that a process is not activated
before the worst-case arrival time of the message from the ETC.
In general, offsets on the TTC are set such that all the necessary
messages are present at the process invocation.
MultiClusterScheduling in Figure 5 receives as input:

Figure 4. Mapping Example

P1

P3

P2

m1

m2

P1
P2
P3

N1 N2

20 X
X
X

40
X

N4

X
50
X

N3

X
X
20

P1

P3

P2

m1

m2

P1

P3

P2

m1

m2

P1
P2
P3

N1 N2

20 X
X
X

40
X

N4

X
50
X

N3

X
X
20

P1
P2
P3

N1 N2

20 X
X
X

40
X

N4

X
50
X

N3

X
X
20

N3

N4

TTC

ETC

N2N1 NG

CAN

TTP

N3

N4

TTC

ETC

N2N1 NG

CAN

TTP

Met

Deadline

P1N1

P3

TTP S3

T

CAN

N4 P2

NG

S2 SG S3 S2 S1 SG

T
b)

S3 S2 S1

N4

N3

m
1

m
1

m
2

m
2

P1N1

P3

TTP S3

N3

S2 SG SG S2 S1 SG

P2

Misseda)

S3 S2 S1m
1

m
2

N2

Met

Deadline

P1N1

P3

TTP S3

T

CAN

N4 P2

NG

S2 SG S3 S2 S1 SG

T
b)

S3 S2 S1

N4

N3

m
1

m
1

m
2

m
2

P1N1

P3

TTP S3

N3

S2 SG SG S2 S1 SG

P2

Misseda)

S3 S2 S1m
1

m
2

N2

2O

1. Process T in Figure 4b executing on the gateway node NG is responsible for trans-
ferring messages between the TTP and CAN controllers.

• the application Γ and its mapping M;
• the TTC bus configuration β, indicating the sequence and size of

the slots in a TDMA round on the TTC;
• the priorities of the processes and messages on the ETC,

captured by π;
and produces as output:
• the set φ of the offsets corresponding to each process and

message in the system (on the TTC the offsets practically
represent the local schedule tables and MEDLs);

• the worst-case response times ρ for the processes and messages
on the ETC cluster.
The algorithm starts by assigning to all offsets an initial value ob-

tained by a static scheduling algorithm applied on the TTC without
considering the influence from the ETC (lines 2–4). The worst-case
response times of all processes and messages in the ETC are then cal-
culated according to the analysis in Section 4.1 by using the
ResponseTimeAnalysis function (line 10). Based on the worst-case
response times, offsets of the TT processes can be defined such that
all messages received from the ETC cluster are present at process in-
vocation. Considering these offsets as constraints, a static scheduling
algorithm can derive the schedule tables and MEDLs of the TTC
cluster (line 13). For this purpose we use a list scheduling based ap-
proach presented in [6]. Once new values have been determined for
the offsets, they are fed back to the response time calculation func-
tion, thus obtaining new and tighter (i.e., smaller, less pessimistic)
values for the worst-case response times. The algorithm stops when
the response times cannot be further tightened and, consequently, the
offsets remain unchanged. Termination is guaranteed if processor and
bus loads are smaller than 100% (see Section 4.1) and deadlines are
smaller than the periods.

4.1 Schedulability Analysis
The analysis in this section is used in the ResponseTimeAnalysis
function in order to determine the worst-case response times for
processes and messages on the ETC. It receives as input the appli-
cation Γ and its mapping M, the offsets φ and the ETC priorities π,
and it produces the set ρ of worst-case response times. For the re-
sponse time calculation, we have extended the framework provid-
ed by [19, 20] in order to support the communication infrastructure
of a multi-cluster system. Thus, the worst-case response time of a
process Pi on the ETC is:

(1)

where TG the period of the process graph G, Oi and Oj are offsets
of processes Pi and Pj, respectively, and Ji and Jj are the jitters of
Pi and Pj. The jitter is the worst-case delay between the arrival of
a process and its release. In Equation (1), q is the number of busy
periods being examined, and wi(q) is the width of the level-i busy
period starting at time qTG [19]:

. (2)

In the previous equation, the blocking term Bi represents interfer-
ence from lower priority processes that are in their critical section
and cannot be interrupted, and Ci represents the worst-case execu-
tion time of process Pi. The last term captures the interference Ii

from higher priority processes. The reader is directed to [19] for
the details of the interference calculation.

Although this analysis is exact (both necessary and sufficient), it
is computationally infeasible to evaluate. Hence, [19] proposes a
feasible but not exact analysis (sufficient but not necessary) for
solving Equation (1). Our MultiClusterScheduling algorithm uses
the feasible analysis provided in [19] for deriving the worst-case
response time of a process Pi.

