
Task Mapping and Bandwidth Reservation for Mixed Hard/Soft Fault-Tolerant
Embedded Systems

Prabhat Kumar Saraswat, Paul Pop, Jan Madsen
Department of Informatics and Mathematical Modelling

Technical University of Denmark
DK-2800 Kgs. Lyngby

{pksa|pop|jan}@imm.dtu.dk

Abstract—In this paper we are interested in mixed hard/soft
real-time fault-tolerant applications mapped on distributed
heterogeneous architectures. We use the Earliest Deadline First
(EDF) scheduling for the hard real-time tasks and the Constant
Bandwidth Server (CBS) for the soft tasks. The bandwidth
reserved for the servers determines the quality of service (QoS)
for soft tasks. CBS enforces temporal isolation, such that soft
task overruns do not affect the timing guarantees of hard tasks.
Transient faults in hard tasks are tolerated using checkpointing
with rollback recovery. We have proposed a Tabu Search-based
approach for task mapping and CBS bandwidth reservation,
such that the deadlines for the hard tasks are satisfied, even in
the case of transient faults, and the QoS for the soft tasks is
maximized. Researchers have used fixed execution time models,
such as the worst-case execution times for hard tasks and
average execution times for soft tasks. However, we show that
by using stochastic execution times for soft tasks, significant
improvements can be obtained. The proposed strategy has been
evaluated using an extensive set of benchmarks.

I. INTRODUCTION

Traditionally, hard and soft real-time systems have been
implemented using very different techniques [1], [2], [3].
However, many applications have both hard and soft con-
straints [4], hence a unified approach is required. Moreover,
economic pressures and multi-core architectures are driving
the integration of hard and soft real-time applications onto
the same platform.

In hard real-time systems, missing a deadline can lead to a
catastrophic failure. Design methodologies for these systems
are based on their worst-case execution times (WCET).
There is a large amount of research on hard real-time
systems [1], [3], including task mapping to heterogeneous
architectures [5].

In soft real-time systems, missing a deadline does not
cause catastrophic failures in the system but leads to a
certain performance degradation. Researchers have proposed
techniques for designing soft real-time systems, which use
fixed execution time models such as the WCET and the
average execution time (AET). However, soft real-time tasks
have highly variable execution times, and using WCETs for
taking design decisions would lead to overdesign (costly
implementations), while using the AETs leads to an unpre-
dictably large number of deadline misses [2].

To overcome these problems, researchers have used time
models that can capture the variability of soft real-time
tasks [2]. Using these time models, analysis techniques
provide probabilistic guarantees for soft real-time tasks to
meet their timing constraints [2]. Zamora et al. [6] have used
stochastic automata networks (SAN) to model multimedia
applications and to perform early design-phase trade-offs
between performance and energy consumption. Network
calculus has been used by Chakraborty and Thiele [7] to
develop a new task model for streaming applications. In [4],
time/utility functions are used to capture the decreasing
“utility” of a soft task after missing its deadline. Manolache
et al. [8] have used the probability density function (PDF)
of the task execution time to accurately characterize the
execution of soft tasks, and have shown that design decisions
can be significantly improved if PDFs are used instead of
fixed execution time models. In [9], Hu et al. have proposed
a metric that can capture the overall system probabilistic
behavior, not only individual tasks. In this paper we use the
WCET for hard real-time tasks and the PDFs for soft tasks.

All of the previous approaches address hard and soft real-
time tasks separately. Little research work has addressed the
integration of hard and soft tasks on the same platform [10],
[11], [4]. Abeni and Buttazzo [10] have proposed the Con-
stant Bandwidth Server (CBS) for integrating hard and soft
tasks on the same processor. CBS is used in conjunction with
a scheduling technique such as Earliest Deadline First (EDF)
or Rate Monotonic (RM), which guarantees the deadlines
of hard tasks and schedules the servers. The soft tasks are
scheduled by the servers, and the server parameters, i.e.,
bandwidth Qi and the period Ti, determine the probability of
meeting the deadline of a particular soft task. The probability
of meeting the deadline of a soft task can be considered as its
quality of service (QoS). Abeni et al. have later shown [12]
how the server parameters can be adaptively adjusted at
runtime using a PID controller in order to maximize the QoS
of soft tasks. Offline and online techniques for the derivation
of CBS parameters have been proposed in [13], aiming at
increasing the “benefit” associated to soft tasks.

As embedded applications are being used in various
safety-critical applications, they have to perform correctly

2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/10 $26.00 © 2010 IEEE

DOI 10.1109/RTAS.2010.31

89

2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/10 $26.00 © 2010 IEEE

DOI 10.1109/RTAS.2010.31

89

even in the presence of faults. Fault-tolerance has been ad-
dressed separately for hard [14], [15] and soft [16] real-time
systems. In [17] we have shown how to handle permanent
faults in mixed hard/soft systems through task migration,
such that hard deadlines are still satisfied and the soft
tasks degrade gracefully. However, transient faults are more
common and their number is increasing due to greater com-
plexity, higher frequency and smaller transistor sizes [15].
Recently, Izosimov et al. [4] have considered mixed hard/soft
real-time applications, and shown how quasi-static schedules
can adapt at runtime to the actual execution times of tasks
and to transient faults.

