
Analysis and Optimization of Distributed
Real-Time Embedded Systems

PAUL POP, PETRU ELES, ZEBO PENG, and TRAIAN POP

Linköping University

An increasing number of real-time applications are today implemented using distributed heteroge-

neous architectures composed of interconnected networks of processors. The systems are heteroge-

neous not only in terms of hardware and software components, but also in terms of communication

protocols and scheduling policies. In this context, the task of designing such systems is becoming

increasingly difficult. The success of new adequate design methods depends on the availability of

efficient analysis as well as optimization techniques. In this article, we present both analysis and

optimization approaches for such heterogeneous distributed real-time embedded systems. More

specifically, we discuss the schedulability analysis of hard real-time systems, highlighting par-

ticular aspects related to the heterogeneous and distributed nature of the applications. We also

introduce several design optimization problems characteristic of this class of systems: mapping of

functionality, the optimization of access to communication channel, and the assignment of schedul-

ing policies to processes. Optimization heuristics aiming at producing a schedulable system with a

given amount of resources are presented.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—System
architectures; D.4.1 [Operating Systems]: Process Management—Scheduling; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Distributed applications; D.4.7 [Operating
Systems]: Organization and Design—Real-time systems and embedded systems; J.6 [Computer
Applications]: Computer-Aided Engineering—Computer-aided design (CAD)

General Terms: Algorithms, Design, Performance, Theory

1. INTRODUCTION

Embedded real-time systems have to correctly implement the required func-
tionality. In addition, they have to fulfill a wide range of competing constraints:
development cost, unit cost, reliability, security, size, performance, power con-
sumption, flexibility, time-to-market, maintainability, safety, etc. critical to the
correct functioning of such systems are their timing constraints: “the correct-
ness of the system behavior depends not only on the logical results of the com-
putations, but also on the physical instant at which these results are produced”
[Kopetz 1997].

Authors’ address: P. Pop, P. Eles, Z. Peng, and T. Pop, Department of Computer and Information

Science, Linköping University, 581 83 Linköping, Sweden; email: paupo@ida.liu.se.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/0700-0593 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006, Pages 593–625.

594 • P. Pop et al.

Real-time systems have been classified as hard and soft [Kopetz 1997]. Basi-
cally, in a hard real-time system, a result that fails to meet a timing constraint
is considered incorrect, and can potentially have catastrophic consequences. For
example, a brake-by-wire system in a car failing to react within a given time
interval can result in a fatal accident. On the other hand, a multimedia sys-
tem, which is a soft-real time system, can under certain circumstances tolerate
a given amount of delays, perhaps resulting in a patchier picture, but without
serious consequences besides some possible inconvenience to the user.

Many real-time applications following physical, modularity, or safety con-
straints are implemented using distributed architectures. Such systems are
composed of several different types of hardware components interconnected
in a network. For these systems, the communication between functions imple-
mented on different nodes has an important impact on overall system properties
such as performance, cost, maintainability, etc.

1.1 Automotive Electronics

Although the discussion in this article is valid for several application areas, it
is useful to understand the evolution of distributed embedded real-time sys-
tems and their design challenges in order to exemplify the developments in a
particular area.

Automotive manufacturers, for example, were reluctant until recently to use
computer-controlled functions in vehicles. Today this attitude has changed for
several reasons. First, there is a constant market demand for increased vehicle
performance, more functionality, less fuel consumption, and fewer exhausts,
all at lower costs. In addition, from the manufacturers’ point of view, there is a
need for shorter time-to-market and reduced development and manufacturing
costs. These demands, combined with advancements in semiconductor technol-
ogy which are delivering ever increasing performance at lower and lower costs,
have led to a rapid increase in the number of electronically-controlled functions
in vehicles [Kopetz 1999].

It is estimated that in 2006, the electronics inside a car will amount to 25% of
the total cost of the vehicle (35% for high-end models), a quarter of which will be
due to semiconductors [Hansen 2002; Jost 2001]. High-end vehicles currently
have up to 100 microprocessors implementing and controlling various parts of
their functionality.

At the same time, with the increased complexity of embedded automotive
electronics systems, the type of functions they implement has also evolved.
Thanks to the semiconductor revolution in the late 1950s, electronic devices
became small enough to install on board vehicles. In the 1960s the first analog
fuel injection system appeared, and in the 70s, analog devices for controlling
the transmission, carburetor, and spark advance timing were developed. The oil
crisis of the 70s led to the demand for engine control devices that improved the
efficiency of the engine, thus reducing fuel consumption. In this context, the first
microprocessor-based injection control system appeared in 1976 in the USA.
During the 80s, more sophisticated systems began to appear, like electronically-
controlled braking systems, dashboards, information and navigation systems,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 595

air conditioning systems, etc. In the 90s, developments and improvementes
concentrated on aspects of safety and convenience. Today, it is not uncommon
to have highly critical functions like steering or braking implemented through
electronic functionality only, without any mechanical backup, as is the case in
drive-by-wire and brake-by-wire systems [Chiodo 1996; X-by-Wire Consortium
1998; Navet et al. 2005].

1.2 Timing Analysis and Design Optimization

An increasing number of real-time applications are implemented today using
distributed heterogeneous architectures composed of interconnected networks
of processors. The systems are heterogeneous not only in terms of hardware
components, but also in terms of communication protocols and scheduling poli-
cies. Each network has its own communication protocol, each processor in the
architecture can have its own scheduling policy, and several scheduling policies
can share a processor [Lönn and Axelsson 1999; Richter et al. 2003; Pop et al.
2002, 2003].

The task of designing such systems is becoming both increasingly impor-
tant and difficult at the same time. The success of adequate design methods
depends on the availability of both analysis and optimization techniques. This
article presents a holistic analysis for heterogeneous distributed hard real-time
embedded systems which:

—can handle distributed applications, data, and control dependencies;

—accurately take into account the details of communication protocols; and

—handle heterogeneous scheduling policies.

Once this holistic analysis has been shown, we address some design problems
characteristic of the systems under consideration:

—mapping of functionality to the components of the architecture;

—optimization of access to the communication channel; and

—assignment of a scheduling policy to the processes in the application.

The article is organized in nine sections. Sections 2 and 3 present the hetero-
geneous real-time embedded systems we address, and the type of application
models we consider, respectively. Section 4 presents the system- level design
of embedded systems and highlights the particular design tasks we address.
Section 5 introduces our proposed holistic scheduling approach. The rest of the
article focuses in more detail on certain design optimization issues. Section 6
identifies mapping, bus access optimization, and scheduling policy assignment
as interesting design optimization problems characteristic of heterogeneous
distributed embedded real-time systems. We show in Section 7 how the analy-
sis presented in Section 5 can be used to drive the optimization strategies that
deal with the aforementioned problems. The last two sections present some
experimental results and conclusions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

596 • P. Pop et al.

Fig. 1. Distributed real-time systems.

2. DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

2.1 Hardware Architecture

Currently, distributed real-time systems are implemented using architectures
where each node is dedicated to the implementation of a single function or
class of functions. The complete system can be, in general, composed of several
networks interconnected with each other (see Figure 1). Each network has its
own communication protocol, and internetwork communication is via a gate-
way, which is a node connected to both networks. The architecture can contain
several such networks having different types of topologies.

A network is composed of several different types of hardware components,
called nodes. Typically, every node, also called an electronic control unit (ECU),
has a communication controller, CPU, RAM, ROM, and an I/O interface to sen-
sors and actuators. Nodes can also have ASICs in order to accelerate parts of
their functionality.

The microcontrollers used in a node and the type of network protocol em-
ployed are influenced by the nature of the functionality and the imposed real-
time, fault-tolerance, and power constraints. In the automotive electronics field,
the functionality is typically divided into two classes, depending on the level of
criticalness:

—Body electronics refers to the functionality that controls simple devices such
as the lights, mirrors, windows, and dashboard. The constraints of body elec-
tronic functions are determined by the reaction time of the human operator
in the range of 100 to 200 ms. A typical body electronics system within a
vehicle consists of a network of 10 to 20 nodes that are interconnected by a
low bandwidth communication network such as LIN [Lin Consortium 2005].
A node is usually implemented using a single-chip 8 bit microcontroller (e.g.,
Motorola 68HC05 or Motorola 68HC11) with some hundred bytes of RAM
and kilobytes of ROM, I/O points to connect sensors and control actuators,
and a simple network interface. Moreover, the memory size is growing by
more than 20% each year [Kopetz 1999].

