
Placement Algorithm for
Flow-Based Microfluidic Biochips

Michael Raagaard

Kongens Lyngby
B.Sc. June, 2014

Supervisor: Paul Pop



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk

B.Sc.-2014



ii



Summary

Microfluidic biochips revolutionize biology by placing laboratory functionality
on a very small chip. The subject of this thesis is a flow-based biochip, which
consists of thin channels in which fluids flow. The basic building block of the
chip is a valve, which can direct the flow by blocking or unblocking channels.
The valves are combined to create components like switches, mixers, and mul-
tiplexers.

Biochips are currently designed manually using drawing tools like AutoCAD.
The process is both tedious and error prone. Especially as biochips become
larger and more complex.

The biochip design process consists of many phases. One of the first things that
must be decided, is the placement of the components. The designer seeks the
best placement as he places each component on the chip. Components should
be packed close together to reduce the chip size. The placement should also
attempt to facilitate direct and non-intersecting routes between components.
This is to minimize the flow transportation time between components and to
avoid introducing additional switches.

This thesis proposes an automated component placement tool, which assists the
designer in choosing the best placement. The following chapters describe the
algorithmic aspects of analysing and implementing such a tool. Components,
connections, routes, and the chip itself are modelled to represent a component
placement. A heuristic algorithm is proposed for optimizing the placement, and
finally the algorithm is evaluated on several synthetic and real life benchmarks.
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Chapter 1

Introduction

Microfluidic biochips are chips on which one or more laboratory functions are
placed. The chips are only a few square centimeters in size and manipulate
extremely small volumes of fluid. Based on these properties, biochips are con-
sidered a revolutionizing alternative to conventional biochemical laboratories.

Biochips have a number of advantages compared to conventional practises.
Small volumes of fluid are used in the chips, which mean small reagent and
sample volumes. Furthermore, small fluid volumes enable fast biochemical re-
actions and fast manipulation like heating, filtering, etc. This result in faster
analysis and higher system throughput.

This technology is still new, so the number of applications for biochips is lim-
ited. However, many researchers believe that biochips will play an important
role in biochemical fields in the near future. In particular, biochips may prove
extremely useful in diagnostic testing. The objective is to design biochips that
can effectively diagnose deceases, and with minimal fabrication costs [3]. This
way, disposable chips can be used to diagnose deceases in clinics, which do not
have access to expensive laboratory equipment. Such a chip has recently been
designed to test for HIV and syphilis [2].

This thesis is based on the type of biochips called flow-based microfluidic biochips.
Figure 1.1 shows a flow-based biochip. On this kind of chip, fluids flow in a con-
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tinuous flow. The fluids enter the chip at several input ports, and flow on the
chip in thin channels until leaving the chip at output ports. Along the way
the fluids are manipulated in different ways. The next section describes the
structure of the flow-based biochip in detail.

Figure 1.1: Picture of a flow-based microfluidic biochip. The thin lines are
either flow channels or control channels to manipulate the direction
of the flow. Borrowed from [12].

1.1 Flow-Based Microfluidic Biochips

The smallest unit in a flow-based biochip is a valve. When closed, fluids can-
not pass the valve. The valves are combined to obtain various operations such
as switching, mixing, and multiplexing. This resembles electronic components,
which is why the process is referred to as microfluidic Very Large Scale Integra-
tion (mVLSI).

The chip is made up of two layers, the control layer and the flow layer. Figure
1.2 shows the two layers. The flow layer contains thin flow channels in which
the fluids flow. The control layer contains empty channels, which are connected
to an external air pressure source. A valve is constructed by letting a control
channel intersect with a flow channel like in figure 1.2. If pressure is applied to
the control channel it will expand and block the flow channel. This corresponds
to a closed valve. If no pressure is applied the flow can pass the valve. This
corresponds to an open valve.

The flow in a biochip is directed by opening and closing valves in a certain
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Figure 1.2: Illustration of the control layer and the flow layer. The control
layer contains empty channels, which can block flow if pressure is
applied. This is how a valve is constructed. Adapted from [7].

order. Figure 1.3 shows how three different switch configurations are build
using valves. Other components, like multiplexers and mixers, are build in
similar ways. Unlike electric circuits, two flow channels are allowed to intersect.
However, if two different flows use the same channel simultaneously both fluids
are contaminated. To avoid this, a switch of four valves is introduced to make
sure that both routes cannot pass the intersection point simultaneously. Figure
1.3c shows such a switch.

(a) (b) (c)

Figure 1.3: Three different switch component configurations to direct the flow.
Adapted from [7].

1.2 Biochip Design Process

The biochip design process goes through a number of different design phases
before the chip is fabricated. The design phases are mentioned in the following
subsections.
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1.2.1 Schematic Design

The first phase is designing the schematic of the chip. A number of different
components are allocated to perform the operations required by the applications
that should run on the chip. The connectivity of the allocated components is
described in a netlist. See figure 1.4. A connection from one component to
another represents that fluids can flow out of the first component and into the
second component.

Input

Port

Output

Port

Mixer1

Mixer2

Figure 1.4: Illustration of a netlist.

1.2.2 Component Placement

Component placement is the first part of the physical synthesis of the chip.
Based on the netlist from the schematic design phase, the physical positions
and orientations of the components are determined. The placement is done
based on the physical dimensions of the components and a set of design rules
that ensure fabrication of the chip. The result is a chip architecture with all
components placed, like shown in figure 1.5.

Mixer1

Mixer2

Output
Input

Figure 1.5: Illustration of a component placement.
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1.2.3 Flow Channel Routing

Flow channel routing is the second part of the physical synthesis. The purpose of
the phase is to design the flow channel routes between components. The routing
is done based on the netlist and the physical placement of the components, while
complying with a set of design rules. See figure 1.6.

Mixer1

Mixer2

Output
Input

Figure 1.6: Illustration of a flow channel routing.

1.2.4 Application Mapping

The purpose of the application mapping phase is to map the application onto
the chip by scheduling which components are used when and for what opera-
tion. The mapping must take into account the time it takes for fluids to pass
a component and the time spend transporting fluids from one component to
another. The time to transport fluids from one component to another depends
on the length of the route. This is why the application mapping phase must be
performed after the flow channel routing phase.

1.2.5 Control Channel Routing

Control channel routing is the third and last part of the physical synthesis. With
the application mapping phase completed it is known which valves to open and
close at what time. Based on this information the control channels are routed.
The control channel routing phase must know the internal structure of each
component in order to route a channel to each valve. See figure 1.7.



6 Introduction

Figure 1.7: Illustration of a control channel routing. Small black circles indi-
cate ports and the large circular channels are the internal structure
of a mixer.

1.2.6 Fabrication

When all design phases are completed the chip is ready for fabrication. The
biochips are fabricated using a transparent, inexpensive, rubber-like material,
polydimethylsiloxane (PDMS). One layer is fabricated for the flow layer and one
layer is fabricated for the control layer. These two layers are aligned and sealed
on a flat plate, typically made of glass. Channels are made by removing PDMS
material where the channels should be. Thus, channels are effectively absence
of PDMS material.

1.3 Motivation

Currently, biochips are designed manually. The designer must have a deep un-
derstanding of all aspects of the design process, from application, to component
sizes and internal structure, to design rules.

The placement and routing is done using drawing tools like AutoCAD. Compo-
nents are drawn within the chip area and lines are drawn between components
to represent flow channel routes. This design process is very labor intensive and
error prone, which makes it expensive to develop new biochip designs. Espe-
cially as the complexity of the chips continue to increase. Thus, tools that assist
and automate part of the design process could greatly help the designers and
contribute to the advancements in the field.
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This thesis explores techniques and algorithms for automating the component
placement. The purpose is to design and implement a tool to assist the designer
in the component placement design phase. Implementing such a tool requires
a biochip architecture model, heuristics for placing components, as well as a
way to judge the quality of a placement. The remaining chapters elaborate
these topics, formulate the exact problem, and evaluate the tool on a set of
benchmarks.
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Chapter 2

Biochip Architecture Model

Performing an automated component placement requires a biochip architecture
model and a netlist model. The biochip architecture models the essential parts
of the physical architecture and the netlist models the components on the chip
and connections between components.

Simplifying assumptions are made to explicitly define the problem and to re-
duce the problem size. In the following sections models are proposed for the
component placement phase of the physical synthesis. In addition, a flow chan-
nel route model is proposed. The route model proves useful when judging the
quality of placements.

2.1 Netlist

The purpose of the netlist is to define which components are to be placed on
the chip, and their interconnections. Thus, it models the functionality of the
chip but not the physical layout. The netlist is modelled as a directed graph,
N = (V,E), where V is the set of components and E is the set of connections
between components. An edge going from vertex, vi, to vertex, vj , represents
that fluids can flow out of component, i, and into component, j. Figure 2.1
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shows a simple netlist example.

Output1

Filter1

Mixer1

Input2

Input1

Figure 2.1: A netlist, N , with vertices representing components and edges
representing connections. Each component is given a unique iden-
tifier.

2.2 Architecture

The architecture model is a combination of four models. The first three are:
Component model, connection model, and grid model. These three models are
necessary to guarantee that the architecture model represents valid placements.
A valid placement has no overlapping components and satisfies design rules that
ensure the biochip fabrication. The fourth model, the route model, is used to
judge the quality of the placement in terms of how well the flow channels are
routed.

2.2.1 Component Model

The component model represents properties of the physical component, which
are needed to perform the placement. The internal structure of the components
is not important to the placement. Thus, it is sufficient to represent components
only by a surrounding rectangle and the points where flow enters (entry point)
and leaves (exit point) the component. The internal flow channels, control
channels, and valves are left out. Figure 2.2a shows the internal design of a
mixer component, and figure 2.2b shows the simplified component model for
the same component.

In general, it is throughout the thesis assumed that the internal component
design is a local problem that will not affect the global placement problem.
It is also assumed that there is only one entry point and one exit point for
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(a)

Mixer1

(b)

Figure 2.2: A mixer component with internal flow channels, control channels,
and valves (a), and the corresponding component model (b).
indicates entry point and indicates exit point.

each component. The input and output ports of the chip are also modelled as
components. However, flow can only leave the input port and only enter the
output port, so the input port has no entry point and the output port has no
exit point.

2.2.1.1 Component Library

Based on the physical dimensions of the different component types, and the
location of the entry and exit points, a component library, L, is constructed.
See table 2.1. In addition, the number of valves that make up each component
is listed. The valves are used for experimental evaluations in chapter 7.

The components listed in L are in the default orientation. This means that
rectangular components are wider than they are high, the entry point is on the
left side of the component, and the exit point is on the right side of the compo-
nent. A placement might involve rotating a component either 90◦, 180◦, or 270◦

degrees, so each component type can be placed in four different orientations.

2.2.1.2 Design Rules

A number of design rules have been suggested to ensure that a chip is fabricat-
able. These design rules involve all aspects of the physical synthesis. The ones
relevant to placement are listed in table 2.2.