Regarding the worst-case response time of messages, we have
extended the analysis from [20] and applied it for frames on the
CAN bus:

, (3)

where Jm is the jitter of message m which in the worst case is equal
to the worst-case response time rS(m) of the sender process PS(m), wm

is the worst-case queuing delay experienced by m at the communi-
cation controller, and Cm is the worst-case time it takes for a mes-
sage m to reach the destination controller. On CAN, Cm depends on
the frame configuration and message size sm, while on TTP it is
equal to the slot size where m is transmitted.

In Equation (3), Wm is the worst-case queuing delay experienced
by m at the communication controller, and is calculated as:

(4)

where q is the number of busy periods being examined, and wm(q)
is the width of the level-m busy period starting at time qTm.

The worst-case queueing delay for a message (Wm in Equation 3)
is calculated differently for each type of queue:
1. The output queue of an ETC node, in which case Wm

Ni represents
the worst-case time a message m has to spend in the OutNi

 queue
on ETC node Ni. An example of such a message is m2 in
Figure 4b, which is sent from the ETC node N4 to the gateway
node NG, and has to wait in the OutN4

 queue.
2. The TTP-to-CAN queue of the gateway node, in which case

Wm
CAN is the worst-case time a message m has to spend in the

OutCAN queue of node NG. In Figure 4b, message m1 is sent from
the TTC node N1 to the ETC node N4, and has to wait in the

Figure 5. The MultiClusterScheduling Algorithm

 MultiClusterScheduling(Γ, M, β, π)
 1 -- assign initial values to offsets
 2 for each Oi Œ φ do
 3 Oi = initial value
 4 end for
 5
 6 -- iteratively improve the offsets and response times
 7 repeat
 8 -- determine the response times based on
 9 -- the current values for the offsets
 10 ρ = ResponseTimeAnalysis(Γ, M, β, π, φ)
 11 -- determine the offsets based on
 12 -- the current values for the response times
 13 φ = StaticScheduling(Γ, M β, ρ)
 14until φ not changed
 15
 16return φ, ρ
 end MultiClusterScheduling

ri
max

q 0 1,2...,=
max
Pj∀ G∈

wi q() Oj Jj

TG q
Oj Jj Oi– Ji–+

TG
---------------------------------------+

 – Oi–

+ +

=

wi q() Bi q 1+()Ci Ii+ +=

rm
max

q 0 1,2...,=
Jm Wm q() Cm+ +()=

Wm q() wm q() qTm–=

OutCAN queue before it is transmitted on the CAN bus.
3. The CAN-to-TTP queue of the gateway node, where Wm

TTP

captures the time m has to spend in the OutTTP queue node NG.
Such a situation is present in Figure 4b, where message m1 is
sent from the ETC node N4 to the TTC node N3 through the
gateway node NG where it has to wait in the OutTTP queue before
it is transmitted on the TTP bus, in the SG slot of node NG.
On the TTC, the synchronization between processes and the

TDMA bus configuration is solved through the proper synthesis of
schedule tables, hence no output queues are needed. The messages
sent from a TTC node to another TTC node are taken into account
when determining the offsets (StaticScheduling, Figure 5), and hence
are not involved directly in the ETC analysis.

The next sections show how the worst queueing delays are calcu-
lated for each of the previous three cases.

4.1.1 Worst-case queuing delays in OutNi
 and OutCAN

The analyses for Wm
Ni and Wm

CAN are similar. Once m is the highest
priority message in the OutCAN queue, it will be sent by the gate-
way’s CAN controller as a regular CAN message, therefore the
same equation for wm can be used:

. (5)

The intuition is that m has to wait, in the worst case, first for the
largest lower priority message that is just being transmitted (Bm) as
well as for the higher priority mj ∈ hp(m) messages that have to be
transmitted ahead of m (the second term). In the worst case, the time
it takes for the largest lower priority message mk ∈ lp(m) to be trans-
mitted to its destination is:

. (6)

Note that in our case, lp(m) and hp(m) also include messages pro-
duced by the gateway node, transferred from the TTC to the ETC.

4.1.2 Worst-case queuing delay in the OutTTP queue
The time a message m has to spend in the OutTTP queue in the worst
case depends on the total size of messages queued ahead of m (Out-

TTP is a FIFO queue), the size SG of the gateway slot responsible for
carrying the CAN messages on the TTP bus, and the frequency
TTDMA with which this slot SG is circulating on the bus:

, (7)

where Im is the total size of the messages queued ahead of m. Those
messages mj ∈ hp(m) are ahead of m, which have been sent from
the ETC to the TTC, and have higher priority than m:

(8)

where the message jitter Jm is in the worst case the response time
of the sender process, Jm = rS(m).

