
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 389

Design Optimization of Time- and Cost-Constrained
Fault-Tolerant Embedded Systems With

Checkpointing and Replication
Paul Pop, Member, IEEE, Viacheslav Izosimov, Student Member, IEEE, Petru Eles, Member, IEEE, and

Zebo Peng, Senior Member, IEEE

Abstract—We present an approach to the synthesis of fault-tol-
erant hard real-time systems for safety-critical applications. We
use checkpointing with rollback recovery and active replication
for tolerating transient faults. Processes and communications are
statically scheduled. Our synthesis approach decides the assign-
ment of fault-tolerance policies to processes, the optimal place-
ment of checkpoints and the mapping of processes to processors
such that multiple transient faults are tolerated and the timing con-
straints of the application are satisfied. We present several design
optimization approaches which are able to find fault-tolerant im-
plementations given a limited amount of resources. The developed
algorithms are evaluated using extensive experiments, including a
real-life example.

Index Terms—Fault tolerance, processor scheduling, real time
systems, redundancy.

I. INTRODUCTION

S AFETY-CRITICAL applications have to function cor-
rectly and meet their timing constraints even in the

presence of faults. Such faults can be permanent (i.e., dam-
aged microcontrollers or communication links), transient (e.g.,
caused by electromagnetic interference), or intermittent (appear
and disappear repeatedly). The transient faults are the most
common, and their number is continuously increasing due to
the high complexity, smaller transistor sizes, higher operational
frequency, and lower voltage levels [8], [15], [28].

The rate of transient faults is often much higher compared to
the rate of permanent faults. Transient-to-permanent fault ra-
tios can vary between 2:1 and 50:1 [35], and more recently
100:1 or higher [24]. From the fault tolerance point of view,
transient faults and intermittent faults manifest themselves in a
similar manner: they happen for a short time and then disap-
pear without causing permanent damage. Hence, fault tolerance
techniques against transient faults are also applicable for toler-
ating intermittent faults and vice versa. Therefore, in this paper,
we will refer to both types of faults as transient faults and we
will talk about fault tolerance against transient faults, meaning
tolerating both transient and intermittent faults.

Manuscript received June 26, 2007; revised December 04, 2007. First pub-
lished January 20, 2009; current version published February 19, 2009.

P. Pop is with the Department of Informatics and Mathematical Modelling,
Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
(e-mail: paul.pop@imm.dtu.dk).

V. Izosimov, P. Eles, Z. Peng are with Department of Computer and Infor-
mation Science, Linköping University, SE-581 83 Linköping, Sweden (e-mail:
viaiz@ida.liu.se; petel@ida.liu.se; zebpe@ida.liu.se).

Digital Object Identifier 10.1109/TVLSI.2008.2003166

Traditionally, hardware replication was used as a fault-tol-
erance technique against transient faults. For example, in the
MARS system [21], [22] each fault-tolerant component is
composed of three computation units, two main units and
one shadow unit. Once a transient fault is detected, the faulty
component must restart while the system is operating with
the non-faulty component. This architecture can tolerate one
permanent fault and one transient fault at a time, or two tran-
sient faults. Another example is the XBW architecture [7],
where hardware duplication is combined with double process
execution. However, such solutions are very costly and can be
used only if the amount of resources is virtually unlimited. In
other words, existing architectures are either too costly or are
unable to tolerate multiple transient faults.

In order to reduce cost, other techniques are required such
as software replication [6], [40], recovery with checkpointing
[18], [33], [42], and re-execution [19]. However, if applied in a
straightforward manner to an existing design, techniques against
transient faults introduce significant time overheads, which can
lead to unschedulable solutions. On the other hand, using faster
components or a larger number of resources may not be afford-
able due to cost constraints. Therefore, efficient design optimiza-
tion techniques are required in to meet time and cost constraints
in the context of fault tolerant systems.

Fault-tolerant embedded systems have to be optimized in
order to meet time and cost constraints. Researchers have
shown that schedulability of an application can be guaranteed
for preemptive online scheduling under the presence of a single
transient fault [3], [4], [14], [42].

Liberato et al. [27] propose an approach for design opti-
mization of monoprocessor systems in the presence of multiple
transient faults and in the context of preemptive earliest-dead-
line-first (EDF) scheduling. For processes scheduled using rate
monotonic scheduling, [33] and [26] derive the optimal number
of checkpoints for a given task in isolation. [25] discusses the
reliability of checkpointed systems as a function of the number
of checkpoints and checkpoint overhead.

Hardware/software co-synthesis with fault tolerance is ad-
dressed in [36] in the context of event-driven fixed priority
scheduling. Hardware and software architectures are syn-
thesized simultaneously, providing a specified level of fault
tolerance and meeting the performance constraints. Safety-crit-
ical processes are re-executed in order to tolerate transient fault
occurrences. This approach, in principle, also addresses the
problem of tolerating multiple transient faults, but does not
consider static cyclic scheduling.

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

390 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Xie et al. [40] propose a technique to decide how replicas
can be selectively inserted into the application, based on process
criticality. Introducing redundant processes into a pre-designed
schedule is used in [9] in order to improve error detection. Both
approaches only consider one single fault.

Power-related optimization issues in fault-tolerant applica-
tions are tackled in [41] and [17]. Zhang et al. [41] study fault
tolerance and dynamic power management. Rollback recovery
with checkpointing is used to tolerate multiple transient faults in
the context of distributed systems. Fault tolerance is applied on
top of a pre-designed system, whose process mapping ignores
the fault tolerance issue.

Kandasamy et al. [19] propose constructive mapping and
scheduling algorithms for transparent re-execution on multipro-
cessor systems. The work was later extended with fault-tolerant
transmission of messages on a time-division multiple access
bus [20]. Both papers consider only one fault per computation
node. Only process re-execution is used as a fault-tolerance
policy.

Very little research work is devoted to general design opti-
mization in the context of fault tolerance. For example, Pinello
et al. [30] propose a simple heuristic for combining several static
schedules in order to mask fault patterns. Passive replication is
used in [2] to handle a single failure in multiprocessor systems
so that timing constraints are satisfied. Multiple failures are ad-
dressed with active replication in [13] in order to guarantee a re-
quired level of fault tolerance and satisfy time constraints. [43]
use software replication and temporal redundancy to provide a
tradeoff between energy savings and the number of faults being
tolerated in the context of reliable parallel servers.

None of the previous work has considered fault-tolerance
policies in the global context of system-level design for dis-
tributed embedded systems. Thus, in this paper, we consider
hard real-time safety-critical applications mapped on distributed
embedded systems. Both the processes and the messages are
scheduled using non-preemptive static cyclic scheduling. We
consider two distinct fault-tolerance techniques: process-level
checkpointing with rollback recovery [10], which provides
time-redundancy, and active replication [31], which provides
space-redundancy. We show how checkpointing and replication
can be combined in an optimized implementation that leads
to schedulable applications which are fault-tolerant in the
presence of multiple transient faults, without increasing the
amount of employed resources.

II. SYSTEM ARCHITECTURE

We consider architectures composed of a set of nodes
which share a broadcast communication channel. Every node

consists, among others, of a communication controller
and a CPU. The communication controllers implement the pro-
tocol services and run independently of the node’s CPU. We
consider that the communications are performed statically based
on schedule tables, and are fault-tolerant, using a protocol such
as the Time Triggered Protocol (TTP). TTP was designed for
distributed real-time applications that require predictability and
reliability, and provides services such as message transport with
acknowledgment and predictable low latency and clock syn-
chronization within the microsecond range [23].

Fig. 1. Rollback recovery with checkpointing. We take into account the error
detection overhead ���, the checkpointing ��� and the recovery overhead ���.

In this paper we are interested in fault-tolerance techniques
for tolerating transient faults, which are the most common faults
in today’s embedded systems. If permanent faults occur, we
consider that they are handled using a technique such as hard-
ware replication. Note that an architecture that tolerates per-
manent faults, will also tolerate transient faults. However, we
are interested in tolerating a much larger number of transient
faults than permanent ones, for which using hardware replica-
tion alone is too costly.

We have generalized the fault-model from [19] that assumes
that only one single transient fault may occur on any of the nodes
in the system during an application execution. In our model, we
consider that at most a given number of transient faults1 may
occur anywhere in the system during one operation cycle of the
application. Thus, not only several transient faults may occur si-
multaneously on several processors, but also several faults may
occur on the same processor.