Adding a border of 5 units (1 unit = 150µm) around all components ensures that
the spacing between any two components is at least 10 units. This is effectively
done by increasing the size of all components by 10 units in both dimensions.
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Component Dimensions Entry Exit Valves
Type (w × h) Point Point
Input 5× 5 - (5, 2) 1
Output 5× 5 (−1, 2) - 1
Mixer 30× 30 (−1, 15) (30, 15) 9
Filter 120× 30 (−1, 15) (120, 15) 2
Detector 20× 20 (−1, 10) (20, 10) 2
Separator 70× 20 (−1, 10) (70, 10) 2
Heater 40× 15 (−1, 7) (40, 7) 2
Metering 30× 15 (−1, 7) (30, 7) 6
Multiplexer 30× 10 (−1, 5) (30, 5) 2
Storage 90× 30 (−1, 15) (90, 15) 28

Table 2.1: Component Library, L. Entry and exit points are coordinates rel-
ative to the upper left corner of the component. A scaling unit of
150µm is used. Dimensions and valve information are extracted
from [7, 14], and entry and exit points are based on own assump-
tions.

Rule Minimum Value
Spacing between external ports (input and output) 10
Spacing between other components 10

Table 2.2: Placement design rules suggested ensuring fabrication. A scaling
unit of 150µm is used. The design rules are extracted from [1].

2.2.2 Connection Model

From the netlist, N , the component interconnections are retrieved. An edge in
N between components, i and j, represents a connection from the exit point of
i to the entry point of j. The connection model is constructed from the netlist,
N , and the component library, L.

The connections are modelled as a bipartite graph, C = (U, V,E), where U is
the set of exit points, V is the set of entry points, and E is the set of con-
nections between entry and exit points. The properties for a bipartite graph
ensure that no connections exist between two entry points or two exit points.
Figure 2.3a shows a component placement and the edges illustrate component
interconnections. Figure 2.3b shows the corresponding connection model, where
a connection is an edge between exit and entry points.
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Mixer1

Output1

Input1

Input2

Filter1

(a)

Mixer1

Output1

Input1

Input2

Filter1

(b)

Figure 2.3: An architecture with placed components and connections (a), and
the corresponding connection model, with entry and exit points
(b).

2.2.3 Grid Graph Model

The chip area is divided into square cells such that it is represented by a w× h
grid. w is the number of cells in the horizontal direction, and h is the number of
cells in the vertical direction. The grid is modelled as a grid graph, G = (V,E),
where V is the set of cells in the grid, and E is the set of edges defining adjacent
cells. An edge between vertex, vi, and vertex, vj , represents that vi and vj are
adjacent in the grid. Figure 2.4a shows a chip divided into cells, and figure 2.4b
shows the corresponding grid graph.

When components are placed on the chip, cells that are within the area of the
component are allocated to that component. A cell is only allocated to one
component at a time. This prevents overlapping of components. Furthermore
the component border ensures that the placement design rules are satisfied.

The size of the individual cells determines the total number of cells. Choosing
a large cell size decreases the granularity of the grid, hence also decreases the
problem size. If the cell size is too large accuracy is lost and chip area might
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(a) (b)

Figure 2.4: Chip area divided into cells (a), and the corresponding grid, G,
(b). Notice that vertices are occupied for components as well as
component border. The shaded area indicates component border.

be wasted. Unless otherwise state, the cell size is 5 units throughout the thesis.
All component sizes in L and placement design rule values are multiplums of 5,
which means that a cell size of 5 will not compromise placement accuracy.

2.2.4 Route Model

A route is modelled as the set of cells, which the route overlaps. A route belongs
to the connection, which it routes. The route always begins in an entry point
and ends in an exit point, as defined by the connection model. Let r(e) be the
set of cells for the route corresponding to connection, e. Furthermore, let |r(e)|
denote the number of cells in r(e), and thus the length of the route.

As for placement, there are a number of design rules for the flow channels.
These design rules are relevant when doing the flow channel routing. They are
presented in table 2.3.

Rule Value
Minimum spacing between flow channels 0.27
Flow channel width 0.67
Valve width 0.67

Table 2.3: Flow channel design rules suggested to ensure fabrication. A scaling
unit of 150µm is used. The design rules are extracted from [1].

Note that the total width of the flow channel when adding the minimum spacing
is 0.94 units. Thus, with a grid size of one unit, routes have a width that is
approximately the same as the physical width.

Routes cannot occupy cells that are already occupied by components. However,
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routes are allowed to occupy cells that are occupied by component border. Fur-
thermore, multiple routes are allowed to occupy the same cell. This is the case
when two routes intersect or if two routes overlap, which means that they share
a route segment.

To meet these requirements a layer model, Z, is introduced. The layer model
associates a set of occupants for a given cell in G. There are three different
types of occupants: Components, component border, and routes. A component
is always the only occupant of a cell. Let Z(c) be the set of occupants at cell,
c. Similarly let ZR(c) be the set of routes at cell, c. A notation for the set
of routes at a cell proves useful when basing the placement on routing quality.
This is discussed in chapter 6. Figure 2.5 illustrates the layer model.

T

S
1

S
2

Figure 2.5: 3D-visualization of the different layers in the layer model. Associ-
ated with each cell is the set of occupants at the cell. Occupants
are either components (green circles), component border (small
gray circles), or routes (blue squares for route (S1, T ) and red
polygons for route (S2, T ).

The figure shows two routes beginning in cell S1 and S2, respectively, and both
ending in T . The set of cells associated with route (S1, T ) is visualized with
blue squares while the set of cells associated with route (S2, T ) is visualized with
red polygons. Both routes are associated with the cells where the two routes
overlap.



16 Biochip Architecture Model



Chapter 3

Problem Formulation

This thesis deals with the problem of designing a component placement algo-
rithm for flow-based microfluidic biochips. The placement is based on inter-
connections between components and the sizes of individual component types.
Each component must be placed so the design rules from table 2.2 are satisfied.
The objective of the placement is to provide the best possible conditions for the
subsequent design phases.

For the flow channel routing phase, this means enabling short channel routes
with few intersections. Short routes minimize the time spend transporting fluids
from one component to another, thus reducing the overall application completion
time. Short routes also imply that the components are packed closely together
which optimizes the chip area. Avoiding intersections allows liquids to flow
in multiple channels simultaneously, which increases the parallelizability of the
application and also reduces completion time.

The number of intersections also affects the control channel routing phase. Each
intersection is handled by introducing a switch which consists of up to four
valves. Minimizing the number of intersections reduces the number of valves.
A small number of valves means a smaller problem size for the control channel
routing phase.

Finally, the application mapping phase depends on the placement algorithm.
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The application mapping phase might require storage facilities to temporarily
store the output of a component, so the component can be reused for another
operation. At the time of the placement, the storage requirements cannot be
determined, so the placement algorithm must ensure sufficient storage facilities.

3.1 Formalization

The algorithm takes two inputs, a netlist, N , and a component library, L. N
contains all components and their interconnections. L contains the physical
dimensions of all components along with the location of the entry and exit
points.

The components are placed on a biochip architecture grid, G, such that the de-
sign constraints are satisfied, and the length of the flow channel routes and the
number of intersections are minimized. An unambiguous way to judge the qual-
ity of a placement must be defined in order to find a placement that minimizes
route length and intersections.

Furthermore, it must be ensured that all component exit points are connected
to a storage entry point, and all component entry points are connected to a
storage exit point. This ensures that all components have storage facilities.
Finding such a placement involves adding a storage component to N if one is
not already present. The storage component is bi-directionally connected to all
other components, excluding inputs and outputs.

The output of the algorithm is the biochip architecture represented as a grid
graph, G. It contains all the components at their respective positions. The
minimum chip size needed to contain that particular placement can be extracted
from G.



Chapter 4

Simulated Annealing

The solution space for component placements exponentially increases with the
number of components and the chip size. This makes the problem presented in
chapter 3 NP -complete. Thus, it is not possible to design an algorithm that
computes the optimal solution in polynomial time. Instead, a suitable heuristic
is needed to find a good solution in polynomial time.

Simulated annealing has previously been successfully used to place electronic
components on Very Large Scale Integration (VLSI) chips [6]. The placement
problem for VLSI is very similar to the placement problem for microfluidic
biochips, which makes it reasonable to believe that simulated annealing is also
well suited for our problem. This thesis explores the possibilities of using simu-
lated annealing for the component placement phase of the biochip design process.
This chapter explains the general concept of simulated annealing and describes
an implementation adapted to the component placement problem.

4.1 Concept

The basic concept of simulated annealing is inspired by the slow cooling of solid
material in a heat bath. This process is known as annealing. The cooling rate
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affects the properties of the cooled material. It turns out that a simulation of
the annealing process converges towards the optimal solution [9]. This property
makes it suitable for minimization problems including the component placement
problem.

The idea is to randomly create an initial solution, s0, and choose an initial
temperature, t0. A neighboring solution of s0 is explored to see if that solution
is an improvement. The quality of the solutions is based on a cost function.
If the neighbouring solution is better, that solution is accepted as the current
one, and the temperature is reduced according to a cooling schedule. But even if
the explored solution is worse it is accepted with some probability. Otherwise,
the algorithm would only converge towards a local optimum and not the global
optimum.

The intuition is that when the temperature is high a large part of the solution
space is explored. Consequently, at high temperatures almost any solution is
accepted, regardless of the quality. As the temperature decreases the simulation
gradually becomes more and more reluctant to accept inferior solutions. At some
point it will only accept improving solutions, causing it to become stable at a
local optimum. If the cooling is slow this local optimum is a good approximation
on the global optimum. For a minimization problem the result is a reduction of
the cost over time, as shown in figure 4.1.

Time

Cost

Figure 4.1: The simulated annealing algorithm minimizes the cost over time
until a stable non-improving solution is found. The graph shows
the cost as a function of time for the placement algorithm per-
formed on a benchmark netlist.

The probability, p(s), that an inferior solution, s, is accepted, is given by the
exponential expression:

p(s) = e−δ/t (4.1)

where δ is the cost increase from the previous solution, and t is the temperature.
The probability is inspired by the laws of thermodynamics.
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4.2 Implementation

Algorithm 1 shows a simulated annealing implementation adapted to the place-
ment problem. The algorithm takes as input a netlist, N , and a component
library, L, and outputs a biochip architecture in the form of a grid graph, G,
containing the placed components.

Algorithm 1 Component placement using simulated annealing.

1: function Placement(N , L)
2: G ← InitialPlacement(N ,L)
3: t← t0 . Temperature is initialized, t0 > 0.
4: repeat
5: for i← 0 to nrep do
6: G′ ← RandomNeighbour(G)
7: δ ← Cost(G′)−Cost(G)

8: if δ < 0 ∨Random(0, 1) < e−δ/t then G ← G′

9: t← α(t) . Temperature is reduced.
10: until t ≤ ttermination

11: return G

Whether to accept a solution candidate, G′, or keep the current one, G, is decided
on line 8. A superior solution (δ < 0) is always accepted, but an inferior solution
is accepted with the probability from equation 4.1. This criterion is met by
generating a uniformly random number between 0 and 1, which must be less
than the acceptance probability, p(s).

