
Methods and tools for reducing certification costs of
mixed-criticality applications on multi-core

platforms: the RECOMP approach

Paul Pop1, Leonidas Tsiopoulos2, Sebastian Voss3, Oscar Slotosch4,
Christoph Ficek5, Ulrik Nyman6, Alejandra Ruiz Lopez7

Abstract—The current trends in embedded systems are driving
the integration of more functions in one processing element. At
the same time, multicore architectures are increasingly used to
improve performance, reduce costs, power consumption and size.
Safety-critical applications are developed according to certifica-
tion standards, which, depending on the criticality level, dictate
the development processes and certification procedures that have
to be followed. Functions of different criticalities have to be sepa-
rated, both temporally and spatially, otherwise a low-criticality
function can corrupt a high-criticality function. Separation is
difficult to achieve in multicores, which leads to very high certifi-
cation costs: all the functions on a multicore have to be developed
as if they are of highest criticality. The RECOMP (Reduced certi-
fication cost for trusted multicore platforms) project aims at re-
ducing the certification costs of mixed-criticality applications on
multi-core platforms, and addresses several industries, including
industrial automation, automotive and avionics. The reduction in
certification costs is achieved through (1) the use of separation
solutions among mixed-criticality functions, through a combina-
tion of communication infrastructure, hardware, operating sys-
tems and middleware, methods and tools and component models,
such that the required independence is achieved; (2) reducing the
need for tool qualification, which is very expensive, by perform-
ing a tool-chain analysis of the tools used to develop a particular
system; (3) methods and tools which reduce development costs
and assist the designers in the certification lifecycle. This paper
presents the RECOMP approach to safety-critical multicore sys-
tems, with a focus on methods and tools.

I. INTRODUCTION
Safety is a property of a system that will not endanger hu-

man life or the environment. Many safety-critical systems are
also real-time: in a hard real-time system the “correctness of
the system behavior depends not only on the logical results of
the computations, but also on the physical instant at which the-
se results are produced” [1]. A hazard is a situation in which
there is actual or potential danger to people or to the environ-
ment. Risk is a combination of the frequency or probability of a
specified hazardous event, and its consequence. If, after per-
forming an initial hazard and risk analysis, a system is deemed
safety-related, it has to be certified [2]. Certification is a “con-
formity of assessment” performed by a third party. The current

certification practice is “standards-based” [3], and requires that
prescribed certification standards be followed, depending on
the application area. For example, IEC 61508 [4] is used in
industrial applications, ISO 26262 [5] is for the automotive
area, whereas DO-178B/C [6] refers to software for airborne
systems.

During the engineering of a safety-critical system, the haz-
ards are identified and their severity is analyzed, the risks are
assessed and the appropriate risk control measures are intro-
duced to reduce the risk to an acceptable level. A Safety-
Integrity Level (SIL) captures the required level of risk reduc-
tion. SIL allocation is typically a manual process, which is
done after performing hazard and risk analysis [2], but re-
searchers have proposed automatic approaches for SIL alloca-
tion. Although SILs differ slightly among areas (for example,
the avionics area [6] uses five “Design Assurance Levels”
(DAL), from DAL A to DAL E; in the automotive area there is
the Automotive SIL, or ASIL), the approaches presented in this
paper are applicable to all safety-critical areas, regardless of the
standard. SILs are assigned to safety functions, from SIL 4
(most critical) to SIL 0 (non-critical).

The SIL assigned to a function will dictate the development
processes and certification procedures that have to be followed.
SIL 0 functions are non-critical and can be developed using
any methods. For SIL 1, a more systematic approach is needed,
to the level required by quality management standards such as
ISO 9001. SIL 2 is quite similar to SIL 1, but typically involves
more reviewing and testing. SIL 3 is significantly more diffi-
cult. Certification standards will suggest specific methods to be
followed, and provide a checklist of techniques that are rec-
ommended to be applied. If “semi-formal” methods are ac-
ceptable in lower SILs, SIL 4 often requires formal methods,
increasing further the difficulty and development costs associ-
ated to building safety-critical systems. SIL 4 is not possible to
implement on a single chip due to redundancy requirements.