We have designed a software architecture which runs on the
CPU in each node, and which has a real-time kernel as its main
component. The kernel running as part of the software architec-
ture on each node has a schedule table. This schedule table con-
tains all the information needed to take decisions on activation
of processes and transmission of messages, on that particular
node [32].

III. FAULT-TOLERANCE TECHNIQUES

The error detection and fault-tolerance mechanisms are part
of the software architecture. The software architecture, in-
cluding the real-time kernel, error detection and fault-tolerance
mechanisms are themselves fault-tolerant.

We use two mechanisms for tolerating faults: equidistant
checkpointing with rollback recovery and active replication.
Rollback recovery uses time redundancy to tolerate fault oc-
currences. Replication provides space redundancy that allows
to distribute the timing overhead among several processors.
We assume that all the faults we are interested to tolerate are
detected, i.e., perfect error detection. However, error detec-
tion is not always perfect, and the consequences for the two
fault-tolerance mechanisms we use are different. On one hand,
replication is susceptible to correlated faults, whereas check-
pointing can detect them. On the other hand, an error might be
present undetected in a checkpoint, which might necessitate
rollback [5].

Once a fault is detected, a fault tolerance mechanism has to be
invoked to handle this fault. The simplest fault tolerance tech-
nique to recover from fault occurrences is re-execution [19]. In
re-execution, a process is executed again if affected by faults.

The time needed for the detection of faults is accounted for by
the error-detection overhead . When a process is re-executed
after a fault was detected, the system restores all initial inputs of

1The number of faults � can be larger than the number of processors.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

POP et al.: DESIGN OPTIMIZATION OF TIME- AND COST-CONSTRAINED FAULT-TOLERANT EMBEDDED SYSTEMS 391

that process. The process re-execution operation requires some
time for this that is captured by the recovery overhead . In
order to be restored, the initial inputs to a process have to be
stored before the process is executed first time.

A. Rollback Recovery With Checkpointing

The time overhead for re-execution can be reduced with more
complex fault tolerance techniques such as rollback recovery
with checkpointing [29], [33], [42]. The main principle of this
technique is to restore the last non-faulty state of the failing
process, i.e., to recover from faults. The last non-faulty state,
or checkpoint, has to be saved in advance in the static memory
and will be restored if the process fails. The part of the process
between two checkpoints or between a checkpoint and the end
of the process is called execution segment.

An example of rollback recovery with checkpointing is pre-
sented in Fig. 1. We consider process with the worst-case ex-
ecution time of 60 ms and error-detection overhead of 10 ms,
as depicted in Fig. 1(a). Fig. 1(b) presents the execution of
in case no fault occurs, while Fig. 1(c) shows a scenario where
a fault (depicted with a lightning bolt) affects . In Fig. 1(b),
two checkpoints are inserted at equal intervals. The first check-
point is the initial state of process . The second checkpoint,
placed in the middle of process execution, is for storing an in-
termediate process state. Thus, process is composed of two
execution segments. We will name the th execution segment
of process as . Accordingly, the first execution segment of
process is and its second segment is . Saving process
states, including saving initial inputs, at checkpoints, takes a cer-
tain amount of time that is considered in the checkpointing over-
head , depicted as a black rectangle. In Fig. 1(c), a fault affects
the second execution segment of process . This faulty
segment is executed again starting from the second checkpoint.
Note that the error-detection overhead is not considered in
the last recovery in the context of rollback recovery with check-
pointing because, in this example, we assume that a maximum
of one fault can happen.

We will denote the th execution of the th execution seg-
ment of process as . Accordingly, the first execution of
execution segment has the name and its second exe-
cution is named . Note that we will not use the index if
we only have one execution of a segment or a process, as, for
example, ’s first execution segment in Fig. 1(c).

When recovering, similar to re-execution, we consider a re-
covery overhead , which includes the time needed to restore
checkpoints. In Fig. 1(c), the recovery overhead , depicted with
a light gray rectangle, is 10 ms for process .

The fact that only a part of a process has to be restarted for
tolerating faults, not the whole process, can considerably reduce
the time overhead of rollback recovery with checkpointing com-
pared to simple re-execution. Simple re-execution is a particular
case of rollback recovery with checkpointing, in which a single
checkpoint is applied, at process activation.

B. Active and Passive Replication

The disadvantage of recovery techniques is that they are
unable to explore spare capacity of available computation
nodes and, by this, to possibly reduce the schedule length. If the
process experiences a fault, then it has to recover on the same

Fig. 2. Policy assignment. To tolerate � � � transient faults we use: (a) only
checkpointing; (b) only replication; or (c) a combination of the two.

computation node. In contrast to rollback recovery and re-ex-
ecution, active and passive replication techniques can utilize
spare capacity of other computation nodes. Moreover, active
replication provides the possibility of spatial redundancy, e.g.,
the ability to execute process replicas in parallel on different
computation nodes.

In the case of active replication [40], all replicas of processes
are executed independently of fault occurrences. In the case of
passive replication, also known as primary-backup [1], on the
other hand, replicas are executed only if faults occur. We will
name the th replica of process as . Note that, for the
sake of uniformity, we will consider the original process as the
first replica. Hence, the replica of process is named
and process itself is named as .

In our work, we are interested in active replication. This type
of replication provides the possibility of spatial redundancy,
which is lacking in rollback recovery. Moreover, rollback re-
covery with a single checkpoint, in fact, is a restricted case of
primary-backup where replicas are only allowed to execute on
the same computation node with the original process.

IV. APPLICATION MODEL

We consider a set of real-time periodic applications .
Each application is represented as an acyclic directed graph

. Each process graph is executed with the period
. The graphs are merged into a single graph with a period

obtained as the least common multiple (LCM) of all application
periods . This graph corresponds to a virtual application

, captured as a directed, acyclic graph . Each node
represents a process and each edge from to

indicates that the output of is the input of .
Processes are non-preemptable and cannot be interrupted by

other processes. Processes send their output values encapsulated
in messages, when completed. All required inputs have to arrive
before activation of the process.

In this paper, we will consider hard real-time applications.
Time constraints are imposed with a global hard deadline , at
which the application has to complete.

The application processes have to be mapped (allocated) on
the computation nodes. The mapping of an application process
is determined by a function : , where is the set of
nodes in the architecture. We consider that the mapping of the
application is not fixed and has to be determined as part of the
design optimization.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

392 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

For a process is the node to which is assigned
for execution. Each process can potentially be mapped on sev-
eral nodes. Let be the set of nodes to which can
potentially be mapped. We consider that for each ,
we know the worst-case execution time [34] (WCET) of
process , when executed on .

In the case of processes mapped on the same computation
node, message transmission time between them is accounted for
in the worst-case execution time of the sending process. If pro-
cesses are mapped on different computation nodes, then mes-
sages between them are sent through the communication net-
work. We consider that the worst-case size of messages is given,
which, implicitly, can be translated into a worst-case transmis-
sion time on the bus.

The combination of fault-tolerance policies to be applied to
each process (see Fig. 2) is given by the following four func-
tions.

• : Replication, Checkpointing, Replication &
Checkpointing determines whether a process is repli-
cated, checkpointed, or replicated and checkpointed. When
replication is used for , and considering the maximum
number of faults, we introduce several replicas into the ap-
plication , and connect them to the predecessors and suc-
cessors of .
The function indicates the number of replicas
for each process. For a certain process , and considering

the maximum number of faults, if Replication,
then ; if Checkpointing, then

; if Replication & Checkpointing, then
.

Let be the set of replica processes introduced into
the application. Replicas can be checkpointed as well,
if necessary. The function de-
termines the number of recoveries for each process
or replica. In Fig. 2(a), Checkpointing,

. In Fig. 2(b), Replication,
. In Fig. 2(c),

Replication & Checkpointing,
and .

• : indicates the number of checkpoints to
be applied to processes in the application and the replicas
in . We consider equidistant checkpointing, thus the
checkpoints are equally distributed throughout the execu-
tion time of the process. If process or replica

is not checkpointed, then we have
or , respectively.

Each process , besides its worst-case execution time
, is characterized by an error detection overhead , a re-

covery overhead , and checkpointing overhead .

