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Abstract—Microfluidic biochips are replacing the conventional
biochemical analyzers integrating the necessary functions on-
chip. We are interested in flow-based biochips, where a contin-
uous flow of liquid is manipulated using integrated microvalves,
controlled from external pressure sources via off-chip control
pins. Recent research has addressed the physical design of such
biochips. However, such research has so far ignored the pin-count,
which rises with the increase in the number of microvalves. Given
a biochip architecture and a biochemical application, we propose
an algorithm for reducing the number of control pins required to
run the application. The proposed algorithm has been evaluated
using several benchmarks.

I. INTRODUCTION

Microfluidics refers to a technology that miniaturizes
biological and chemical processes to a sub millimeter scale.
A biochip integrates different biochemical functionalities such
as mixers, filters and detectors on a single chip, leading to
higher portability, throughput and sensitivity, while reducing
sample volume consumption [2]. Microfluidic large-scale
integration (mLSI) enables the development of microfluidic
chips using hundreds of such functions, allowing multiple
assays to be run in parallel, making them usable for tasks
such as Protein Crystallography, Amino Acid Analysis or
Chemical Synthesis [5]. The key for complex functionality
on biochips is the use of on-chip valves, similar to transistors
in semiconductor LSI. Such valves are manufactured using
multilayer soft lithography and are controlled by outside
pressure sources [7]. Using these valves the flow of fluid
within the chip can be restricted, allowing to decide if and in
which order the functions on the chips are used.

Ongoing research enables the fabrication of increasingly
complex biochips, with the number of valves integrated on a
single chip reaching the thousands [4]. Through these advance-
ments, current methodologies for chip design, flow, and control
synthesis become inadequate [9]. In this paper we focus on
part of the control synthesis problem, namely the control pin
reduction problem. A control pin is a physical hole in the
chip, which provides access to the control layer. By applying
pressure (or vacuum, depending on the valve type) [11] to the
control pin, a valve on the chip can be activated. However, a
large number of control pins is infeasible, due to the resulting
consumption of chip area and required bulky off-chip control.
The ’AssayMark’ controller from Microfluidic Innovations for
example, is only capable of providing pressure to up to 36
individual control pins, using solenoid valves [3]. By allowing

valve sharing, i.e. the sharing of the same control by multiple
valves, it is thus possible to reduce the required amount of
control pins to meet these restrictions. Doing so reduces the
flexibility of the chip, since the shared valves will work in
unison. Valves sharing a single control pin therefore have to
be chosen carefully, in order to keep the chip operable [7].

Researchers have previously proposed approaches to the ap-
plication mapping and scheduling [8]. Based on this schedule
of operations, the control information (which valves to open
and close at what time and for how long) can be extracted.
Using this information, optimization schemes can be applied
to minimize the chip’s pin-count in the control layer. Recent
research has proposed approaches to control pin minimization
following this idea [2] [7] [10]. All this related work however
uses simplified routing, which directly affects the pin-count
reduction. Furthermore, the ordering in which scheduling and
pin-count reduction is executed is crucial, since the execution
of either process poses constraints onto the other. Combining
valve controls and therefore having valves work in unison
imposes scheduling constraints on such routes, which require
these valves to be in opposing states. Vice versa, if the
schedule has already been completed and such routes are to
be executed at the same time, valve control combinations are
restricted to valves which are never in opposing states. Reduc-
ing the pin-count beforehand would therefore allow to trade
off flexibility during scheduling for additional combinations.
Contribution: We propose a new pin-count reduction tech-
nique which is applied before the application is scheduled.
Using information from the applications routing and bind-
ing instead of its schedule (which also incorporates timing
constraints) allows for additional combinations for controls to
be found. If required, this enables combinations to be made
which potentially increase the schedule length, resulting in
the possibility for a direct trade-off between the pin-count
and the applications execution time. To improve the pin-count
reduction, we also propose a new routing technique which
prioritizes routes which maximize the potential for control
combinations.

II. BIOCHIP ARCHITECTURE MODEL

Fig. 1 shows a functional view of a flow-based biochip
containing multiple Functional Fluid Units (FFU) such as
inputs and heaters, as well as switches connecting the channels
leading to these components. The basic building block of these
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components is a microvalve, which can be used to manipulate
the fluid flow.