The blocking term Bm is the time interval in which m cannot be
transmitted because the slot SG of the TDMA round has not arrived
yet. In the worst case (i.e., the frame f has just missed the slot SG), the
frame has to wait an entire round TTDMA for the slot SG in the next
TDMA round..

5. Partitioning and Mapping Strategy
At this point we can give an exact problem formulation. As an in-
put we have an application Γ given as a set of process graphs
(Section 2.1) and a two-cluster system consisting of a TT and an
ET cluster. As introduced previously, PT and PE are the sets of pro-
cesses already partitioned into the TT and ET domains, respective-
ly. Also, PT

M ⊆ PT and PE
M ⊆ PE are the sets of already mapped TT

and ET processes.
We are interested to find a system configuration denoted by a 5-

tuple ψ = <M, β π, φ ρ> such that Γ is schedulable, i.e., the im-
posed deadlines are satisfied. Determining a system configuration
ψ means deciding on:
1. The partitioning and mapping function M, which means

deciding a partitioning for processes in P+ = P \ (PT ∪ PE) and a
mapping for processes in P* = PT

* ∪ PE
* ∪ P+, where PT

* = PT \ PT
M,

and PE
* = PE \ PE

M;
2. The slot sizes and sequence β on the TTC, and the process and

message priorities π on the ETC;
3. The scheduling of Γ, determining the offsets φ and worst-case

response times ρ.
The problem, as formulated above, is NP complete and can be di-

vided into several sub-problems: partitioning and mapping, schedul-
ing and schedulability analysis, and bus access optimization. In our
MultiClusterConfiguration strategy the design space exploration is
guided by a branch-and-bound partitioning and mapping algorithm
which is searching for a schedulable solution.

The MultiClusterConfiguration (MCC) strategy, presented in
Figure 6, has three steps:
1. In the first step (line 2) we decide very quickly on initial values

for the TTC bus access β, and the ETC priorities π. The initial
TTC bus access configuration β is determined by assigning in
order nodes to the slots (Si = Ni) and fixing the slot length to the
minimal allowed value, which is equal to the length of the
largest message in the application. ET priorities π are
determined using the HOPA heuristic [9], where priorities in a
distributed real-time system are determined based on the local
deadlines, which are calculated for each activity considering the
end-to-end (global) deadlines.

2. In the second step (line 4 in Figure 6) we use a branch-and-
bound algorithm to determine that partitioning and mapping M
which leads to a schedulable solution. The BBMapping
(described in Section 5.1) takes as input the application Γ, the

wm q() Bf
wf q() Jj+

Tj
------------------------ Cj

fj∀ hp f()∈
∑+=

Bm
max

mk∀ lp m()∈
Ck()=

wm
TTP

q() Bm
q 1+()sm Im wm q()()+

SG
--- TTDMA+=

Im w() wm Jj+
Tj

mj∀ hp m()∈
∑ sj=

Figure 6. The General Strategy

 MultiClusterConfiguration(Γ)
 1 -- determining initial values for the TTC bus access and the ETC priorities
 2 <β, π> = InitialConfiguration(Γ)
 3 -- BBMapping uses MultiClusterScheduling to check schedulability
 4 <M , φ, ρ> = BBMapping(Γ, β, π)
 5 if application Γ is schedulable with the configuration <M, β, π, φ, ρ> then
 6 return schedulable
 7 else
 8 <β, π> = BusAccessOptimization(Γ, M, φ, ρ)
 9 if application Γ is schedulable with <M, β, π, φ, ρ> then
 10 return schedulable
 11 else
 12 return not schedulable
 13 end if
 14end if
 end MultiClusterConfiguration

initial values for β and π, and produces the mapping M.
BBMapping tests the schedulability of a solution using the
MultiClusterScheduling algorithm, which produces the offsets
(earliest start times) φ and the worst-case response times ρ.
MCC stops if the application is schedulable with the current
configuration. If no solution has been found, the BBMapping
returns the best solution (corresponding to the smallest end-to-
end worst-case response time of the application).

3. Finally, the third step, namely, the bus access optimization, is
performed in order to improve the chances of finding a
schedulable implementation. Bus access optimization tries to
find that sequence of slots and their sizes on the TTC (β), and
those message priorities on the ETC (π), which are best adapted
to the characteristics of the system. In this paper we do not
address this issue, which has been addressed by us in [17]. If the
application is not schedulable, we conclude that no satisfactory
implementation could be found with the available amount of
resources.