Many embedded applications, following physical, modular-
ity or safety constraints, are implemented using distributed
architectures, composed of several different types of hardware
components (called nodes), interconnected in a network. The
application software running on such distributed architectures
is composed of several functions. The way the functions have
been distributed on the architecture has evolved over time. Ini-
tially, in automotive and aerospace applications, for example,
each function was running on a dedicated hardware node, al-
lowing the system integrators to purchase nodes implementing

1. pop@imm.dtu.dk, Technical University of Denmark, Denmark
2. Åbo Akademi University, Turku, Finland
3. fortiss GmbH, Munich, Germany
4. Validas AG, Munich, Germany
5. Symtavision GmbH, Braunschweig, Germany
6. Aalborg University, Aalborg, Denmark
7. Tecnalia, San Sebastián, Spain

required functions from different vendors, and to integrate
them together into their system (this approach is also called a
“federated architecture”). However, the number of such nodes
in the architecture has exploded, reaching over one hundred in
an airplane or a high-end car, leading to increased wiring, in-
creased costs, size, weight and power consumption.

These trends have created a huge pressure to reduce the
number of nodes, use the resources available more efficiently,
and thus reduce costs. This is achieved through the integration
of several functions in one node (also called an “integrated
architecture”), see Figure 1. In addition, the nodes themselves
can be integrated into a single chip, as is the case with the trend
towards using multicore architectures, where several pro-
cessing cores can be integrated onto a single chip, decreasing
the costs, power consumption, size, and increasing the perfor-
mance through parallelization [7]. The same trends are driving
the integration of several levels of safety-criticality, together
with non safety-critical functions. The “Research Agenda for
Mixed-Criticality Systems” [9] defines a mixed-criticality sys-
tem as “an integrated suite of hardware, operating system and
middleware services and application software that supports the
execution of safety-critical, mission-critical, and non-critical
software within a single, secure computing platform”.

Such problems are faced in many other industries. At the
European level, multi-cores are addressed through EU projects
such as RECOMP (Reduced certification cost for trusted multi-
core platforms), which has the goal to “define a European
standard reference technology for mixed- criticality multi-core
systems supported by the European tool vendors” [10]. This
paper highlights the approach taken by RECOMP, at the level
of methods and tools, to reduce certification and re-certification
costs. Section II presents the requirements from standards on
separation, component models and methods and tools. The
RECOMP approach is detailed in Section III, and the conclu-
sions are presented in Section IV.

II. REQUIREMENTS FROM STANDARDS

A. Separation Requirements from Safety Standards
Functions of different SILs have to be separated. Other-

wise, for example, a lower-criticality function could write in
the code or data area of a higher-criticality function, leading
thus to a failure. The current practice to mixed-criticality sys-
tems is to physically separate the different criticality functions
in different hardware components, so they cannot influence
each other, see Figure 2.a. The figure shows two applications,

A with an SIL A, and B of SIL B. The applications are running
on top of and operating system (OS) and also, possibly, a mid-
dleware (MW). If such an approach has worked in the past, the
advent of multicores is, however, commonly regarded as a de-
sign challenge in the safety-critical area, as there are no estab-
lished approaches to achieve certification. When several safety
functions of different SILs share the same multicore, the stand-
ards require that the hardware and software be developed at the
highest SIL among the SILs of the safety functions (for more
details, see the standards), which is very expensive, see Figure
2.b. This is because the current multicore architectures do not
offer enough separation between the safety functions [8]. For
example, two tasks on separate cores might compete over the
bus for access to the memory, increasing the worst-case execu-
tion times (WCETs), on which important timing guarantees are
based. At the same time, there is an increased need for flexibil-
ity in the systems used in the safety-critical market. This need
for flexibility puts new requirements on the customization and
the upgradability of both the non-safety and safety-critical part.
However, currently, any small change in the critical or non-
critical functions, leads to an expensive recertification, at the
highest SIL.