—System electronics are concerned with the control of vehicle functions that
are related to the movement of the vehicle. Examples of system elec-
tronics applications are engine control, braking, suspension, and vehicle

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 597

dynamics control. The timing constraints of system electronic functions are in
the range of a couple of ms to 20 ms, requiring 16 bit or 32 bit microcontrollers
(e.g., Motorola 68332) with about 16 kilobytes of RAM and 256 kilobytes of
ROM. These microcontrollers have built-in communication controllers (e.g.,
the 68HC11 and 68HC12 automotive families of microcontrollers have on-
chip CAN controllers), I/Os to sensors and actuators, and are interconnected
by high bandwidth networks [Kopetz 1999].

2.2 Communication Protocols

As communications become critical components, new protocols are needed that
can cope with the required high bandwidth and predictability.

There are several communication protocols for real-time networks. Among
those that have been proposed for vehicle multiplexing, only the Controller Area
Network (CAN) [Bosch 1991], the Local Interconnection Network (LIN) [Lin
Consortium 2005], and SAE’s J1850 [SAE 1994] are currently in use on a
large scale basis. Moreover, only a few of them are suitable for safety-critical
applications where predictability is mandatory [Rushby 2001]. A survey and
comparison of communication protocols for safety-critical embedded systems is
available in Rushby [2001]. Communication activities can be triggered either
dynamically in response to an event, or statically at predetermined moments
in time.

—On the one hand, there are protocols that schedule messages statically based
on the progression of time, for example, the SAFEbus [Hoyme and Driscoll
1992] and SPIDER [Miner 2000] protocols for the avionics industry, and the
TTCAN [International Organization for Standardization 2002] and Time-
Triggered Protocol (TTP) [Kopetz and Bauer 2003] intended for the automo-
tive industry.

—On the other hand, there are several communication protocols where mes-
sage scheduling is performed dynamically, such as Controller Area Network
(CAN), used in a large number of application areas including automotive
electronics, LonWorks [Echelon 2005], and Profibus [Profibus 2005] for real-
time systems in general, etc. Out of these, CAN is the most well known and
widespread event-driven communication protocol in the area of distributed
embedded real-time systems.

2.2.1 Time-Triggered Protocol. The TTP integrates all the services neces-
sary for fault-tolerant real-time systems. The bus access scheme is time-division
multiple-access (TDMA), meaning that each node Ni connected to the bus can
transmit only during a predetermined time interval, the TDMA slot Si. In such
a slot, a node can send several messages packed in a frame. A sequence of slots
corresponding to all the nodes in the architecture is called a TDMA round. A
node can have only one slot in a TDMA round. Several TDMA rounds can be
combined together in a cycle that is repeated periodically. The sequence and
length of the slots are the same for all the TDMA rounds. However, the length
and contents of the frames may differ.

The TDMA access scheme is imposed by a message descriptor list (MEDL)
that is located in every TTP controller. The MEDL serves as a schedule table

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

598 • P. Pop et al.

Fig. 2. Time-Triggered Protocol.

Fig. 3. Controller Area Network data frame (CAN 2.0A).

for the TTP controller, which has to know when to send/receive a frame to/from
the communication channel.

There are two types of frames in the TTP: the initialization frames, or
I-frames, which are needed for the initialization of a node, and the normal
frames, or N-frames, which are the data frames containing, in their data field,
the application messages. A TTP data frame (Figure 2) consists of the following
fields: a start-of-frame bit (SOF), control field, a data field of up to 16 bytes
containing one or more messages, and a cyclic redundancy check (CRC) field.
Frames are delimited by the interframe delimiter (IDF, 3 bits).

2.2.2 Controller Area Network. The CAN bus is a priority bus that employs
a collision avoidance mechanism whereby the node that transmits the frame
with the highest priority wins the contention. Frame priorities are unique and
are encoded in the frame identifiers, which are the first bits to be transmitted
on the bus.

In the case of CAN 2.0A [Bosch 1991], there are four frame types: data frame,
remote frame, error frame, and overload frame. A data frame is depicted in
Figure 3. It contains seven fields: a SOF, an arbitration field that encodes the
11 bits frame identifier, a control field, a data field of up to 8 bytes, a CRC field,
an acknowledgement (ACK) field, and an end-of-frame field (EOF).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 599

2.3 Scheduling Policies

There are two main approaches to scheduling real-time processes running on
a network node:

(1) Time-Triggered (TT)
In the time-triggered approach, activities are initiated at predetermined
points in time. In a distributed time-triggered system it is assumed that the
clocks of all nodes are synchronized to provide a global notion of time. Time-
triggered systems are typically implemented using nonpreemptive static
cyclic scheduling (SCS), where the process activation or message communi-
cation is done based on a schedule table that is built offline. This schedule
table contains activation times for each process such that the timing con-
straints of processes are satisfied.

(2) Event-Triggered (ET)
In the event-triggered approach, activities happen when a significant
change of state occurs. Event-triggered systems are typically implemented
using preemptive priority-based scheduling, where as a response to an event,
the appropriate process is invoked to service it. Two of the most widely used
priority-based policies are fixed priority scheduling (FPS) and earliest dead-
line first (EDF). In FPS, each process has a fixed (static) priority which is
computed offline. The decision of which ready process to activate is taken
online according to priority. In the case of EDF, that process will be activated
which has the nearest deadline.

There has been a long debate in the real-time and embedded systems com-
munities concerning the advantages and disadvantages of different scheduling
approaches [Audsley et al. 1993; Buttazzo 2005; Kopetz 1997, Xu and Parnas
1993, 2000]. SCS has the advantage of predictability and testability [Kopetz
1997]. However, such static approaches lack the flexibility offered by event-
driven ones such as FPS and EDF. EDF is optimal on single processor systems,
and in general, leads to high and thus efficient resource utilization [Buttazzo
2005]. In addition, advances in the area of priority-based preemptive schedul-
ing show that predictable applications with hard real-time guarantees can also
be handled with strategies such as FPS and EDF [Audsley et al. 1993; Sha et al.
2004].

2.4 Heterogeneous Distributed Real-Time Embedded Systems

An interesting comparison of scheduling approaches from a more industrial— in
particular, automotive—perspective can be found in Lönn and Axelsson [1999].
Their conclusion is that we have to choose the right scheduling approach de-
pending on the particularities of the scheduled processes. This means not only
that there is no single “best” approach to be used, but also that inside a certain
application several scheduling approaches can be used together.

Efficient implementation of new, highly sophisticated automotive applica-
tions entails the use of time-triggered process sets together with event-triggered
ones implemented on top of complex distributed architectures.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

600 • P. Pop et al.

Fig. 4. Distributed safety-critical applications.

2.4.1 Heterogeneous Multiclusters. Considering the automotive industry,
the way functionality has been distributed on an architecture has evolved over
time. Initially, distributed real-time systems were implemented using architec-
tures where each node was dedicated to the implementation of a single function
or class of functions. This allowed system integrators to purchase nodes imple-
menting required functions from different vendors, and to meld them into their
system [EAST-EEA 2002]. There are, however, several problems with this very
rigid, one-to-one technique for mapping functionality to nodes:

—The number of such nodes in the architecture has exploded, reaching, for
example, more than 100 in a high-end car, incurring heavy cost and perfor-
mance penalties.

—The resulting solutions are suboptimal in many aspects, and do not use avail-
able resources efficiently in order to reduce costs. For example, it is not pos-
sible to move a function from one node to another where there are enough
available resources (e.g., memory, computation power).

—Emerging functionality, such as brake-by-wire in the automotive industry, is
inherently distributed, and achieving an efficient fault-tolerant implemen-
tation is very difficult in the current setting.

This has created a huge pressure to reduce the number of nodes by integrat-
ing several functions into one node and, at the same time, to distribute cer-
tain functionality over several nodes (see Figure 4). Moreover, although an
application is typically distributed over a single cluster, we are beginning to
see applications that are distributed across several clusters. For example, in
Figure 4, the third application (represented as black dots) is distributed over
two clusters.

This trend is driven by the need to further reduce costs and improve resource
usage, but also by application constraints like the need be physically close to
particular sensors and actuators. Moreover, not only are these applications dis-
tributed across several nodes and clusters, but their functions can exchange

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 601

Fig. 5. Mixed communication cycle.

critical information through the network and gateway nodes [Navet et al.
2005].

We call a time-triggered cluster (TTC) a cluster where processes are scheduled
using SCS and messages are transmitted using a static communication protocol
such as TTP. Conversely, and event-triggered cluster (ETC) is a cluster where
processes are scheduled with FPS or EDF, and the bus implements dynamic
communication protocol such as CAN. In this article we consider heterogeneous
multicluster systems where an application can be mapped over both types of
clusters.

2.4.2 Heterogeneous Communication Protocols. In the case of heteroge-
neous multiclusters, as presented in the previous section, the TT and ET do-
mains interact via the gateway node. However, TT and ET domains can share
the same resources. This is particularly true at the level of the communication
protocol.