In this paper we propose a Tabu Search-based optimiza-
tion algorithm which performs task mapping and processor
bandwidth reservation. We are considering mixed hard/soft
real-time applications that have to tolerate transient faults.
We use EDF for the hard tasks and CBS for the soft
tasks. Transient faults are tolerated using checkpointing with
rollback recovery [15]. We have used the PDFs instead
of the WCET or AET for the soft tasks, thus improving
the mapping and processor bandwidth allocation decisions,
leading to implementations where the deadlines for hard
tasks are satisfied (even in case of faults) and better QoS
is obtained for the soft tasks.

II. APPLICATION MODEL

We model an application as a set A of interacting tasks
τi ∈ A . The tasks are mapped on a distributed hetero-
geneous architecture denoted by the set N of process-
ing elements. The mapping is denoted by the function
M : A → N . This mapping is not yet known but would
be decided by our approach described in section V. A
function R : A → {Hard,So f t} determines if the task is hard
or soft real-time, respectively. The requirement to tolerate
transient faults by hard tasks is captured by the function:
F : A → {Transient,φ}, which determines if the task has to
tolerate transient faults, or does not have any safety-critical
requirements. We are assuming that soft real-time tasks do
not have to tolerate faults, but our model and algorithms can
take them into account, if necessary.

Tasks are periodic: each τi ∈ A has a period Ti. If needed,
traffic shapers [18] can be used to ensure periodic behavior.
Tasks communicate asynchronously through buffers, i.e., a
reader task will block if the buffer is empty and a writer task
will block if the buffer is full. The buffer sizes have been
determined such that there is no overflow or underflow [19],
[20]. We assume that the message sizes are known, and in
this paper we consider that processing elements are inter-
connected using a broadcast bus that uses non-preemptive
EDF. We have shown how realistic bus protocols can be
taken into account during the analysis [21].

Hard real-time tasks are characterized by their worst-case
execution times Ci and a deadline Di. For a hard task τi we
know the WCET C

Nj
i for each processing element Nj where

Figure 1. PDFs of the execution time of tasks τ1 and τ2 on processing
element N1

τi is considered for mapping. WCETs can be obtained with a
tool such as aiT [22]. Soft tasks are characterized by the PDF
U

Nj
i of their execution times and a soft deadline δi. U

Nj
i (h) is

the probability that the job Ji,k of τi has an execution time of
h on the processing element Nj. The PDFs can be obtained
by measuring the execution times of the soft tasks by running
them on actual hardware or on various hardware simulators
for different inputs. There are also some hybrid techniques
which incorporate both measurement and analysis to obtain
such PDFs [23]. Two PDFs are depicted in Fig. 1. The PDFs
depend on the mapping.

The QoS of a soft task τi is defined as the probability of
meeting the deadline δi, i.e., QoS(δi) = P{ fi,k ≤ ri,k + δi},
where fi,k and ri,k are the finishing and the arrival time,
respectively, of the kth job of task τi.

A. Bandwidth Allocation for Soft Tasks

The QoS of a soft task τi depends on the CB server band-
width Qi allocated to it. The design decision of bandwidth
allocation for the soft tasks is not trivial. Fig. 1 shows the
PDFs of the execution times of two soft tasks τ1 and τ2 on
a processing element N1. τ1 and τ2 have large variability in
their execution times. τ1 has an AET and a WCET of 11
and 60 ms, respectively, while τ2 has an AET and a WCET
of 17 and 80 ms, respectively. Both tasks have the same
deadline and period of 40 and 100 ms, respectively. N1 also
contains some hard tasks. For simplicity, we have not shown
these hard tasks. Let us assume that the processor utilization
allocated to the hard tasks to guarantee their deadlines is
0.4 (i.e., 40% utilization). Allocating a bandwidth Qi to the
CBS of a soft task τi with a period Ti will consume Qi

Ti
processor utilization. The spare utilization of 0.6 is available
for the soft tasks, depicted visually in Fig. 3(a), hence,
Q1
T1

+ Q2
T2

≤ 0.6.
Fig. 2 shows the probability of satisfying the deadline

(QoS) of τ1 and τ2 for different allocated Q1 and Q2 values,
respectively. This dependence is not linear and is influenced
by the shape of the PDFs. These graphs are obtained by
using the stochastic analysis presented in section V-B. The

9090

Figure 2. Probability of meeting the deadline for tasks τ1 and τ2 on N1

probability of satisfying the deadline of both tasks decreases
drastically when the Q value is less than the AET.

Let us consider the first approach (see Fig. 3(b)) where
Qi values are allocated in proportion to the tasks’ AETs
(11 and 17, respectively), i.e., processor utilization for τ1 is
0.6×11
11+17 = 0.235 and processor utilization for τ2 is 0.6×17

11+17 =
0.365. These processor utilizations corresponds to Q values
of 23 and 36 for τ1 and τ2, respectively, which, according
to Fig. 2 lead to a system QoS1 of 49.02+99.98

2 = 74.50%,
shown in Fig. 3(b).

However, using the stochastic execution times (captured
by the PDFs), the Q value can be intelligently chosen
as 38 for task τ1 and 22 for τ2 corresponding to a QoS
of 89.50+99.98

2 = 94.74%, shown in Fig. 3(c), much better
than the previous case. Therefore, using stochastic execu-
tion times, better design decisions can be taken regarding
bandwidth allocation.

Note that another problem with using the AET is that no
guarantees can be given for the soft tasks, i.e., the probability
of meeting the deadline cannot be derived from Qi and
AET. The probability of meeting the deadline δi, given a
certain Qi, can only be determined by using the PDF Ui, as
explained in section V-B. The WCETs can also be used to
allocate the processor bandwidths but corresponds to total
utilization greater than 1, see Fig. 3(d).