Figure 2. Multicores: increased certification costs

On a multicore, the safety functions have to be developed
and certified at the highest SIL, unless, it can be shown that the
implementation of the safety functions is sufficiently independ-
ent, i.e., there is both spatial and temporal separation among
the safety functions. If the safety functions are sufficient inde-

Figure 1. From federated to integrated and multicore architectures

pendent, then the certification can be done at their own indi-
vidual SIL level, and this would reduce costs, as shown in Fig-
ure 3, in Section III.A. This has to be done first by using a
method for achieving independence (both temporal and spa-
tial), and secondly, there has to be a justification of the method.
Section III.A discusses the approach taken in RECOMP to pro-
vide sufficient independence.

B. Tool Requirements from Safety Standards
Tools are becoming more and more important in current

software and system development, and tool usage can signifi-
cantly reduce development costs, e.g., due to the automation of
manual tasks. However, this increases also the threats that the
tools can introduce errors into the products or fail to detect
them. Therefore, current safety standards require analyzing the
tools in the development and verification process. The analysis
covers all tools and is done in three steps:

1) Does the tool have any impact on the safety of the prod-
uct? This is true if the tool’s output is part of the product,
or if the tool is used in some development / verification
steps required by the standards.

2) If the tool has such an impact, it needs to be classified. The
classification depends on the standards.

3) If the classification result is “critical” the tool has to be
qualified. Qualifications can be certified. There are differ-
ent qualification methods possible, according to the stand-
ards.

There are three important standards to be considered: DO-
178C with DO-330 for tool qualification, IEC 61508 and ISO
26262. For example, the ISO 26262 standard has three classes
for the tools according to the required tool confidence level
(TCL). TCL1 means no confidence required, while TCL3 de-
notes high Confidence requirement that has to be provided by
qualifying the tool. The computation of the tool qualification
levels depends on an analysis of the use cases for tools that
have impact. Tool impact TI1 means no impact, and TI2 means
that the potential tool failures can have impact on the safety of
the developed system. The analysis considers all potential er-
rors of the tool in the use cases and their detection (Tool error
detection, TD) or prevention probabilities by checks and re-
strictions. These are classified as: TD 1—Tools with high de-
tection probabilities for all potential errors; TD 2—Tools with
some medium detection probabilities for some potential errors;
TD 3—Tools with unknown or low detection probabilities for
some potential errors. Based on this, the tool confidence level
according to ISO 26262 is computed according to the follow-
ing table:

TABLE I. DETERMINATION OF TOOL CONFIDENCE LEVEL (TCL)
ACCORDING TO ISO 26262 [5]

A simple example is the well-known tool make, which
builds executable programs (and libraries) from source code,

based on an input file called a makefile. In a general use-case,
there is the danger of not considering some dependencies (tool
faults or errors in makefiles), which means that the result would
be a wrong (old) executable, which is not detectable when
make is called without intensive analysis. Therefore make
would have TCL 3 in such use-cases. However, if the process
is changed a bit by requiring that make with the argument
“clean” is executed before make is called to build the executa-
ble, then the probability of detecting non-considered dependen-
cies is high and in this case make has a reduced TCL of 1.

Tool qualification is the next step. Only critical tools need
to be qualified. The three main standards differ in the proposed
qualification methods. While the IEC 61508 requires a proven
in use argumentation, or a validation of the critical tools to be
qualified, the ISO 26262 has the following methods selections
available for TCL3 (and similar also for TCL2):

TABLE II. TOOL QUALIFICATION ACCORDING TO ISO 26262 [5]

This table shows that the tool qualification according to
ISO 26262 can be done in several ways; for higher tool confi-
dence levels the recommended methods are development ac-
cording to a safety standard and validation. Regardless of the
approach taken, tool qualification is very costly, and should be
avoided, if possible.

Section III.B presents RECOMP’s approach to reducing
tool qualification costs to a minimum.