Static, time-triggered protocols have the advantages of simplicity and pre-
dictability, while event-triggered protocols are more flexible. Moreover, proto-
cols like TTP offer the fault-tolerant services necessary for implementing safety-
critical applications. However, it has been shown by Tindell et al. [1995] that
predictability can also be achieved with dynamic protocols such as CAN.

Researchers have proposed hybrid communication protocols such as the Uni-
versal Communication Model (UCM) [Demmeler and Giusto 2001], where the
TT and ET domains share the same bus. Hybrid types of communication pro-
tocols such as Byteflight [Berwanger et al. 2000] introduced by BMW for auto-
motive applications, and the FlexRay protocol [FlexRay Group 2005] allow the
sharing of the bus by event-driven and time-driven messages. A hybrid com-
munication protocol like FlexRay offers some of the advantages of both worlds.

In our article we consider that every node in the architecture has a commu-
nication controller that implements the protocol services. The controller runs
independently of the node’s CPU. We model the bus access scheme using the
universal communication model. The bus access is organized as consecutive
cycles, each with the duration Tbus. We consider that the communication cycle
is partitioned into static (ST) and dynamic (DYN) phases (Figure 5).

—ST phases consist of time slots, and during a slot only the node associated to
that particular slot is allowed to transmit SCS messages. The transmission
times of SCS messages are stored in a schedule table, as in the TTP protocol.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

602 • P. Pop et al.

Fig. 6. Heterogeneous scheduling policies.

—During a DYN phase, all nodes are allowed to send messages and the conflicts
between nodes trying to send simultaneously are solved by an arbitration
mechanism that allows the transmission of the message with the highest
priority, as in the CAN protocol. Hence, the ET messages are organized in a
prioritized ready queue.

In this article we consider the UCM for the bus communication with hetero-
geneous protocols. However, the approaches presented can be generalized to
other hybrid communication protocols, such as FlexRay, which will very likely
become the de facto standard for in-vehicle communications.

2.4.3 Heterogeneous Scheduling Policies. For the systems we are studying,
we have designed a software architecture which runs on the CPU of each node,
and which supports resource sharing by the TT and ET domains. The main
component of the software architecture is a real-time kernel containing three
schedulers (for SCS, FPS, and EDF) organized hierarchically (Figure 6a).

(1) The top-level scheduler is a SCS scheduler which is responsible for the
activation of SCS processes and the transmission of SCS messages based
on a schedule table, and for the activation of the FPS scheduler. Thus,
SCS processes and messages are time-triggered (TT), that is, activated at
predetermined points in time, and nonpreemptable.

(2) The FPS scheduler activates FPS processes and transmits FPS messages
based on their priorities, and activates the EDF scheduler. Processes sched-
uled using FPS are event-triggered (ET), that is, initiated whenever a par-
ticular event is noted, and are preemptable. Messages produced by FPS
processes are ET and nonpreemptable.

(3) The EDF scheduler activates EDF processes and sends EDF messages
based on their deadlines. EDF processes are ET and preemptable. Mes-
sages produced by EDF processes are ET and nonpreemptable.1

When several processes are ready on a node, the process with the highest prior-
ity is activated and preempts the other processes. Let us consider the example in
Figure 6b, where we have six processes sharing the same node. Processes P1 and

1The integration of EDF messages within a priority-based arbitration mechanism, such as CAN,

has been detailed in [Livani and Kaiser 1998].

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 603

Fig. 7. Application model.

P6 are scheduled using SCS P2 and P5 are scheduled using FPS, and processes
P3 and P4 are scheduled with EDF. The priorities of the FPS and EDF processes
are indicated in the figure. The arrival time of these processes is depicted with
an upwards-pointing arrow. Under these assumptions, Figure 6b presents the
worst-case response time of each process. The SCS processes, P1 and P6, will
never compete for a resource because their synchronization is performed based
on the schedule table. Moreover, since SCS processes are nonpreemptable and
their start time is offline fixed in the schedule table, they also have the highest
priority (denoted with priority level “0” in the figure). FPS and EDF processes
can only be executed in the slack of the SCS schedule table.

FPS and EDF processes are scheduled based on their priorities. Thus, a
higher priority process such as P2 will preempt a lower priority process such
as P3. In order to integrate EDF processes with FPS, we use the approach in
González Harbour and Palencia [2003] by assuming that FPS priorities are
not unique, and that a group of processes having the same FPS priority on
a processor is to be scheduled with EDF. Thus, whenever the FPS scheduler
notices ready processes that share the same priority level, it will invoke the
EDF scheduler which will schedule those processes based on their deadlines.
Such a situation is present in Figure 6b for processes P3 and P4. There can be
several such EDF priority levels within a process set on a processor. Higher
priority EDF processes can interrupt lower priority FPS (as is the case with P3

and P4, which preempt P5) and EDF processes. Lower priority EDF processes
will be interrupted by both higher priority FPS and EDF processes, as well as
SCS processes.

TT activities are triggered based on the local clock available in each process-
ing node. The synchronization of local clocks throughout the system is provided
by the communication protocol.

3. APPLICATION MODEL

In this article, we model an application A as a set of process graphs Gi ∈A
(see Figure 7). Nodes in the graph represent processes and arcs represent
dependencies between the connected processes. A process is a sequence of

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

604 • P. Pop et al.

computations (corresponding to several basic blocks in a programming lan-
guage) which starts when all its inputs are available. When it finishes executing,
the process produces its output values. Processes can be preemptable or non-
preemptable. Nonpreemptable processes are those that cannot be interrupted
during their execution, and are scheduled using SCS. Preemptable processes
can be interrupted during their execution, and are scheduled with FPS or EDF.
For example, a higher priority process has to be activated to service an event;
in this case, the lower priority process will be temporarily preempted until the
higher priority process finishes its execution.

A process graph is polar, which means that there are two nodes, called the
source and the sink, that conventionally represent the first and last process.
If needed, these nodes are introduced as dummy processes so that all other
nodes in the graph are successors of the source and predecessors of the sink,
respectively. In addition, the graphs are acyclic: functional loops are unrolled
based on known loop bounds.

The communication time between processes mapped on the same processor is
considered to be part of the process worst-case execution time and is not modeled
explicitly. Communication between processes mapped to different processors
is performed by passing messages over the buses and, if needed, through the
gateway. Such message passing is modeled as a communication process inserted
on the arc connecting the sender and the receiver process (the black dots in
Figure 7).

Each process Pi ∈ is mapped on a node M (Pi) (the mapping is represented
by shading in Figure 7), and has a worst-case execution time Ci on that node
(depicted to the left of each node). The designer can manually provide such
worst-case times, or tools can be used in order to determine the worst-case exe-
cution time of a piece of code on a given processor [Puschner and Burns 2000].

For each message, we know its size (in bytes, indicated to its left) and its
period, which is identical to that of the sender process. Processes and messages
activated based on events also have uniquely assigned priorities, priorityPi for
processes and prioritymi for messages.

All processes and messages belonging to a process graph Gi have the same
period, Ti = TGi , which is the period of the process graph. A deadline, DGi , is
imposed on each process graph, Gi. Deadlines can also be placed locally on
processes. Release times as well as individual deadlines of some processes can
be easily modelled by inserting dummy nodes between certain processes and
the source or sink node, respectively. These dummy nodes represent processes
with a certain execution time, but which are not allocated to any node.

3.1 Conditional Process Graph

One drawback of dataflow process graphs is that they are not suitable for cap-
turing the control aspects of an application. For example, it can happen that the
execution of some processes can also depend on conditions computed by previ-
ously executed processes. Several researchers have proposed extensions to the
dataflow process graph model in order to capture these control dependencies
[Eles et al. 1998; Thiele et al. 1999, Klaus and Huss 2001].

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 605

Fig. 8. A conditional process graph example.

We have proposed [Eles et al. 1998, 2000] the conditional process graph
(CPG) as an abstract model for representing the behavior of an application,
which not only captures both dataflow and the flow of control, but is also suitable
for handling timing aspects.

Such a CPG is depicted in Figure 8: P0 and P15 are the source and sink
nodes, respectively. The nodes denoted as P1, P2, . . . , P14 are “ordinary” pro-
cesses specified by the designer. Conditional edges (represented by thick lines
in Figure 8) have associated a condition value. In Figure 8, processes P1and P7

have conditional edges at their output. We call a node with conditional edges
at its output a disjunction node (and the corresponding process a disjunction
process). A disjunction process has one associated condition, the value of which
it computes. Alternative paths starting from a disjunction node, which corre-
spond to complementary values of the condition, are disjoint, and they meet in a
so-called node (with the corresponding process called a conjunction process).2 In
Figure 8, circles representing conjunction and disjunction nodes are depicted
with thick borders. The alternative paths starting from disjunction node P1,
which computes condition C, meet in conjunction node P5. We assume that
conditions are independent and alternatives starting from different processes
cannot depend on the same condition.