III. PLATFORM MODEL

We consider hardware architectures consisting of a set N
of heterogeneous processing elements (PEs), interconnected
by a communication channel. The communication channel
is a bus on which messages are exchanged between tasks.
Each PE Ni ∈ N consists of a communication controller and
a processing unit. Communicating tasks mapped on different
PEs exchange messages on the communication channel.
Messages are scheduled on the bus using non-preemptive
EDF. We consider that the bus is fault-tolerant.

1Considering equal weights for the QoS of τ1 and τ2. Different weights
can be assigned, if necessary.

Figure 3. Allocation of Q values using (b) AET, (c) PDFs and (d) WCET.

PEs have access to a shared memory where the code of
tasks and the checkpoints (last non-faulty state of a task) are
stored. The software architecture on each PE is composed
of an EDF scheduler and a middleware implementing the
CBS scheduling mechanism. The soft tasks are scheduled
using CBS. The hard tasks and CB servers are scheduled
using EDF. CBS enforces temporal isolation between hard
and soft real-time tasks, thus guaranteeing the schedulability
of hard tasks.

Each soft real-time task τi is assigned a CBS, char-
acterized by the tuple (Qi,Ti), where Qi (also called as
bandwidth) is the time that the soft task τi is allowed to use
the PE every period Ti

2. Each time τi demands more than
its allocated Qi, the CB server postpones the deadline δi
with Ti. The EDF scheduler will schedule τi using this new
deadline thus ensuring that a soft task will never demand
more than its assigned bandwidth [10].

A. Fault Model and Checkpointing

We assume that there can be at most k transient faults
within an execution cycle of the application (the least com-
mon multiple (LCM), of all the tasks’ periods). Transient
faults are tolerated using equidistant checkpointing with
rollback recovery [15], which uses time redundancy to
tolerate transient faults. The principle of checkpointing is to
restore the last non-faulty state (checkpoint) of the failing
task, i.e., to recover from fault. The checkpoint has to be
saved in advance into a stable storage (in our case, the
shared memory), and will be restored if the task fails. The
part of the task between two checkpoints is called execution
segment. The number of checkpoints for a hard real-time
task τi tolerating transient faults is denoted with ni. The
overhead in establishing the checkpoint is captured by Oi.
We assume that the inputs for a task are stored in its input
buffers and, thus, no checkpoint is needed at the beginning of
the task. The length of the execution segment is %Ci

ni
&. After

the execution of each execution segment, an error detection
mechanism is used to detect if a fault occurred during its exe-
cution. This error detection overhead is represented as αi. If

2The period of the server is equal to the period of the soft task.

9191

Figure 4. Task execution with checkpointing and fault recovery. (a)
execution without faults, (b) with faults

a transient error is detected, the affected execution segment
will be recovered (re-executed) from the last checkpoint on
the same processor. This recovery overhead is represented
as µi.

Let us consider the example in Fig. 4, where we have
the task τ1 and a fault scenario consisting of k = 2 transient
faults that can happen during one cycle of operation. We are
considering n1 = 3 checkpoints for τ1. The three execution
segments of τ1 are depicted as τ1

1, τ2
1 and τ3

1. After the
execution of initial segment τ1

1, the error detection mecha-
nism detects whether a fault happened or not. The overhead
corresponding to error detection is shown as a black rect-
angle. The state information of the first execution segment
is saved in the shared memory, the overhead corresponding
to establishing this checkpoint is shown as a grey rectangle.
Fig. 4(a) shows the execution of the task with checkpointing
but without encountering any fault. It can be seen in Fig. 4(b)
that the first fault happens during the execution of segment
τ2

1. After the error has been detected, τ2
1 is recovered based

on the information in the saved checkpoint. After a recovery
overhead (shown as a striped rectangle), segment τ2

1 is
executed again. Since the second fault is also detected during
the execution of τ2

1, it is executed again after recovering
the state information from the last saved checkpoint. After
a checkpointing overhead, the third execution segment τ3

1
is executed. These overheads are taken into consideration
while performing schedulability analysis of the system, as
proposed in section V-A.

IV. PROBLEM FORMULATION

The problem we are addressing in this paper can be
formulated as follows: Given a mixed hard/soft fault tolerant
application A and a distributed architecture N and the
maximum number k of transient faults, we are interested to
determine an implementation S consisting of (1) a mapping
M(τi) ∈ N for each task τi ∈ A and (2) a set Q containing
the bandwidth Q j, for each soft task τ j, such that the
deadlines for hard tasks are satisfied, even in the case of

Figure 5. Optimal solutions using (a) AETs and (b) PDFs

transient faults, and the probability of meeting the deadlines
of soft tasks is maximized.

A. Mapping and Bandwidth Allocation Example

To illustrate the problem, let us consider a system with
two PEs, N1 and N2, four soft real-time tasks, τ1–τ4, and two
hard tasks, τ5 and τ6. In this example, we are ignoring the
communication between the tasks. The fixed-execution time
values, periods and deadlines on N1 and N2 are presented in
Fig. 5(c). N1 is faster than N2.

Fig. 6 shows how the probability of meeting the deadline
increases with Qi for the soft tasks τ1–τ4, considering the
two processing elements N1 and N2. Both hard tasks, τ5 and
τ6, have to tolerate k = 1 transient fault per execution cycle
of the application.