V. SCHEDULING POLICY AND RECOVERY

In this paper, we consider a static non-preemptive scheduling
approach, where both communications and processes are stati-
cally scheduled. The start times of processes and sending times
of messages are determined offline using scheduling heuristics.
These start and sending times are stored in form of schedule ta-
bles on each computation node. Then, the real-time scheduler
of a computation node will use the schedule table of that node
in order to invoke processes and send messages on the bus. In

general, however, an application can have different execution
scenarios, depending on fault occurrences. At execution time,
the real-time scheduler will choose the appropriate schedule that
corresponds to the current fault scenario. The corresponding
schedules for each fault occurrence scenario are called contin-
gency schedules.

Let us consider the example2 in Fig. 3, where we have five
processes, – mapped on three nodes, – . , and

are mapped on on , and on . The worst-case
execution times for each process are given in the table below the
application graph. By “X” we show mapping restrictions. We
consider that at most two faults can occur, and the overheads
due to the fault-tolerance mechanisms (and) are given in
the figure. Although the assumption is that at most two faults can
happen, the third execution of a process will still be followed by
error detection. Even if redundancy is not provided at that point,
the system might take some emergency action in case of the very
unlikely event of a third fault. However, for simplicity, we will
not depict this last error detection overhead in the figures. All
processes in the example use checkpointing: – have one
checkpoint, while has two checkpoints (see Fig. 3).

When checkpointing is used for tolerating faults, we have to
introduce in the schedule table recovery slack, which is idle time
on the processor needed to recover the failed process segment.
For example, for on node , we introduce a recovery slack
of 75 ms to make sure we can recover even
in the case it experiences the maximum number of two faults
[see Fig. 3(a)]. In the figure, the re-executions are depicted with
a hashed rectangle, while the detection and recovery overheads
are depicted with grey rectangles3. The recovery slack can be
shared by several processes, like is the case of process ,
and on node , Fig. 3(a). This shared slack has to be large
enough to accommodate the recovery of the largest process (in
our case) in the case of two faults. This slack can then handle
any combination with maximum two faults: two faults in or
in , which take less to execute than , or a fault in and
one in , etc. Note that the recovery slack for , which has
two checkpoints, is only half the size of the recovery slack that
would be needed if had a single checkpoint, since only one
segment of (either or) has to be recovered from its
corresponding checkpoint, and not the whole process.

In this paper, we use for checkpointing a particular type of
recovery, called transparent recovery [19], that hides fault oc-
currences on a processor from other processors. On a processor

where a fault occurs, the scheduler has to switch to a con-
tingency schedule that delays descendants of the faulty process
running on the same processor . However, a fault happening
on another processor is not visible on , even if the descen-
dants of the faulty process are mapped on . For example, in
Fig. 3(a), where we assume that no faults occur, in order to iso-
late node from the occurrence of a fault in on node ,
message from to cannot be transmitted at the end of

’s execution. Message has to arrive at the destination at a
fixed time, regardless of what happens on node , i.e., trans-
parently. Consequently, can only be transmitted after a time

2For clarity, bus communication is ignored in this particular example.
3The depiction of these grey rectangles will be omitted from the figures (but

counted in the total of the recovery slack) in the remaining of the paper, unless
they are needed to support the discussion.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

POP et al.: DESIGN OPTIMIZATION OF TIME- AND COST-CONSTRAINED FAULT-TOLERANT EMBEDDED SYSTEMS 393

Fig. 3. Fault tolerant scheduling example. The initial schedules (corresponding
the no-faults scenario) � � � , and � , for each node, are the root schedules.
If a fault occurs in � , we switch from � to � on � , but � and � on
� and � , respectively, are undisturbed because the fault occuring on � is
transparent to � and � .

, at the end of the recovery slack for . Sim-
ilarly, the transmission of also has to be delayed, to mask
in the worst-case two consecutive faults in . However, a fault
in will delay processes and which are on the same
processor (see in Fig. 3(c) the time-line for node). Note that
this mechanism is part of the transparent recovery scheme pro-
posed in [19]. The disadvantage in delaying the transmission of
a message to provide fault masking is that a later fault can pre-
vent its transmission. In order to increase the reliability, we can
schedule the message for immediate transmission, tagged with
its delivery time. This might, however, necessitate allocating
several slots for a message in the bus schedule table. Since in
this paper we do not address the faults at the level of the com-
munication infrastructure, assuming that they are handled with
a protocol such as TTP, we will not investigate this issue further.

Once a fault happens, the scheduler in a node has to switch
to a contingency schedule. For example, once a fault occurs in
process in the schedule depicted in Fig. 3(a), the scheduler
on node will have to switch to the contingency schedule in
Fig. 3(b), where is delayed with to account for
the fault. A fault in will result in activating a contingency
schedule on which contains a different start time not only for

, but also for and [see Fig. 3(c)]. There are several con-
tingency schedules, depending on the combination of processes
and faults. For maximum two faults, and the processes in Fig. 3,
there are 19 contingency schedules, depicted in Fig. 3(e) as a set
of trees. There is one tree for each processor. Each node in
the tree represents a contingency schedule, and the path from the
root node of a tree to a node , represents the sequence of faults
(labelled with the process name in which the fault occurs) that
lead to contingency schedule . For example, in Fig. 3(a) we
assume that no faults occur, and thus we have the schedules
on node on and on . We denote such initial
schedules with the term “root schedule,” since they are the root
of the contingency schedules tree. An error in [see Fig. 3(b)]
will be observed by the scheduler on node which will switch
to the contingency schedule .

The end-to-end worst-case delay of the application is given by
the maximum finishing time of any contingency schedule, since
this is a situation that can happen in the worst-case scenario.
For the application in Fig. 3, the largest delay is produced by
schedule , which has to be activated when two consecutive
faults happen in [see Fig. 3(d)]. The end-to-end worst-case
delay is equal to the maximum delay among the root schedules,
including the recovery slack [depicted in Fig. 3(a)]. This is due
to the fact that the root schedules have to contain enough re-
covery slack to accommodate even the worst-case scenario.

VI. FAULT-TOLERANT SYSTEM DESIGN

In this paper, by policy assignment we denote the decision
whether a certain process should be checkpointed or replicated,
or a combination of the two should be used. Mapping a process
means placing it on a particular node in the architecture.

There could be cases where the policy assignment decision is
taken based on the experience and preferences of the designer,
considering aspects like the functionality implemented by the
process, the required level of reliability, hardness of the con-
straints, legacy constraints, etc. Most processes, however, do not
exhibit certain particular features or requirements which obvi-
ously lead to checkpointing or replication. Decisions concerning
the policy assignment to this set of processes can lead to various
trade-offs concerning, for example, the schedulability properties
of the system, the amount of communication exchanged, the size
of the schedule tables, etc.

For part of the processes in the application, the designer might
have already decided their mapping. For example, certain pro-
cesses, due to constraints like having to be close to sensors/ac-
tuators, have to be physically located in a particular hardware
unit. For the rest of the processes (including the replicas) their
mapping is decided during design optimization.

Thus, our problem formulation for mapping and policy as-
signment with checkpointing is as follows.

• As an input we have an application given as presented
in Section IV and a system consisting of a set of nodes
connected to a bus (see Section II).

• The parameter denotes the maximal number of transient
faults that can appear in the system during one cycle of
execution.

We are interested to find a system configuration such that
the transient faults are tolerated and the imposed deadlines

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

394 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 4. Comparison of checkpointing and replication. Checkpointing is better
(in terms of meeting the deadline) for application � . However, for � repli-
cation is better.

are guaranteed to be satisfied, within the constraints of the given
architecture .

Determining a system configuration means
as follows:

1) finding a fault tolerance policy assignment, given by
, for each process (see Section IV) in the

application , for which the fault-tolerance policy has not
been a priory set by the designer; this also includes the
decision on the number of checkpoints for each process

in the application and each replica in ;
2) deciding on a mapping for each unmapped process

in the application ;
3) deciding on a mapping for each unmapped replica in

;
4) deriving the set of schedule tables on each node.

A. Motivational Examples

Let us illustrate some of the issues related to policy assign-
ment with checkpointing. In the example presented in Fig. 4,
we have the application with three processes, – , and
an architecture with two nodes, and . The worst-case ex-
ecution times on each node are given in a table to the right of
the architecture, and processes can be mapped to any node. The
fault model assumes a single fault, thus , and the fault-tol-
erance overheads are presented in the figure. The application
has a deadline of 140 ms depicted with a thick vertical line. We
have to decide which fault-tolerance technique to use.