5.1 Branch-and-Bound Partitioning and Mapping
In this paper, partitioning decides whether a certain process should
be assigned to TTC or ETC, and mapping means assign a process
to a particular node inside a cluster. Our strategy decides the parti-
tioning of a process implicitly, by deciding on a mapping to a par-
ticular node in a TTC or an ETC cluster.

For the partitioning and mapping we will use a branch-and-bound
(BB) strategy that produces a mapping (and, implicitly, a partition-
ing) such that the application Γ is schedulable, if such a mapping ex-
ists. It has to be emphasized that this mapping is the best one that can
be produced in the context of the TTC bus configuration β and ETC
priorities π, generated in step 1 of MCC. Moreover, we define a so-
lution as schedulable if, with the current mapping M, and the current
values for β and π, the MultiClusterScheduling algorithm returns
schedulable.

In order to find a solution, the BB algorithm has to visit, in the
worst case, all the alternative mappings in order to find that one
which leads to a schedulable application. However, as will be shown
later, in practice the number of visited solutions can be drastically re-
duced.

Before applying the BB strategy we merge all the process graphs
Gi ∈ Γ into a single graph G, by unrolling the process graphs and in-
serting dummy nodes as shown in Figure 7. The period TG of G is
equal to the least common multiplier of the periods TGi

 of the graphs
Gi. Release times of processes as well as local deadlines can be easily
modeled by inserting dummy nodes between certain processes and
the source or the sink node, respectively. Dummy nodes (depicted
with a dashed border in Figure 7) represent processes with a certain
execution time but that are not to be mapped to any processor or bus.
If a mapping M(Pj) is decided by BBMapping for a process Pj ∈ Gi,
this mapping is applied to all the instances of Pj in the merged graph
G. In this context, meeting the end-to-end deadline of the merged
graph G guarantees that each individual deadline is met.

In a branch and bound strategy, the state space corresponding to the
problem is organized as a state tree. Each node σi corresponds to a
certain state, and the children of σi are those states which can be
reached from σi as result of a mapping decision. We define the partial
mapping Mσi

 in a state σi as the set of all mapping decisions regarding
the processes in the graph G. Each path from the root of the tree to a
leaf node corresponds to a possible solution obtained after a sequence
of decisions. We are interested in finding the leaf node σleaf, such that
the path from the root to σleaf corresponds to a mapping leading to a
schedulable application. The schedulability of an application is deter-
mined for each leaf node σleaf by running the Multi-ClusterSchedul-
ing algorithm in Figure 5 with the mapping Mσleaf

.
Let us consider the example in Figure 8, where we have an appli-

cation consisting of four processes, P1 to P4, and an architecture of
three nodes, N1 on the TTC, N2 on the ETC, and the gateway node
NG. P1 and P4 are mapped on N1, and we have to decide the mapping,
and implicitly partitioning, of P2 and P3 to N1 or N2. The worst-case
execution times are depicted in the table in Figure 8. The state tree
corresponding to this setting is presented in Figure 8c, and has eleven
states, σ0 to σ10. The leaf nodes are represented with a thicker border.

BB is based on the idea to visit only a part of the state tree without
missing any state which can lead to a schedulable solution, if one ex-
ists. The main features of a BB algorithm are the branching rule, the
selection rule, and the bounding rule. Their definition has a decisive
influence on the number of visited states and, thus, on the perfor-
mance of the algorithm. These rules are presented in the next three
sections.

5.1.1 Branching Rule
The branching rule defines the steps which are performed for the
generation of new states starting from a given parent state. An un-
mapped/unpartitioned process Pi ∈ P*

 is considered for a mapping
decision only if all its predecessors in the graph G have already
been mapped. Let Lσk

 be the set of processes considered for map-
ping in the current state σk. In state σ0 in Figure 8, Lσ0

= {P2, P3}.
We select a process Pi ∈ Lσk

 and then generate the new states con-
taining all possible mapping decisions for Pi. That process Pi ∈ Lσk
is selected, which has the largest critical path li, defined as:

(9)

where πik is the kth path from process Pi to the sink node of G, and
rτj

 is the worst-case response time of a process or message on πik.
The worst-case response times are calculated using the

MultiClusterScheduling function as follows:
Figure 7. Graph Merging

period: TG1

TG2 = DG2

Process graph:

(= 3TG1
)

DG1

Process graph:
G1∈Γcurrent ∪ Ω

TG1

deadline: DG1

G2∈Γcurrent ∪ Ω

n1

n2

n3

n4

source

sink

period = deadline = 3TG1

Merged process graph Gcurrent:

T
G

current =
 3T

G
1

n5
Execution times of dummy processes:
tn1

 = TG1
tn4

 = 2TG1
 - DG1

tn2
 = 2TG1

tn5
 = TG1

 - DG1
tn3

 = 3TG1
 - DG1

tsource = tsink = 0

li
max

k
rτj

τj πik∈∀
∑=

where N0 is the fastest node in Nτi
, NT

0 is the fastest node in Nτi
 ∩

NT, and NE
0 is the fastest node in Nτi

 ∩ NE.
Starting from the state σk, we generate the set Bσk

 of new children
states containing all the possible mapping decisions regarding the
selected process Pi. In Figure 8, P3 is selected from Lσ0

 (it has a larg-
er critical path than P3), and the new child states of σ0 are: σ1, cor-
responding to the decision to map P2 on N1, and σ2 with P2 on N2.

5.1.2 Selection Rule
After the children Bσk

 of a node σk have been generated, which of
the children should be selected in order to continue the branching
operation? The answer is given by the selection rule. A good selec-
tion rule leads quickly to leaf nodes corresponding to high quality
solutions which can be used in the bounding rule.

We have implemented a selection rules to order the states in Bσ
k
,

based on the lower bound LB presented in the next section. In
Figure 8, the selection rule LB would order the states in Bσk

 as σ1, σ2.

5.1.3 Bounding Rule
The most important component of a BB algorithm is the bounding
rule. Before branching from a node σk, a decision is taken if the ex-
ploration should continue on the selected subtree, or the subtree
can be cut. This decision is based on the upper bound U, which is
the smallest value found so far for the worst-case response time rG
of the merged application graph G, and the lower bound LBσκ,
which sets a lower limit on the worst-case response time rG corre-
sponding to any leaf node in the subtree originating from σk. Thus,
whenever for a certain node σk the inequality LBσ

k
> U holds, the

corresponding subtree is cut, and consequently, not investigated.
For the lower bound, α simple approach is to use the critical path

[8]. For a state σk, the lower bound LBCP is the following1:

, (11)

where Oi is the offset of Pi (its earliest possible start time) and li is
the critical path of process Pi as defined in Equations 9 and 10.
However, such a lower bound is not tight enough, i.e., it is not
close enough to the optimal value of rG, hence a large number of
states have to be investigated because only few branches are cut.

Basically, LBCP considers that unmapped/unpartitioned processes
on the critical path execute on the fastest processors they can be
mapped on. Τhe lower bound does not consider that processes on the
critical path can be delayed by other processes, which are not on the
critical path. Therefore, in this paper, we propose a new, tighter lower
bound LB, which takes into account these delays.

We use an algorithm based on list scheduling to determine the
worst-case response time rG

σ of the application graph G with the par-
tial mapping Mσ corresponding to a state σ. This worst-case re-
sponse time value is then used as the lower bound LB for deciding the
cutting of subtrees originating in state σ. Figure 8a presents the
schedule for the optimal mapping, while Figure 8b presents the
schedule for the lower bound calculation in state σ0.

In a state σ, the lower bound is calculated in the following way.
First, we determine the critical path PCP of the application graph G
having the partial mapping Mσ, as outlined in Section 5.1.1. The un-
partitioned/unmapped processes Pi on the critical path are mapped
on the fastest node from the list of potential nodes NPi

. With this map-
ping, which is a possibility in the optimal case, the critical path is
the shortest. The critical path in the application graph in Figure 8 is
composed of processes P1, P2 and P4.

Next, the processes are scheduled using the following three rules,
which guarantee that rG

σ is smaller than the optimal worst-case re-
sponse time rG of the graph G, and thus rG

σ can be used as the lower
bound LB.
1. The communication among the processes on the critical path is

ignored.
2. Those processes for which the mapping was set2, are scheduled

1. Process Pi belongs to the set of visited processes in a state σk, if its mapping M(Pi)
has been decided, but no mapping has been decided yet for any of its successor pro-
cesses.

rτi
 = (10)

 if process τ
i
 is mapped on the TTC node Nk

rτ
i
 calculated using Equation (1), if τ

i
 is mapped on an ETC node

 if process τ
i
 is partitioned to the TTC

 if process τ
i
 is partitioned to the ETC

 if process τ
i
is unpartitioned

rτ
i
 calculated using Equation (3), if msg. τ

i
 has both sender PS(τi)

and destination PD(τi)

 processes mapped

 calculated using Equation (5), if message τ
i
 has PS(τi)

 partitioned

or mapped on TTC, and PD(τi)
 partitioned or mapped on ETC

 calculated using Equation (7), if message τ
i
 has PS(τi)

 partitioned

or mapped on ETC, and PD(τi)
 partitioned or mapped on TTC

0 if message τ
i
 has one of the sender or receiver unpartitioned

(or one unmapped, but both partitioned to the same cluster)

Cτi

Nk

Cτi

NT
0

Cτi

NE
0

Cτi

N
0

wm
CAN

wm
TTP

LBσk

CP max
Pi∀ visited∈ Oi li+()=

2. Mapping can be set by the designer, by previous BB decisions, or if the processes
are on the critical path and thus, for the purposes of the lower bound, have been
mapped on their fastest processor.