Let us consider first the situation in which the PDFs are
not available to the designer, and AETs have to be used.
A straightforward way to perform mapping and bandwidth
allocation in this situation would be to assign Qi values such
that the difference between the AET and the assigned Qi
value is maximized for all the tasks. The formal definition
of such a cost function is presented in section VI. Lets take
as an example, task τ3. How would a designer maximize
QoS for τ3 using only the AETs, which are 14 and 15 ms

9292

Figure 6. QoS vs Q values for soft tasks τ1–τ4

on N1 and N2, respectively? Considering that the deadlines
for hard tasks have to be satisfied and the QoS for the other
soft tasks have also to be maximized, the best solution is to
map τ3 to N2, considering a Q3=19, which corresponds to a
difference of Q3 −AET3 = 19 – 15 = 4. If τ3 is mapped on
N1, Q3 can only be set to 17, which leads to a difference of
only 17 – 14 = 3. Thus, by performing such a straightforward
allocation for all soft tasks, we get the solution in Fig. 5(a)
where the system QoS is 72.10 %. The mapping is depicted
in the figure by placing the tasks inside the PEs. The grey
tasks are hard, whereas the white tasks are soft. The task
parameters are presented next to each task, i.e., the WCETs
and periods for hard tasks are denoted as a fraction Ci

Ti
, and

the allocated bandwidth Qi, soft deadline δi and the period
Ti of the servers associated to each soft task are depicted
as Qi(δi)

Ti
. The probability of meeting a deadline (QoS) for

a soft task cannot be determined using fixed execution time
models such as AET. The QoS value in Fig. 5(a) has been
determined using the PDFs (as presented in section V-B) in
order to compare it with the case in Fig. 5(b). However,
using stochastic execution times (captured by the PDFs)
instead of the AETs can lead to better solutions. From Fig. 6
(task τ3) we can see that a Q3 of 17 on N1 is actually
preferred to a Q3 = 19 on N2, since it leads to a QoS of
98.45 % instead of 56.23 %. The optimal mapping and Q
values, found out by taking the PDFs into consideration, are
shown in Fig. 5(b). The system QoS value resulting from
this mapping and bandwidth allocation decision is 94.85 %,
significantly better than the previous case.

V. TABU SEARCH-BASED OPTIMIZATION STRATEGY

To solve the problem presented in the previous section,
we use a Tabu Search-based strategy which decides the
mapping and the allocated bandwidth. Tabu Search [24] is
an optimization metaheuristic which iteratively explores the
solutions in the vicinity (neighborhood) of the current solu-
tion, selecting the ones which minimize the cost function.

Our proposed cost function captures the schedulability of
hard tasks and the QoS of soft tasks in the application and
is formally defined in section V-B. By minimizing the cost
function we improve the schedulability of hard tasks and
maximize the QoS for the soft tasks.

Algorithm 1 presents our Tabu Search Mapping and Band-
width Allocation (TSMBA) optimization strategy. TSMBA
takes as input the application A , the architecture N and
produces the solution S consisting of the mapping M for
all tasks and the set of bandwidth values Q for all soft tasks.

The algorithm starts from an initial solution S◦ (line 1).
The initial solution can either be schedulable or unschedu-
lable. An schedulable solution is the one which satisfies the
schedulability criteria for the hard tasks given in section V-A
(i.e., all hard tasks are schedulable and all safety critical
tasks can tolerate transient faults). In the initial solution,
the tasks are mapped such that their utilization is evenly
distributed among the processing elements (for soft tasks we
consider the average utilization AET

Ti
). The bandwidth for the

soft tasks is allocated to a value equal to their AET.
The neighborhood of the current solution is generated

using design transformations (moves) that change the current
system implementation (line 6). The neighborhood can be
very large, thus we consider a limited number of neighboring
solutions, called candidate set. Let us consider the example

9393

Figure 7. Tabu Search Moves for the system in Fig. 5(c)

in Fig. 7 where the current solution is in Fig. 7(a) and part of
the neighborhood is depicted in Fig. 7(b)–(e). We consider
the same system as shown in Fig. 5(c).

The mapping changes are denoted with an arrow and the
bandwidths are also listed in the figure. We use two kinds of
moves: Mapping Move (MM), which changes the mapping
for a task; and Bandwidth Move (BM), where the bandwidth
for a soft task is changed.

In MM, we randomly select a task from a randomly
selected PE and map it to another PE (also randomly
selected). The cost corresponding to this is calculated and
then used by TSMBA to evaluate the solution. For example,
solutions shown in Fig. 7(c) and 7(d) have been generated
by performing MM on the current solution in Fig. 7(a),
where the mapping of tasks τ1 and τ3 is changed to N2
and N1, respectively. In BM, a random soft task is selected

Algorithm 1 TSMBA (A ,N)
1: S◦ = InitialSolution(A ,N)
2: S current = S best = S◦

3: Costbest = CostFunction(S◦)
4: TabuList = φ
5: for max iter iterations do
6: NS = GenerateNeighborhood(S current)
7: S current = SelectSolution(NS)
8: if CostFunction(S current) < Costbest then
9: Costbest = CostFunction(S current)

10: S best = S current

11: end if
12: TabuList = TabuList

⋃
S current

13: end for
14: return S best

from a randomly selected PE. The bandwidth of this task
is changed with a random integer value in the interval [-5,
5]. For example, solutions shown in Fig. 7(b) and 7(e) have
been generated from Fig. 7(a) by performing BM where Q
values of τ1 and τ4 are increased by 3 and 5, respectively.