Before the annealing process can start certain parameters must be decided:

• How to find an initial solution (line 2).

• The initial temperature, t0 (line 3), and the termination temperature,
ttermination (line 10), which defines when the simulation stops.

• The number of iterations at each temperature, nrep (line 5).

• The temperature reduction function, α(t) (line 9). It defines the rate of
cooling.

• The definition of neighbouring solutions. This is necessary in order to
select a random neighbour (line 6).

• The cost function that defines the quality of a solution (line 7). The
simulation converges towards the lowest cost function value.
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The considerations and decisions regarding the parameters are discussed in the
following subsections. In general, the parameters must be adjusted experimen-
tally to obtain the best results.

4.2.1 Cooling Schedule

The temperature cooling schedule consists of four parameters: Initial value,
reduction function, termination value, and repetitions at each temperature.

Initially, almost all solutions should be accepted in order to explore the entire
solutions space. Thus, the initial value should be high enough to lead to an
acceptance rate of close to 100%. The specific value varies with the problem
size and the cost function definition, and must be decided experimentally.

The reduction function determines how fast the temperature cools down. Many
different reduction functions have been proposed [9]. One of the simplest and
most successful is of the form:

α(t) = k · t (4.2)

where k < 1. This reduction function is used throughout the thesis. To ensure
slow cool-down values between 0.98 and 0.999 have been used for k.

Doing many repetitions at each temperature explores more of the solution space.
Since superior solutions are accepted unconditionally, spending more time at
each temperature tends to lead to better final solutions. The number of rep-
etitions at each temperature, nrep, can be used to scale the running time of
the algorithm to ensure a thorough exploration of the solution space. Values
between 1 and 500 have been used to obtain results.

In theory, the cooling should continue until the temperature is zero. However,
in practice the heuristic often settles for a non-improving stable solution long
before the temperature reaches zero. The temperature at which this happens
varies with the problem size and cost function. Values below 5 have provided
good results for the termination temperature, ttermination.

4.2.2 Initial Placement

It has been reported [13] that the initial solution of simulated annealing has
a negligible effect on the final solution, provided that the initial temperature
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is high enough and the cool-down is slow. Consequently, any feasible initial
placement is adequate.

The chosen initial placement approach is as follows: The components are listed
in an arbitrary order. The first component, c1, is placed in the upper left corner
of the biochip. The second component, c2, is placed such that the left border of
c2 is aligned with the right border of c1, and the top border of c2 is aligned with
the bottom border of c1. The remaining components are placed in the same
way. Figure 4.2 shows the resulting placement.
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Figure 4.2: Initial placement used with simulated annealing. The shaded area
indicates component border, which is not allowed to overlap.

There are several advantages of using this initial placement compared to a ran-
dom initial placement. The solution is by definition feasible, because no com-
ponents overlap, and the border ensures that the design rules are satisfied.
Furthermore, the minimum size of the chip is given by the sum of the widths
and the sum of the heights of all components. The chip size can be determined
before the components are placed, so it is guaranteed that all components will
fit on the chip. The chip size is also large enough to allow components to move
freely on the chip.

4.2.3 Neighbourhood

The neighbourhood, H(G), defines the set of solutions that are candidates to
replace G. The size of H(G) must be limited to facilitate that a random solution,
G′, is quickly chosen from H(G). G′ is constructed by randomly performing one
of three operations: Move of one component, rotation of one component, or
swapping of two components. The operations are randomly chosen according to
a discrete probability distribution. The most successful distribution has been
found to be (60%, 20%, 20%) for moves, rotations, and swaps, respectively.
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The components that are affected by a given operation are randomly picked
among all components in N . H(G) only contains feasible solutions. Thus,
it must be checked that the affected components are inside the chip and not
overlapping other components. If an operation results in an infeasible solution
it is discarded and a new one is chosen.

4.2.3.1 Move

The move operation is performed by randomly choosing a direction and how
much to move in that direction. The operation is only feasible if all the cells in
G, which correspond to the new placement of the component, are either free or
occupied by the component itself.

The maximum translation, Tmax, determines how far a component can be moved
from its original position. A large Tmax explores a large part of the solution
space in few moves, but also results in more infeasible and unaccepted moves.
If Tmax is large and the temperature is low, it is very likely that the simulated
annealing algorithm rejects the operation. To minimize this problem, Tmax is
reduced at the same rate as the temperature until Tmax = 1. Initially, Tmax

is set to one fourth of the chip size. This value is found to be a reasonable
compromise between exploring much of the solution space and avoiding a lot of
infeasible moves.

4.2.3.2 Rotation

Rotation is done according to figure 4.3. The new orientation is chosen ran-
domly and rotation is done around the center of the component. Like the move
operation, the rotation operation is only feasible if the affected cells are free or
occupied by the component itself.

4.2.3.3 Swap

Swapping is performed by interchanging the positions of the two affected com-
ponents. The orientations of the components are unchanged. The operation
is only feasible if the cells, which correspond to the new positions of the two
components, are free or occupied by either one of the affected components.
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(a) (b)

(c) (d)

Figure 4.3: Illustration of the four orientations. (a) is the default orientation.
Rotation is done around the center point.

4.2.4 Cost Function

The cost function must reflect the quality of the placement. As mentioned in
section 3.1, the objective of the placement is to minimize the length of the flow
channel routes and the number of intersections.

An obvious cost function is obtained by routing all the channels and calculating
the route length and intersections. But due to the complexity of the routing
problem such a cost function is not feasible. Instead, simplifying assumptions
and estimations are made in order to minimize the number of computations.
Chapter 5 and 6 describe two different approaches to estimating the route length
and intersections.
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Chapter 5

Approximated Cost
Function

The purpose of this cost function is to make a qualified approximation of the
channel length and number of intersections without doing any actual routing.
The idea is to define the cost function by metrics that can easily be calculated
from the entry and exit points of the components. This way, no computation
time is spend doing the actual routing.

5.1 Metrics

From N and L, the connection model is constructed as a bipartite graph, C =
(U, V,E). An edge, euv in C represents a connection from exit point, u, to entry
point, v. See section 2.2.2. C enables the introduction of three metrics: The
total length of all edges, the total squared length of all edges, and the number of
intersections between edges. The metrics are described in detail in the following
subsections. The choice of metrics is inspired by [5].
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5.1.1 Approximated Total Length

Under ideal conditions, the length of the route between an exit point, u, and an
entry point, v, is given by the Manhattan distance between u and v. Thus, the
Manhattan distance is a lower bound on the route length between u and v. The
majority of routing algorithms seek to minimize the total route length. Based
on this, the Manhattan distance is expected to be a good approximation for the
route length. Figure 5.1 shows an example where the Manhattan distance is
equal to the route length.

(a) (b)

Figure 5.1: Illustration of C with Manhattan distances, and line segment in-
tersection (a), and the corresponding routing (b). The dashed
lines are the Manhattan distances, and the red crosses indicate
intersection.

The Manhattan length for an edge, euv, from u to v is:

||euv|| = |ux − vx|+ |uy − vy| (5.1)

The approximated total length of the routes is found as the sum of the Man-
hattan lengths of all edges:

LA =
∑

euv∈E
||euv|| (5.2)
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5.1.2 Approximated Total Squared Length

The approximated total squared route length is found in a similar way:

SA =
∑

euv∈E
||euv||2 (5.3)

The motivation for this metric is to make all routes roughly the same length
by penalizing long routes. This evens out the routing latencies, making all
operations on the chip take roughly the same amount of time.

5.1.3 Approximated Number of Intersections

An edge, euv, in C defines a connection between u, and v. Thus, it also represents
the line segment that goes from u to v. An intersection between such two line
segments often leads to an intersection between the two corresponding channel
routes. This is illustrated in figure 5.1, where an intersection between line
segments in figure 5.1a results in an intersection between routes in figure 5.1b.
Consequently, the total number of intersections between line segments is used
to estimate the total number of route intersections. First, we define:

IA(euv, epq) =

{
1 If euv and epq intersect
0 Otherwise

(5.4)

Then, the total number of intersections is calculated as:

NA =
∑

euv∈E

∑
epq∈E\euv

IA(euv, epq) (5.5)

5.1.3.1 Determine Intersection between Two Line Segments

Consider two line segments, suv and spq. Let luv and lpq be lines of infinite
length that go through the end points of suv and spq, respectively. The lines are
mathematically expressed as:

luv : F (x, y) = 0 lpq : G(x, y) = 0 (5.6)

where F (x, y) and G(x, y) are of the form:

a · x+ b · y + c = 0 (5.7)
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For two points, (x1, y1) and (x2, y2), not on luv we have F (x1, y1) 6= 0 and
F (x2, y2) 6= 0. Furthermore, if the two points are on opposite sides of luv they
have different signs [8], thus F (x1, y1) = −F (x2, y2).

The strategy is to use this property to determine if suv and spq intersect. The
two segments only intersect in the case that (1) the end points, u and v, are on
opposite sides of lpq, and (2) p and q are on opposite sides of luv.

5.2 Computing the Cost Function

The cost function is defined by all three metrics mentioned in the previous
section. The cost function is computed as:

CostA(G) = αNA + βLA + γSA (5.8)

where α, β, and γ are constant weights. The exact values of the weights depend
on which metrics should be given highest priority. This is decided by the biochip
designer based on parameters like which applications should run on the chip,
available chip area, etc.

Equation 5.8 unambiguously expresses the quality of a placement with respect
to the described metrics and for the chosen values of α, β, and γ. This means
that the simulated annealing algorithm can compare two solutions and choose
the better one, or with some probability, choose the inferior one.

5.2.1 Analysis

The cost function is computed for each iteration of the simulated annealing
algorithm and has great impact on the running time. This is also the reason
why it is necessary to approximate the quality of the routes instead of doing the
actual routing.

Let n denote the number of connections, |E|, in C. According to equation 5.2
and 5.3, LA and SA are computed by summing over all n connections and
calculating the Manhattan distance between the exit and entry points. The
Manhattan distance is calculated in O(1) time so the time to calculate L and S
is O(n).

According to equation 5.5, NA is computed by summing over all pairs of line
segments and calculating whether they intersect or not. Intersection is checked
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in O(1) time. There is one line segment for each connection, thus, there are
O(n2) pairs of line segments. This results in O(n2) computations to calculate
the cost function.

5.2.2 Incremental Update

The neighbour, G′, (section 4.2.3) to a solution, G, is identical to G except that
one component is moved or rotated, or two components are swapped. Conse-
quently, it is needless to recalculate all intersections and all lengths for every
iteration of the algorithm. Instead, the cost function is computed for the first
iteration and updated incrementally from that point on. The cost function is
then calculated as:

CostA(G′) = α(NA + ∆NA) + β(LA + ∆LA) + γ(SA + ∆SA) (5.9)

where NA, LA, and SA are the values for G, and ∆NA, ∆LA, and ∆SA, denote
the difference between G′ and G.

