
Task Migration for Fault-Tolerance in Mixed-Criticality
Embedded Systems

Prabhat Kumar Saraswat, Paul Pop, Jan Madsen
Technical Univ. of Denmark, DK-2800 Kgs. Lyngby

{pksa|pop|jan}@imm.dtu.dk

ABSTRACT
In this paper we are interested in mixed-criticality embed-
ded applications implemented on distributed architectures.
Depending on their time-criticality, tasks can be hard or
soft real-time and regarding safety-criticality, tasks can be
fault-tolerant to transient faults, permanent faults, or have
no dependability requirements. We use Earliest Deadline
First (EDF) scheduling for the hard tasks and the Constant
Bandwidth Server (CBS) for the soft tasks. The CBS pa-
rameters determine the quality of service (QoS) of soft tasks.
Transient faults are tolerated using checkpointing with roll-
back recovery. For tolerating permanent faults in proces-
sors, we use task migration, i.e., restarting the safety-critical
tasks on other processors. We propose a Greedy-based on-
line heuristic for the migration of safety-critical tasks, in
response to permanent faults, and the adjustment of CBS
parameters on the target processors, such that the faults are
tolerated, the deadlines for the hard real-time tasks are sat-
isfied and the QoS for soft tasks is maximized. The proposed
online adaptive approach has been evaluated using several
synthetic benchmarks and a real-life case study.

1. INTRODUCTION
Traditionally, hard and soft real-time systems have been im-
plemented using very different techniques [10]. However,
many applications have both hard and soft constraints [9],
hence a unified approach is required. Moreover, economic
pressures and multi-core architectures are driving the in-
tegration of several levels of safety-criticality onto the same
platform. Such applications have been traditionally designed
using static approaches [10].

However, in many application areas, static approaches are
no longer feasible due to increasing complexity and tight cost
constraints, and more flexible solutions are required. Hence,
researchers are advocating adaptive approaches, which are
able to provide “operational flexibility” [3], by changing at
runtime the system configuration in response to changes in

the requirements, environment, fault occurrences etc. Adap-
tive embedded systems are able to use resources more ef-
ficiently, provide graceful degradation, leading to reduced
costs and increased dependability [3].

Researchers have proposed several hardware architecture so-
lutions, such as TTA [10], that rely on hardware redun-
dancy to tolerate permanent faults. Such approaches can
also be used for tolerating transient faults but they incur
a very large hardware cost, since transient faults are more
numerous [9]. Alternatives to such purely hardware-based
solutions are approaches such as software replication, re-
execution and checkpointing. Fault-tolerance has been ad-
dressed separately for hard [7] and soft [4] systems. Re-
cently, Izosimov et al. [9] have considered mixed hard/soft
real-time applications, and shown how quasi-static schedules
can adapt at runtime to the actual execution times of tasks
and to transient faults.

Abeni and Buttazzo [1] have proposed the Constant Band-
width Server (CBS) for integrating hard and soft tasks on
the same processor. CBS is used in conjunction with a
scheduling technique such as EDF or Rate Monotonic (RM),
which guarantees the deadlines of hard tasks and schedules
the servers. The soft tasks are scheduled by the servers, and
the server parameters, i.e., the period Ti and bandwidth Qi,
determine the QoS for the particular soft task. Abeni et
al. have later shown [2] how the server parameters can be
adaptively adjusted at runtime using a PID controller in or-
der to maximize the QoS of soft tasks. Offline and online
techniques for the derivation of CBS parameters have been
proposed in [13], aiming at increasing the “benefit”̇I associ-
ated to soft tasks.

In this paper we use EDF for the hard tasks and CBS for the
soft tasks. Transient faults are tolerated using checkpoint-
ing with rollback recovery and we use task migration for tol-
erating permanent faults. Researchers have addressed task
migration for load [6] and thermal [12] balancing, for improv-
ing performance [14] and for tolerating faults[5]. However,
none of the existing approaches can handle mixed-criticality
hard/soft applications. Hence, we propose a Greedy-based
online heuristic for the migration of safety-critical tasks, in
response to permanent faults, and the adjustment of CBS
parameters on the target processors, such that the faults are
tolerated, the deadlines for the hard real-time tasks are sat-
isfied and the QoS for soft real-time tasks is maximized (see
Fig. 1 for an illustration of the problem)