Tabu Search maintains a selective history of the solutions
visited (called tabu list and denoted with TabuList) to
avoid revisiting already explored solutions. The TabuList is
initialized in line 4 of algorithm 1 and updated with the
currently visited solution in line 12. For example, in Fig. 7,
the solution shown in Fig. 7(d) has already been visited
by the heuristic, and it is marked as tabu and is put in
the TabuList. From the given neighborhood NS, the non-
tabu solution with the minimum cost is chosen, and the
exploration continues. A tabu solution can also be chosen
if the cost of this solution is better than the best solution
encountered so far.

It can be seen that for the given NS in Fig. 7 the solution
in Fig. 7(e) would be chosen as the current best solution
S current (line 7) because its cost (corresponding to all the
hard deadlines satisfied and a QoS of 80.07%), is better
than the cost of other solutions in NS. This solution is also
marked as the best solution so far (S best) since its cost is
better than the best so far (line 10). Using this solution as
the current solution, TSMBA iterates again until a bound on
the number of iterations (max iter), given by the designer,
is reached (line 5). In the end, S best is reported (line 14).

During the iterative search in TSMBA, it may happen
that the heuristic is stuck in a region containing sub-optimal
solutions and no improvement is seen for several iterations.
In this case, a diversification move (DM) is performed
in which several mappings and bandwidth allocations are
changed, resulting in a very different solution. An example

9494

of a solution resulting from performing a DM can be seen
in Fig. 7(f), where mapping and bandwidths of all tasks are
changed. The hope is that a DM move will lead the search
to unexplored areas, where better solutions can be found.

A. Schedulability analysis for hard tasks
We assume that the deadlines for hard real-time tasks

are equal to the periods3, and for each PE Nj we use
the utilization-based test [3] to determine if the task set
composed of hard tasks and CBS servers is schedulable:

∑
∀τi:R(τi)=Hard

C
′
i

Ti

∧M(τi)=Nj

+ ∑
∀τi:R(τi)=So f t

Qi

Ti

∧M(τi)=Nj

+U
Nj
R ≤ 1,

where C
′
i is the WCET of τi considering the fault-tolerance

overheads and U
Nj
R is the worst-case utilization needed to

recover from faults.
In our task model, the checkpointing related parameters of

safety-critical hard tasks are represented by ni and Oi, where
ni is the number of checkpoints and Oi is the computation
time overhead to establish one checkpoint in task τi. The
effective WCET inclusive of the checkpoint overhead Oi
and error detection overhead αi for each task is given by
C

′
i = Ci +(ni − 1)(Oi + αi)+ αi, where Ci is the WCET of

the task. The last term αi corresponds to the execution of
last execution segment where only the error detection is done
and no checkpoint is stored.

We have assumed at most k transient faults during an
execution cycle of the application. When a fault happens
in τi, the task has to be restored from its previously saved
checkpoint. The length of the execution segment that has to
be executed is %Ci

ni
&.

The utilization needed to recover from a fault in a segment

is
%Ci

ni
&+αi+µi

T
′
i

, where T
′

i is the time interval within which

the task should recover. T
′

i is given by the designer and is
application specific. For example, if task τi should recover
within its deadline Di = Ti, then T

′
i = Ti. For automative

applications, for example, if it is allowed for the task to
recover before the end of the next period, then T

′
i = 2×Ti.

Given a processing element Nj, we are interested to deter-
mine the utilization U

Nj
R needed to recover the hard tasks in

case of faults in the worst-case fault scenario. The worst-case
fault scenario is that fault occurrence of k faults which leads
to the largest U

Nj
R . This means that all the k faults happen

in that execution segment which corresponds to the largest
recovery utilization. Thus, for the PE where τi is mapped,
i.e., Nj = M(τi) we have:

U
Nj
R = max

τi:R(τi)=Hard
∧F(τi) ,=φ

k×
%Ci

ni
&+αi +µi

T ′
i

3Arbitrary deadlines can be handled using the Processor Demand Crite-
rion [1].

Figure 8. Queuing model of CBS

For the messages on the bus we use the analysis for the
preemptive EDF to check that the bus utilization is below
1, considering the current mapping.

B. Schedulability analysis for soft tasks

The schedulability of a soft task τi (i.e., the probability of
meeting its deadline δi) depends on the bandwidth Qi. Due
to the temporal isolation property of CBS, each soft task
can be analyzed individually. This property is particularly
useful for the exploration strategy. Since the calculation of
QoS is computationally expensive, the QoS for all Qi values
considered is computed beforehand and stored for later use.
We consider integer Qi values in the interval [AET, WCET].
If Qi ≥ WCET the soft deadline δi is met in 100% of the
cases, whereas if Qi < AET , the probability of meeting soft
deadline δi is very small.

For a given soft real-time task τi, QoS(τi) is defined as
the probability of meeting the deadline δi, i.e., QoS(δi) =
P{ fi,k ≤ ri,k + δi}, where fi,k and ri,k are the finishing and
the arrival time, respectively, of the kth job of task τi. This
probability is calculated by modeling the CBS (serving the
soft tasks τi) as a queuing system [25]. For every task τi,
its arriving jobs Ji,k are seen as tokens to be served by the
server having the capacity Qi, Fig. 8. Each arriving job Ji,k
has a computation time of ci,k units and arrives every Ti units
of time. The system can be described with a random process
defined as follows:

{
v1 = ci,1

vk = max{0,vk−1 −Qi}+ ci,k

The state variable vk indicates the length of the queue
(in time units) immediately after the job Ji,k having a
computation time ci,k arrives. Since the server can serve only
Qi units every Ti units of time, the finishing time of the
served job Ji,k is fi,k = ri,k + % vk

Qi
&Ti.