2If no process is specified on an alternative path, it is modeled by a conditional edge from the

disjunction to the corresponding conjunction node (a communication process may be inserted on

this edge at mapping).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

606 • P. Pop et al.

The conditional process graph has the following execution semantic:

—A conjunction process can be activated after messages coming on one of the
alternative paths have arrived (as opposed to “ordinary” processes, which are
activated only when all their inputs have arrived).

—A Boolean expression X Pi , called a guard, can be associated to each node Pi

in the graph. It represents the necessary conditions for the respective process
to be activated. X Pi is not only necessary, but also sufficient, for process Pi

to be activated during a given system execution.

—Transmission on conditional edges takes place only if the associated condition
value is true and not, as on simple edges, for each activation of the input
process Pi.

At a given activation of the system, only a certain subset of the total amount of
processes is executed, and this subset differs from one activation to the other.
For example, if condition C, calculated by process P1, is true and D, computed by
P7, is false, the {P1–P7, P12, P13} process set is activated, while if C is false and
D is true, processes in the set {P1, P14, P5–P13} are activated instead. Because
the values of the conditions are unpredictable, the decision as to which process
to activate and at which time has to be made without knowing which values
the conditions will later get. On the other hand, at a certain moment during
execution, once the values of some of the conditions are already known, they
have to be used as the basis for making the best possible decisions on when
and which process to activate in order to reduce the schedule length [Eles et al.
2000].

In Eles et al. [2000] and Pop et al. [2000] we have presented scheduling
and schedulability analysis for conditional process graphs. In order to keep the
presentation focused, in the remainder of the article we will not further explore
specific issues related to the conditional nature of application graphs.

4. SYSTEM-LEVEL DESIGN

The aim of a design methodology is to coordinate design tasks such that the
time-to-market is minimized, design constraints are satisfied, and various pa-
rameters are optimized.

A system-level design flow is illustrated in Figure 9. According to the figure,
system-level design tasks take as input the specification of the system and its
requirements (system model), and produce a model of the system implementa-
tion which is later synthesized into hardware and software.

One of the most important components of any system design methodology
is the definition of a system platform. Such a platform consists of a hardware
infrastructure, together with software components that will be used for several
product versions and will be shared with other product lines in hopes of reducing
costs and the time-to-market [Keutzer et al. 2000]. In this article we consider
a heterogeneous platform, as presented in Section 2.4.

In this work we concentrate on three system-level design tasks in the context
of heterogeneous systems: mapping of functionality, bus access optimization,
and scheduling policy assignment.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 607

Fig. 9. System-Level design flow example.

An essential component of such a design flow is an adequate analysis tech-
nique (the “analysis” box in Figure 9) to drive the design space exploration. In
order to (automatically) make informed design decisions, we developed accurate
analysis techniques that:

—can handle distributed applications, data, and control dependencies;

—accurately take into account the details of the communication protocols; and

—handle heterogeneous scheduling policies.

In the next section we present the holistic scheduling and schedulability anal-
ysis approach we have proposed for heterogeneous distributed embedded real-
time systems.

5. HOLISTIC SCHEDULING AND SCHEDULABILITY ANALYSIS

There is a large body of research [Kopetz 1997; Audsley et al. 1995, Balarin
et al. 1998] related to scheduling and schedulability analysis, with results hav-
ing been incorporated into analysis tools such as TimeWiz [TimeSys 2005],
RapidRMA [Tri-Pacific Software 2005], RTA-OSEK Planner [ETAS 2005], Aires
[Gu et al. 2003], Volcano Network Architect [Mentor Graphics 2005], and MAST
[González Harbour 2001]. The tools determine if the timing constraints of the
functionality are met and support the designer in exploring several design sce-
narios in order to facilitate the design of optimized implementations.

However, none of the existing approaches offer a holistic analysis for het-
erogeneous distributed systems, with the exception of SymTA/S [Richter et al.
2003], which is based on a compositional approach for global analysis. The
holistic approach we propose can handle applications distributed across differ-
ent types of networks (e.g., CAN, FlexRay, TTP) consisting of nodes that may
use different scheduling policies (e.g., static cyclic scheduling, fixed priority
preemptive scheduling, earliest deadline first).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

608 • P. Pop et al.

Fig. 10. Timing analysis for isolated TT and ET domains.

5.1 Isolated Domains

If the TT and ET domains are isolated (i.e., there is no resource sharing or
communication between them) as depicted in Figure 10, the timing analysis
can be performed separately for each domain. This is the case, for example,
if we have a two-cluster system with a TTC and an ETC (see Section 2.4.1)
where there is no time-critical communication exchanged between the two
clusters.

The basic idea of the analysis in Figure 10 is that SCS processes can be
considered schedulable if it is possible to build a schedule table such that the
timing requirements are satisfied [Eles et al. 2000]. For this purpose, we use the
list scheduling-based approach presented in Eles et al. [2000]. List scheduling
heuristics are based on priority lists from which processes are extracted in order
to be scheduled at certain moments. We use the modified partial critical path
priority function presented in Eles et al. [2000]. For FPS and EDF processes
and messages, the answer to whether or not they are schedulable is given by a
schedulability analysis. To this end, we use a response time analysis where the
schedulability test consists of a comparison between the worst-case response
time, Ri, of a process, Pi, and its deadline, Di.

Preemptive scheduling of independent processes with static priorities run-
ning on single-processor architectures has its roots in the work of Liu and
Layland [1973]. The approach was later extended to accommodate more general
computational models and has also been applied to distributed systems [Tindell
and Clark 1994]. The reader is referred to Audsley et al. [1995], Balarin et al.
[1998], Stankovic and Ramamritham [1993], and Sha et al. [2004] for surveys
on this topic. Static cyclic scheduling of a set of data dependent soft-ware pro-
cesses on a multiprocessor architecture has also been intensively researched
[Kopetz 1997, Xu and Parnas 2000].

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 609

In our application model in Section 3, we capture data dependencies and
precedence relationships between two processes, Pi and Pj , using an edge,
ei j . This means that Pj cannot start before Pi has finished executing. Xu and
Parnas [1990] were the first to propose an approach that can provide efficient
solutions to applications that exhibit such dependencies within the context
of static cyclic scheduling. Advances in the area of fixed priority preemptive
scheduling later showed that such applications can also be handled with other
scheduling strategies [Audsley et al. 1993].

One way of dealing with data dependencies between processes in the context
of static priority-based scheduling was indirectly addressed by the extensions
proposed for the schedulability analysis of distributed systems through the use
of the release jitter [Tindell and Clark 1994]. Release jitter is the worst-case
delay between the arrival of a process and its release (when it is placed in the
ready-queue for the processor) and can include the communication delay due
to the transmission of a message on the communication channel.

In Tindell and Clark [1994] and Yen and Wolf [1997] time offset relationships
and phases, respectively, were used to model data dependencies. Offset and
phase are similar concepts that express the existence of a fixed interval in time
between the arrivals of sets of processes. The authors showed that by introduc-
ing such concepts into the computational model, the uncertainty of the analysis
is significantly reduced when bounding the time behavior of a system with data-
dependent processes. The concept of dynamic offsets was later introduced and
used to model data dependencies [Palencia and González Harbour 1998].

5.2 TT and ET Resource Sharing

Figure 11a illustrates our strategy for scheduling and schedulability analysis
of heterogeneous systems where TT and ET activities share the same resource
(but there is no communication between processes in the two domains). This
is, for example, the case in a hybrid-bus system (such as UCM or FlexRay),
and where processes are scheduled using both time- and event-triggered
scheduling policies but the TT and ET processes do not exchange time-critical
communication.

TT activities are statically scheduled and, as an output, a static cyclic sched-
ule will be produced. Similarly, the worst-case response times of ET activities
are determined using the schedulability analysis presented in Pop et al. [2005b].
As a result, the system is considered schedulable if the static schedule is valid
and if the ET activities are guaranteed to meet their deadlines.

In the case when TT and ET activities share the same resource, the calcu-
lation of the worst-case response times for ET activities has to consider the
preemption from the TT domain. Thus, the ET processes can only execute in
the slack of the TT schedule table (see the arrow labeled “Slacks” in Figure 11a).
This means that the scheduling algorithm will have to generate a SCS schedule
which not only guarantees that TT activities meet their deadlines, but also that
the interference introduced from such a schedule will not increase to an unac-
ceptable extent the response times of ET activities. In conclusion, an efficient
scheduling algorithm requires a close interaction between the static scheduling
of TT activities and the schedulability analysis of ET activities.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

610 • P. Pop et al.