2. APPLICATION MODEL
We model an application as a set A of interacting tasks
τi ∈ A. The tasks are mapped on a distributed architec-
ture. The mapping is determined by a function M : A → N
where N is the set of processing elements in the architec-
ture. The mixed-criticality requirements of each task are
captured by two functions: F : A → {Permanent, Tran-
sient & Permanent, φ} determines if the task has to tolerate
permanent and/or transient faults, or does not have safety-
critical requirements. R : A → {Hard, Soft} determines if
the task is hard or soft real-time, respectively. Hard real-
time tasks will always have safety-critical requirements i.e.,
∀τi : R(τi) = HardF (τi) 6= φ.

Tasks communicate asynchronously through buffers. The
buffer sizes have been determined such that there is no over-
flow or underflow [8, 11]. Tasks are periodic: each τi ∈ A
has a period Ti. If needed, traffic shapers[16] can be used to
ensure periodic behavior.

Hard real-time tasks are characterized by their worst case
execution times (WCETs) Ci and a deadline Di. Soft tasks
are characterized by the probability distribution functions
(PDFs) Ui of their execution times and a soft deadline δi.
Ui(c) is the probability that the job Ji,k of τi has an exe-
cution time of c. The QoS of a soft task τi is defined as
the probability of meeting the deadline δi, i.e., QoS(δi) =
P{fi,k ≤ ri,k+δi}, where fi,k and ri,k are the finishing time
and the arrival time of the kth job of soft task τi, respec-
tively. Missing this deadline would not cause a catastrophic
failure in the system, but only lead to certain performance
degradation. The WCETs and PDFs are different for differ-
ent task–processor mappings.

3. PLATFORM MODEL
We consider hardware architectures consisting of a set N
of heterogeneous processing elements (PEs), interconnected
by a communication channel. PEs have access to a shared
memory where the code of tasks and the checkpoints (last
non-faulty state of a task) are stored. The software architec-
ture is composed of an EDF scheduler and a middleware im-
plementing the proposed online task migration mechanism.
The soft tasks are scheduled using CBS. The hard tasks and
CB servers are scheduled using EDF. CBS enforces temporal
isolation between hard and soft real-time tasks, thus guar-
anteeing the schedulability of hard tasks.

Thus, each soft real-time task τi is assigned a CBS, charac-
terized by the tuple (Qi, Ti), where Qi (also called as band-
width) is the time that the soft task τi is allowed to use the
CPU every period Ti

1. Each time τi demands more than
its allocated Qi, the CB server postpones the deadline δi
with Ti. The EDF scheduler will schedule τi using this new
deadline thus ensuring that a soft task will never demand
more than its assigned bandwidth.

We assume that there can be at most k transient faults
within an execution cycle of the application A. There can be
any number of permanent faults in the PEs of the system,
but beyond a certain number, the safety and timeliness re-

1The period of the server is equal to the period of the soft
task.

Figure 1: Optimal vs Greedy mapping

quirements of A can no longer be satisfied. Transient faults
are tolerated using equidistant checkpointing with rollback
recovery [15], which uses time redundancy to tolerate tran-
sient faults. Permanent faults are tolerated using task mi-
gration, i.e., starting the safety-critical tasks on other pro-
cessors.

The principle of checkpointing is to restore the last non-
faulty state (checkpoint) of the failing task, i.e., to recover
from fault. The checkpoint has to be saved in advance into a
stable storage, and will be restored if the task fails. The part
of the task between two checkpoints is called execution seg-
ment. In our approach, we use the shared memory to store
the checkpoints. If a permanent error is detected, the task
will be recovered on other processors from its last checkpoint
stored (if exists, otherwise from its start). Our proposed
online task migration technique will decide on which of the
healthy PEs to recover the tasks. The error detection and
fault-tolerance mechanisms are part of the software architec-
ture. Our approach takes into account the error detection
and recovery overheads (for both transient and permanent
faults). The use of shared memory checkpoints significantly
reduces the task migration overhead. Our technique is also
applicable on architectures that do not use shared memory.
In that case, the overheads related to checkpointing and task
migration will be different.