Thus, the probability that a job would finish before % vk
Qi
&Ti,

has a lower bound which is the probability that the queue
length is vk immediately after the job arrives. This probabil-
ity can be calculated by considering π(k)

m = P{vk = m} as the
state probability of the process vk, and then calculating its
stationary solution. We already have the PDF of the request
times of the arriving jobs, Ui(h). Since we know that ci,k is

9595

time invariant, as Ui(h) does not depend on k, the value of
π(k)

m can be calculated as follows:

π(k)
m = P{vk = m} = P{max{vk−1 −Qi,0}+ ck = m}

i.e., the probability that vk has a length m is equal to
the probability that the sum of the execution time ck
of the immediately arrived job and the old queue length
max{vk−1 − Qi,0} is equal to m. Using the PDF of the
incoming requests, the solution can be derived as:

π(k)
m =

Qi

∑
h=0

(Ui(m)×π(k−1)
h)

+
∞

∑
h=Qi+1

(Ui(m−h+Qi)×π(k−1)
h)

where the first term corresponds to the cases when the
arriving jobs have their computation time less than or equal
to Qi, thus can be completely served by the server and the
second term corresponds to the cases when their computation
times are greater than Qi, thus cannot be completely served
by the server leading to an increase in the queue length.

One can use a Markov matrix M, describing the aforemen-
tioned random process, to calculate the stationary solution
of π(k)

m . An element ni, j of Markov matrix M gives the
probability of queue length changing from i to j. If the
matrix describing the state probability vector of π(k)

m is
denoted by Πk, the stationary solution can be calculated by
using the equation Πk = MΠk−1. The detailed derivation and
the matrices can be seen in [25]. By solving for the stationary
solution of this state probability vector, the probability of
meeting a certain deadline can be calculated. Our heuristic
will decide on the appropriate Q values that minimize the
cost function, thus maximizing the total QoS.

C. Cost Function

In the Tabu Search-metaheuristic the solutions are evalu-
ated on the basis of a cost function. The cost function has
to be minimized. The cost function for a solution S is given
as follows:

∑
∀Ni∈N

max(0,UNi −1)×wpenalty

+ ∑
∀τi:R(τi)=So f t

(1−QoS(τi))×wi

where wpenalty corresponds to a very large penalty added
to the cost of a solution in case the hard tasks are not
schedulable, i.e., if the utilization of a processor is greater
than 1. In case the hard tasks are schedulable, the first term
is 0, and the second term of the cost function corresponds to
maximizing the QoS of the soft tasks. Individual weights wi
can be assigned to soft tasks to differentiate them in terms
of their importance.

VI. EXPERIMENTAL EVALUATION

In the first set of experiments we were interested in
determining the quality of the proposed optimization strategy
as the systems become larger. For this, we have used ten syn-
thetic benchmarks of 6 to 70 tasks mapped on architectures
with 2 to 20 PEs. We have used WCETs in the interval 3
to 18 ms and have generated PDFs, to match the shape of
those measured on real-life benchmarks, with expectations
between 15 to 60 ms. Messages sizes are in between 10
to 40 Kb. Since the bus bandwidth is assumed to be 10
Mbps, the transmission times on the bus are in between 1
to 4 ms. For architectures containing 9 or more processors
the bus bandwidth is doubled to account for the increased
communication traffic. We are also assuming that half of
the hard tasks in an application tolerate transient faults. We
are assuming that there can be at most 1 transient fault
per execution segment of the application. We are assuming
a hard task τi has to recover before the end of the next
period, i.e., 2×Ti. The checkpointing overhead and number
of checkpoints for these tasks are between 1 to 3 ms and 2
to 8, respectively.

Table 1 presents the experimental setup details and the
obtained results. To determine the quality of our approach
we have compared the results obtained using TSMBA with
the results obtained by applying a straightforward (SF)
optimization strategy. This is a strategy that a good designer
will pursue in case only fixed execution times (AET) are
available, and not the full PDFs. SF is also based on
a Tabu Search heuristic, but is using a slightly different
cost function, which, for the soft tasks, uses the difference
between allocated bandwidth and the AET. The goal of this
approach is to allocate the bandwidth in such a way that the
difference between the AET and the allocated bandwidth
is maximized for all the soft tasks, thus increasing the
probability to meet the deadlines. This is captured by the
formula ∆avg

∆dev
, where ∆avg is average, for all soft tasks, of the

difference between the allocated bandwidth and the AET
of soft tasks and ∆dev is the standard deviation of these
difference values.