∆NA, ∆LA, and ∆SA are only affected by the connections going into or out of
the changed components. Let E denote the subset of edges that are connected
to components that change from G to G′. Furthermore, let N(E) and N ′(E) be
the number of intersections for edges E in solution G and G′, respectively. Then
∆NA is given by:

∆NA = N ′A(E)−NA(E) (5.10)

The same notation can be used to describe ∆LA and ∆SA:

∆LA = L′A(E)− LA(E) (5.11)

∆SA = S′A(E)− SA(E) (5.12)

∆LA and ∆SA are straightforward to compute using the approach in equations
5.2 and 5.3. However, ∆NA, requires an auxiliary data structure, D. D(e)
associates each edge, e, with a list of edges, which intersect e. Using D, NA(E)
is computed without recalculating the intersections:

NA(E) =
∑

euv∈E
|D(euv)| (5.13)

where |D(euv)| denotes the length of the intersection list associated with euv.

The number of intersections in N ′A(E) is computed as:

N ′A(E) =
∑

euv∈E

 ∑
epq∈E\E

IA(euv, epq) +
∑

epq∈E\euv

IA(euv, epq)

2

 (5.14)
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It is necessary to distinguish between the edges in E and the rest of the edges.
An intersection between an edge in E and an edge not in E only occurs once in
the sum. But an intersection between a pair of edges, ei and ej , in E occurs in
the sum both as (ei, ej) and (ej , ei). Thus, the contribution from such pairs is
divided by two.

Incremental update decreases the number of computations by only recomputing
the cost function for modified edges. The number of changed components is
either one or two, with a total of |E| connections. In the worst case |E| = n.
Each of these connections might intersect with any other connection so the total
time to compute ∆NA is O(n2). Thus, in the worst case there is no asymptotic
improvement, but in a typical case the speedup is significant. Section 7.3.2
indicates that incremental updates are 5 to 30 times faster than non-incremental
updates.



Chapter 6

Routed Cost Function

The cost function described in this chapter uses actual routing to judge the
quality of the placement. Due to the complexity of the routing problem the
routing algorithm must be fast and simple. This is necessary to ensure feasible
computation time.

The routed cost function is merely a tool to do the component placement. The
actual channel routing is done in the flow channel routing phase of the biochip
design process. Thus, the final routing might differ from the routing done by the
cost function. However, the route length and the number of intersections calcu-
lated by the routed cost function is a good upper bound on what is achievable
in the flow channel routing phase.

6.1 Routing Algorithm

The initial step is to decide on a routing algorithm. Many algorithms have
been proposed in the literature and have proved successful for routing VLSI
architectures [10]. In the following sections we describe two related algorithms.
Lee’s algorithm, which is inefficient but always finds the shortest route, and
Soukup’s algorithm, which is faster but does not guarantee to find the shortest
route. Both algorithms take as input a grid graph of vertices that are either
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occupied or available. This is in accordance with the proposed architecture
model, thus the algorithms can be directly applied to the grid graph, G. The
algorithms also take as input a source, s, and a target, t. The output of the
algorithm is a route going from s to t.

6.1.1 Lee’s Algorithm

Lee’s algorithm [10] is basically a breadth-first search. A wave front starts in
s, and expands until t is discovered. See figure 6.1. Due to properties of the
breadth first search, the route found by Lee’s algorithm is guaranteed to be the
shortest. In fact, Lee’s algorithm will find the shortest distance from s to any
cell it discovers. This means that Lee’s algorithm can route from s to multiply
targets at once. Due to its simplicity, Lee’s algorithm is widely used.
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Figure 6.1: Visualization of propagating waves in Lee’s algorithm. The num-
bers indicate the wave front number, which is also the distance
to s. The arrows indicate the direction from which a cell is dis-
covered. The route is found by retracing the arrows from t to
s.

Algorithm 2 describes an implementation of Lee’s algorithm. Two lists, w and
w′, are maintained (lines 2-3). w is the current wave front, which initially only
contains s, and w′ is the next wave front, which is initially empty.

All the neighbours of cells in w, that have not yet been visited, are explored
(lines 7-12). Neighbours are assumed to be explored in a counter-clockwise
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order starting from the top, and cells are retrieved from the end of w. As the
neighbours are explored they are added to w′ (line 10).

If t is found among the neighbours, the route is returned and the algorithm
terminates (lines 11-12). Otherwise, additional wave fronts are needed to find t.
The cells in w′ are moved into w and the process is repeated (lines 13-15). The
algorithm repeats until t is found or until there are no more cells to explore.

Algorithm 2 Routing using Lee’s Algorithm.

1: function Lees(G, s, t)
2: w ← s . Current wave front
3: w′ ← ∅ . Next wave front
4: repeat
5: for each cell, c, in w do
6: neighbours← UnvisitedNeighbours(G, c)
7: for each cell, c′, in neighbours do
8: d← Direction(c, c′)
9: Discovered(c′, d)

10: Append(c′, w′)
11: if c′ = t then . Target found
12: return RetraceRoute(G, t)
13: w = w′ . Move on to next wave front
14: w′ = ∅
15: until w 6= ∅
16: return ∅ . Entire chip searched, no route found

6.1.1.1 Finding the Actual Route

Algorithm 2 only finds the target, it does not find the actual route. An auxiliary
function, RetraceRoute(G, t), is introduced to retrace the route from t to s. As
a cell, c, is discovered by algorithm 2 it is recorded from which direction c is
discovered (lines 8-9). Because a cell is only discovered once this leaves a trail
that can be followed from t.

The directions of discovery is indicated by the arrows in figure 6.1. RetraceRoute(G, t)
simply starts at t and follows the arrows backwards until s is found. The list of
cells from s to t is returned.
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6.1.1.2 Analysis

In the worst case Lee’s algorithm will search the entire search space before t is
found. The architecture grid graph, G, has dimensions h × w, so the time for
finding a route between s and t is O(h × w). The direction from which a cell
is discovered must be stored for each cell. This yields a total space usage of
O(h× w).

6.1.2 Soukup’s Algorithm

The main drawback of Lee’s algorithm is the large number of cells searched for
the average case. The wave front propagates equally in all directions, which
means that a large fraction of the computation time is spend on exploring cells
that are not directed towards t.

Soukup’s Algorithm [11] is an extension of Lee’s algorithm. If a cell, c, has
neighbours that are closer to the target, a line search is conducted in those
directions. See figure 6.2. The line search stops when reaching an obstacle or

t

s

Figure 6.2: Visualization of Soukup’s algorithm. Circles represent discovery
with Lee expansion, squares represent discovery with line search.
Filled symbols means that all neighbours of that cell have been
explored. The arrows indicate from which direction a cell is dis-
covered.

when not further approaching t. From this point a new line search might be
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conducted. If no neighbour is closer to t then Lee’s algorithm is applied until
another cell is found, from which a line search can be conducted. Effectively,
this means that Lee’s algorithm is used to search around obstacles. The result
is that the search space is minimized by first trying to move in the direction of
t and when t cannot be approached any further, Lee’s algorithm is applied to
get around any obstacles.

Algorithm 3 describes an implementation of Soukup’s algorithm. The structure
is similar to that of Lee’s algorithm. Soukup’s algorithm also maintains two
wave front lists, w and w′ (lines 2-3), although the wave fronts are not as easily
visualized.

Like Lee’s algorithm, the neighbours of cells in w are explored (lines 8-20). If a
neighbour, n, is closer to t than the original cell, a line search is conducted in
this direction (lines 12-17). As the cells are discovered on the line search they
are added to w. The effect is, that the next neighbours to be explored are those
belonging to the last cell in the line search. So far, this cell is the closest to t,
thus we wish to continue the search from here.

If a neighbour it not closer to t it is instead inserted at the beginning of w′ (lines
18-20). When w is empty, all the neighbours of cells in w have been explored.
This means that no more cells can be discovered with line search. Consequently,
a new wavefront is initiated by moving w′ into w. Like Lee’s algorithm, Soukup’s
algorithm terminates when there are no more cells to explore, or when t has
been found. Because t is always closer to itself than any other cell it is always
discovered with line search. Thus, it is sufficient to only check if t is found when
line searching (lines 14-15).

6.1.2.1 Finding the Actual Route

Cells discovered by line search and cells discovered by Lee expansion must be
distinguished (line 13 and 19). At a given cell, a line search is allowed to replace
a Lee expansion but not the other way around. This requires that an unvisited
neighbour in algorithm 3 refers to cells that are either available or discovered
by Lee expansion (line 7 and 17).

Furthermore, only unmarked cells can be marked as discovered by Lee expansion,
and each cell marks itself as discovered with line search (line 6). This is done so
that the marking cannot be overwritten at a later time. It ensures that each cell
is only discovered by one cell, and thus preserves a trail from t to s. The trail
is followed in the same way as the retrace function for Lee’s algorithm (section
6.1.1.1)
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Algorithm 3 Routing using Soukup’s Algorithm.

1: function Soukups(G, s, t)
2: w ← s . Current wave front
3: w′ ← ∅ . Next wave front
4: repeat
5: for each cell, c, in w do
6: MarkWithLineSearch(c)
7: neighbours← UnvisitedNeighbours(G, c)
8: for each cell, c′, in neighbours do
9: d← Direction(c, c′)

10: if c′ is closer than c to t then
11: n← c′

12: while n is approaching t do . Conduct line search
13: Discovered(n, d, LineSearch)
14: if n = t then . Target found
15: return RetraceRoute(G, t)
16: Append(n,w)
17: n← UnvisitedNeighbourInDirection(G, n, d)

18: else if c′ not already discovered then
19: Discovered(c′, d, LeeExpansion)
20: Insert(c′, w′)

21: w = w′ . Move on to next wave front
22: w′ = ∅
23: until w 6= ∅
24: return ∅ . Entire chip searched, no route found

6.1.2.2 Analysis

In the worst case Soukup’s algorithm will search the entire search space just like
Lee’s algorithm and it must also store the retrace direction for each cell. This
gives a worst case time and space usage of O(h × w) for an architecture grid
graph, G, with dimensions, h× w.

In practice, however, Soukup’s algorithm performs much better. Especially for
the biochip routing problem, where component borders ensure that s and t are
always routable. Soukup [11] states that his algorithm is typically 10-50 times
faster than Lee’s algorithm. Our own experiments suggest that it is 5-130 times
faster for instances of the biochip routing problem (section 7.3.3).

The routing cost function only serves as an estimation of the final routing. For
estimation purposes, Soukup’s algorithm is preferable to Lee’s algorithm due
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to its faster routing time. It is also acceptable that Soukup’s algorithm does
not guarantee to find the shortest route. Based on these observations Soukup’s
algorithm is used as the primary routing algorithm for the routed cost function.