4. PROBLEM FORMULATION
As an input to our problem, we have a set of applications,
modeled as presented in Section 2, mapped on a platform
as described in Section 3. The mapping of tasks and CB
server parameters (Qi, Ti) are known. Given a set NF of
PEs that have permanent faults, we are interested to deter-
mine for each failed safety-critical task τi (i.e, M(τi) ∈ NF
and F (τi) 6= φ), the target PE X(τi) where to migrate τi.
We are also interested to calculate the bandwidth Qi of all
the servers on the target PEs. The migration and bandwidth
calculation should be done such that the deadlines for the
hard real-time tasks are satisfied (even in the case of tran-

sient faults) and the QoS of soft tasks is maximized (i.e.,
the system degrades gracefully) considering the remaining
available resources (N \ NF).

Let us consider Fig. 1 where we have a system with 3
PEs, 4 hard real-time tasks (τ1–τ4), depicted in grey, and
6 soft real-time tasks (τ5–τ10). All tasks have to toler-
ate permanent faults (for simplicity, let’s ignore transient
faults in this example). The initial mapping is presented
in the Fig. 1(a). The WCETs and periods for hard tasks
are denoted as a fraction Ci

Ti
next to each hard task. The

deadlines are equal to the periods. The bandwidth Qi, soft
deadline δi and the period Ti of the servers associated to

each soft task are depicted as Qi(δi)
Ti

. Each soft task has a

different expectation value E(ci) for each PE. E(ci) of the
PDF Ui is the probability-weighted sum of possible values
of execution times ci. We could not present the PDFs here
due to lack of space, but they are available in the techni-
cal report. The expectations of the tasks τ5–τ10 for PEs
{PE1, PE2, PE3} are {25, 30, 32}, {27, 29, 31}, {29, 31, 32},
{28, 31, 33}, {26, 29, 33}, {28, 31, 34}, respectively.

Further, let us assume that PE3 has a permanent fault. We
are interested to decide where to migrate tasks τ4, τ9 and τ10
from PE3 and how to calculate the new bandwidth of the
servers on the target PEs such that all hard tasks meet their
deadlines and the total QoS of all soft tasks is maximized.
Fig. 1(b) shows the optimal mapping and bandwidth allo-
cation solution, which guarantees all the deadlines for the
hard tasks and results in a maximum QoS value of 72.21%
(see next section on how the total QoS is calculated).

The decision on task migration and CBS bandwidth alloca-
tion cannot be taken offline. We don’t know the pattern of
permanent faults in advance (and would have to store too
many possible combinations) and we also assume that the
system is adaptive and can evolve beyond the initial imple-
mentation (both in terms of mapping and bandwidth). De-
termining online the optimal solution is infeasible due to the
large computation times required. Hence, we are interested
in an online heuristic that can quickly find a good solution.
The proposed greedy task migration and bandwidth alloca-
tion heuristic will produce online the solution depicted in
Fig. 1(c), which meets all the hard deadlines and results in
a total QoS of 70.50%, very close to the optimal solution.

5. ONLINE TASK MIGRATION
5.1 Schedulability Analysis
We assume that the deadlines for hard real-time tasks are
equal to the periods2, and we use the utilization-based test [10]:

∑
∀τi:R(τi)=Hard

Ci
Ti

+
∑

∀τi:R(τi)=Soft

Qi
Ti
≤ 1.

For hard tasks, the WCET Ci contains the checkpointing
and recovery overhead considering mi equidistant check-
points used to tolerate k transient faults [7]. For soft tasks,

2Arbitrary deadlines can be handled using the Processor
Demand Criterion.

Algorithm 1 TMBA
Task Migration and Bandwidth Allocation

1: input: set of failed processors {NF }
2: for all τi such that M(τi) ∈ NF and F (τi) 6= φ do
3: QoSbest = 0
4: for all PEj ∈ N \NF do
5: Ui = GetUtil(τi);

UPEj =
∑

∀τk:M(τk)∈PEj

GetUtil(τk)

6: if 1− UPEj < Ui then
7: AdjustQsProportionally(τi, PEj)
8: end if
9: QoScurr = CalculateQoS()

10: if QoScurr > QoSbest then
11: PEbest = PEj ; QoSbest = QoScurr
12: end if
13: UndoAdjustQs(PEj)
14: end for
15: MigrateTask(τi, PEbest)
16: end for

we assume that the PDFs take into account the checkpoint-
ing overhead. The number of checkpoints are specified by
the designer [15] for each safety-critical task. The schedu-
lability of the soft task τi (i.e., the probability of meeting
its deadline δi) depends on the bandwidth Qi. However, it
should be noted that the relationship between the QoS and
Q is not linear. For example, in Fig. 1, increasing Q8 = 20
with 2 will lead to a QoS of 88.56% from 73.16% (an in-
crease of 15.4%). However, further increasing Q8 by 2 will
only increase the QoS by 0.68% to 89.24%. The relation
between Q and QoS is different for each process depending
on its PDF shape.