No. No. of Iter. Iter. QoS QoS Impro-
PE SRT HRT TSMBA SF TSMBA SF vement

1 2 3 3 0 0 99.20 52.23 46.97
2 3 7 4 738 1052 99.28 70.24 29.04
3 4 9 6 0 0 99.49 76.35 23.14
4 5 11 8 894 3563 97.46 65.45 32.01
5 6 13 9 0 0 97.89 74.96 22.93
6 7 16 10 0 0 98.67 64.65 34.02
7 8 18 12 1383 5436 98.34 77.34 21.00
8 10 22 13 1457 6964 97.24 62.46 34.79
9 15 35 17 0 0 97.43 70.35 27.09

10 20 44 26 0 0 96.28 71.31 24.97

Table I
SYNTHETIC BENCHMARKS

9696

Benchmark No. of Iter. Iter. QoS QoS Impro-
Name PE SRT HRT TSMBA SF TSMBA SF vement

auto-indust-cords 3 9 7 525 786 97.88 62.79 35.08
auto-indust-mocsyn 4 9 7 0 0 98.89 74.89 24.00

consumer-cords 2 5 3 220 352 95.26 72.22 23.03
consumer-mocsyn 3 5 3 0 0 98.11 71.01 27.10
networking-cords 2 4 3 234 419 98.15 62.66 35.49

networking-mocsyn 3 4 3 0 0 99.28 75.79 23.49
telecom-cords 3 10 6 0 0 99.42 68.88 30.55

telecom-mocsyn 4 10 6 432 968 99.69 74.20 25.49

Table II
REAL-LIFE BENCHMARKS

Let us see the results in Table I. For all the cases, the
initial solution (where the utilization was balanced among
the processing elements and the bandwidth was set to AET)
can either be schedulable or unschedulable. The values
in columns 3 and 4, respectively, indicate in which itera-
tions of the Tabu Search (implementing SF and TSMBA)
schedulable solution starting from the initial solution was
found. For the cases with a schedulable initial solution, the
value in column 3 and 4 is 0. We have tuned the Tabu
Search parameters for both approaches such that the results
are as close as possible to the optimal solution (i.e., no
improvements were seen for large number of iterations).
Tabu Search runs for 8,000 iterations for smaller systems
(i.e., cases 1–6) and 16,000 iterations for bigger systems
(i.e., cases 7–10).

We can notice that by optimizing the mapping and band-
width allocation we can find schedulable solution, even
in the cases when the initial solution is not schedulable.
Both SF and TSMBA have found schedulable solutions
in all the cases, i.e., the hard deadlines are satisfied even
in the case of transient faults. However, TSMBA finds
schedulable solution much earlier than SF, thus exploring
the design space much faster, increasing the chances of
finding schedulable solutions and improving the QoS of the
system. This is because TSMBA uses the PDFs to take better
mapping and bandwidth allocation decisions, as highlighted
in the motivational examples in section IV-A.

Columns 5 and 6 present the QoS obtained by TSMBA
and SF, respectively, for the soft tasks. It can be seen from
the results that the QoS values obtained by TSMBA are
better than those of SF on average with 29.60%, with a
difference as high as 46.97%. It can also be seen that
TSMBA results in solutions with QoS close to 96% even
in the case of large systems of 20 PEs.

In the second set of experiments we were interested in
performing the same evaluation as in the first case, but
now considering real-life benchmarks. We have used the
Embedded Systems Synthesis Benchmarks Suite (E3S), ver-
sion 0.9 [26]. The benchmarks contain real-life applications
characterized on various processor architectures. Since the
benchmarks only report the mean execution time for the soft
tasks, we have modified the benchmarks by generating the

No. No. of Init. QoS QoS Impro-
PE SRT HRT Util.% TSMBA SF vement

1 7 16 10 50.07 99.34 75.39 23.95
2 7 16 10 55.09 99.34 75.39 23.95
3 7 16 10 60.08 99.34 75.39 23.95
4 7 16 10 65.08 99.34 75.34 24.00
5 7 16 10 70.11 98.75 74.02 25.16
6 7 16 10 75.02 98.41 73.59 24.39
7 7 16 10 80.07 98.85 71.78 27.08
8 7 16 10 85.01 98.45 71.89 26.56
9 7 16 10 90.10 98.78 68.89 29.89
10 7 16 10 95.38 98.67 64.65 34.02

Table III
VARYING INITIAL UTILIZATION

PDFs for soft tasks by taking into consideration the archi-
tecture and the speed of the processors. The benchmarks
were also modified to annotate some hard tasks as safety-
critical and checkpointing related parameters were added as
well. We have considered that these benchmarks are mapped
on 2 to 4 processors. Table II presents the experimental
setup details and the obtained results. It can be seen from
the results that for real-life benchmarks our approach gives
solutions with better QoS than the straightforward approach,
an average improvement of 28.04%. The deadlines for hard
tasks are satisfied and the transient faults are tolerated. We
can also see that TSMBA finds schedulable solutions earlier
than the SF approach (column 3 and 4, respectively).

In the third set of experiments we were interested to de-
termine the ability of TSMBA to find good quality solutions
as the utilization of the system increases. We have used a
synthetic benchmark with 26 tasks (16 soft tasks and 10 hard
tasks) mapped on architecture with 7 PEs. Table III presents
the experimental setup and obtained results. We have varied
the execution times resulting in 10 cases corresponding to
different initial utilizations (column 5), where for the soft
tasks, the bandwidth is set to AET. The spare utilization
varies from around 50% in the first case to only 5% for
the tenth case. Having larger spare utilization increases the
probability of finding solutions with better QoS since more
bandwidth can be given to soft tasks. As it can be seen,
TSMBA is able to find schedulable solutions with very good
QoS even as the initial utilization of the system increases.
Whereas SF is not able to find good quality solutions, and the
QoS degrades much faster with increase in initial utilization.

VII. CONCLUSION

In this paper we have addressed the issue of task mapping
and processor bandwidth allocation in mixed hard/soft fault-
tolerant real-time systems. We have used EDF for the hard
tasks and CBS for the soft tasks, thus integrating both hard
and soft tasks on the same processor. We have considered
that transient faults are tolerated using checkpointing with
rollback recovery.