Fig. 11. Scheduling and schedulability analysis for heterogeneous systems.

To solve the problem of finding a schedulable system we have to consider
several aspects:

—When performing the schedulability analysis for the FPS and EDF processes
and messages, we have to take into consideration the interference from the
statically scheduled activities in the system. We have extended the analysis
in Palencia and González Harbour [1998] to handle this aspect [Pop et al.
2002].

—Among the possible correct schedules for SCS activities, it is important to
build one which favours as much as possible the degrees of schedulability of
FPS and EDF activities. We have proposed such a static scheduling algorithm
in Pop et al. [2002].

5.3 TT and ET Communication

In the case when TT and ET processes communicate, this interdomain com-
munication creates a circular dependency: the static schedules determined for

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 611

the TT activities influence through the offsets the response times of the ET
processes (the “Slacks/Offsets” arrow in Figure 11b), which in their turn influ-
ence the schedule table construction for the TT activities (the “Constraints” ar-
row in the figure). Our holistic scheduling algorithm loops until the worst-case
response times of the ET tasks can no longer be tightened (the “fixed point”
loop). In Figure 11b we illustrate the case when we have both sharing and
communication.

In our response time analysis we consider the influences between the two
clusters by making the following observations:

—The offsets of ET processes have to be set by a scheduling algorithm such
that the precedence relationships are preserved. This means that if process
PB depends on process PA, the following condition must hold: OB ≥ OA + RA

(where Oi denotes the offset of process Pi). Note that for the TT processes
which receive messages from ET processes, this translates to setting the
start times of the processes such that a process is not activated before the
worst-case arrival time of the message from an ET process. In general, TT
offsets are set such that all the necessary messages are present at the process
invocation.

—The worst-case response times for the interdomain messages have to be cal-
culated according to the schedulability analysis we have proposed in Pop
et al. [2003].

The holistic scheduling algorithm for the general case of resource-sharing com-
municating TT and ET domains (see Sections 5.2 and 5.3) has been imple-
mented as a Holistic Scheduling algorithm, and is presented in detail in Pop
et al. [2005a].

6. DESIGN OPTIMIZATION

Considering the types of systems3 and applications described in Sections 2.4
and 3, respectively, and using the analysis outlined in the previous section,
several design optimization problems can be addressed.

The research presented in this article concentrates on the following system-
level design tasks:

—Mapping: Section 6.1 presents the classical problem of the mapping of func-
tionality, which has to take into account the details of the bus protocol.

—Communication synthesis: Section 6.2 introduces the bus access optimization
problem.

—Scheduling policy assignment: Section 6.3 briefly outlines the problem of
deciding the scheduling policy for each process of the application.

The goal of these optimization problems is to produce an implementation which
meets all the timing constraints (i.e., the application is schedulable).

3We consider single-bus systems in this section, but the approach can be extended to other types

of topologies.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

612 • P. Pop et al.

In order to drive our optimization algorithms towards schedulable solutions,
we characterize a given design alternative using the degree of schedulability of
the application. The degree of schedulability is calculated as:

δA =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 =
n∑

i=1

max(0, Ri, Di), if c1 > 0

c2 =
n∑

i=1

(Ri − Di), if c1 = 0

,

where n is the number of processes in the application, Ri is the worst-case
response time of a process Pi, and Di its deadline. The worst-case response times
are calculated by the HolisticScheduling algorithm mentioned in the previous
section.

If the application is not schedulable, the term c1 will be positive and, in this
case, the cost function is equal to c1. However, if the process set is schedulable,
c1 = 0, and we use c2 as a cost function as it is able to differentiate between two
alternatives, both leading to a schedulable process set. For a given set of opti-
mization parameters leading to a schedulable process set, a smaller c2 means
that we have improved the worst-case response times of the processes, so the
application can potentially be implemented on a cheaper hardware architecture
(with slower processors and/or buses).

6.1 Mapping

The designer might have already decided on the mapping for a part of the
processes. For example, certain processes, due to constraints such as having
to be close to sensors/actuators, have to be physically located in a particular
hardware unit. They represent the set PM ⊆ P of already mapped processes.
Consequently, we denote with P∗ = P/PM the processes for which the mapping
has not yet been decided.

For a distributed heterogeneous system, the communication infrastructure
has an important impact on the design and, in particular, on the mapping deci-
sions. Let us consider the example in Figure 12 where we have an application
consisting of four processes, P1 to P4, and an architecture with three nodes, N1

to N3. Thus, the bus, using an UCM protocol, will have three static slots, S1 to
S3, one for each node. The sequence of slots on the bus is S2, followed by S1, and
then S3. We have decided to place a single dynamic phase within a bus cycle
(labeled “DYN” and depicted in gray) preceding the three static slots (see Sec-
tion 2.4.2 for details about the bus protocol). We assume that P1, P3, and P4 are
mapped on node N1, and we are interested in mapping process P2. Process P2

is allowed to be mapped on node N2 or on node N3, and its execution times are
depicted in the table labeled “mapping.” Note that an “x” in the table means that
the process is not allowed to be mapped on that node. Moreover, the scheduling
policy is fixed for each process (see the table caption “SPA”— scheduling policy
assignment— in Figure 12) such that all processes are scheduled with SCS and
communicate through the static slots. Similarly, an “x” in the SPA table means
that the process cannot be scheduled with the corresponding scheduling policy.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 613

Fig. 12. Mapping example.

In order to meet the deadline, one would map P2 on the node it executes the
fastest, that is, node N2 (see Figure 12a). However, this will lead to a deadline
miss due to the bus slot configuration which introduces communication delays.
The application will meet the deadline only if P2 is, counterintuitively, mapped
on the slower node, that is, node N3, as depicted in Figure 12b.

6.2 Bus Access Optimization

The configuration of the bus access cycle has a strong impact on the global per-
formance of the system. The parameters of this cycle have to be optimized such
that they fit the particular application and timing requirements. The param-
eters to be optimized are the number of static and dynamic phases during a
communication cycle, as well as the length and order of these phases. Consider-
ing static phases, the parameters to be fixed are the order, number, and length
of slots assigned to the different nodes. For example, consider the situation in
Figure 13, where process P1 is mapped on node N1 and sends a message m
to process P2, which is mapped on node N2. In case (a) process P1 misses the
start of the ST Slot1 and therefore, message m will be sent during the next
bus cycle, causing the receiver process P2 to miss its deadline D2. In case (b)
the order of ST slots inside the bus cycle is changed, the message m will be
transmitted earlier, and P2 will meet its deadline. The resulting situation can
be further improved, as can be seen in Figure 13(c) where process P2 finishes
even earlier if the first DYN phase in the bus cycle can be eliminated without
producing intolerable delays of the DYN messages (which have been ignored in
this example).

6.3 Scheduling Policy Assignment

Very often, the scheduling policy assignment (SPA) and mapping decisions are
made based on the experience and preferences of the designer, considering

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

614 • P. Pop et al.

Fig. 13. Optimization of bus access cyle.

aspects such as the functionality implemented by the process, the hardness
of the constraints, sensitivity to jitter, etc. Moreover, due to legacy constraints,
the mapping and scheduling policy of certain processes might be fixed.

Thus, we denote with PSCS ⊆ P the subset of processes for which the de-
signer has assigned SCS, PEPS ⊆ P contains processes to which FPS is as-
signed, while PEDF ⊆ P contains those processes for which the designer has
decided to use the EDF scheduling policy. There are, however, processes which
do not exhibit certain particular features or requirements which would ob-
viously lead to their scheduling as SCS, FPS, or EDF activities. The subset
P+ = P\(PSCS ∪ PEPS ∪ PEDF) of processes could be assigned any scheduling
policy. Decisions concerning the SPA to this set of activities can lead to various
tradeoffs concerning, for example, the schedulability properties of the system,
the size of the schedule tables, the utilization of resources, etc.

Let us illustrate some of the issues related to SPA in such a context. In the
example presented in Figure 14 we have an application4 with six processes,
P1 to P6, and three nodes, N1, N2, and N3. The worst-case execution times on
each node are given in the table labeled “Mapping” (the mapping of processes
is thus fixed for this example). The scheduling policy assignment is captured
by the table labeled “SPA.” Thus, processes P1 and P2 are scheduled using SCS,
while processes P5 and P6 are scheduled with FPS. We have to decide which
scheduling policy to use for processes P3 and P4, which can be scheduled with
any of the SCS or FPS scheduling policies.