6.2 Metrics

The route found by the routing algorithm enables the metrics of section 5.1 to be
estimated more accurately. The three metrics are: The total length of all routes,
the total squared length of all routes, and the number of route intersections.
The routing also introduces another metric: The total amount of overlap. The
following subsections describe the four metrics in detail.

6.2.1 Total Length and Total Squared Length

The length of a route is given by the number of cells in the route. Recall from
section 2.2.4 that r(e) denotes the set of cells in the route corresponding to edge,
e. Furthermore, |r(e)| denotes the number of cells in r(e) and thus the length
of the route. Let E be the set of all edges in the connection model, C. Then,
the total length for all routes is found as:

LR =
∑
e∈E
|r(e)| (6.1)

The total squared length of all routes is calculated in a similar way:

SR =
∑
e∈E
|r(e)|2 (6.2)

Except for the modified length definition, the two sums are identical to LA and
SA for the approximated cost function (section 5.1.1 and 5.1.2).

6.2.2 Number of Intersections

Where routes intersect, a switch is needed in order to direct the flow. If many
routes intersect at the same cell, still only one switch is needed. To let the
number of intersections reflect the number of introduced switches, this should
also only count as one intersection. Thus, the total number of intersections is
the number of cells where two or more routes intersect. Figure 6.3 shows an
example with intersecting routes.
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Figure 6.3: Example of a connection model, C (a), and the corresponding
routes (b). Notice how routes intersect and overlap. Intersec-
tions are visualized by red crosses, and the shaded area indicates
that the flow channel is used by multiple routes.

Intersections occur if the set of routes at one cell, c1, differs from the set of
routes at another, adjacent cell, c2. Intersections are introduced in three cases:

1. One or more routes at cell, c1, are not at cell, c2. This means that routes
have stopped or changed direction at c1. Thus, an intersection is intro-
duced at c1.

2. Identical to case one, but with c1 and c2 interchanged. An intersection is
introduced at c2.

3. One or more routes at cell, c1, have been replaced by a number of other
routes at cell, c2. This means that routes have stopped, started, or changed
directions both at c1 and c2. Consequently intersections are introduced
both at c1 and c2.

Figure 6.4 visualizes the routing lines of the example from figure 6.3b. The
routing lines illustrate the flow channels that the individual routes use, and
show which routes cause intersections.

The two adjacent intersections in figure 6.4 are both instances of case three. The
route between A and E changes direction in the left cell and the route between
B and C appears in the right cell. The two other intersections are instances of
case one or two depending on, from which cell they are discovered.

Recall from section 2.2.4 that the layer model, Z, associates a cell with the
occupants of that cell. In particular, ZR(c), is the set of routes at cell, c. Based
on the three cases the set of intersection cells, IR(c1, c2), between adjacent cells,
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Figure 6.4: Example with flow channel intersections. Each route is visualized
with a thin line.

c1 and c2, is formalized as:

IR(c1, c2) =


c1 ZR(c1) ⊃ ZR(c2)

c2 ZR(c1) ⊂ ZR(c2)

c1, c2 ZR(c1) 6= ZR(c2)

∅ Otherwise

(6.3)

Let CR be the set of cells, which are occupied by one or more routes. Inter-
sections only occur at cells that are occupied by routes, so it is sufficient to
only check the cells of CR for intersections. IR(ci, cj) is computed for all pairs
of adjacent cells, ci and cj , in CR. The total set of intersection cells, I, is re-
trieved by taking the union of all the found intersections. The total number of
intersections, NR, is defined as NR = |I|.

6.2.3 Amount of Overlap

Performing the actual routing means that the cells of all routes are known. This
makes it possible to identify if routes overlap. Overlapping routes share part
of their flow channel, and thus two overlapping routes cannot be in use at the
same time. On the other hand, shared flow channels imply reduced total channel
length. Depending on the channel length requirements and the parallelism of
the biochip application, it might be desirable or undesirable to have overlapping
routes. Figure 6.3b illustrates an example with overlap.

The amount of overlap at a cell, c is defined as the number of routes at c, which
have another route below it. This means that cells occupied by zero or one route
has no overlap. For cells with more than one route the bottommost route does
not overlap any routes, but all the remaining routes overlap the route directly
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below them. Figure 6.5 shows the amount of overlap at each cell for the example
in figure 6.3b.
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Figure 6.5: Illustration of the number of overlapping routes at each cell.

Notice that cells with only one route do not contribute to the total overlap. If two
cells overlap the contribution is one, and if three cells overlap the contribution
is two, etc. Also notice that there is always overlap at an intersection cell.

We define the total overlap as the sum of the overlap at each cell. The total
overlap is calculated as:

VR =
∑
c∈CR

(|ZR(c)| − 1) (6.4)

where ZR(c) is the number of routes at cell c, and CR is the set of cells, which
are occupied by one or more routes.

6.3 Computing the Cost Function

The cost function is defined by all four metrics mentioned in the previous section.
It takes the same form as in section 5.2, but with the addition of the fourth
metric, the amount of overlap, VR. The cost function is computed as:

CostR(G) = αNR + βLR + γSR + ωVR (6.5)

As mentioned in section 6.2.3, it might be desirable to minimize the total channel
length. By the definition of LR and VR the total channel length is LR − VR.
Setting ω = −β rewards overlapping and finds solutions with a short total
channel length.
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6.3.1 Analysis

According to section 6.1.2.2 the worst case time for routing between two points
is O(h×w) for an architecture grid graph, G, with dimensions h×w. There are n
connections, each with one route. This gives a total routing time of O(n ·h×w).

LR and SR are calculated by summing over the number of cells in all routes
(equation 6.1 and 6.2). It is assumed that the number of cells in a route is
stored at the time of routing, which means that the number of cells in a single
route is retrieved in O(1) time. Consequently, the time to calculate LR and SR

for n routes is O(n).

NR and VR are both calculated by iterating through all cells of all routes. If
the cell has previously been visited it will be skipped. If not, NR and VR
are computed according to section 6.2.2 and 6.2.3. An upper bound for the
total time for NR and VR is O(n · |r(emax)|), where emax is the edge, whose
corresponding route has the maximum number of cells.

Routing all n routes is the bottleneck. This results inO(n·h×w) computations to
calculate the cost function. But as argued in section 6.1.2.2, Soukup’s algorithm
often performs much better.

6.3.2 Incremental Update

Like the approximated cost function (section 5.2.2) it is not necessary to recal-
culate all routes for each iteration of the simulated annealing algorithm. In fact,
only one or two components change from solution, G, to a neighbour solution,
G′. Thus, only the routes that are affected by the changed components need
rerouting. However, the problem of determining the set of routes to reroute is
more complex than determining the set of modified edges for the approximated
cost function.

Once the cost function is initially computed it is incrementally updated accord-
ing to:

CostR(G′) = α(NR+∆NR)+β(LR+∆LR)+γ(SR+∆SR)+ω(VR+∆VR) (6.6)

where ∆NR, ∆LR, ∆SR, and ∆VR denote the change from solution G to solution
G′.
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6.3.2.1 Routes to Reroute

Let E denote the subset of edges that change from solution G to solution G′,
and let R(E) and R′(E) denote the set of routes corresponding to the edges in E
for solution G and G′, respectively. These are the routes that must be rerouted
from G to G′.

Like the approximated cost function all edges that are connected to changed
components are in E . Furthermore, two other types of routes must be in R(E):
Routes, which are obstructed in G′ because a changed component is blocking,
and routes, which propagation was blocked in G by a changed component. The
two types are illustrated in figure 6.6.

(a) (b) (c)

Figure 6.6: Illustration of an initial route (a), a reroute due to obstruction
(b), and a reroute due to removed obstruction (c). Notice that
the reroute in (c) is required in order to make the incremental
update match an initial routing.

Routes that are obstructed by a changed component in G′ must be rerouted
to ensure that all routes are feasible. This situation is shown in figure 6.6b.
Obstruction is checked when the component is occupying the cells of its new
position.

Routes, which in the propagation phase in G were blocked by a changed compo-
nent, might have chosen an inferior route because of the position of the changed
component. See figure 6.6c. The inferior route is still valid in G′, but the route
should be rerouted to find the best route. In addition, the incremental routing
should always correspond to a non-incremental routing, which requires that the
inferior route is rerouted. To implement this, each component maintains a list
of the routes that reached the component during the wave propagation. When
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the component is changed, all the routes in the list are rerouted.

6.3.2.2 Length and Squared Length

Let LR(E) denote the total length of routes in R(E). Similarly, let L′R(E) denote
the total length of routes in R′(E). Then the change of the total length is given
by:

∆LR = L′R(E)− LR(E) (6.7)

Using similar notation ∆SR is expressed as:

∆SR = S′R(E)− SR(E) (6.8)

∆LR and ∆SR are calculated using equations 6.1 and 6.2.

6.3.2.3 Intersections

The change in the number of intersections is defined as:

∆NR = N ′R(E)−NR(E) (6.9)

NR(E) corresponds to the number of intersections that are removed when routes
in R(E) are removed from G. That is, intersection cells that no longer have an
intersection after R(E) are removed.

Let CR(E) be the set of cells which are occupied by routes in R(E). For each
cell, c, in CR(E), there are three cases to consider:

1. There is no intersection at cell, c. Removing a route can never introduce
new intersections, so nothing should be done.

2. There is an intersection at cell, c. Furthermore, there is at least one pair
of intersecting routes at c, where both of the routes are not in R(E). This
means that removing the routes in R(E) will not remove the intersection,
because there is still at least one intersecting pair at c.

3. There is an intersection at cell, c, and all pairs of intersecting routes at
c have one route in R(E). This means that no routes intersect at c when
R(E) are removed. In this case the intersection at c is removed.



46 Routed Cost Function

A

E D

C

B

(a)

A

E D

C

B

(b)

Figure 6.7: Solution, G, with all routes (a), and with routes in R(E) removed
(b). Each route is illustrated by a line that characterizes the chan-
nel it uses. Grayed out intersections are removed with R(E).

Figure 6.7 shows how NR(E) is calculated. In the example component, A, is
about to be moved to the left, and thus E is the two edges going from A to E,
and A to D.

The initial situation is showed in figure 6.7a, and figure 6.7b shows the situation
where the routes in R(E) have been removed. The intersection outlined by a
dashed rectangle corresponds to case two. After removing R(E) there is still an
intersection at that cell, namely the one between routes (B,D) and (B,C).

The intersections outlined by the solid rectangle correspond to case three. When
removing R(E) no route intersections remain, which means that the two inter-
sections are removed. It is noted that in total two intersections are removed, so
NR(E) = 2.