In Fig. 4 a a b , and b , we depict the root sched-
ules4 for each node and the bus. Comparing the schedules in
Fig. 4 a and Fig. 4 b , we can observe that using active
replication a the deadline is missed. However, using check-
pointing b we are able to meet the deadline. Each process
has an optimal number of two checkpoints in Fig. 4 b . If we
consider application , similar to but with process data
dependent on , as illustrated in the right lower corner of Fig. 4,
the deadline of 180 ms is missed in Fig. 4 a if checkpointing
is used, and it is met when replication is used as in Fig. 4 b .
Although the replication in Fig. 4 b introduces more delays
on

4The schedules depicted are optimal.

Fig. 5. Combining checkpointing and replication. The deadline cannot be met
by replication or (a) checkpointing alone. (b) They have to be combined, as is
the case with � .

the bus than a , the schedule length compared to checkpointing
a is actually smaller.

This example shows that the particular fault-tolerance policy
to use has to be carefully adapted to the characteristics of the
application and the amount of available resources. Moreover,
the best result is often to be obtained when both techniques are
used together, some processes being checkpointed, while others
replicated, as in the following example.

Let us now consider the example in Fig. 5, where we have an
application with three processes, – , mapped on an archi-
tecture of two nodes, and . A maximum of two transient
faults have to be tolerated. The processes can be mapped to any
node, and the worst-case execution times on each node are given
in a table. In Fig. 5(a) all processes are using checkpointing, and
the depicted root schedule is optimal for this case. Note that
has to be delayed to mask two potential faults of to node

. With this setting, using checkpointing will miss the dead-
line. However, combining checkpointing with replication, as in
Fig. 5(b) where process is replicated, will meet the dead-
line. is a simple replica without checkpointing and mes-
sage from this replica is sent directly after completion of

. In the second replica of process , one fault has
to be masked, which delays the message . However, the
delay of message is less then the delay of message in
Fig. 5(a).

B. Checkpointing

Regarding checkpoints, we will first illustrate issues of check-
point optimization when processes are considered in isolation.
In Fig. 6, we have process with a worst-case execution time
of 50 ms. We consider a fault scenario with , the re-
covery overhead equal to 15 ms, and checkpointing overhead

equal to 5 ms. The error-detection overhead is consid-
ered equal to 10 ms. Recovery, checkpointing and error-detec-
tion overheads are shown with light grey, black, and dark grey
rectangles, respectively.

In Fig. 6, we depict the execution time needed for to tol-
erate two faults, considering from one to five checkpoints. Since

has to tolerate two faults, the recovery slack has to be
double the size of including the recovery overhead, as well
as the error-detection overhead that has to be considered for
the first re-execution of the process. Thus, for one checkpoint,
the recovery slack of process is
140 ms.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

POP et al.: DESIGN OPTIMIZATION OF TIME- AND COST-CONSTRAINED FAULT-TOLERANT EMBEDDED SYSTEMS 395

Fig. 6. Locally optimal number of checkpoints. Beyond a certain (locally op-
timal) number of checkpoints, the reduction in recovery slack is offset by the
increase in overheads.

If two checkpoints are introduced, process will be split
into two execution segments and . In general, the exe-
cution segment is a part of the process execution between two
checkpoints or a checkpoint and the end of the process. In the
case of an error in process , only the segments or have
to be recovered, not the whole process, thus the recovery slack

is reduced to 90 ms.
By introducing more checkpoints, the recovery slack can

be thus reduced. However, there is a point over which the re-
duction in the recovery slack is offset by the increase in the
overhead related to setting each checkpoint. We will name this
overhead as a constant checkpointing overhead denoted as
for process . In general, this overhead is the sum of check-
pointing overhead and the error-detection overhead . Be-
cause of the overhead associated with each checkpoint, the ac-
tual execution time of process is constantly increasing
with the number of checkpoints (as shown with thick-margin
rectangles around the process in Fig. 6).

For process in Fig. 6, going beyond three checkpoints will
enlarge the total worst-case execution time , when
two faults occur.

In general, in the presence of faults, the execution time in
the worst-case fault scenario of process with checkpoints
can be obtained with the equation

(1)

where

where is the execution time of process with check-
points in the case of no faults. is the recovery slack
of process . is the worst-case execution time of process

. is the overhead introduced with check-
points to the execution of process . In the recovery slack

is the time needed to recover from a single fault,
which has to be multiplied by for recovering from faults. The
error-detection overhead of process has to be additionally
considered in recovered execution segments for detecting
possible fault occurrences (except the last, th, recovery, where
all faults have already happened and been detected).

Fig. 7. Design optimization strategy for fault tolerance policy assignment. We
use Tabu Search for deciding the mapping and fault-tolerance policies, and a
list-scheduling-based heuristic for the fault-tolerant schedules.

Let now be the optimal number of checkpoints for ,
when is considered in isolation. Punnekkat et al. [33] derive
a formula for in the context of preemptive scheduling and
single fault assumption

if

if
(2)

where is a constant checkpointing overhead and is the
worst-case execution time of process . The number of check-
points is an integer, thus we use (the floor) or (the ceiling)
as a value. If , we select the floor value,
since, according to [33], it will lead to a tighter worst-case re-
sponse time. Otherwise, the ceiling value is used.

We have extended (2) to consider faults and detailed check-
pointing overheads and for process , when process
is considered in isolation (see [16] for the proof of the formula)

if

if
(3)

Equation (3) allows us to calculate the optimal number of
checkpoints for a certain process considered in isolation. How-
ever, calculating the number of checkpoints for each individual
process will not produce a solution which is globally optimal for
the whole application because processes share recovery slacks.
In general, slack sharing leads to a smaller number of check-
points associated to processes, or, at a maximum, this number
is the same as indicated by the local optima. This is the case be-
cause the shared recovery slack, obviously, cannot be larger than
the sum of individual recovery slacks of the processes that share
it. Therefore, the globally optimal number of checkpoints is al-
ways less or equal to the locally optimal number of checkpoints
obtained with (3). Thus, (3) provides us with an upper bound on
the number of checkpoints associated to individual processes.
We will use this equation in order to bound the number of check-
points explored with the optimization algorithm presented in
Fig. 10.

VII. DESIGN OPTIMIZATION STRATEGY

The design problem formulated in Section VI is NP com-
plete (both the scheduling and the mapping problems, consid-
ered separately, are already NP-complete [12]). Our optimiza-
tion strategy is outlined in Fig. 7 and has the following two steps.

1) In the first step (lines 1–2), we decide very quickly on an
initial configuration . This comprises an initial fault-tol-
erance policy assignment and mapping . The ini-
tial mapping and fault-tolerance policy assignment algo-

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

396 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 8. Generation of root schedules.

rithm (line 1 in Fig. 7) assigns a checkpointing
policy to each process in the application and produces a
mapping that tries to balance the utilization among nodes.
The application is then scheduled using the list scheduling-
based algorithm, presented in Fig. 8. If the application is
schedulable the optimization strategy stops.

2) The second step consists of a Tabu search-based algorithm
[38] presented in Fig. 10.

Since we use a meta-heuristic (i.e., Tabu search) for the op-
timization, we are not guaranteed to find a schedule, even if
one exists [38]. Therefore, if after these steps the application is
unschedulable, we assume that no satisfactory implementation
could be found with the available amount of resources. More-
over, although the transmission times on the bus are taken into
account during scheduling, in this paper we do not optimize the
access to the communication channel. We have addressed the
issue of bus access optimization in [11].

A. Static Scheduling

Once a fault-tolerance policy and a mapping are decided, the
processes and messages have to be scheduled. We use a static
scheduling algorithm for building the schedule tables for the
processes and messages.

Instead of generating all the contingency schedules, only a
root schedule is obtained offline. The root schedule consists of
start times of processes in the non-faulty scenario and sending
times of messages. In addition, it has to provide idle times for
process recovering, called recovery slacks. The root schedule is
later used by the online scheduler for extracting the execution
scenario corresponding to a particular fault occurrence. Such an
approach significantly reduces the amount of memory required
to store schedule tables.