C. Component Model Requirements from Safety Standards
To address the complexity of today’s systems, engineers

use component-based development approaches, which encour-
age modularity and reuse. Applying component-based meth-
odology and component-based mindset during the Safety De-
velopment Life Cycle is believed to improve the reuse and
testability of the developed system. It is expected that a com-
ponent-based methodology will help reduce the development
as well as certification and re-certification costs, using several
aspects in certification standards (e.g., IEC 26262) that are
relevant to support a modular certification of the system under
consideration (e.g., a dedicated component model or the no-
tion of a “Safety-Element out of Context”).

There are differences among standards on this issue. In the
avionics domain, DO-297 refers to “Integrated Modular Avi-
onics”, which provides separation among modules. In IEC
61508 the reuse is addressed with the concept of the compli-
ance item. In this paper we will use ISO 26262 as an example.
Thus, ISO 26262 (Part 10, Key Concepts) provides a compo-
nent model that contains several elements: Function, System,
Component, Element, Item, Part/Units. A system is a set of
elements, at least sensor, controller, and actuator, in relation
with each other in accordance with a design. Note that an ele-
ment of a system can be another system at the same time.
Components can be seen as non-system level, non-elementary,

logically and technically separable elements; a component is a
part of a system and consists of software units or hardware
parts. An element is a system or part of a system, including
components, hardware part, and software units. An Item can
be seen as the system or the systems under consideration.
Systems can be hierarchically structured and consist out of a
set of functions. Each system is composed out of a set of com-
ponents that in turn can be hierarchically structured as well.
Systems are elements or are composed of elements. Non-
atomic elements are components and atomic elements are ei-
ther software parts or hardware units. The ISO 26262 compo-
nent model supports a modular construction of the item under
consideration, including suitable generic levels of abstraction
for the corresponding elements.

Furthermore, it supports modular certification by providing
means for system decomposition, and corresponding construc-
tive and analytic methods of quality assurance for the specific
type of elements, e.g. “Criteria for co-existence of different
ASILs within the same element”, see Part 9, Clause 6 in [5].

A distributed and modular development of reusable ele-
ments is also supported in ISO 26262, Part 10, Clause 10 by
the “Safety-element out of context” (SEooC). A SEooC is de-
fined as follows: a SEooC is never an item; a SEooC can either
be a subsystem, a hardware component, or a software compo-
nent; typically, requirements at higher levels remain in the sta-
tus “assumed” (see ISO 26262, Part 8, Clause 5) and will be
confirmed when the SEooC is used in an item development.
The correct implementation of the assumed requirements will
be verified during the SEooC development, but the validation
takes place during the item development. The development of a
SEooC starts at a certain level of requirements and design, and
all information on requirements or design prerequisites are pre-
determined in the status “assumed”. The use of assumed safety
goals and functional safety requirements provided by the
SEooC leads to an ahead-construction of modularly applicable
sub-systems that will lead to a reduction of certification costs,
due to reuse.

III. THE RECOMP APPROACH

A. Sufficient Separation
One approach, taken by other EU projects, e.g., ACROSS

[11], is to provide such a separation at the platform level, using
architectural mechanisms, see Figure 3.a. For example, if the
communication on the network is predictable, e.g., using a
time-triggered policy, each core has a particular time slot when
it’s allowed to transmit, then the WCETs will not be affected
by the shared network. However, semiconductor vendors oper-
ating in mass markets are unlikely to adopt and develop com-
pletely new architectures. RECOMP addresses several indus-
tries, including mass markets such as automotive and industrial
automation, and has to deliver solutions applicable in these
areas. The approach taken in RECOMP is to provide the sepa-
ration among mixed-criticality functions using a combination
of communication infrastructure (“Comm.” In Figure 3.b),
hardware (HW), operating systems (OS) and middleware
(MW), methods and tools and component models, such that the
required independence is achieved, see Figure 3.b.

Figure 3. Multicores: two approaches to reduced certification costs

1) The Infineon platform
The complete description of hardware platforms developed

in the project is available in [12]. One example platform is the
Trusted Compute Platform (TCP), which is a development
board designed by Infineon Technologies, AG, to support au-
tomotive and industrial applications. The board is designed to
provide most of the conventional capability of an Automotive
ECU such as, CAN, FlexRay and SPI networking connections,
5V ADCs with multiple channels, and an automotive quality
safety watchdog. In addition, it provides more established in-
dustrial interfaces such as Ethernet and USB, a robust debug
infrastructure which supports debug not only of the “virtual
microcontroller” but of the TCP board itself, and an LCD
screen for more immediate feedback than in a traditional closed
Automotive ECU.