We have proposed a Tabu Search based heuristic which
performs design optimizations, resulting in implementations

9797

where the deadlines of all hard real-time tasks are met
and QoS of soft tasks in maximized. We have shown that
by using stochastic execution times instead of the WCET
or AET for the soft tasks, better mapping and processor
bandwidth allocation decisions can be taken. The proposed
algorithm has been evaluated on several synthetic and real-
life benchmarks.

REFERENCES

[1] G. Buttazzo, Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, Boston, 1997.

[2] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft
Real-Time Systems: Predictability vs. Efficiency (Series in
Computer Science). Plenum Publishing Co., 2005.

[3] H. Kopetz, Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 1997.

[4] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling of
fault-tolerant embedded systems with soft and hard timing
constraints,” in Proceedings of Design, Automation & Test in
Europe DATE ’08, 2008, pp. 915–920.

[5] R. Pop and S. Kumar, “A survey of techniques for mapping
and scheduling applications to network on chip systems,”
School of Engineering, Jonkoping University, Research Re-
port 04:4, 2004.

[6] N. Zamora, X. Hu, and R. Mărculescu, “System-level
performance/power analysis for platform-based design of
multimedia applications,” ACM Transactions on Design
Automation of Electronic Systems, vol. 12, no. 1, 2007.
[Online]. Available: http://www.gigascale.org/pubs/1001.html

[7] S. Chakraborty and L. Thiele, “A new task model for
streaming applications and its schedulability analysis,” in
Proceedings of Design, Automation and Test in Europe DATE
’05, 2005, pp. 486–491.

[8] S. Manolache, P. Eles, and Z. Peng, “Task mapping and
priority assignment for soft real-time applications under dead-
line miss ratio constraints,” ACM Transactions on Embed.
Comput. Syst., vol. 7, no. 2, pp. 1–35, 2008.

[9] X. S. Hu, T. Zhou, and E. H. M. Sha, “Estimating probabilistic
timing performance for real-time embedded systems,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 9, no. 6, pp. 833–844, 2001.

[10] L. Abeni and G. Buttazzo, “Integrating multimedia applica-
tions in hard real-time systems,” in Proceedings of 19th IEEE
Real-Time Systems Symposium, 1998, pp. 4–13.

[11] L. A. Cortes, P. Eles, and Z. Peng, “Quasi-static scheduling
for real-time systems with hard and soft tasks,” in Proceedings
of Design, Automation and Test in Europe DATE ’04, vol. 2,
2004, pp. 1176–1181.

[12] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis
of a reservation-based feedback scheduler,” in Proceedings of
23rd IEEE Real-Time Systems Symposium, 2002, pp. 71–80.

[13] A. Oliveira, E. Camponogara, and G. Lima, “Dynamic recon-
figuration in reservation-based scheduling: An optimization
approach,” in Proceedings of 15th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, 2009, pp.
173–182.

[14] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis
of fault-tolerant real-time task sets,” Euromicro Conference
on Real-Time Systems, pp. 29–33, 1996.

[15] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimiza-
tion of time and cost-constrained fault-tolerant embedded sys-
tems with checkpointing and replication,” IEEE Transactions
on VLSI Systems, vol. 17, pp. 389–402, 2009.

[16] H. Aydin, R. Melhem, and D. Mosse, “Tolerating faults
while maximizing reward,” in Proceedings of 12th Euromicro
Conference on Real-Time Systems, 2000, pp. 219–226.

[17] P. K. Saraswat, P. Pop, and J. Madsen, “Task migration
for fault-tolerance in mixed-criticality embedded systems,”
in Proceedings of 2nd Workshop on Adaptive and Reconfig-
urable Embedded Systems, 2009.

[18] E. Wandeler, A. Maxiaguine, and L. Thiele, “Performance
analysis of greedy shapers in real-time systems,” in Proceed-
ings of Design, Automation and Test in Europe DATE ’06,
vol. 1, 2006, p. 6pp.

[19] J. Hu and R. Mărculescu, “Application-specific buffer space
allocation for networks-on-chip router design,” Proceedings
of the IEEE/ACM International conference on Computer-
aided design ICCAD ’04, pp. 354–361, 2004.

[20] S. Manolache, P. Eles, and Z. Peng, “Buffer space optimi-
sation with communication synthesis and traffic shaping for
nocs,” Proceedings of Design, automation and test in Europe
DATE ’06, pp. 718–723, 2006.

[21] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing
analysis of the FlexRay communication protocol,” Real-Time
Systems, vol. 39, no. 1-3, pp. 205–235, 2008.

[22] “aiT Worst-Case Execution Time Analyzer - Homepage,”
http://www.absint.com/ait/, 2009.

[23] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of
probabilistic hard real-time systems,” in Proceedings of 23rd
IEEE Real-Time Systems Symposium RTSS 2002, 2002, pp.
279–288.

[24] F. Glover, “Tabu Search Part I,” ORSA Journal on Comput-
ing, vol. 1, no. 3, pp. 190–206, 1989.

[25] L. Abeni and G. Buttazzo, “Stochastic analysis of a reser-
vation based system,” in Proceedings of 15th International
Parallel and Distributed Processing Symposium, 2001, pp.
946–952.

[26] “Embedded System Synthesis Benchmarks Suite (E3S) -
Homepage,” http://ziyang.eecs.umich.edu/dickrp/e3s, 2009.

9898