The algorithm for the generation of root schedules is pre-
sented in Fig. 8 and takes as input the application , the number

of transient faults that have to be tolerated, the architecture
consisting of computation nodes and bus , the mapping ,
and produces the root schedule . We use a list-scheduling

based algorithm to generate the root schedule. List scheduling
heuristics are based on priority lists from which processes are
extracted (line 9) in order to be scheduled (line 12) at certain
moments. A process is placed in the ready list if all its pre-
decessors have been already scheduled (lines 19–21). All ready
processes from the list are investigated, and that process
is selected for placement in the schedule which has the highest
priority. Similarly, messages are scheduled on the bus. We use
the “modified partial critical path” priority function (MPCP)
presented in [11]. The list scheduling algorithm loops until the
ready list is empty (lines 8–22). Next, we will outline how the
basic list-scheduling approach has been extended to generate the
fault-tolerant schedules.

At first, the order of process execution is introduced with the
MPCP priority function (line 2). Initial recovery slacks for all
processes are calculated as

(lines 3–5). Then, recovery slacks of processes
mapped on the same computation node are merged to reduce
timing overhead.

The process graph is traversed starting from the root node
(line 7). Process is selected from the ready list according
to the priority function (line 9). The last scheduled process
on the computation node, on which is mapped, is extracted
from the root schedule (line 11). Process is scheduled and
its start time is recorded in the root schedule. Then, its recovery
slack is adjusted such that it can accommodate recovering
of processes scheduled before process on the same compu-
tation node (lines 13–14). The adjustment is performed in the
following two steps.

1) The idle time between process and the last scheduled
process is calculated (line 13).

2) The recovery slack of process is changed, if recovery
slack of process subtracted with the idle time is
larger than the initial slack . Otherwise, the initial
slack is preserved as (line 14).

If no process is scheduled before , the initial slack
is preserved as . Outgoing messages sent by process are
scheduled at the end of recovery slack (line 16).

After the adjustment of the recovery slack, process is re-
moved from the ready list (line 17) and its successors are
added to the list (lines 19–21). After scheduling of all the pro-
cesses in the application graph , the algorithm returns a root
schedule with start times of processes, sending times of
messages, and recovery slacks (line 23).

During list scheduling, the notion of “ready process” will be
different in the case of processes waiting inputs from replicas. In
that case, a successor process of a replicated process can
be placed in the root schedule at the earliest time moment , at
which at least one valid message can arrive from a replica

of process .5 We also include in the set of valid mes-
sages the output from replica to successor passed
through the shared memory (if replica and successor are
mapped on the same computation node) [16].

The scheduling algorithm is responsible for deriving offline
the root schedules. The contingency schedules are determined
online, in linear time, by the scheduler in each node, based on
the occurrences of faults. The overhead due to obtaining the new
start times is considered at the schedule table construction [16].

5We consider the original process � as a first replica, denoted with � .

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

POP et al.: DESIGN OPTIMIZATION OF TIME- AND COST-CONSTRAINED FAULT-TOLERANT EMBEDDED SYSTEMS 397

Fig. 9. Tabu search algorithm for optimization of mapping and fault tolerance
policy assignment.

B. Mapping and Fault-Policy Assignment

For the optimization of process mapping and fault-policy
assignment we are using a tabu search-based approach,

(see Fig. 9).
The tabu search takes as an input the merged application

graph (see Section IV), the architecture and the current im-
plementation , and produces a schedulable and fault-tolerant
implementation . The tabu search is based on a neighbor-
hood search technique, and thus in each iteration it generates the
set of moves that can be reached from the current solution

(line 7 in Fig. 9). In our implementation, we only consider
changing the mapping or fault-tolerance policy assignment of
the processes on the critical path, corresponding to the current
solution, denoted with in Fig. 9. We define the critical path
as the path through the merged graph which corresponds to the
longest delay in the schedule table. For example, in Fig. 10(a),
the critical path is , and .

Tabu search uses design transformations (moves) to change
a design such that the critical path is reduced. Let us consider
the example in Fig. 10, where we have an application of four
processes that has to tolerate one fault, mapped on an architec-
ture of two nodes. Let us assume that the current solution is the
one depicted in Fig. 10(a). In order to generate neighboring solu-
tions, we consider three types of moves: 1) remapping moves; 2)
policy-assignment moves; and 3) checkpointing-change moves.

1) Each remapping move is the remapping of a process (or
its replica), mapped on a computation node , to another
computation node . The number of checkpoints
is not changed by the remapping move.

Fig. 10. Moves and Tabu History. Considering (a) as the current solution, the
neighborhood is formed by (b)–(e).

2) Each policy-assignment move applied to a process
changes the combination of replication/checkpointing
required to tolerate the faults. This move will not change
the number of checkpoints assigned to a process.

3) Each checkpointing move changes the number of check-
points for a process from to , while the
mapping is not affected. We bound the maximum number
of checkpoints that can be assigned to a process to ,
the locally-optimal number calculated with (3).

Let us illustrate how the neighbor solutions are generated.
In Fig. 10(a), we use only recovery with checkpointing:
has two checkpoints, one, and has three. Starting from
this solution, the generated neighbor solutions are presented in
Fig. 10(b)–(g): in (b) process is replicated, thus its recovery
slack on node can be reduced; in (c) an additional check-
point is introduced in ; in (d) is mapped on ; in (e)
is replicated, thus , its descendant, can receive directly
from ’s replica in case no error occurs; in (f) we remove a
checkpoint from ; finally, in (g) is mapped on .

During the generation of neighbor solutions, we try to elimi-
nate moves that change the number of checkpoints if it is clear
that they do not lead to better results. Consider the example in
Fig. 11 where we have four processes, to mapped on two

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

398 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 11. Restricting the moves for setting the number of checkpoints. We will
not increase the checkpoints for � nor reduce for � , since they clearly do not
lead to better solutions.

nodes, and . The worst-case execution times of processes
and their fault-tolerance overheads are also given in the figure,
and we can have at most two faults. The number of checkpoints
calculated using (3) are: and .
Let us assume that our current solution is the one depicted in
Fig. 11(a), where we have
and . Given a process , with a current number
of checkpoints , our tabu search approach will generate
moves with all possible checkpoints starting from 1, up to .
Thus, starting from the solution depicted in Fig. 11(a), we can
have the following moves that modify the number of check-
points: 1) decrease the number of checkpoints for to 1; 2)
increase the number of checkpoints for to 2; 3) increase the
number of checkpoints for to 3; and 4) decrease the number
of checkpoints for to 1. Moves (1) and (3) will lead to the
optimal number of checkpoints depicted in Fig. 11(b).

In order to reduce optimization time, our heuristic will not
try moves (2) and (4), since they cannot lead to a shorter critical
path, and, thus, a better root schedule. Regarding move (2), by
increasing the number of checkpoints for we can reduce its
recovery slack. However, shares its recovery slack with
and segments of , which have a larger execution time, and
thus even if the necessary recovery slack for is reduced, it
will not affect the size of the shared slack (and implicitly, of the
root schedule) which is given by the largest process (or process
segment) that shares the slack. Regarding move (4), we notice
that by decreasing for the number of checkpoints to 1, we
increase the recovery slack, which, in turn, increases the length
of the root schedule.

The key feature of a tabu search is that the neighborhood so-
lutions are modified based on a selective history of the states
encountered during the search. This means that the neighbor-
hood of is not a static set, but rather a set that can change
according to the history of the search. The selective history is
implemented in our case through the use of two vectors, Tabu
and Wait. Basically, the purpose of the Tabu vector is to prevent
certain solutions (i.e., tabu-active solutions) from the recent past
to be revisited, while the purpose of the Wait vector is to diver-
sify the search by applying moves to a process that has waited

for a long time. Thus, each process has an entry in these tables.
Initially, all entries are set to 0. Let us consider that the cur-
rent solution is the one in Fig. 10(a), and that the search so far
has led to the values in the Tabu and Wait tables as depicted in
Fig. 10(a). If is non-zero, it means that the process is
“tabu”, i.e., should not be selected for generating moves. This
is the case with processes and , while any moves con-
cerning are not tabu. However, tabu moves are accepted if
they are better than the best-so-far solution. Such situations are
presented in Figs. 10(c) and (e), where moves concerning
are applied because they lead to better solutions, although is
tabu. Regarding the Wait vector, if Wait is greater than the
number of processes in the graph (a value determined exper-
imentally), we consider that the process has waited a long time
and should be selected for diversification.6 Let us consider the
algorithm in Fig. 9.