Due to the temporal isolation property of CBS, each soft
task can be analyzed individually. This property is partic-
ularly useful for an online approach: instead of performing
the (time consuming) analysis online, the calculation can be
done offline for all Qi values and stored for online use. The
number of Qi values to be stored is limited. If Qi ≥WCET
all deadlines are satisfied, whereas if Qi < AET , the re-
sponse time of the soft task would be infinite.

For a given soft real-time task τi mapped on a processor
PEj , QoS(τi, PEj) is the probability that its job Ji,k fin-
ishes before a deadline di,k = ri,k+δi where ri,k is the arrival
time of the job. This probability is calculated by modeling
the CBS (serving the soft tasks τi) as a queuing system [2].
The arriving jobs Ji,k are seen as tokens to be served by the
server having the capacity Qi. The length of queue when
each job Ji,k arrives is defined by a random process vk. A

state probability vector π
(k)
m = P{vk = m} for this random

process is calculated, which captures the probability of hav-
ing a certain length of the queue. Our heuristic will decided
on the appropriate Q values that maximize the total QoS
after task migration. By solving for the stationary solution
of this state probability vector, the probability of meeting a
certain deadline can be calculated. The detailed derivation
can be seen in [2]. The total QoS of the system is calculated
as a normalized sum over the QoS of each soft task. The
designer can give weights to individual soft tasks to differ-

No. Avg. Init. PEs. Tasks TMBA TS
Util. QoS Tot.(Failed) Tot.(Migrated) QoS(Time) QoS

1 92.97 99.53 3 (1) 10 (3) 70.85 (23) 71.84
2 92.82 99.26 4 (1) 16 (5) 71.89 (62) 73.41
3 93.26 99.79 5 (1) 21 (6) 74.82 (74) 75.23
4 93.16 99.51 7 (2) 29 (10) 77.01 (131) 77.60
5 92.30 99.78 8 (2) 33 (11) 77.90 (179) 78.75
6 92.86 99.79 9 (2) 37 (11) 80.03 (213) 80.81
7 92.28 99.78 10 (2) 49 (12) 81.70 (268) 81.97
8 92.22 99.84 16 (3) 67 (14) 88.58 (306) 88.88
9 93.29 99.82 18 (3) 78 (15) 88.99 (704) 89.28

Table 1: Experimental Results 1

No. Avg. Init. TMBA TS
Util. QoS QoS QoS

1 95.38 99.38 67.91 68.95
2 90.10 99.35 70.22 73.02
3 85.01 99.39 75.36 77.04
4 80.07 99.38 79.80 82.04
5 75.02 99.37 82.45 85.84
6 70.11 99.35 86.33 89.92
7 65.08 99.45 88.62 91.36
8 60.08 99.40 93.60 94.23
9 55.09 99.41 93.62 96.32
10 50.07 99.42 96.28 96.32

Table 2: Experimental Results 2

entiate their importance.

5.2 Greedy-Based Online Task Migration
We have proposed a greedy-based online heuristic for Task
Migration and Bandwidth Allocation (TMBA). A greedy
algorithm works by making a locally optimal choice at each
stage. The algorithm is presented in Alg. 1 and takes as
input the set of failed PEs NF (more than one PE can fail).
For each failed task τi the heuristic selects each healthy PEj
as a candidate for migration (lines 4–16). The hard tasks are
considered before the soft tasks, and the tasks are ordered
on the decreasing order of their utilization, i.e., Ci

Ti
for hard

tasks and E(ci)
Ti

for soft tasks. The utilization needed by

τi is calculated in line 5. The utilization available on PEj
is found out by summing the utilizations of all the tasks
mapped on PEj (line 5).