We can observe that the scheduling of P3 and P4 has a strong impact on their
successors, P5 and P6, respectively. Thus, we would like to schedule P4 such that
not only P3 can start on time, but P4 also starts soon enough to allow P6 to meet
its deadline. As we can see from Figure 14a, this is impossible to achieve by
scheduling P3 and P4 with SCS. Although P3 meets its deadline, it finishes

4Communications are ignored for the examples in this subsection.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 615

Fig. 14. Scheduling policy assignment example #1.

Fig. 15. Scheduling policy assignment example #2.

too late for P5 to finish on deadline. However, if we schedule P4 with FPS, for
example, as in Figure 14b, both deadlines are met. In this case, P3 finishes on
time to allow P5 to meet its deadline. Moreover, although P4 is preempted by
P3, it still finishes on time, meets its deadline, and allows P6to meet its deadline
as well. Note that using EDF for P4 (if it would share the same priority level
with P6, for example) will also meet the deadline.

For a given set of preemptable processes, the example in Figure 15 illustrates
the optimization of the assignment of FPS and EDF policies. In Figure 15 we
have an application composed of four processes running on two nodes. Processes
P1, P2, and P3 are mapped on node N1, while process P4 runs on N2. Process
P4 is data, dependent on process P1. All processes in the system have the same
worst-case execution times (20 ms), deadlines (60 ms), and periods (80 ms).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

616 • P. Pop et al.

Processes P2 and P3 are scheduled with EDF at priority level “1,” P4 with FPS,
and we have to decide the scheduling policy for P1 between EDF and FPS.

If P1 is scheduled according to EDF, thus sharing the same priority level
of “1” with the processes on node N1, then process P4 misses its deadline
(Figure 15a). Note that in the time line for node N1 in Figure 15, we depict
several worst-case scenarios: each EDF process on node N1 is depicted consid-
ering the worst-case interference from the other EDF processes on N1. However,
the situation changes if on node N1 we use FPS for P1 (i.e., changing the pri-
ority levels of P2 and P3 from “1” to “2”). Figure 15b shows the response times
when process P1 has the highest priority on N1 (P1 retains priority “1”) and
the other processes are running under EDF at a lower priority level (P2 and P3

share the lower priority “2”). Because in this situation there is no interference
from processes P2 and P3, the worst-case response time for process P1decreases
considerably, allowing process P4 to finish before its deadline so that the system
becomes schedulable.

6.4 Problem Formulation

As an input to our optimization problem, we have an application A, given as
a set of process graphs (Section 3) and a system architecture consisting of a
set N of nodes (Section 2). As introduced previously, PSCS, PEPS, and PEDF are
the sets of processes for which the designer has already assigned SCS, FPS, or
EDF scheduling policies, respectively. Also, PM is the set of already mapped
processes.

As part of our problem, we are interested in:

—finding a scheduling policy assignment S for processes in P+ = P\(PSCS ∪
PEPS ∪ PEDF);

—deciding on a mapping for processes in P∗ = P\PM ;

—determining a bus configuration B; and

—determining the schedule table for the SCS processes and the priorities of
FPS and EDF processes

such that the imposed deadlines are guaranteed to be satisfied.

In this article, we will consider the assignment of scheduling policies simul-
taneously with the mapping of processes to processors.

7. DESIGN OPTIMIZATION STRATEGY

The design problem formulated in the previous section is at least NP-complete
(both the scheduling and the mapping problems, considered separately, are
already NP-complete [Garey and Johnson 2003]). Therefore, our strategy, out-
lined in Figure 16, is to elaborate a heuristic and to divide the problem into sev-
eral more manageable subproblems. Our optimization strategy has three steps:

(1) In the first step (lines 1–3) we decide on an initial bus access configuration
B0 (function InitialBusAccess), and an initial policy assignment S0 and map-
ping M0 (function InitialMSPA). The initial bus access configuration (line 1)
is determined for the ST slots by assigning, in order, nodes to the slots

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 617

Fig. 16. The general optimization strategy.

(Si = Ni) and fixing the slot length to the minimal allowed value, which is
equal to the length of the largest message in the application. Then, we add
to the end of the ST slots an equal length single DYN phase. The initial
scheduling policy assignment and mapping algorithm (line 2 in Figure 16)
maps processes so that the amount of communication is minimized. The
initial scheduling policy of processes in P+ is set to FPS. Once an initial
mapping, scheduling policy assignment, and bus configuration are obtained,
the application is scheduled using the HolisticScheduling algorithm (line 3)
mentioned in Section 5.

(2) If the application is schedulable, the optimization strategy stops. Other-
wise, it continues with the second step by using an iterative improvement
mapping and policy assignment heuristic, MSPAHeuristic (line 4), presented
in the next Section, to improve the partitioning and mapping obtained in
the first step.

(3) If the application is still not schedulable, we use in the third step the al-
gorithm BusAccessOptimization presented Section 7.2, which optimizes the
access to the communication infrastructure (line 6). If the application is
still unschedulable, we conclude that no satisfactory implementation could
be found with the available amount of resources.

7.1 Mapping and Scheduling Policy Assignment Heuristic

In Step 2 of our optimization strategy (Figure 16), the following design trans-
formations are performed iteratively with the goal of producing a schedulable
system implementation:

—change the scheduling policy of a process;

—change the mapping of a process; and

—change the priority level of an FPS of an EDF process.

Our optimization algorithm is presented in Figure 17 and implements a greedy
approach in which every process in the system is iteratively mapped on each
node (line 4) and assigned to each scheduling policy (line 8), under the con-
straints imposed by the designer. The next step involves adjustments to the
bus access cycle (line 10), which are needed in case the bus cycle configuration
cannot handle the minimum requirements of the current internode communi-
cation. Such adjustments are mainly based on enlargement of the static slots

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

618 • P. Pop et al.

Fig. 17. Policy assignment and mapping heuristic.

or dynamic phases in the bus cycle, and are required in case the bus has to
support larger messages than before. New messages may appear on the bus
due to, for example, remapping of processes; consequently, there may be new
TT messages that are larger than the current static slot for the sender node
(or similarly, the bus will face the situation where new ET messages are larger
than the largest DYN phase in the bus cycle). For more details on the subject
of bus access optimization and adjustment, the reader is referred to the next
section.

Before the system is analyzed for its timing properties, our heuristic also
tries to optimize the priority assignment of processes running under FPS (line
11). The state-of-the-art approach for such a process is the HOPA algorithm
for assigning priority levels to processes in multiprocessor systems [Gutiérrez
Garcı́a and González Harbour 1995]. However, due to the fact that HOPA is
computationally expensive when run inside such a design optimization loop, we
use a scaled-down greedy algorithm in which we drastically reduce the number
of iterations needed for determining an optimized priority assignment.

Finally, the resulting system configuration is analyzed (line 13) using the
scheduling and schedulability analysis algorithm outlined in Section 5. The
resulting cost function (δA, see Section 6) will decide whether this configuration

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 619

Fig. 18. Bus access optimization.

is better than the current best (lines 14–17). Moreover, if all activities meet their
deadlines (δA < 0), the optimization heuristic stops the exploration process and
returns the current best-so-far configuration (lines 18–20).

7.2 Bus Access Optimization Heuristic

It may be the case that even after the mapping and partitioning step, some
ET activities are still not schedulable. In the third step (line 6, Figure 16),
our algorithm tries to remedy this problem by changing the parameters of the
bus cycle, such as ST slot lengths and order, as well as the number, length,
and order of the ST and DYN phases. The goal is to generate a bus access
scheme which is adapted to the particular process configuration. The heuristic
is illustrated in Figure 18. The algorithm iteratively looks for the right place
and size of Sloti used for transmission of ST messages from Nodei (outermost
loops). The position of Sloti is swapped with all the positions of higher-order
slots (line 3). Also, all alternative lengths (lines 4–5) of Sloti larger than its
minimal allowed length (which is equal to the length of the largest ST message
generated by a process mapped on Nodei) are considered. For any particular
length and position of Sloti, alternative lengths of the adjacent ET phase Phi are
considered (innermost loop). For each alternative, the schedulability analysis
evaluates cost δA, and the solution with the lowest cost is selected. If δA ≤ 0,
the system is schedulable and the heuristic is stopped.

It is important to notice that the possible length π of an ET phase (line 6)
also includes the value 0. Therefore, in the final bus cycle it is not necessary for
each static slot to be followed by a dynamic phase. Dynamic phases introduced
as the result of the previous steps can be eliminated by setting the length to
π = 0. It should also be mentioned that enlarging a slot/phase can increase the
schedulability by allowing several ST/DYN messages to be transmitted quickly,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

620 • P. Pop et al.