N ′R(E) corresponds to the number of intersections that are introduced when the
routes in R′(E) are added to G′. Let C ′R(E) be the set of cells which are occupied
by routes in R′(E). For each cell in C ′R(E) there are two cases where intersections
are introduced:

1. At least one pair of routes in R′(E) intersect at cell, c, and no intersection
already exists at c.

2. At least one route in R′(E) intersects at c with routes not in R′(E). An
intersection does not already exist at c.

Whether two routes intersect or not is detected using equation 6.3. Figure 6.8
shows how to calculate N ′R(E). Compared to figure 6.7, component A has been
moved one cell to the left.
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Figure 6.8: Solution, G′, with routes in R(E) removed (a), and with routes in
R′(E) added (b). Each route is illustrated by a line that charac-
terizes the channel it uses. Intersections outlined with a rectangle
are added with R′(E).

The intersection outlined with a dashed rectangle corresponds to case one. No
intersections exist at the cell before the routes in R′(E) are added (figure 6.8a).
The intersection is caused by routes (A,E) and (A,D), which are both in R′(E).
Thus, case one contributes with one intersection.

The intersection outlined with a solid rectangle corresponds to case two. An
intersection does not already exist at the cell. (A,D), which is in R′(E), inter-
sects with (B,C), which is not in R′(E). Case two also contributes with one
intersection.

In total two intersections are introduced by adding routes in R′(E), so N ′R(E) =
2. It follows that ∆NR = 2− 2 = 0 for this example, which means that moving
component, A, one cell to the left does not change the number of intersections.
The same procedure can be followed in general to compute ∆NR for any solution,
G, and a neighbouring solution, G′.

6.3.2.4 Overlap

The change in the amount of overlap is described using notation similar to the
previous sections:

∆VR = V ′R(E)− VR(E) (6.10)

VR(E) corresponds to the amount of overlap that routes in R(E) contribute to
the total amount of overlay for solution, G. Put another way, VR(E) is the
decrease in overlap if the routes in R(E) are removed.

For each cell, c, in CR(E), there are two cases to consider:
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1. All routes at cell, c, are in R(E). Consequently, if the routes in R(E) are
removed, no routes remain at cell, c. This means that all routes at c,
except the bottommost, contribute to the total overlay.

2. Some routes at cell, c, are not in R(E). In this case, there are routes that
will remain at c, if the routes in R(E) are removed. Thus, all routes that
are at c and in R(E) contribute to the total overlay.

Figure 6.9 illustrates how VR(E) is calculated, when component, A, is about to
be moved. The situation where the routes, R(E), have been removed is showed
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Figure 6.9: Solution, G with all routes (a), and with routes in R(E) removed
(b). The numbers indicate the overlap for each cell.

in figure 6.9b. The cells outlined by a dashed rectangle correspond to case one.
The only two routes at these cells are the ones in R(E). Removing the routes
at the cells decreases the overlap by three.

The cells outlined by a solid rectangle correspond to case two. Routes still
remain at these cells when R(E) are removed. Only route (A,D) is both in
R(E) and in the solid rectangle. There are nine cells in the solid rectangle,
where (A,D) contributes with one overlap for each. Thus, case two decreases
the overlap by nine. In this example we have VR(E) = 3 + 9 = 12.

Let Z∈R(E)(c) denote the set of routes at cell, c, that are in R(E). Based on the
two cases, the overlap contribution for each cell in CR(E) is formalized as:

OE(c) =

{
|Z∈R(E)(c)| − 1 If Z∈R(E)(c) = ZR(c)

|Z∈R(E)(c)| Otherwise, Z∈R(E)(c) ⊂ ZR(c)
(6.11)

VR(E) is calculated by summing over all contributions:

VR(E) =
∑

c∈CR(E)

OE(c) (6.12)
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V ′R(E), on the other hand, corresponds to the amount of overlap introduced from
solution, G, to solution, G′. This equals the overlap introduced when the routes
in R′(E) are added to G′.

Let C ′R(E) be the set of cells which are occupied by routes in R′(E). Then, for
each cell in C ′R(E) there are two cases where overlap is introduced:

1. No other routes are at cell, c. This means that when adding the routes in
R′(E), only overlap between these routes needs to be considered. All the
routes except the bottommost will contribute to the total overlap.

2. Some other routes are already at cell, c. Consequently, all routes in R′(E)
that occupy c, contribute to the total overlay, when added to G′.

Figure 6.10 visualizes how V ′R(E) is calculated. The routes in R′(E) are added
to G′ in figure 6.10b.
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Figure 6.10: Solution, G′, with routes in R(E) removed (a), and with routes
in R′(E) added (b). The numbers indicate the overlap for each
cell.

The cells outlined by a dashed rectangle correspond to case one. The two routes,
(A,E) and (A,D), are the only routes at the four cells, and they are both in
R′(E). The bottommost route does not contribute to the overlay which means
that the routes contribute with four to the total overlap.

The cells outlined by a solid rectangle correspond to case two. Other routes
are already at the cells, so any added route will contribute to the overlay. Only
route (A,D) is added to these cells and with nine cells the total contribution
is nine. This gives V ′R(E) = 4 + 9 = 13 for this example. It follows that
∆VR = 13 − 12 = 1, which means moving component, A, one cell to the left
increases the overlay by one. V ′R(E) can be formalized in a way similar to VR(E).
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6.3.2.5 Analysis

In the typical case incremental updates reduce the number of computations.
However, in the worst case all connections are connected to the changed com-
ponents, yielding |E| = |E| = n. This means that all connections must be
rerouted, which is the same as calculating the cost function non-incrementally.
From section 6.3.1 the complexity is thus O(n · h× w).

Experimental evaluations in section 7.3.2 indicate that incremental updates are
1 to 7 times faster than non-incremental updates for the routing cost function.
This is significantly less than for the approximated cost function. The difference
is caused by two factors: The set of edges, E , is larger for the routed cost function
due to routes obstructed by components, and maintaining data structures for
all routes adds an extra overhead.



Chapter 7

Experimental Evaluation

The placement algorithm is experimentally evaluated by applying it to a number
of benchmark netlists. Evaluations are conducted in terms of placement quality
and performance.

The algorithm is implemented in Python 3.3. To perform multiple placements
at once, the algorithm was run on DTU High Performance Computing Clusters,
with 512 MB of RAM dedicated for each job. Performance oriented evaluations
were conducted on a MacBook Pro, 2.5 GHz Intel Core i5 with 16 GB of RAM.

All placement experiments use a cell size of 5 units. This is to reduce the number
of cells in G, which reduces the problem size for component placement and, in
particular, for the routed cost function.

7.1 Benchmarks

The benchmark netlists are adapted from existing architectures in [7]. There
are two types of benchmark netlists: Synthetic netlists of five different sizes,
and real-life netlists that are generally smaller than the synthetic ones.
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A selection of the benchmark netlists are presented in table 7.1. The table shows
the components that make up each netlist and the total number of connections
in a netlist. The complete set of benchmark netlists is found in appendix A.

Name Type Components ConnectionsIn. Out. Mix. Fil. Hea. Stor.
10-2 Synthetic 1 1 4 2 4 1* 33
30-2 Synthetic 12 1 17 7 6 1* 102
40-2 Synthetic 15 1 21 10 9 1* 135
50-2 Synthetic 17 1 26 12 12 1* 167
IVD-1 Real Life 2 2 2 2 - 1 40
IVD-2 Real Life 6 6 6 6 - 1* 42
PCR-2 Real Life 3 3 3 - - 1 24
PCR-3 Real Life 4 4 4 - - 1 40

Table 7.1: Selected benchmark netlists.

The asterisk symbol (*) in the storage column indicates that a storage compo-
nent has been introduced by the placement algorithm. All netlists must have a
storage unit that is connected to all components to ensure successful scheduling
in the application mapping phase.

Storage facilities are used to store the output of a component, so the component
can be reused for another operation in the application. Note that most real-life
netlists already have such a storage unit. Only IVD-2 does not. In fact it does
not need one, but the algorithm cannot distinguish the ones that need a storage
unit from the ones that do not. Whether a storage unit is needed or not, is not
decided until the application mapping phase.

7.2 Placement Quality

The parameters on which to evaluate the quality of placement depends on many
factors. An important factor is the applications that are to run on the chip. In
this thesis the applications are not known, so general assumptions are made
about the quality of a placement.

A placement must provide the best possible conditions for the subsequent design
phases while minimizing the size of the chip. The flow channel routing phase
has optimal conditions when the routes are short, and intersection are few. The
application mapping phase also prefers short routes as that implies small routing
latencies. Furthermore, the problem size of the control channel routing phase is
minimized if the number of valves is minimized. Finally, the fabrication success
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rate depends on the amount of chip area dedicated to flow channels. Long flow
channels means much PDMS material is removed from the chip, which might
cause the flow channel layer to collapse. Thus, the fabrication phase prefers
short flow channels.

Based on the observations above, the following parameters have been chosen
for placement quality evaluation: Total length of all routes, the total channel
length, total number of intersections, total number of valves, and the chip size.
Note that the total length of all routes and the total channel length are different
metrics because multiple routes can use the same channel.

Soukup’s routing algorithm is used on a grid with a cell size of 1 unit to estimate
the final routing. See figure 7.1. Based on the routing the following parameters

Figure 7.1: Example of a component placement achieved with simulated an-
nealing. Rectangles are components, lines are routes found with
Soukup’s algorithm. The cell size is 1.

are determined: The total length of all routes, the total channel length, and the
number of intersections. The number of valves for all components is retrieved
from the component library (section 2.2.1.1). A switch introduced by route in-
tersections has two, three, or four valves, depending on the switch configuration.
The configurations are shown in figure 1.3. The total number of valves is then
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the sum of the valves for all components and the valves introduced by route
intersections. The chip size is given by the dimensions of the smallest rectangle
that contains all components in G.

For comparison, each netlist is placed using four different cost functions. The
four cost functions are:

Manhattan A simple cost function. It minimizes the Manhattan distance
between components. It is defined as:

CostM (G) = LA (7.1)

where LA is the total Manhattan distance between components. There
are reports in the literature that this cost function has been used with
success for both VLSI [4] and mVLSI [7] placement. Because of this, the
Manhattan cost function is used as a reference.

Approximated The approximated cost function as described in chapter 5. It
is defined as:

CostA(G) = 500 ·NA + 100 · LA + SA (7.2)

where NA is the number of connection edge intersections, LA is the Man-
hattan distance between components, and SA is the squared Manhattan
distance between components. This cost function has also previously been
used for mVLSI placement [5]. The weights are chosen such that minimiz-
ing intersections is given highest priority. SA is typically much larger than
the two other metrics, so the weight for SA is set to one to reduce the
impact of this metric on the cost function.

Routed The routed cost function as described in chapter 6. It is defined as:

CostR(G) = 500 ·NR + 100 · LR + SR + 100 · VR (7.3)

whereNR is the number of route intersections, LR is the total route length,
SR is the total squared route length, and VR is the amount of route overlap.
The placement seeks to minimize both intersections and overlap while
finding the shortest routes.