• A move will be removed from the neighborhood solutions
if it is tabu (lines 9 and 10 of the algorithm):

• In lines 12–13, the search is diversified with moves which
have waited a long time without being selected.

• In lines 14–20, we select the best one out of the neighbor-
hood solutions. We prefer a solution that is better than the
best-so-far (line 17). If such a solution does not exist,
then we choose to diversify. If there are no diversification
moves, we simply choose the best solution found in this it-
eration, even if it is not better than .

• To further improve diversification, we generate neighbors
using a different objective function. Thus, every time we
have performed more than moves (the
number of processes multiplied with the number of re-
sources and divided by two—a heuristic value determined
experimentally), we generate solutions using an objective
criterion which tries to balance the utilization of resources.
This is achieved by visiting each process, and assigning it
to the least-utilized processor so far.

• The algorithm updates the best-so-far solution, and the se-
lective history tables Tabu and Wait. The Tabu entries are
decremented if the corresponding tabu move has not been
currently selected, and incremented if it was selected (a
tabu move can be selected if it is better than the best-so-far).
For example, starting from Fig. 10(a) to we generate the
solution in Fig. 10(e) by introducing replication for .
Thus, we increment from 1 to 2 and we decre-
ment from 2 to 1, because the change does not
refer to . The Wait entries are incremented if moves re-
ferring to them are not applied, and set to 0 otherwise.
For the same example, we reset and increment

from 1 to 2. Note that is not incre-
mented because is tabu and hence will not be chosen
for diversification anyway.

• Finally, the algorithm ends when a schedulable solution has
been found, or an imposed termination condition has been
satisfied (e.g., if a time-limit has been reached).

Fig. 10 illustrates how the algorithm works. Let us consider
that the current solution is the one presented in Fig. 10(a),
with the corresponding selective history presented to its right,
and that this is also the best-so-far solution, denoted with .

6Diversification moves are driving the exploration into yet unexplored neigh-
borhoods.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

POP et al.: DESIGN OPTIMIZATION OF TIME- AND COST-CONSTRAINED FAULT-TOLERANT EMBEDDED SYSTEMS 399

No solution is removed from the set of considered solutions be-
cause none is simultaneously tabu and worst than . Thus,
all solutions (b)–(g) are evaluated in the current iteration. Out
of these, the solutions in Fig. 10(c) and (e) are considered be-
cause although they are tabu, they are better than . Out of
these two, the solution in Fig. 10(e) is selected because it meets
the deadline. The table is updated as depicted to the right of
Fig. 10(e) in bold and the iterations continue with solution (e)
as the current solution.

VIII. EXPERIMENTAL RESULTS

Unless otherwise stated, we have used the following experi-
mental setup for the evaluation of our algorithms. We have used
synthetic applications of 20, 40, 60, 80, and 100 processes (all
unmapped and with no fault-tolerance policy assigned) imple-
mented on architectures consisting of 3, 4, 5, 6, and 7 nodes,
respectively. We have generated both graphs with random struc-
ture and graphs based on more regular structures, such as trees,
and groups of chains. Execution times and message lengths were
assigned randomly using both uniform and exponential distri-
bution within the 10 to 100 ms, and 1 to 4 bytes ranges, respec-
tively. We have varied the number of maximum tolerated faults
depending on the architecture size, considering 4, 5, 6, 7, and
8 faults for each architecture dimension, respectively. The re-
covery overhead has been set to 5 ms. We have also varied
the fault tolerance overheads (checkpointing and error detec-
tion) for each process, from 1% of its worst-case execution time
up to 30%. Fifteen examples were randomly generated for each
application dimension, thus a total of 75 applications were used
for each experiment presented next. During the experiments, we
have derived the shortest schedule within an imposed time limit
for optimization: 1 minute for 20 processes, 10 for 40, 30 for
60, 2 h and 30 min for 80 and 6 h for 100 processes. We have
also used a case study consisting of a cruise controller. The ex-
periments were performed on Sun Fire V250 computers.

We were interested to evaluate the proposed optimization
strategy with regard to the overheads, in terms of schedule
length, introduced due to fault-tolerance. For this, we have
implemented each application without any fault-tolerance
concerns. This non-fault-tolerant implementation, NFT, has
been obtained using an approach similar to the algorithm in
Fig. 7 but without any fault-tolerance considerations. Then,
we have implemented each application on its corresponding
architecture, using the from Fig. 7.
In the first set of experiments, we have considered a single
checkpoint per process, which is similar to simple re-execution.
Let us call this optimization strategy MXR.

The first results are presented in Table I. In the three last
columns, we present maximum, average, and minimum time
overheads introduced by MXR compared to NFT. Let and

be the schedule lengths obtained using MXR and NFT.
The overhead due to introduced fault tolerance is defined as

. We can see that the fault tolerance
overheads grow with the application size. The MXR approach
can offer fault tolerance within the constraints of the architecture
at an average time overhead of approximately 100%. However,
even for applications of 60 processes, there are cases where the
overhead is as low as 52%.

TABLE I
FAULT TOLERANCE OVERHEADS DUE TO MXR (COMPARED TO NFT)

TABLE II
FAULT TOLERANCE OVERHEADS DUE TO MXR FOR

DIFFERENT NUMBER OF FAULTS

Fig. 12. Comparing MXR with MX, MR, and SFX.

We were also interested to evaluate our MXR approach in the
case of different number of faults, while the application size and
the number of computation nodes were fixed. We have consid-
ered applications with 60 processes mapped on four computa-
tion nodes, with the number of faults being 2, 4, 6, 8, or 10.
Table II shows that the time overheads due to fault tolerance
increase with the number of tolerated faults. This is expected,
since we need more replicas and/or re-executions if there are
more faults.

Next, we were interested to evaluate the quality of our MXR
optimization approach. Together with the MXR approach we
have also evaluated two extreme approaches: MX that considers
only one checkpoint (similar to re-execution), and MR which re-
lies only on replication for tolerating faults. MX and MR use the
same optimization approach as MRX, but, for fault tolerance,
all processes are assigned only with re-execution or replication,
respectively. In Fig. 12, we present the average percentage devi-
ations of the MX and MR from MXR in terms of overhead. We
can see that by optimizing the combination of re-execution and
replication, MXR performs much better compared to both MX

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

400 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 13. MCR and MC compared to MC0. (a) Number of processes. (b) Checkpointing overheads. (c) Number of transient faults.

and MR. On average, MXR is 77% and 17.6% better than MR
and MX, respectively. This shows that considering two redun-
dancy techniques simultaneously (in this case, re-execution at
the same time with replication) can lead to significant improve-
ments.

In Fig. 12, we have also presented a straightforward strategy
SFX, which first derives a mapping without fault-tolerance
considerations (using MXR without fault-tolerance moves)
and then applies re-execution. The re-execution is similar to a
single-checkpoint scheme. The main idea here is that SFX sep-
arates the mapping and re-execution assignment steps (which
are done simultaneously in MX; MXR introduces also redun-
dancy). Thus, although re-execution is applied in an efficient
way, by sharing the recovery slacks and thus trying to minimize
the schedule length, the mapping will not be changed. This is
a solution that can be obtained by a designer without the help
of our fault-tolerance optimization tools. We can see that the
overheads thus obtained are very large compared to MXR, up
to 58% on average. We can also notice that, despite the fact
that both SFX and MX use only re-execution, MX is much
better. This confirms that the optimization of the fault-tolerance
policy assignment has to be addressed at the same time with
the mapping of functionality.

In the second set of experiments we have concentrated on
evaluating the checkpoint optimization. We were interested
to compare the quality of MCR to MC0 and MC. In Fig. 13,
we show the average percentage deviation of overheads ob-
tained with MCR and MC from the baseline represented
by MC0 (larger deviation means smaller overhead). From
Figs. 13(a) and (b), we can see that by optimizing the combi-
nation of checkpointing and replication MCR performs much
better compared to MC and MC0. This shows that considering
checkpointing at the same time with replication can lead to
significant improvements. Moreover, by considering the global
optimization of the number of checkpoints, with MC, signifi-
cant improvements can be gained over MC0 which computes
the optimal number of checkpoints for each process in isolation.