The main interest in the virtual microcontroller (from a
RECOMP perspective) is the IP (see Figure 4), which has been
enhanced to contain mechanisms developed to support the
RECOMP requirements. The enhanced IP modules include: the
CPU itself, main interconnect for code and data and interrupt
infrastructure. The CPU has been modified to provide more
support for isolation of tasks and applications. As well, the
interconnect and all peripherals and memory modules are all
enhanced to provide more isolation from tasks and processors,
in addition this also provides protection against hardware
faults. The interrupt mechanism, which supports some core-to-
core communication requirements, is also enhanced to become
more robust against faults. The TCP will be deployed with an
AUTOSAR [13] OS and PharOS [14], which have been ex-
tended to take advantage of this platform. The hardware plat-
form and the OS/middleware provide isolation services, thus
supporting mixed-criticality applications.

TC1.6
CPU0
Lockstep

FPU

TC1.6
CPU1

PMI DMI

TC1.6
CPU0
Lockstep

PMI DMI

Cross Bar Interconnect

FPU

DSPR
DCACHE

FPU LMU

RAM

ICU
PSPR
ICache

DSPR
DCache

DSPR
DCache

PMU

BROM PFlash DFlash

PSPR: Programme Scratch Pad RAM
DSPR: Data Scratch Pad RAM
ICache: Instruction Cache
DCache: Data Cache

PMU: Programme Memory Unit
BROM: Boot ROM
PFlash: Programme Flash
DFlash: Data Flash

LMU: Local Memory Unit

ICU: Interrupt Control Unit

Bridge

LockStep Core

PSPR
ICache

Figure 4. Subset of virtual microcontroller with RECOMP

(enhanced IP in yellow)

2) SymTA/S analysis tool
The complete list of methods and tools developed in the

project, which span the whole life-cycle and address multiple
areas, is presented in [15][16][17][18]. The deployment of
components has an impact on certification. The configuration
relies on synthesis tools, which generate the configuration pa-
rameters such that separation is guaranteed, in terms of func-
tionality, fault-containment and timing. Examples of configura-
tion are the decision on which time-slots to use for a given
component, if a time-based separation is used (e.g., in the case
of static temporal partitions), or on which core and partition to
place a function, which is a space-based separation. Configura-
tion techniques can guarantee timing compositionality, which
might be impossible to provide only relying on separation
mechanisms from the platform. In our context, partitioning
means deciding the borders of a component and/or how to
group components into larger ones, and mapping means decid-
ing the assignment of components to the different cores of a
multi-core system, or an assignment to time slots—
configuration decisions related to deployment. Both partition-
ing and mapping provide a way of separating the mixed-
criticality functions such that non-interference is guaranteed.

In this context, one example tool is the SymTA/S tool [19]
from Symtavision GmbH, which has been extended in
RECOMP to be able to analyze different multi core configura-
tions. Worst-case scheduling and performance analysis is used
for to characterize the worst-case timing behavior of the soft-
ware. This provides upper bounds for the system timing. In
reality these bounds should never be reached but the system,
especially a safety critical one, should be designed to handle
such worst case scenarios. The whole technology is model
based and abstracts from details of the systems and considers
only relevant parts for the scheduling and performance analy-
sis. It can be used for modeling and planning of upcoming sys-
tems but also for validation of already existing and finished
systems.

With multi cores new challenges appears for developers but
also for the scheduling analysis. One identified issue in multi
cores are communication overheads resulting from core cross-
communication. Communication means here the exchange of

data between software functions running on different cores.
This data is written by one core into a memory and is read by
the other core from the memory. In AUTOSAR, this is covered
by the IOC (Inter-OS-Application communication). Depending
on the structure of the different cores and memories and also on
the implementation of the IOC by an operating system, differ-
ent amounts of overheads are introduced. For heterogeneous
memory structures, the overhead depends on where the data is
stored. This could be in local fast memories for one core or in
global shared memories connected by crossbars or other bus
technologies.