Channel Minimization Another routed cost function defined as:

CostR(G) = 500 ·NR + 100 · LR + SR − 100 · VR (7.4)

Using a negative weight for VR maximizes the amount of overlap, which
effectively minimizes the total channel length.
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Name Cost Func. Chan. Rout. Inters. Valves Chip Size
10-2 Manhattan 1272 2366 42 197 170× 220

Approx. 1352 2529 35 176 285× 170
Routed 1625 2311 38 185 195× 195

Channel Min. 1197 2893 31 170 260× 170

30-2 Manhattan 4841 9794 171 749 450× 305
Approx. 4258 10222 146 661 365× 405
Routed 4909 10000 132 638 460× 400

Channel Min. 3984 12205 113 564 415× 465

40-2 Manhattan 5765 14886 189 834 400× 450
Approx. 6310 15273 204 895 410× 565
Routed 6477 14817 172 800 470× 570

Channel Min. 5097 18299 169 800 460× 495

50-2 Manhattan 7396 20288 272 1177 600× 450
Approx. 7545 21337 244 1076 460× 630
Routed 8081 20742 237 1065 525× 575

Channel Min. 7087 27824 194 914 480× 680

Table 7.2: Cost function quality comparison for selected synthetic benchmark
architectures. The comparison is based on total channel length,
total route length, number of intersections, number of valves, and
chip size.

Table 7.2 and 7.3 show the results for selected benchmark netlists. All results are
presented in appendix B. In terms of channel length, number of intersections,
and number of valves, the channel minimizing cost function performs best on
most netlists. On average the total channel length is reduced by 20% compared
to the Manhattan reference cost function. Similarly, the number of intersections
is reduced by 35%, which results in a valve reduction of 25%. However, the
reductions is at the expense of an increased total route length. In fact, the
route length is on average increased by 25% compared to the reference cost
function.

The routed cost function, on the other hand, achieves route and channel lengths
close to that of the reference cost function. Additionally, it improves the number
of intersections and valves by 20% and 15%, respectively. In terms of number of
intersections that is not quite as good as the channel minimizing cost function,
because overlap often results in shared intersections.

The positive effect of the approximated cost function is negligible. The number
of intersections and valves is almost the same as for the Manhattan cost function,
and the channel and route lengths are both increased by 10% on average.

There is no clear connection between chip size and choice of cost function. Since
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Name Cost Func. Chan. Rout. Inters. Valves Chip Size
IVD-1 Manhattan 1116 3592 47 204 210× 120

Approx. 1368 3764 43 182 120× 180
Routed 1244 3408 28 134 170× 135

Channel Min. 678 3922 19 106 165× 170

IVD-2 Manhattan 1761 3230 57 266 200× 470
Approx. 1568 3147 47 238 205× 470
Routed 2274 3181 43 231 395× 235

Channel Min. 1445 4104 39 216 310× 260

PCR-2 Manhattan 615 1304 24 124 120× 100
Approx. 800 1401 29 140 125× 120
Routed 505 1291 15 103 115× 120

Channel Min. 448 1437 14 106 115× 120

PCR-3 Manhattan 1184 2514 56 248 120× 135
Approx. 1453 2714 72 303 125× 145
Routed 762 2432 27 144 105× 160

Channel Min. 463 2592 16 116 110× 140

Table 7.3: Cost function quality comparison for selected real life benchmark
architectures. The comparison is based on total channel length,
total route length, number of intersections, number of valves, and
chip size.

chip size is not a metric in either cost function, this is expected.

All percentages are based on the netlists in appendix B, and are compared to the
Manhattan reference cost function. Based on the observations above the routed
and the channel minimizing cost function provide good results with respect to
the chosen parameters. Which one to use depends on which is considered more
important: The total channel length or the total length of the routes.

The placement of the netlists took between 30 minutes and 24 hours to complete,
depending on the netlist size. Because of the exponentially increasing search
space, large netlists require considerably more repetitions at each temperature
to achieve good results.

7.3 Performance

In the following sections different variations of the placement algorithm is eval-
uated in terms of performance. Introducing more complex optimizations might
result in improved placement quality but also reduces performance, which in-
creases the running time of the algorithm.
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Because of the random nature of simulated annealing, the presented results are
only estimations. The results are based on a limited number of samples, and
the results will in general vary depending on how the randomized part of the
algorithm evolves.

7.3.1 Cost Functions

Throughout the thesis two cost functions are distinguished: The routed cost
function, which relies on actual routing, and the approximated cost function,
which estimates the routing based on certain assumptions.

The routed cost function produced better placement results in section 7.2, but
the number of computations is also much greater. Table 7.4 shows a comparison
of the running times for the routed and the approximated cost function.

10-2 30-2 40-2 50-2 IVD-1 PCR-3
Routed 140 270 250 540 160 100
Approximated 25 50 70 110 30 20
Ratio 5.6 5.4 3.6 4.9 5.3 5.0

Table 7.4: Computation time comparison between the routed cost function
and the approximated cost function. The unit is computation time
for the simple Manhattan cost function. The comparison is based
on selected netlists.

The used unit is the computation time for the Manhattan cost function. The
table shows that the routed cost function is 100 to 540 times slower than the
Manhattan cost function for the selected netlists. It is also approximately 5
times slower than the approximated cost function.

Note that both the routed and approximated cost function are significantly
slower for large netlists. This is due to the fact that large netlists have more
connections and both cost functions must maintain data structures for the in-
tersections of the connections.

7.3.2 Incremental Speedup

Incremental update of the cost functions is introduced to save computations and
increase performance by only recomputing what changed from one solutions to
another. Table 7.5 shows experimental results for the speedup.
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10-2 30-2 40-2 50-2 IVD-1 PCR-3
Routed 1.1 3.5 6.4 6.7 1.2 1.5
Approximated 5.3 20.4 24.3 28.0 3.7 5.0

Table 7.5: Incremental speedup for routed and approximated cost function for
selected netlists.

The speedup is greater for large netlists for both cost functions. For larger
netlists a smaller fraction of the connections need to be updated. For smaller
netlists the overhead of maintaining the incremental data structure is significant
and the effect is reduced.

The results indicate that the approximated cost function is more ideal for in-
cremental update than the routed cost function. This is expected because the
routed cost function must update the obstructed routes and the routes that
were previously obstructed in addition to the routes connected to changed com-
ponents (section 6.3.2.1). The routed cost function also has more internal data
structures to maintain for both intersections and overlapping.

7.3.3 Routing Algorithms

Two different routing algorithms are considered in section 6.1.1 and section
6.1.2. Soukup’s algorithm is chosen over Lee’s algorithm because it primarily
searches in the direction of the target, while Lee’s algorithm searches evenly in
all directions.

We wish to compare the two routing algorithms to see the effect of the directed
search of Soukup’s algorithm. Placements are conducted for six netlists where
all routes are routed with both Soukup’s algorithm and Lee’s algorithm. The
total search spaces of the two algorithms are compared and the reduction factor
of Soukup’s algorithm is presented in table 7.6.

10-2 30-2 40-2 50-2 IVD-1 PCR-3
10 to 30 20 to 85 25 to 115 30 to 130 5 to 20 5 to 25

Table 7.6: Search space reduction of Soukup’s algorithm compared to Lee’s
algorithm. The comparison is based on selected netlists.

In the initial solution (see section 4.2.2) of any netlist all routes can be routed
by going directly to the target first in the horizontal direction and then in the
vertical direction. These are ideal conditions for Soukup’s algorithm, which
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results in a huge reduction in the search space. As the placement approaches
its final solution the search space becomes congested which is bad for Soukup’s
algorithm. The result is a huge reduction in the initial phase of the placement,
which gradually reduces. In table 7.6 this is represented by the interval at each
netlist.
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Chapter 8

Computer-Aided Design
Tool

The placement algorithm described in the previous chapters has been imple-
mented as part of a Computer-Aided Design (CAD) tool. The purpose of the
tool is to assist the designer in the component placement phase of the biochip
design process. The CAD tool consists of a placement engine that executes the
placement algorithm and a Graphical User Interface (GUI) that visualizes the
simulation as it evolves. When a placement is complete the result can be saved
in an XML file. The result can then be restored in the GUI by loading the XML
file, or the XML file can be used in other tools for the subsequent phases of the
biochip design process. Furthermore, the GUI assists in choosing the correct
parameters for the simulated annealing by providing relevant information.

The simulation engine can also run as a stand-alone application. This is conve-
nient when doing time consuming simulations that don’t require a visualization.
The following sections describe the main features of the CAD tool.
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8.1 Visualization

Finding the best configuration for the simulated annealing is, due to the many
parameters, a difficult task. The solution found by the simulated annealing
should correspond to our perception of a good solution. Seeing the placement
evolve, as it is modified by the simulated annealing algorithm, will help identify
what parameters should be changed. This is the motivation behind the visual-
ization of the placement algorithm. Figure 8.1 shows a GUI screenshot during
a placement.

Figure 8.1: Screenshot of the GUI as the tool is performing the placement of
architecture 10-2. Green rectangles are components, thick blue
lines are routes, red crosses are intersections, and thin black lines
indicate a connection between two connection points. The top bar
provides data about the current placement.

In addition to showing the visualization of the placement, the GUI also provides
the following information:
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• The current cost function value, C, along with the metric values, N, L, S,
and V.

• The current temperature.

• The current acceptance rate, which is the rate of neighbouring solutions
that are accepted since the last GUI update.

• The total number of steps calculated. This corresponds to iterations of
the simulated annealing algorithm. Furthermore, the current computation
speed in terms of steps per second is shown.

Along with the provided information, the visualization can help determine if the
parameters have the correct value. In particular, the acceptance rate is helpful
in determining the initial temperature. Initially the acceptance rate should be
close to 100% and the initial temperature must be high enough to facilitate that.

At any time during the placement, the user can choose to stop the placement,
step through nrep iterations at a time, print benchmark information, save the
current placement in an XML file, or restart the placement. These options
are helpful to obtain and save results, but they were also of great use in the
debugging process. The benchmark information include routing lengths, number
of intersections, number of valves, and chip size. This information was used to
generate the benchmark results in section 7.2.

In general the GUI is well suited for ensuring that the placement behaves as
indented. Either in the debugging phase, to test that the model works as ex-
pected, or when obtaining results, to test that the parameters have the desired
effect.

8.2 Configuration

Many parameters can be set for the simulated annealing. All configurations
are collected in a JSON file. The configuration file is passed to the program
upon start-up. This enables having multiple predefined configurations, where
a particular one can quickly be applied when needed. The most important
configurations are outlined in the following descriptions.

Cell Size Defines height and width of a single cell. The unit is 150µm. Large
cell sizes decrease the grid granularity and thus reduces the problem size.
A cell size of five was mainly used for conducting the placement, and a
cell size of one was used to retrieve routing benchmark information.
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Component Library Sets the path to the component library. The component
library is an XML file that defines the sizes, connection points, and number
of valves for all component types. Input and output ports are also defined
as components.

Component Border Defines the thickness of the component border. It must
comply with the placement design rules (table 2.2). A border of five units
ensures that the spacing between any two components is at least 10 units
(150µm).

Initial Temperature Sets the temperature, from which the simulated anneal-
ing cool-down starts.