Fig. 1. Architecture

Fig. 2 shows a micro-mechanical valve which can be
manipulated by an external force to either restrict or permit
the fluid flow. To do so, the chip is logically divided into two
layers, the flow-layer (colored in blue) which contains the fluid
and the control-layer (colored in red) which can manipulate
the flow-layer [10]. To create functional components, multiple
valves are needed. Fig. 3a shows two variations of switches,
requiring three and four valves respectively to control the path
of the fluid entering from any side. Mixers, as shown in Fig.
3b, require nine valves to be operational. Other components
such as filters, heaters or detectors only require two valves to
close off the component during its execution, similar to valve
1 and 8 in the mixer [1].

Fig. 2. Micro-mechanical Valve.

(a) Switches (b) Mixer

Fig. 3. Components

Each valve is in one of two physical states. The open state
allows for fluid to be transport through a channel or component
and the closed state prevents fluid from leaking into other
channels or components. Additionally, we also distinguish a
third, logical state we call don’t care. While valves in the
open or closed state affect the fluid transport by allowing
or restricting the flow respectively, valves in the don’t care
state have no effect on the fluid transport at all, making their
physical state irrelevant. Consider the mixer in Fig. 3b: To
fill the bottom half, valves 1, 3, 8 and 9 have to be open to
allow fluid transport, while valves 2 and 7 have to be closed

to prevent leakage into the top half. The state of valves 4, 5,
and 6 however is irrelevant, since the channel they are located
in can not be reached by any fluid when valves 2 and 7 are
closed, placing them in the don’t care state.

A. Architecture Model

We make use of the system-layer architecture model based
on a topology graph, as proposed in [8]. Fig. 1 shows an
example of a biochip architecture, containing three inputs and
outputs, one filter, one heater and one detector. We distinguish
between two kinds of vertices in this model: Switches, which
create intersections between multiple channels (e.g. S1) and
FFUs which can perform a certain action (e.g. In1, Heater1,
Filter1). Edges represent channels through which fluid can
be transported and are considered bi-directional in this pa-
per. Fluid can be transported through these components by
applying pressure to an input from an outside source. A
functional route must therefore always start at an input where
pressure is applied and end in an output where the pressure is
released from the chip. To identify such routes, we introduce
the following notations.

A Flow Path Segment (FPS) is a set of vertices, forming
a directed route from one FFU to another. To connect the
two FFUs, a FPS can contain any number of switches, but no
additional FFUs, e.g. (In1, S1, S2, Filter1). FPSs are mutually
exclusive, meaning they cannot be used to transport fluids at
the same time, if they share at least one vertex.

A Flow Path (FP) is a set of FPSs which form a route
usable for fluid transport within the given architecture. The
first FPS of such a set has to start with an input, since they
act as a pressure source. All following FPSs have to start where
the previous FPS ended. A FPS ending in an output completes
the FP which then forms a continuous route from an input to
an output. Considering the architecture in Fig. 1, a valid FP
would for example be: ((In1, S1, Heater1), (Heater1, S4, Out2))
Previous research [2] [8] has simplified routing, by assuming

Fig. 4. Application

that fluids can be moved along all given FPSs, regardless of
the presence of inputs or outputs. This only works under the
assumption of implicit inputs and outputs, which would be
located in front of and behind FFUs, allowing FPSs to be
functional routes on their own. We refer to these additional
interfaces as implicit, since they are not modelled in the
architecture as opposed to explicit ports, which are part of the
model. This results in invalid schedules, unless all additionally
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assumed inputs and outputs are added to the architecture,
which is likely to be infeasible due to the increase in valve-
and control count as well as the chip size.

B. Application Model

To model a biochemical application, we use a directed,
acyclic and polar sequencing graph, as explained in detail
in [8]. For simplicity reasons, we omit operation specific
execution times and assume that it takes 1 time step for fluid
to pass through any given channel (e.g. from one switch to
another) and 4 time steps for an operation (e.g. mixing) to
finish. An example of such an application graph can be seen
in Fig. 4.