σ1:P2/N1

σ3:P3/N1 σ4:P3/N2 σ5:P3/N1 σ6:P3/N2

σ2:P2/N2

σ0:start
U = D = 300

LB = 245

U: 300

LB: 245

c)

σ7:P4/N1 σ8:P4/N1 σ9:P4/N1

U: 300

LB: 330

U: 300

LB: 240

U: 280

LB: 280

U: 280

LB: 250

U: 280

LB: 290

U: 280

LB: 250

U: 280

LB: 330

σ10:P4/N1

Figure 8. Branch and Bound Example

N1

T
T

C

E
T

C

N2
NG

TTP

CAN
N1

T
T

C

E
T

C

N2
NG

TTP

CAN

P1
P2
P3
P4

N1 N2

X
130
120
X

40
130

40
120

P1

P4

P2 P3

m1 m2

m3 m4

P1

P4

P2 P3

m1 m2

m3 m4

SG

P1N1 P4

TTP S1

P3

S1

P2

SGSG S1 S1 S1SGm
2

CAN

N2

NG

a)

SG

T

P3
2

P1N1 P4

TTP
S1

CAN

N2

P3
1

NG

S1S1 SGSG S1 S1 S1SG SG

T

m
2

m
2

SG

b)

T T

S1 SG

m
2

m
4

m
4

m
4

m
4

SG S1 SG

P2

according to the MultiClusterScheduling function. The rest of the
processes have to be scheduled such that the schedule length is
guaranteed shorter than the optimal case. In state σ0 of
Figure 8c, for example, P1 and P4 are scheduled according to our
multi-cluster scheduling algorithm presented in Section 4, while
P2 and P3 are scheduled according to the next rule.

3. The load of an unpartitioned/unmapped processes can utilize the
parallel resources at its disposal with ideal efficiency, subject to
slack (free space in the schedule) availability and precedence
constraints. This means that the load of a process Pi can be
balanced simultaneously in the available slack on all its potential
nodes NPi

, subject to slack and precedence constraints.
Process P3 in Figure 8b is a process scheduled according to rule

3 in state σ0. Its total load is 120 ms. In Figure 8b, the load of P3,
depicted as black rectangles, is distributed on two processors, N1

and N2. Thus, load P3
1 is scheduled on node N1 (35 ms), and load

P3
2 on N2 (85 ms). However, before starting its load on N2, P3

would have to receive message m2 from process P1, as depicted in
Figure 8b. The message communication delay in this case is as-
sumed ideal, i.e., the message gets transmitted immediately on the
TTC bus, regardless of the slots sequence, and it is the highest pri-
ority message on the ETC bus. Such ideal communication times
are in Figure 8b those for messages m2 and m4 on the TTP, and m2

and m4 on the CAN. In addition, we do not consider the interfer-
ence (see Equation (1)) among processes scheduled according to
rule 3, because in the optimal case, the offsets for ET processes
could be set such that the interference is eliminated.

Figure 8c presents the values for the upper bound U and the low-
er bound LB in each state. We are able to cut the subtrees originat-
ing from states σ3, σ6 and σ9, and the optimal solution of 280 ms
(its schedule depicted in Figure 8a) is found in state σ8. When de-
ciding if a branch should be cut, we first use LBCP. If cutting is un-
successful, we use the more tight, but also more time-consuming,
lower bound LB.

6. Experimental Results
For the evaluation of our algorithms we used applications of 50,
100, 150, 200, and 250 processes (all unpartitioned and un-
mapped), to be implemented on two-cluster architectures consist-
ing of 2, 4, 6, 8, and 10 different nodes, respectively, half on the
TTC and the other half on the ETC, interconnected by a gateway.

Thirty examples were randomly generated for each application
dimension, thus a total of 150 applications were used for experi-
mental evaluation. We generated both graphs with random struc-
ture and graphs based on more regular structures like trees and
groups of chains. Execution times and message lengths were as-
signed randomly using both uniform and exponential distribution
within the 10 to 100 ms, and 2 to 8 bytes ranges, respectively. The
experiments were done on SUN Ultra 10 computers.