Fig. 19. Performance of the design optimisation heuristic.

one immediately after another. At the same time, the following slots are delayed,
which means that ST messages transmitted by nodes assigned to upcoming
slots will arrive later. Therefore, the optimal schedulability will be obtained
for slot and phase lengths which are not tending towards the maximum. The
number of alternative slot and phase lengths to be considered by the heuristic
in Figure 18 is limited by the following two factors:

(1) The maximum length of a static slot or dynamic phase is fixed by the tech-
nology (e.g., 32 or 64 bits).

(2) Only frames consisting of entire messages can be transmitted, which ex-
cludes several alternatives.

8. EXPERIMENTAL RESULTS

For the evaluation of our design optimization heuristic we used synthetic ap-
plications as well as a real-life example consisting of a vehicle cruise controller.
Thus, we randomly generated applications of 40, 60, 80, and 100 processes on
systems with 4 processors. A total of 56 applications were generated for each
dimension, thus, a total of 224 applications were used for experimental evalua-
tion. An equal number of applications with processor utilizations of 20%, 40%,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 621

60%, and 80% were generated for each application dimension. The bus imple-
mented the UCM (see Section 2.4.2), and the cycle period was set to 1/100 of
the longest period of the task graphs in the system. All experiments were run
on an AMD AthlonXP 2400+ processor with 512 MB RAM.

We were first interested in determining the quality of our design optimization
approach for hierarchically scheduled systems, the MSPA Heuristic (MSPA,
see Figure 17). We compared the percentage of schedulable implementations
found by MSPA with the number of schedulable solutions obtained by the Ini-
tialMSPA algorithm described in Section 7 (see Figure 16, line 2), which de-
rives a straightforward system implementation denoted by SF. The results
are depicted in Figure 19a. We can see that our MSPAHeuristic (black bars)
performs very well, and finds a number of schedulable systems that are con-
siderably and consistently higher than the number of schedulable systems
obtained with the SF approach (white bars). On average, MSPA finds 44.5%
more schedulable solutions than SF.

Secondly, we were interested in determining the impact of the scheduling
policy assignment (SPA) decisions on the number of schedulable applications
obtained. Thus, for the same applications we considered that the process map-
ping is fixed by the SF approach, and only the SPA is optimized. Figure 19a
presents this approach, labeled “MSPA/No mapping,” corresponding to the gray
bars. We can see that most of the improvement over the SF approach is obtained
by carefully optimizing the SPA in our MSPA Heuristic.

We also applied the bus access optimization step on top of the MSPAHeuristic.
The BusAccessOptimization is able to further improve the results obtained by
MSPA (note that bus access adjustment is also performed in MSPA, line 10 in
Figure 17; at this point, we refer only to the bus access optimization on top of
MSPA). Thus, we were able to obtain 5%, 6%, 5%, and 7% more schedulable
systems for the application dimensions presented in Figure 19a, respectively.

We were also interested in finding out the impact of the processor utiliza-
tion of an application on the quality of the implementations produced by our
optimization heuristic. Figure 19b presents the percentage of schedulable solu-
tions found by MSPA and SF as we ranged the utilization from 20% to 80%. We
can see that SF degrades very quickly with increased utilization, with under
10% schedulable solutions for applications with 40% utilization, and with no
schedulable solution for applications with 80% utilization, while MSPA is able
to find a significant number of schedulable solutions even for high processor
utilizations.

In Figure 19c we show the average runtimes obtained by applying our MSPA
heuristic on the examples presented in Figure 19a. The upper curve illustrates
the average runtime of the heuristic for those applications which were not found
schedulable by our heuristic. This curve can be considered an upper bound
for the computation time of our algorithm. For the examples that were found
schedulable, our heuristic stopped the exploration process earlier, thus lead-
ing to smaller computation times, as shown in the lower curve of Figure 19c.
We can see that, considering the complex optimization and analysis steps per-
formed, our design optimization heuristic produces good quality results in a
reasonable amount of time (for example, the heuristic will finish, on average,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

622 • P. Pop et al.

in less than 500 seconds for applications with 80 processes that are found
schedulable).

8.1 The Vehicle Cruise Controller

A typical safety-critical application with hard real-time constraints is a ve-
hicle cruise controller (CC). We have considered a CC system derived from a
requirement specification provided by the industry. The CC delivers the follow-
ing functionality: it maintains a constant speed for speeds over 35 Km/h and
under 200 Km/h, offers an interface (buttons) to increase or decrease the refer-
ence speed, and is able to resume its operation at the previous reference speed.
The CC operation is suspended when the driver presses the brake pedal.

The specification assumes that the CC will operate in an environment con-
sisting of two clusters. There are four nodes which functionally interact with
the CC system: the antilock braking system (ABS), the transmission control
module (TCM), the engine control module (ECM), and the electronic throttle
module (ETM).

It was decided to map the functionality (processes) of the CC over these four
nodes. The ECM and ETM nodes had an 8 bit Motorola M68HC11 family CPU
with 128 Kbytes of memory, while the ABS and TCM were equipped with a 16
bit Motorola M68HC12 CPU and 256 Kbytes of memory. The 16 bit CPUs were
twice as fast as the 8 bit. The bus implemented UCM communication.

The process graph that models the CC had 32 processes, and is described
in Pop et al. [2004]. The CC was mapped on an architecture consisting
of three nodes: electronic throttle module (ETM), antilock breaking system
(ABS), and transmission control module (TCM). We considered a deadline of
250 ms.

In this setting, SF failed to produce a schedulable implementation. Our de-
sign optimization heuristic MSPA was considered first so that the mapping was
fixed by SF, and we only allowed reassigning of scheduling policies. After run-
ning for 29.5, the best scheduling policy allocation found by MSPA still resulted
in an unschedulable system, but with a “degree of schedulability” three times
higher than that obtained by SF. When mapping optimization was allowed,
MSPA managed to find a schedulable system after 28.49.

9. CONCLUSIONS

Heterogeneous distributed real-time systems are used in several application
areas to implement increasingly complex applications that have tight timing
constraints. The heterogeneity is manifested not only at the hardware and
communication protocol levels, but also at the level of the scheduling policies
used. In order to reduce costs and use the available resources more efficiently,
applications are distributed across several networks.

We have introduced the current state-of-the-art analysis and optimization
techniques available for such systems, and have addressed in more detail a
special class of heterogeneous distributed real-time embedded systems consist-
ing of several interconnected clusters where time-triggered and event-triggered
domains can share the same resource.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 623

We have presented an analysis for such systems and outlined several charac-
teristic design problems related to the mapping of functionality, assignment of
scheduling policies, and optimization of access to the communication infrastruc-
ture. Schedulability-driven optimization heuristics were proposed for solving
the aforementioned design optimization problems.

The main message of this article is that efficient analysis and optimization
methods are needed and can be developed for the implementation of applica-
tions distributed over interconnected heterogeneous networks.

REFERENCES

AUDSLEY, N., BURNS, A., DAVIS, R., TINDELL, K., AND WELLINGS, A. 1995. Fixed priority preemptive

scheduling: An historical perspective. J. Real-Time Syst. 8, 2/3, 173–198.

AUDSLEY, N., TINDELL, K., AND BURNS, A. 1993. The end of line for static cyclic scheduling? In

Proceedings of the Euromicro Workshop on Real-Time Systems, 36–41.

BALARIN, F., LAVAGNO, L., MURTHY, P., AND SANGIOVANNI-VINCENTELLI, A. 1998. Scheduling for em-

bedded real-time systems. IEEE Des. Test Comput. 15, 1, 71–82.

BERWANGER, J., PELLER, M., AND GRIESSBACH, R. 2000. A new high performance data bus system

for safety-related applications. www.byteflight.de.

BOSCH GMBH. 1991. CAN Specification, Version 2.0. http://www.can.bosch.com.

BUTTAZZO, G. 2005. Rate monotonic vs. EDF: Judgment day. In Real-Time Syst. 29, 1, 5–26.

CHIODO, M. 1996. Automotive electronics: A major application field for hardware-software co-

design. In Hardware/Software Co-Design. Kluwer Academic, Hingham, Mass., 295–310.

DEMMELER, T. AND GIUSTO, P. 2001. A universal communication model for an automotive system

integration platform. In Proceedings of the Design, Automation and Test in Europe Conference,

47–54.

EAST-EEA PROJECT. 2002. ITEA Full Project Proposal. www.itea-office.org.

ECHELON. 2005. LonWorks: The LonTalk protocol specification. www.echelon.com.

ELES, P., DOBOLI, A., POP, P., AND PENG, Z. 2000. Scheduling with bus access optimization for

distributed embedded systems. IEEE Trans. VLSI Syst. 8, 5, 472–491.