Industrial experience, and the experience in RECOMP, has
shown that these overheads can get significant and the over-
head dominates the system. In RECOMP, Symtavision added
an explicit consideration of memory access overheads to their
SymTA/S tool. This allows to analyse how much data is ac-
cessed by which core and software function and how much
overhead does it introduce. With this information, optimiza-
tions are possible to reduce the overhead in the system; less
overhead means more performance and reduces bottleneck
situation.

B. Minimizing Tool Qualification
The Tool Chain Analysis (TCA) [20] method has been de-

veloped and applied within the RECOMP project. It automati-
cally computes the tool confidence level (TCL) according to
ISO 26262 and can also reduce the tool qualification level. The
method is based on a formal model of tools, use cases, artifacts,
potential errors, checks and restrictions etc. and an algorithm to
compute the TCL. Furthermore, it has an error model to sys-
tematically derive potential errors using attributes that charac-
terize the tools (black-box and white-box). An important aspect
of the method is that it allows formalizing assumptions in order
to express that certain checks for potential errors during the
development process have to be applied by the developers.

The tool chain analysis method has been implemented in a
“Tool Chain Analyzer” software tool. The tool also contains a
report generation feature and has a documentation explaining
the model and features. The Tool Chain Analyzer has TCL 1
with the assumption that the confirmation review of the TCLs
and the qualification measures are done on the generated re-
port. Since this review is required by ISO 26262, the tool is
uncritical and requires no further qualification.

The tool has been applied in three large industrial projects.
One result was a tool chain with 39 tools, which could be ex-
tended by small process extensions and some redundancy, such
that only the qualification of one tool was necessary. Compared
with the results of a fixed tool confidence level classification as
proposed in literature, this has dramatically reduced the tool
qualification costs by reducing the number of tools to be quali-
fied from 13 to 1. Therefore, the tool chain analysis method can
substantially reduce certification costs by minimizing costly
tool qualification.

C. Component Models for Certification
From a development process point of view, significant cost

savings can be achieved by streamlining the management of the
needed information for the certification authorities. Traceabil-
ity of information through the development cycle requires sig-

nificant effort. In order to effectively use components, they
need to carry enough information with them in order to be use-
ful in a development process for certified safety critical sys-
tems. What information is needed is domain specific (standard
specific) and depends on the safety integrity level of the system
where the component will be used. Verification and validation
is also a time and resource consuming task. Automated test
case generation, other automated verification techniques and
re-use of components could bring savings.

We have surveyed the existing component models and pro-
posed a component model specification for safety-critical sys-
tems to support certification. The component model specifica-
tion has been initially developed as an extension to the compo-
nent model of AutoFocus 3 (AF3) [21]. AF3 system model is
divided into several models that provide different levels of ab-
straction. This enables component-based modeling at the func-
tional, logical, and technical design levels. The AF3 component
model is inspired from the Esterel language currently used in
state-of-the-art development of safety-critical systems, and uses
a message-based, discrete-time communication scheme as its
core semantic model. To support a wide range of development
processes, RECOMP is currently extending the CESAR meta-
model [22] with the essential parameters of the component
model specification for certification. The CESAR metamodel is
part of the ARTEMIS tool reference platform [23] addressing
the complete development lifecycle of safety critical embedded
systems, without focusing on certification.

In order to use a component model specification for certifi-
cation, we have identified certain basic parameters to be asso-
ciated, with respect to the component meta-model that might be
necessary for certification purposes. These parameters are:
Unique ID–To ease identification within a component library;
Version number; Name–Name of the component; Description–
Description of the functionality provided by the component;
References to requirements fulfilled by the component; Refer-
ences to test cases–Tests applied to verify the component; Safe-
ty Integrity Level (SIL)–The SIL capability of the component;
Functionality–Safety related–the component implements func-
tionality related to the safety function; Diagnostic–the compo-
nent implements a diagnostic function; Non-safety related–the
functionality provided by the component is non-safety related;
Rules/Restrictions–Specifies rules/restrictions that have to be
followed in order to reuse the component;

The proposed component model has been used to model an
industrial case study (emergency stop function) from Danfoss
Drives [15].