We were interested to evaluate the proposed approaches. Hence,
we have implemented each application, on its corresponding archi-
tecture, using the MultiClusterConfiguration (MCC) strategy from
Figure 6, which uses BBMapping (BB) for the partitioning and
mapping step. We have set a limit for the execution time of MCC,
based on the size of the application: MCC will be stopped after
four hours for 50–150 processes, eight hours for 200 processes,
and 24 hours for 250 processes.

Figure 9a presents the number of schedulable solutions found
after using MCC. Our MCC strategy will find a schedulable solu-
tion, if one exists. MCC will fail to find such a solution, if no map-
ping exists which leads to a schedulable application, or if the
imposed execution time limit has been reached before finding a
schedulable solution. Together with the MCC strategy, Figure 9a
also presents a straightforward solution (SF). The SF approach
performs a partitioning and mapping that tries to balance the utili-
zation of resources and to minimize the communication. The SF
algorithm will map a process Pi to the least utilized (in the current
mapping step) processor in NPi

, as long as it does not introduce a
large amount of communication. If the communication delay intro-
duced is over a threshold, the next least utilized processor is con-
sidered for mapping. This leads to a configuration which, in
principle, could be elaborated by a careful designer without the aid
of optimization tools like the one proposed in the paper.

Thus, for a given graph dimension, the first bar in Figure 9a rep-
resents the number of schedulable solutions found with SF and the
second bar (to the right) corresponds to MCC. Out of the total
number of applications, only 11% were schedulable with the im-
plementation produced by SF. However, using our MCC strategy,
we are able to obtain schedulable applications in 82.2% of the cas-
es. It is easy to observe that, for all application dimensions, by per-
forming the proposed partitioning and mapping using BB, large
improvements over the straightforward configuration could be

SF
M

C
C

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250

SF

MCS

Number of processes

%
 s

ch
ed

ul
ab

le
 a

pp
lic

at
io

ns

a)

A
ve

ra
ge

 e
xe

cu
tio

n
ti

m
es

 (
m

in
)

Number of processes

Figure 9. Evaluation of the BB algorithm

Number of processes

b) c)

produced. Moreover, as the applications become larger, it is more
difficult for SF to find schedulable solutions, while MCC performs
very well. For 250 processes, for example, MCC has been able to
find schedulable implementations for 76% of the applications,
compared to only 6% found by SF.

Figure 9c presents the average execution times for SF and MCC.
We have eliminated those cases for which no schedulable imple-
mentation has been produced. SF executes within a few seconds
for large graphs. MCC takes under 45 minutes for very large pro-
cess graphs of 250 processes, while for applications consisting of
150 processes it takes on average little bit less than 5 minutes.

Moreover, in order to asses the quality of our BB approach, in
Figure 9b we also present the percentage of schedulable solutions
found by MCC under linear execution times. Thus, we have count-
ed the number of schedulable solutions obtained after 5 minutes
for graphs of 50 processes, up to 25 minutes (growing linearly) for
250 processes. Figure 9b presents the percentage of schedulable
applications obtained with MCS in this setting. MCS scales well,
being able to find a large number of schedulable configurations, in
a relatively short (linearly growing) amount of time.

Finally, we considered a real-life example implementing a vehi-
cle cruise controller (CC). The process graph that models the CC
has 32 processes, and is described in [14]. The CC was mapped on
an architecture consisting of five nodes: Engine Control Module
(ECM) and Electronic Throttle Module (ETM) on the TTC, Anti
Blocking System (ABS) and Transmission Control Module (TCM)
on the ETC, and the Central Electronic Module (CEM) as the gate-
way. We have considered a very tight deadline of 150 ms.

In this setting, the SF approach failed to produce a schedulable
implementation, leading to response time of 392 ms. However,
MCS has found a schedulable solution with a response time of 148
ms, taking 32 minutes of execution time.

7. Conclusions
In this paper we have presented a partitioning and mapping strate-
gy for real-time applications distributed over multi-cluster sys-
tems, consisting of time-triggered clusters and event-triggered
clusters, interconnected via gateways.

We have proposed a multi-cluster scheduling algorithm that
builds a schedule table for the time-triggered activities, and deter-
mines the worst-case response times for the event-triggered activ-
ities. Based on this scheduling algorithm, we have proposed a
branch-and-bound technique for the partitioning and mapping of
an application functionality on the heterogeneous nodes of a multi-
cluster system, such that the timing constraints of the application
are guaranteed. Our branch-and-bound technique is able to effi-
ciently explore the design space by using a tight lower bound on
the end-to-end worst-case response time of the application.