Reduction Rate Decides how fast the temperature is reduced. Typical values
are between 0.98 and 0.999.

Nrep Sets the number of repetitions at each temperature. This is useful to
scale the placement time by a constant factor. More repetitions at each
temperature generally provides better results but also takes longer.

Operation Probabilities Defines the probabilities that the three different op-
erations, move, rotate, and swap, are performed at each iteration. The
probabilities should sum to 100%. (60%, 20%, 20%) for move, rotate, and
swap provide good results.

Cost Function The cost function must be defined both in terms of which cost
function to use and the weights of the metrics. The CAD tool supports
the routed and the approximated cost function. The Manhattan and the
channel minimizing cost functions are obtained by tweaking the metric
weights of the approximated and the routed cost function, respectively.

Termination Defines the termination conditions. A termination temperature
is set, and it is stated if an XML-file should be saved automatically upon
completion. The tool can also be configured to perform additional itera-
tions at temperature zero to ensure that the solution is at a local optimum.

The configurations above can be combined in many different ways. Knowing
which values to use is the biggest challenge when using simulated annealing.
The purpose of the CAD Tool is to assist in experimentally determining the
configuration to use, so that the achieved placements meet the expectations
for a good placement. When a good configuration has been chosen the GUI is
no longer particularly useful. Instead, the placement engine might as well run
independently on a high performance computer, until the results are ready.



Chapter 9
Conclusions and Future

Work

9.1 Conclusions

This thesis describes and analysis problems involved in implementing an al-
gorithm for automated biochip component placement. A biochip architecture
model is proposed. Components and flow channel routes are placed on a grid,
representing the biochip area. The purpose of the algorithm is to find the best
placement for any given biochip netlist. A placement must comply with certain
design rules in order to be feasible.

Due to the complexity of the problem, the optimal solution cannot be com-
puted in polynomial time. Instead, a common heuristic for minimization prob-
lems, simulated annealing, is used to optimize the component placement. An
important property of the simulated annealing algorithm, is that the solution
converges towards the optimal solution. This is used to find a solution in poly-
nomial time, that is considered good enough.

An important problem is to decide and define what a good solution is. In this
thesis, a placement is good, if it provides good conditions for the subsequent
phases of the biochip design process. A good solution is thus a placement with
short routes between components, a short total channel length, and few route
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intersections. The simulated annealing algorithm must optimize the placement
with respect to these metrics.

Two different cost functions are proposed for the simulated annealing algorithm:
An approximated cost function, which tries to make qualified estimations of the
metric values, and a routed cost function, which uses the actual routes between
components to determine the metric values. The approximated cost function
is fast to compute but is based on estimations. On the other hand, the routed
cost function takes longer to compute but the metric values are accurate.

The two cost functions are evaluated on several benchmark netlists. They are
compared to a reference cost function, which minimizes the Manhattan distance
between components. All benchmarks are routed using the same simple rout-
ing algorithm as the routed cost function. The benchmarks indicate that the
approximated cost function does not improve the number of route intersections
and increases the route and channel length, compared to the reference cost func-
tion. In contrast, the routed cost function provides good results. In one version
it decreases the number of intersections by 35%. However, the few intersections
require longer routes, so the total route length is increased by 25%. In another
version, intersections are decreased by 20%, and route lengths are similar to the
reference cost function. The downside is that it needs significantly longer time
to finish, than the approximated cost function.

Simulated annealing relies on many different parameters. The values of these
parameters affect the outcome of the algorithm. Among other things the pa-
rameters decide how long the algorithm runs and the exact form of the cost
function. It is the general consensus that these parameters are best decided
experimentally [9]. In order to help the biochip designer decide the parameters,
a CAD tool has been implemented which visualizes the simulated annealing al-
gorithm along with relevant information. The CAD tool is also useful to verify
that the placement is acceptable or if the algorithm should be restarted.

9.2 Future Work

The component placement algorithm can be extended and improved in many
ways. Either to improve the quality of the placements or to improve algorithm
performance. Some interesting extensions for future work are:

• Introduction of a new metric, the chip size. Often the biochip must be
as small as possible or the placement must fit on a standard sized chip.
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Both situations could be solved with a chip size metric. One possible
implementation is to let the metric be defined by the height and width
of the smallest rectangle, r, that fits around all components. Then the
simulated annealing algorithm is used to minimize the height and width.
Another approach is to give a chip size as input to the algorithm. If the
bounding rectangle, r, extends beyond the chip size a significant penalty
is added to the cost function. This encourages the simulated annealing
algorithm to find solutions that fit inside the chip area. At the same time,
if r is smaller than the chip size, no penalty is added, and other metrics
like number of intersection can decide the placement within the chip area.

• The input and output ports of the chip are connected to off-chip pumps
that pump fluids into the flow channels. Restricting the sections on which
input and output ports can be placed, will ease the process of connecting
the pumps. Such sections could be defined as rectangles on the chip area.
Ideally, the sections are defined relative to the bounding rectangle of the
components. This way, the sections will adapt as the components pack
together.

• The experimental evaluations reveal that the routed cost function gener-
ally provides better results than the approximated cost function, but it
is significantly slower. It would be interesting to investigate if the two
cost functions could be combined to achieve fast high quality placements.
The approximated cost function would be adequate at high temperatures
where the components move freely. When the temperature gets to a cer-
tain point, the routed cost function is applied to fine-tune the placement
based on actual routes. It is hard to say which temperature is ideal for
switching cost functions, and this adds another parameter which must be
experimentally obtained.

• Soukup’s routing algorithm was chosen as the primary routing algorithm
for the routed cost function. This decision was based on the fact that
Soukup’s algorithm directs it search towards the target, and thus mini-
mizes the search space. Lee’s algorithm on the other hand searches equally
in all directions. The advantage of Lee’s algorithm is that it can route from
a source to multiple targets. Due to its directed search Soukup’s can only
route to one target. If a netlist contains many connections per component
it might be faster to use Lee’s routing algorithm to route multiple routes
simultaneously.
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Appendix A

Benchmark Netlists

The table below lists the benchmark netlists used for experimental evaluation.
They are adapted from [7].

Name Type Components ConnectionsIn. Out. Mix. Fil. Hea. Stor.
10-1 Synthetic 2 1 4 2 4 1* 36
10-2 Synthetic 1 1 4 2 4 1* 33
20-1 Synthetic 2 1 12 4 4 1* 76
20-2 Synthetic 1 1 12 4 4 1* 68
30-1 Synthetic 2 1 17 7 6 1* 124
30-2 Synthetic 12 1 17 7 6 1* 102
40-1 Synthetic 2 1 21 10 9 1* 140
40-2 Synthetic 15 1 21 10 9 1* 135
50-1 Synthetic 2 1 26 12 12 1* 167
50-2 Synthetic 17 1 26 12 12 1* 167
IVD-1 Real Life 2 2 2 2 - 1 40
IVD-2 Real Life 6 6 6 6 - - 18
PCR-1 Real Life 2 2 2 - - 1 12
PCR-2 Real Life 3 3 3 - - 1 24
PCR-3 Real Life 4 4 4 - - 1 40
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Appendix B

Cost Function Comparison

The following sections provide the placement results for all benchmark netlists.

B.1 Synthetic Architectures

The table below shows the cost function quality comparison for synthetic bench-
mark architectures. The comparison is based on total channel length, total route
length, number of intersections, number of valves, and chip size.

Name Cost Func. Chan. Rout. Inters. Valves Chip Size
10-1 Manhattan 1375 2346 43 205 185× 205

Approx. 1464 2670 47 221 285× 170
Routed 1596 2428 37 185 180× 235

Channel Min. 1142 3056 41 202 170× 230
10-2 Manhattan 1272 2366 42 197 170× 220

Approx. 1352 2529 35 176 285× 170
Routed 1625 2311 38 185 195× 195

Channel Min. 1197 2893 31 170 260× 170
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Name Cost Func. Chan. Rout. Inters. Valves Chip Size
20-1 Manhattan 2895 6395 107 475 265× 270

Approx. 3112 6699 106 481 325× 265
Routed 3181 6418 81 397 285× 335

Channel Min. 1955 7949 54 320 295× 300
20-2 Manhattan 2876 6241 109 492 295× 245

Approx. 2520 6099 85 410 245× 310
Routed 3207 5966 84 411 295× 290

Channel Min. 2027 6981 49 298 295× 275
30-1 Manhattan 4481 12218 164 713 345× 445

Approx. 4850 13621 161 703 515× 345
Routed 4370 12053 147 680 335× 365

Channel Min. 3391 14512 113 557 335× 330
30-2 Manhattan 4841 9794 171 749 450× 305

Approx. 4258 10222 146 661 365× 405
Routed 4909 10000 132 638 460× 400

Channel Min. 3984 12205 113 564 415× 465
40-1 Manhattan 5704 15543 221 944 395× 435

Approx. 5992 17412 203 877 465× 500
Routed 7071 16236 203 899 445× 420

Channel Min. 4839 19095 149 731 335× 530
40-2 Manhattan 5765 14886 189 834 400× 450

Approx. 6310 15273 204 895 410× 565
Routed 6477 14817 172 800 470× 570

Channel Min. 5097 18299 169 800 460× 495
50-1 Manhattan 7286 20724 264 1139 560× 485

Approx. 7865 21565 254 1097 410× 585
Routed 7810 21276 232 1038 435× 490

Channel Min. 6310 25489 176 847 520× 560
50-2 Manhattan 7396 20288 272 1177 600× 450

Approx. 7545 21337 244 1076 460× 630
Routed 8081 20742 237 1065 525× 575

Channel Min. 7087 27824 194 914 480× 680
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B.2 Real Life Architectures

The table below shows the cost function quality comparison for real life bench-
mark architectures. The comparison is based on total channel length, total route
length, number of intersections, number of valves, and chip size.

Name Cost Func. Chan. Rout. Inters. Valves Chip Size
IVD-1 Manhattan 1116 3592 47 204 210× 120

Approx. 1368 3764 43 182 120× 180
Routed 1244 3408 28 134 170× 135

Channel Min. 678 3922 19 106 165× 170
IVD-2 Manhattan 1761 3230 57 266 200× 470

Approx. 1568 3147 47 238 205× 470
Routed 2274 3181 43 231 395× 235

Channel Min. 1445 4104 39 216 310× 260
PCR-1 Manhattan 447 670 18 101 80× 125

Approx. 512 676 17 98 125× 95
Routed 418 632 8 73 100× 120

Channel Min. 300 672 8 74 120× 95
PCR-2 Manhattan 615 1304 24 124 120× 100

Approx. 800 1401 29 140 125× 120
Routed 505 1291 15 103 115× 120

Channel Min. 448 1437 14 106 115× 120
PCR-3 Manhattan 1184 2514 56 248 120× 135

Approx. 1453 2714 72 303 125× 145
Routed 762 2432 27 144 105× 160

Channel Min. 463 2592 16 116 110× 140
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