In Fig. 13(a), we consider 4 processors, 3 faults, and vary the
application size from 40 to 100 processes. As the amount of
available resources per application decreases, the improvement
due to replication (part of MCR) will diminish, leading to a re-
sult comparable to MC.

In Fig. 13(b), we were interested to evaluate our MCR
approach in the case the checkpointing overheads (i.e.,)
are varied. We have considered applications with 40 processes
mapped on four processors, and we have varied the check-

pointing overheads from 2% of the worst-case execution time
of a process up to 60%. We can see that as the amount of check-
pointing overheads increases, our optimization approaches are
able to find increasingly better quality solutions compared to
MC0.

We have also evaluated the MCR and MC approaches in the
case the maximum number of transient faults to be tolerated
increases. We have considered applications with 40 processes
mapped on 4 processors, and varied from 2 to 6, see Fig. 13(c).
As the number of faults increase, the improvement, compared to
MC0 decreases, and will stabilize to about 10% improvement
(e.g., for the improvement due to MC is 8.30%, while
MCR improves with 10.29%).

The experiments demonstrate that it is very important to con-
sider checkpointing at the same time with replication, and to
optimize the number of checkpoints globally.

A. Case Study

A typical safety critical application with hard real-time con-
straints, to be implemented on a distributed architecture, is a ve-
hicle cruise controller (CC). We have considered a CC system
derived from a specification provided by the industry.

The CC described in this specification delivers the following
functionality: 1) it maintains a constant speed for speeds over
35 km/h and under 200 km/h; 2) offers an interface (buttons) to
increase or decrease the reference speed; 3) is able to resume its
operation at the previous reference speed; and 4) the CC opera-
tion is suspended when the driver presses the brake pedal.

The process graph that models the CC has 32 processes, and
is described in [32]. The CC was mapped on an architecture con-
sisting of three nodes: electronic throttle module (ETM), anti-
lock breaking system (ABS), and transmission control module
(TCM). We have considered a deadline of 260 ms, 2 faults
and the checkpointing overheads are 10% of the worst-case ex-
ecution time of the processes.

In this setting, the MCR produced a schedulable fault-tol-
erant implementation with a worst-case system delay of 230
ms, and with an overhead compared to NFT (which produces
a non-fault-tolerant schedule of length 136 ms) of 69%. If we
globally optimize the number of checkpoints using MC, we ob-
tain a schedulable implementation with a delay of 256 ms, com-
pared to 276 ms produced by MC0 which is larger than the dead-
line. If replication only is used, as in the case of MR, the delay
is 320 ms, which is greater than the deadline.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

POP et al.: DESIGN OPTIMIZATION OF TIME- AND COST-CONSTRAINED FAULT-TOLERANT EMBEDDED SYSTEMS 401

IX. CONCLUSION

In this paper, we have considered hard real-time systems,
where the hardware architecture consists of a set of hetero-
geneous computation nodes connected to a communication
channel. The real-time application is represented as a set
of processes communicating by messages. The processes are
scheduled by static cyclic scheduling. To provide fault tolerance
against transient faults, processes are assigned with replication
or recovery with checkpointing.

Scheduling: We have proposed a scheduling approach for
fault-tolerant embedded systems in the presence of multiple
transient faults, based on list-scheduling. The scheduler on
each node determines the new start times considering the root
schedule and the current fault occurrence scenario.

Mapping and Fault Tolerance Policy Assignment: Regarding
fault tolerance policy assignment, we decide on which fault tol-
erance technique or which combination of techniques to assign
to a certain process in the application. The fault tolerance tech-
nique can be either rollback recovery, which provides time-re-
dundancy, or active replication, which provides space-redun-
dancy. We have implemented a tabu search-based optimization
approach that decides the mapping of processes to the nodes in
the architecture and the assignment of fault-tolerance policies
to processes.

Checkpoint Optimization: We have also addressed the
problem of checkpoint optimization. We have shown that by
globally optimizing the number of checkpoints, as opposed to
the approach when processes were considered in isolation, sig-
nificant improvements can be achieved. We have also integrated
checkpoint optimization into a fault tolerance policy assign-
ment and mapping optimization strategy, and an optimization
algorithm based on tabu-search has been implemented.

All proposed algorithms have been implemented and evalu-
ated on numerous synthetic applications and a real-life example
from automotive electronics. The results obtained have shown
the efficiency of the proposed approaches and methods.

REFERENCES

[1] K. Ahn, J. Kim, and S. Hong, “Fault-tolerant real-time scheduling using
passive replicas,” in Proc. Pacific Rim Int. Symp. Fault-Tolerant Syst.,
1997, pp. 98–103.

[2] R. Al-Omari, A. K. Somani, and G. Manimaran, “A new fault-tolerant
technique for improving schedulability in multiprocessor real-time sys-
tems,” in Proc. 15th Int. Parallel Distrib. Process. Symp., 2001, pp.
23–27.

[3] A. Bertossi and L. Mancini, “Scheduling algorithms for fault-tolerance
in hard-real time systems,” Real Time Syst., vol. 7, no. 3, pp. 229–256,
1994.

[4] A. Burns, R. I. Davis, and S. Punnekkat, “Feasibility analysis for fault-
tolerant real-time task sets,” in Proc. Euromicro Workshop Real-Time
Syst., 1996, pp. 29–33.

[5] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[6] P. Chevochot and I. Puaut, “Scheduling fault-tolerant distributed hard-
real time tasks independently of the replication strategies,” in Proc.
Real-Time Comput. Syst. Appl. Conf., 1999, pp. 356–363.

[7] V. Claeson, S. Poldena, and J. Söderberg, “The XBW model for
dependable real-time systems,” in Proc. Parallel Distrib. Syst. Conf.,
1998, pp. 130–138.

[8] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[9] J. Conner et al., “FD-HGAC: A hybrid heuristic/genetic algorithm
hardware/software co-synthesis framework with fault detection,” in
Proc. Asia South Pacific Des. Autom. Conf. (ASP-DAC), 2005, pp.
709–712.

[10] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A survey
of rollback-recovery protocols in message-passing systems,” ACM
Comput. Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[11] P. Eles, A. Doboli, P. Pop, and Z. Peng, “Scheduling with bus
access optimization for distributed embedded systems,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 5, pp. 472–491,
Sep. 2000.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman,
2003.

[13] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel, “An algorithm for
automatically obtaining distributed and fault-tolerant static schedules,”
in Proc. Int. Conf. Dependable Syst. Netw., 2003, pp. 159–168.

[14] C. C. Han, K. G. Shin, and J. Wu, “A fault-tolerant scheduling algo-
rithm for real-time periodic tasks with possible software faults,” IEEE
Trans. Computers, vol. 52, no. 3, pp. 362–372, Mar. 2003.

[15] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai, “Im-
pact of CMOS process scaling and SOI on the soft error rates of logic
processes,” in Proc. Symp. VLSI Technol., 2001, pp. 73–74.

[16] V. Izosimov, “Scheduling and Optimization of Fault-Tolerant Dis-
tributed Embedded Systems,” Licentiate Thesis No. 1277, Dept.
Comput. Inf. Sci., Linköping University, Linköping, Sweden, 2006.

[17] J.-J. Han and Q.-H. Li, “Dynamic power-aware scheduling algorithms
for real-time task sets with fault-tolerance in parallel and distributed
computing environment,” in Proc. Int. Parallel Distrib. Process. Symp.,
2005, pp. 6–16.

[18] J. Xu and B. Randell, “Roll-forward error recovery in embedded real-
time systems,” in Proc. Int. Conf. Parallel Distrib. Syst., 1996, pp.
414–421.

[19] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Transparent recovery
from intermittent faults in time-triggered distributed systems,” IEEE
Trans. Computers, vol. 52, no. 2, pp. 113–125, Feb. 2003.

[20] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Dependable communi-
cation synthesis for distributed embedded systems,” in Proc. Comput.
Safety, Reliab. Security Conf., 2003, pp. 275–288.

[21] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger, “Distributed fault-tolerant real-time systems: The
mars approach,” IEEE Micro, vol. 9, no. 1, pp. 25–40, Jan. 1989.

[22] H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner, and J. Reisinger, “Tol-
erating transient faults in MARS,” in Proc. 20th Int. Symp. Fault-Tol-
erant Comput., 1990, pp. 466–473.

[23] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc.
IEEE, vol. 91, no. 1, pp. 112–126, Jan. 2003.