Extensive experiments using synthetic applications, as well as a
real-life example, show that by using our branch-and-bound ap-
proach we are able to find schedulable implementations under lim-
ited resources, achieving an efficient utilization of the system.

Acknowledgements
The authors are grateful to the industrial partners at Volvo Tech-
nology Corporation in Göteborg, Sweden, for their close involve-
ment and thoughtful feedback during this work.

References
[1] L. Almeida, P. Pedreiras, J. A. G. Fonseca, “The FTT-CAN Protocol:

Why and How”, in IEEE Trans. on Industrial Electronics, 49(6), 2002.

[2] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, A. J. Wellings,
“Fixed Priority Pre-emptive Scheduling: An Historical Perspective,”
in Real-Time Systems Journal, vol. 8, 173–198, 1995.

[3] N. Audsley, K. Tindell, A. et. al., “The End of Line for Static Cyclic
Scheduling?,” in Proceedings of the Euromicro Workshop on Real-Time
Systems, 36–41, 1993.

[4] R. Bosch GmbH, CAN Specification Version 2.0, 1991.

[5] R. Dobrin, G. Fohler, “Implementing Off-Line Message Scheduling on
Controller Area Network (CAN),” in 8th IEEE Intl. Conference on
Emerging Technologies and Factory Automation, 2001.

[6] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with Bus Access
Optimization for Distributed Embedded Systems,” in IEEE
Transactions on VLSI Systems, 472-491, 2000.

[7] H. Ermedahl, H. Hansson, M. Sjödin, “Response Time Guarantees in
ATM Networks,” in Proc. of the Real-Time Systems Symposium, 1997.

[8] E. B. Fernandez, B. Bussell, “Bounds on the Number of Processors
and Time for Multiprocessor Optimal Schedules,” in IEEE
Transactions on Computers, 22/8, 745–751, 1973.

[9] J. J.G. Garcia, M. G. Harbour, “Optimized Priority Assignment for
Tasks and Messages in Distributed Hard Real-Time Systems,” in
Workshop on Parallel and Distributed RT Systems, 124–132, 1995.

[10]H. Kopetz, Real-Time Systems - Design Principles for Distributed
Embedded Applications, Kluwer Academic Publishers, 1997.

[11] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and Static
Cyclic Scheduling for Distributed Automotive Control Applications,”
in Euromicro Conference on Real-Time Systems, 142–149, 1999.

[12]P. Pleinevaux, “An Improved Hard Real-Time Scheduling for the
IEEE 802.5,” in Journal of Real-Time Systems, 4(2), 1992.

[13]T. Pop, P. Eles, Z. Peng, “Schedulability Analysis for Distributed
Heterogeneous Time/Event-Triggered Real-Time Systems,” in 15th

Euromicro Conference on Real-Time Systems, 2003, 257-266.

[14]P. Pop, Analysis and Synthesis of Communication-Intensive
Heterogeneous Real-Time Systems, Linköping Studies in Science and
Technology, Ph.D. Dissertation No. 833.

[15]P. Pop, P. Eles, Z. Peng, “Scheduling with Optimized Communication
for Time-Triggered Embedded Systems,” in 7th International
Workshop on Hardware/Software Codesign, 1999, 178–182.

[16]P. Pop, P. Eles, Z. Peng, “Schedulability Analysis and Optimization for
the Synthesis of Multi-Cluster Distributed Embedded Systems,” in
Design, Automation and Test in Europe Conference, 2003, 184–189.

[17]P. Pop, P. Eles, Z. Peng, V. Izosimov, M. Hellring, O. Bridal, “Design
Optimization of Multi-Cluster Embedded Systems for Real-Time
Applications,” in Design, Automation and Test in Europe, 2004.

[18] J. C. Palencia, M. González Harbour, “Schedulability Analysis for
Tasks with Static and Dynamic Offsets,” in Proceedings of the 19th

IEEE Real-Time Systems Symposium, 26–37, 1998.

[19]K. Tindell, Adding Time-Offsets to Schedulability Analysis, Technical
Report Number YCS–94–221, University of York, 1994.

[20]K. Tindell, A. Burns, A. J. Wellings, “Calculating CAN Message
Response Times,” in Control Engineering Practice, 3(8), 1163–1169,
1995.

[21]K. Tindell, J. Clark, “Holistic Schedulability Analysis for Distributed
Hard Real-Time Systems,” in Microprocessing & Microprogramming,
Vol. 50, No. 2–3, 1994.

[22] J. Xu, D. L. Parnas, “On satisfying timing constraints in hard-real-time
systems”, IEEE Transactions on Software Engineering, 19(1), 1993.