If the available utilization on the processor is less than the
utilization desired by the migrating task τi (line 6), the
bandwidth Q associated to the soft tasks on that processor
is decreased in proportion to their expectations, and then
the task τi can be mapped on the processor. If the available
utilization is enough, τi can be simply migrated without any
adjustments. The QoS of this migration and bandwidth al-
location decision is calculated by summing over the QoS of
all soft tasks on the system (line 9). The PE which gives
the best QoS is selected as the target for migration (lines
10–11).

The complexity of our greedy algorithm is polynomial. Note
that for each soft task τi we compute offline the QoS value
QoS(τi, PEj) for all integer values of Qi, with E(ci) ≤ Qi <
WCET of τi. Thus, theQoS calculation for each bandwidth
adjustment is a simple table lookup.

Considering the example in Fig. 1, the algorithm will first
select τ4 as it is the only hard task on the faulty processor,
and consider PE1 as the candidate for migration. The uti-
lization needed by this task is 0.32, which is not available
on PE1. Even by reducing the bandwidth of soft task τ6 to
zero, τ4 would not meet its deadline (the resulted task set
on PE1 is not schedulable). Hence, the algorithm selects
next PE2. If τ4 is migrated to PE2, the total utilization
available for the soft tasks (τ5, τ7 and τ8) is 1 − (15

35
+ 8

25
)

= 0.26. The utilization desired by τ4 can be made available
by decreasing the Q values of soft tasks. The adjustment is

done in proportion to their expectations. τ5, τ7 and τ8 have
expectation values of 28, 29 and 31, respectively. Thus, the
utilization available for τ5 would be 28

28+29+31
× 0.26 = 0.09

and the new Q value would be 0.09 × 150 = 12. Similarly,
the Q values for other tasks are calculated. The QoS of this
solution is 55%. Next, the soft task τ10 is selected for mi-
gration (before τ9, since it has a greater utilization). The
algorithm will produce the solution as depicted in Fig. 1(c).

6. EXPERIMENTAL EVALUATION
In the first set of experiments we were interested to deter-
mine the quality of the proposed heuristic. For this, we have
used nine synthetic benchmarks of 10 to 78 tasks mapped
on architectures with 3 to 18 PEs. We have used WCETs in
the interval 3 to 18 ms and have generated PDFs to match
the shape of those measured on real life benchmarks such as
an MPEG decoder, with expectations between 15 to 60 ms.
The applications were implemented such that the QoS is
close to 100 % and there is on average 7 % spare utilization
on each PE. All tasks are safety-critical and have to tolerate
permanent faults and one transient fault. We have varied
the number of permanent faults from 1 to 3, depending on
the number of nodes in the architecture.

Table 1 presents the experimental setup details and the
value of QoS (column 6, considering equal weights for the
soft tasks) obtained after applying our TMBA online greedy
heuristic. To determine the quality of TMBA we have com-
pared these results with the results obtained by a Tabu-
Search (TS) metaheuristic presented in the last column,
which uses mapping and bandwidth allocation design trans-
formations to explore the solution space. We have deter-
mined the parameters of TS such that the results are as
close as possible to the optimal solution (i.e., no improve-
ments were seen for large number of iterations). TS runs on
average for 352 min., which makes it unsuitable to be used
online.

The TMBA heuristic runs in polynomial time (see previous
section) and the computation times (in milliseconds) on a
2.5 GHz Intel machine running Ubuntu Linux 8.04 are also
presented in column 6. It can be seen from the results that
the QoS values obtained by TMBA differ from those of TS
by less than 1%. The obtained results are very close to those
obtained by TS (QoS difference of only 0.66% on average;
the hard deadlines were satisfied in both cases). Note that
TMBA only performs mapping decisions for the failed tasks

(3 to 15 tasks), and the proportional bandwidth allocation
used (see previous section) is often quite close to the optimal
allocation.

For the second set of experiments as shown in Table 2, we
have investigated how TMBA handles different levels of uti-
lization. We have used a synthetic benchmark with 33 tasks
(19 soft, 14 hard) mapped on an architecture with 8 nodes.
By varying the execution times, we have considered 10 cases,
where we have increased the utilization from 50% to 95%. In
all the cases, QoS is close to 100%. We have applied TMBA
considering two permanent faults, obtaining a schedulable
system with QoS between 67.91–96.28%. Compared to TS,
we have noticed that quality of solution given by TMBA de-
grades slightly from a difference of 0.05% for 50% utilization
to a difference of 1.5% for 95% utilization.