[24] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri, “From a federated to an
integrated architecture for dependable embedded real-time systems,”
Technische Univ. Wien, Vienna, Austria, Tech. Rep. 22, 2004.

[25] C. M. Krishna and A. D. Singh, “Reliability of checkpointed real-time
systems using time redundancy,” IEEE Trans. Reliab., vol. 42, no. 3,
pp. 427–435, Sep. 1993.

[26] H. Lee, H. Shin, and S.-L. Min, “Worst case timing requirement of
real-time tasks with time redundancy,” in Proc. 6th Int. Conf. Real-Time
Comput. Syst. Appl., 1999, pp. 410–414.

[27] F. Liberato, R. Melhem, and D. Mosse, “Tolerance to multiple tran-
sient faults for aperiodic tasks in hard real-time systems,” IEEE Trans.
Computers, vol. 49, no. 9, pp. 906–914, Sep. 2000.

[28] A. Maheshwari, W. Burleson, and R. Tessier, “Trading off transient
fault tolerance and power consumption in deep submicron (DSM)
VLSI circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
12, no. 3, pp. 299–311, Mar. 2004.

[29] A. Orailoglu and R. Karri, “Coactive scheduling and checkpoint deter-
mination during high level synthesis of self-recovering microarchitec-
tures,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 2, no. 3,
pp. 304–311, Sep. 1994.

[30] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Fault-
tolerant deployment of embedded software for cost-sensitive real-time
feedback-control applications,” in Proc. Des. Autom. Test Eur. Conf.,
2004, pp. 1164–1169.

[31] S. Poldena, Fault Tolerant Systems—The Problem of Replica Deter-
minism. Norwell, MA: Kluwer, 1996.

[32] P. Pop, P. Eles, and Z. Peng, Analysis and Synthesis of Distributed
Real-Time Embedded Systems. Norwell, MA: Kluwer, 2004.

[33] S. Punnekkat, A. Burns, and R. Davis, “Analysis of checkpointing for
real-time systems,” Real-Time Syst. J., vol. 20, no. 1, pp. 83–102, 2001.

[34] P. Puschner and A. Burns, “A review of worst-case execution-time
analyses,” Real-Time Syst. J., vol. 18, no. 2/3, May 2000.

[35] J. Sosnowski, “Transient fault tolerance in digital systems,” IEEE
Micro, vol. 14, no. 1, pp. 24–35, Jan. 1994.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

402 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

[36] S. Srinivasan and N. K. Jha, “Hardware-software co-synthesis of fault-
tolerant real-time distributed embedded systems,” in Proc. Eur. Des.
Autom. Conf., 1995, pp. 334–339.

[37] B. Strauss, M. G. Morgan, J. Apt, and D. D. Stancil, “Unsafe at any
airspeed?,” IEEE Spectrum, vol. 43, no. 3, pp. 44–49, Mar. 2006.

[38] C. R. Reevs, Modern Heuristic Techniques for Combinatorial Prob-
lems. Oxford, U.K.: Blackwell, 1993.

[39] D. Rossi, M. Omaha, F. Toma, and C. Metra, “Multiple transient faults
in logic: An issue for next generation ICs?,” in Proc. 20th IEEE Int.
Symp. Defect Fault Tolerance VLSI Syst., 2005, pp. 352–360.

[40] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Reli-
ability-aware co-synthesis for embedded systems,” in Proc. 15th IEEE
Int. Conf. Appl.-Specific Syst., Arch. Processors, 2004, pp. 41–50.

[41] Y. Zhang, R. Dick, and K. Chakrabarty, “Energy-aware deterministic
fault tolerance in distributed real-time embedded systems,” in Proc.
42nd Des. Autom. Conf., 2004, pp. 550–555.

[42] Y. Zhang and K. Chakrabarty, “A unified approach for fault tolerance
and dynamic power management in fixed-priority real-time embedded
systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.
25, no. 1, pp. 111–125, Jan. 2006.

[43] D. Zhu, R. Melhem, and D. Mossé, “Energy efficient configuration for
QoS in reliable parallel servers,” Lecture Notes Comput. Sci., vol. 3463,
pp. 122–139, 2005.

Paul Pop (M’99) received the Ph.D. degree in com-
puter systems from Linköping University, Linköping,
Sweden, in 2003.

He is an Associate Professor with the Informatics
and Mathematical Modelling Department, Technical
University of Denmark, Copenhagen, Denmark. He
is active in the area of analysis and design of real-time
embedded systems, where he has published exten-
sively and coauthored several book chapters and one
book.

Prof. Pop was a recipient of the Best Paper Award
from the Design, Automation, and Test in Europe Conference (DATE 2005) and
from the Real-Time in Sweden Conference (RTiS 2007), and was nominated for
the Best Paper Award from the Design Automation Conference (DAC 2001).

Viacheslav Izosimov (S’03) received the Qualified
Engineer degree in computer science (with honor)
from St. Petersburg State University of Telecom-
munications, St. Petersburg, Russian Federation, in
2002, the M.Sc. degree in information processing
and telecommunications from Lappeenranta Uni-
versity of Technology, Lappeenranta, Finland, in
2003 (IMPIT-program), and the Licentiate degree
in computer systems from Linköping University
(LiU), Linköping, Sweden, in 2006, where he is
currently pursuing the Ph.D. degree in computer and

information science.
His research deals with design optimization and scheduling of fault-tolerant

distributed embedded systems.
Mr. Izosimov was a recipient of the Best Paper Award from the Design, Au-

tomation and Test in Europe Conference (DATE 2005).

Petru Eles (M’99) received the Ph.D. degree in
computer science from the Politehnica University of
Bucharest, Bucharest, Romania, in 1993.

He is currently a Professor with the Department of
Computer and Information Science, Linköping Uni-
versity, Linköping, Sweden. His research interests in-
clude embedded systems design, hardware-software
codesign, real-time systems, system specification and
testing, and CAD for digital systems. He has pub-
lished extensively in these areas and coauthored sev-
eral books.

Prof. Eles was a corecipient of the Best Paper Awards from the European De-
sign Automation Conference in 1992 and 1994, and from the Design Automa-
tion and Test in Europe Conference in 2005, and of the Best Presentation Award
from the 2003 IEEE/ACM/IFIP International Conference on Hardware/Soft-
ware Codesign and System Synthesis. He is an Associate Editor of the IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND

SYSTEMS and of the IEE Proceedings—Computers and Digital Techniques. He
has served as a Program Committee member for numerous international confer-
ences in the areas of Design Automation, Embedded Systems, and Real-Time
Systems, and as a TPC chair and General chair of the IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis.

Zebo Peng (M’91–SM’02) received the B.Sc. degree
in computer engineering from the South China Insti-
tute of Technology, China, in 1982, and the Licentiate
of Engineering and Ph.D. degrees in computer sci-
ence from Linköping University, Linköping, Sweden,
in 1985 and 1987, respectively.

He is currently a Full Professor of Computer
Systems, Director of the Embedded Systems Labora-
tory, and Chairman of the Division for Software and
Systems with the Department of Computer Science,
Linköping University. He is also the Director of

the National Graduate School of Computer Science in Sweden. His current
research interests include design and test of embedded systems, electronic
design automation, SoC testing, design for testability, hardware/software
co-design, and real-time systems. He has published more than 200 technical
papers, and coauthored books.

Prof. Peng was a corecipient of two Best Paper Awards from the European
Design Automation Conferences (1992 and 1994), a Best Paper Award from
the IEEE Asian Test Symposium (2002), a Best Paper Award from the De-
sign Automation and Test in Europe Conference (2005), and a Best Presenta-
tion Award from the IEEE/ACM/IFIP International Conference on Hardware/
Software Codesign and System Synthesis (2003). He serves currently as Asso-
ciate Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

(VLSI) SYSTEMS, VLSI Design Journal, and the EURASIP Journal on Em-
bedded Systems. He has served each year on the program committee of a dozen
international conferences and workshops, including ATS, DATE, DDECS, DFT,
DTIS, ETS, ITSW, LATW, MEMOCDE, and VLSI-SOC. He was the Program
Chair of DATE’08. He is the Chair of the IEEE European Test Technology Tech-
nical Council (ETTTC), and has been a Golden Core Member of the IEEE Com-
puter Society since 2005.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 20, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