D. Verification and Validation vs. Certification
Assume-guarantee methods have been used to support

compositional verification. However, these methods are not
applicable to certification [3], across all industrial areas. Certi-
fication for multicore architectures can use compositional veri-
fication only if separation mechanisms are provided, which
guarantee that, if something goes wrong with a component, will
not influence indirectly (through shared memory corruption for
example) other components. Component validation checks the
components in isolation, before they are put together. This is
done offline, using testing and/or verification to determine the

correctness of the implementation and online using runtime
monitoring to check the separation between the safety and non
safety-critical parts.

IV. CONCLUSIONS
This paper has presented the RECOMP approach to imple-

menting mixed-criticality applications on multi-core platforms
aiming at reducing certification and re-certification costs. The
increased certification costs are due to the nature of multicores,
which do not provide sufficient separation among mixed-
criticality functions. Thus, the designers are forced to develop
at the highest criticality level, which is prohibitively expensive,
and to re-certify the system for any small upgrade, even of the
non-critical functions. RECOMP reduces the certification costs
by offering sufficient separation, through mechanisms at plat-
form, OS, middleware and component levels, and through the
carefully planned use of methods and tools such that this sepa-
ration is guaranteed. In addition, the methods and tools used in
a tool-chain to develop a particular system can be analyzed,
such that costly tool qualifications are reduced and minimized.

REFERENCES
[1] Kopetz, H. Real-time systems: design principles for distributed

embedded applications, Springer, 2011.
[2] Storey, N. Safety critical computer systems. Addison-Wesley, 1996.
[3] Rushby, J. Just-in-time certification. 2007.
[4] Standard IEC 61508: Functional Safety of Electrical/ Electronic/

Programmable Electronic Safety-related Systems. International
Electrotechnical Commission, 2010.

[5] ISO/DIS 26262:. International Standard Road vehicles— Functional
safety, International Organization for Standardization, 2012.

[6] RTCA, DO-178C Software Considerations in Airborne Systems and
Equipment Certification, 2011

[7] Ernst, R. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] Nowotsch, J., Paulitsch. M. Leveraging Multi-core Computing
Architectures in Avionics. In European Dependable Computing
Conference, pp.132-143, 2012.

[9] Barhorst, J. et al. A research agenda for mixed-criticality systems. In
Cyber-Physical Systems Week, April 2009.

[10] RECOMP project, Reduced certification cost for trusted multi-core
platforms, www.recomp.eu

[11] ACROSS project, ARTEMIS CROSS-Domain Architecture,
www.across-project.eu

[12] Deliverable D3.4, HW support for operating systems, applications and
monitoring, RECOMP, 2012

[13] AUTOSAR, AUTomotive Open System ARchitecture, www.autosar.org
[14] Lemerre, M. et al. Method and tools for mixed-criticality real-time

applications within PharOS. In Object/Component/Service-Oriented
Real-Time Distributed Computing Workshop, pp. 41-48, 2011.

[15] Deliverable 2.1, Component model specification, RECOMP, 2012
[16] Deliverable 2.2, Report on component validation methods and

techniques, RECOMP, 2012
[17] Deliverable 2.3, Report on methods and techniques for verification,

validation and timing analysis, RECOMP, 2012
[18] Deliverable 2.4, Report on configuration methods and techniques,

RECOMP, 2012
[19] SymTA/S, www.symtavision.com
[20] Tool Chain Analyzer, www.validas.de
[21] AutoFOCUS3, af3.fortiss.org
[22] D_SP1_R3.2_A_M2, Meta-Model Specification for RTP 2.0,

www.cesarproject.eu
[23] Artemis tool platform, www.artemis-ia.eu/tool_platform