ELES, P., KUCHCINSKI, K., PENG, Z., DOBOLI, A., AND POP, P. 1998. Scheduling of conditional process

graphs for the synthesis of embedded systems. In Proceedings of the Design Automation and Test
in Europe Conference, 132–139.

ETAS. 2005. RTA-OSEK planner. en.etasgroup.com/products/rta.

FLEXRAY GROUP. 2005. FlexRay Requirements Specification, Version 2.1 Rev. A. www.flexray.com.

GAREY, M. R. AND JOHNSON, D. S. 2003. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York.

GONZÁLEZ HARBOUR, M., GUTIÉRREZ GARCı́A, J. J., PALENCIA GUTIÉRREZ, J. C., AND DRAKE MOYANO, J. M.

2001. MAST: Modeling and analysis suite for real time applications. In Proceedings of the 13th
Euromicro Conference on Real-Time Systems, 125–134.

GONZALÉZ HARBOUR, M. AND PALENCIA, J. C. 2003. Response time analysis for tasks scheduled under

EDF within fixed priorities. In Proceedings of the Real-Time Systems Symposium, 200–209.

GU, Z., WANG, S. KODASE, S., AND SHIN, K. G. 2003. An end-to-end tool chain for multi-view mod-

eling and analysis of avionics mission computing software. In Proceedings of the 24th IEEE
International Real-Time Systems Symposium.

GUTIÉRREZ GARCı́A, J. J. AND GONZÁLEZ HARBOUR, M. 1995. Optimized priority assignment for tasks

and messages in distributed hard real-time systems. In Proceedings of the Workshop on Parallel
and Distributed Real-Time Systems, 124–132.

HANSEN, P. 2002. The Hansen Report on Automotive Electronics. www.hansenreport.com.

HOYME, K. AND DRISCOLL, K. 1992. SAFEbus. IEEE Aerospace Electron. Syst. Magazine 8, 3, 34–

39.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 2002. Road vehicles—Controller area network

(CAN)—Part 4: Time-triggered communication. ISO/DIS 11898–4.

JOST, K. 2001. From fly-by-wire to drive-by-wire. Automotive Eng. International.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

624 • P. Pop et al.

KEUTZER, K., MALIK, S., AND NEWTON, A. R. 2000. System-Level design: Orthogonalization of con-

cerns and platform-based design. IEEE Trans. Comput. Aided Des. Integrated Circuits Syst. 19,

12, 1523–1543.

KLAUS, S. AND HUSS, S. A. 2001. Interrelation of specification method and scheduling re-

sults in embedded system design. In Proceedings of the ECSI International Forum on Design
Languages.

KOPETZ, H. 1997. Real-Time Systems—Design Principles for Distributed Embedded Applications.

Kluwer Academic, Hingham, Mass.

KOPETZ, H. 1999. Automotive electronics. In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, 132–140.

KOPETZ, H. AND BAUER, G. 2003. The time-triggered architecture. Proceedings IEEE 91, 1, 112–

126.

LIN CONSORTIUM. 2005. Local Interconnect Network Protocol Specification. www.lin-subbus.org

LIVANI, M. A. AND KAISER, J. 1998. EDF consensus on CAN bus access for dynamic real-time

applications. In Proceedings of the IPPS/SPDP Workshops. Lecture Notes in Computer Science,

vol. 1586, 1088–1097.

LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard- real-

time environment. J. ACM 20, 1, 46–61.

LÖNN, H. AND AXELSSON, J. 1999. A comparison of fixed-priority and static cyclic scheduling for

distributed automotive control applications. In Proceedings of the Euromicro Conference on Real-
Time Systems, 142–149.

MENTOR GRAPHICS. 2005. Volcano Network Architect. www.mentor.com/products/vnd/network

design tools/vna.

MINER, P. S. 2000. Analysis of the SPIDER fault-tolerance protocols. In Proceedings of the 5th
NASA Langley Formal Methods Workshop.

NAVET, N., SONG, Y., SIMONOT-LION, F., AND WILERT, C. 2005. Trends in automotive communication

systems. In Proceedings IEEE 93, 6, 1204–1223.

PALENCIA, J. C. AND GONZÁLEZ HARBOUR, M. 1998. Schedulability analysis for tasks with static and

dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems Symposium, 26–37.

PALENCIA, J. C. AND GONZÁLEZ HARBOUR, M. 2003. Offset-Based response time analysis of dis-

tributed systems scheduled under EDF. In Proceedings of the Euromicro Conference on Real-Time
Systems, 3–12.

POP, P., ELES, P., AND PENG, Z. 2000. Schedulability analysis for systems with data and control

dependencies. In Proceedings of the 12th Euromicro Conference on Real-Time Systems, 201–208.

POP, T., ELES, P., AND PENG, Z. 2002. Holistic scheduling and analysis of mixed time/event-

triggered distributed embedded systems. In Proceedings of the International Symposium on
Hardware/Software Codesign, 187–192.

POP, P., ELES, P., AND PENG, Z. 2003. Schedulability analysis and optimization for the synthesis of

multi-cluster distributed embedded systems. IEEE Comput. Digital Techniques J. 150, 5, 303–

312.

POP, P., ELES, P., AND PENG, Z. 2004. Analysis and Synthesis of Distributed Real-Time Embedded
Systems. Kluwer Academic, Hingham, Mass.

POP, P., ELES, P., AND PENG, Z. 2005a. Schedulability-driven frame packing for multi-cluster dis-

tributed embedded systems. ACM Trans. Embedded Comput. Syst. 4, 1, 112–140.

POP, T., POP P., ELES, P., AND PENG, Z. 2005b. Optimization of hierarchically scheduled heteroge-

neous embedded systems. In Proceedings of the 11th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, 67–71.

PROFIBUS INTERNATIONAL. 2005. PROFIBUS DP Specification. www.profibus.com.

PUSCHNER, P. AND BURNS, A. 2000. A review of worst-case execution-time analyses. J. Real-Time
Syst., 18, 115–128.

RICHTER, K., JERSAK, M., AND ERNST, R. 2003. A formal approach to MpSoC performance verifica-

tion. IEEE Comput. 36, 4, 60–67.

RUSHBY, J. 2001. Bus Architectures for Safety-Critical Embedded Systems. Lecture Notes in

Computer Science, vol.2211, Springer Verlag, 306–323.

SAE VEHICLE NETWORK FOR MULTIPLEXING AND DATA COMMUNICATIONS STANDARDS COMMITTEE. 1994.

SAE J1850 Standard.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

Analysis and Optimization of Distributed Real-Time Embedded Systems • 625

SHA, L. ABDELZAHER, T., ARZEN, K. E., CERVIN, A., BAKER, T., BURNS, A., BUTTAZZO, G., CACCAMO, M.,

LEHOCZKY, J., AND MOK, A. K. 2004. Real time scheduling theory: A historical perspective. In

Real-Time Syst. 28, 101–155.

TIMESYS. 2005. TimeWiz. www.timesys.com

TINDELL, K. AND CLARK, J. 1994. Holistic schedulability analysis for distributed hard real-time

systems. Microprocess. Microprogram. 40, 117–134.

TINDELL, K., BURNS, A., AND WELLINGS, A. 1995. Calculating CAN message response times. Control
Eng. Practice 3, 8, 1163–1169.

THIELE, L., STREHL, K., ZIEGENGEIN, D., ERNST, R., AND TEICH, J. 1999. FunState—An internal design

representation for codesign. In Proceedings of the International Conference on Computer-Aided
Design, 558–565.

TRI-PAC SOFTWARE. 2005. RapidRMA. www.tripac.com.

STANKOVIC, J. A. AND RAMAMRITHAM, K. 1993. Advances in Real-Time Systems. IEEE Computer

Society Press, Los Alamitos, Calif.

X-BY-WIRE CONSORTIUM. 1998. X-By-Wire: Safety Related Fault Tolerant Systems in Vehicles.

www.vmars.tuwien.ac.at/projects/xbywire.

XU, J. AND PARNAS, D. L. 1990. Scheduling processes with release times, deadlines, precedence

and exclusion relations. IEEE Trans. Softw. Eng. 16, 3, 360–369.

XU, J. AND PARNAS, D. L. 1993. On satisfying timing constraints in hard-real-time systems. IEEE
Trans. Softw. Eng. 19, 1, 70–84.

XU, J. AND PARNAS, D. L. 2000. Priority scheduling versus pre-run-time scheduling. J. Real Time
Syst., 18, 1, 7–24.

YEN, T. Y. AND WOLF, W. 1997. Hardware-Software Co-Synthesis of Distributed Embedded Sys-
tems. Kluwer Academic, Hingham, Mass.

Received January 2006; accepted May 2006

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.