We have also tested our approach on a real-life case study
of a portable media player. The media player application
consists of a total of 20 soft real-time tasks and 10 hard
real-time tasks running on 4 processors. The frame rate of
displayed video should be 25 FPS and the audio should be
stereo with a bit rate of 300 Kbps for a good perceived QoS.
We simulated that one of the processors failed and the tasks
had to be migrated. The optimal mapping found out by
TS gave a QoS of 73.42%, while QoS reported by TMBA
(within 214 ms) was 74.19%, a difference of only 0.77%.

7. CONCLUSIONS
In this paper, we have addressed the issue of task migration
in mixed-criticality embedded systems to tolerate permanent
faults. We have proposed a Greedy-based online heuristic
which performs the migration of safety-critical tasks, in re-
sponse to permanent faults, and adjusts the CBS parameters
on the target processors, such that the faults are tolerated,
the deadlines for the hard real-time tasks are satisfied and
the QoS for soft real-time tasks is maximized.

8. REFERENCES
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In Proc. of 19th
IEEE Real-Time Systems Symp., pages 4–13, 1998.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole.
Analysis of a reservation-based feedback scheduler. In
Proc. 23rd IEEE Real-Time Systems Symp., pages
71–80, 3–5 Dec. 2002.

[3] L. Almeida, S. Fischmeister, M. Anand, and I. Lee. A
dynamic scheduling approach to designing flexible
safety-critical systems. Proc. of 7th ACM and IEEE
Int. Conf. on Embedded Soft., pages 67–74, 2007.

[4] H. Aydin, R. Melhem, and D. Mosse. Tolerating faults
while maximizing reward. In Proc. of 12th Euromicro
Conf. on Real-Time Systems, pages 219–226, 2000.

[5] A. A. Bertossi and L. V. Mancini. Scheduling
algorithms for fault-tolerance in hard-real-time
systems. Real-Time Syst., 7(3):229–245, 1994.

[6] S. Bertozzi, A. Acquaviva, D. Bertozzi, and
A. Poggiali. Supporting task migration in
multi-processor systems-on-chip: A feasibility study.
Proc. of Design, Autom. & Test in Europe Conf.,
pages 1–6, 2006.

[7] A. Burns, R. Davis, and S. Punnekkat. Feasibility

analysis of fault-tolerant real-time task sets. Euromicro
Conf. on Real-Time Systems, pages 29–33, 1996.

[8] J. Hu and R. Marculescu. Application-specific buffer
space allocation for networks-on-chip router design.
pages 354–361, 2004.

[9] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Scheduling
of fault-tolerant embedded systems with soft and hard
timing constraints. In Proc. of Design, Autom. & Test
in Europe Conf., pages 915–920, 2008.

[10] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, 1997.

[11] S. Manolache, P. Eles, and Z. Peng. Buffer space
optimisation with communication synthesis and traffic
shaping for nocs. pages 718–723, 2006.

[12] F. Mulas, M. Pittau, M. Buttu, S. Carta,
A. Acquaviva, L. Benini, D. Atienza, and
G. De Micheli. Thermal balancing policy for streaming
computing on multiprocessor architectures. In Proc. of
Design, Autom. & Test in Europe Conf., pages
734–739, 2008.

[13] A. Oliveira, E. Camponogara, and G. Lima. Dynamic
reconfiguration in reservation-based scheduling: An
optimization approach. In Proc. of 15th IEEE
Real-Time and Embedded Technology and Applications
Symp., pages 173–182, 2009.

[14] M. Pittau, A. Alimonda, S. Carta, and A. Acquaviva.
Impact of task migration on streaming multimedia for
embedded multiprocessors: A quantitative evaluation.
In Proc. of IEEE/ACM/IFIP Workshop on Embedded
Systems for Real-Time Multimedia, pages 59–64, 2007.

[15] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design
optimization of time- and cost-constrained
fault-tolerant embedded systems with checkpointing
and replication. IEEE Transactions on VLSI Systems,
17:389–402, 2009.

[16] E. Wandeler, A. Maxiaguine, and L. Thiele.
Performance analysis of greedy shapers in real-time
systems. In Proc. Design, Automation and Test in
Europe DATE ’06, volume 1, page 6pp., 6–10 March
2006.