III. PROBLEM FORMULATION

Let us consider the In-Vitro Diagnostics application (IVD)
from Fig. 6 to be mapped on the architecture from Fig. 5.
One possible, partial schedule for IVD is shown in Fig. 8 and
Fig. 7 shows the valve actuation sequence according to this
schedule. From this table, possible control combinations can
be found as suggested in the related work [7]: Valve Groups
1 and 3 for example, can be in the same state throughout the
depicted time steps (at time step (TS) 18, VG 3 is in a don’t
care state and can be opened to suit VG 1) and their controls
can therefore be combined.

Fig. 5. IVD Architecture

Fig. 6. Typical IVD application that mixes various samples, reagents and
buffers and analyses the results.

Fig. 7. Partial actuation Table for IVD. 0: Open. 1: Closed. X: Don’t Care

In IVD, the detector operations O3 and O4 are waiting for
the mixing operations O1 and O2 to finish respectively. The
fluid transport M2 and the following detector operation O4
are started as soon as possible as it is expected to minimize
the schedule length. This however means, that the equivalent
operations for Detector1 (O1, M1) are not executed at the
same time as for Detector2. This leads to the valves used by
these four operations to be in opposing states in time step 18
as highlighted with the corresponding color coding in Fig. 7,
meaning their controls can’t be combined.
However, when combining the controls, e.g. for valves used
by Detectors 1 and 2, before scheduling the operations, we are
still able to schedule the application with only minor changes,
as shown in Fig. 9. This control combination imposes the
constraint that the detectors can’t be used asynchronously,
which is addressed by postponing the execution of operation
O4 until operation O3 can be executed as well. The resulting
change in the control logic for VG 8 is stated as VG 8A
in Fig. 7, which is now compatible with VG 7. Postponing
this operation does however also mean that all operations
depending on the result of O4, are also potentially executed at
a later time as well, which can increase the overall schedule
length.
The problem can therefore be defined as follows:
Input: Application, architecture and valid routes for the pro-
vided architecture and application; state of all valves for each
route, such that the route can be used and the available number
of controls provided by the external hardware.
Determine: The sharing of valves, the schedule and routing
of operations, such that the application does not use more than
the provided number of control pins and the schedule length
is minimized.

Fig. 8. Partial IVD schedule, created before pin-count reduction.

Fig. 9. Partial IVD schedule, created after pin-count reduction with scheduling
constraints in place.

IV. PROPOSED METHOD

We introduce a novel routing technique, which creates a
route for every operation given by the application, in ac-
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cordance to the architecture model. The determined routes
are then used as input for the proposed pin-count reduction
algorithm along with the available number of controls. With
the control combinations in place the application is scheduled,
taking any scheduling constraints introduced during the pin-
count reduction into account. We do not discuss scheduling in
this paper, as it is solely used to compare the results. We have
implemented a List-Scheduling algorithm [6] to schedule all
experiments.

A. Routing

Given the architecture and application models (see Fig.
1 and Fig. 4 respectively), the routing algorithm creates a
route for every operation. Every route consists of one or
more FPs, which determine the path on which the fluid is
transported through the chip. While all available FPSs can be
determined from the architecture model, the information about
the required FPs is stated by the application. Each operation
of an application tells us where the fluid is currently located
(e.g. Input 1) and to what kind of component (e.g. Heater) it
needs to be routed to. We therefore need to find a path between
these FFUs using a set of FPSs. We begin with all FPSs that
start at an input, for example In1, and check if any of them
end at a heater. If so, this part of the route is completed. If no
such FPS is available, we continue the search in a Breadth-
First-Search fashion, linking multiple FPSs together until the
target is reached. Once a connection has been found, we need
to complete the FP by making sure the route starts at an input
and ends in an output. Since we route towards the heater, we
search for a path connecting the heater and any output, making
sure that no conflicts with the path from In1 to the heater are
introduced. As this route already started from an input, the
FP is completed. Depending on the architecture, it is possible
that multiple paths connecting the source and target FFU exist
or even multiple components of the same type (e.g. Input,
Heater) are available. In either case, we choose the route,
which blocks the least number of FFUs and switches on the
chip. A component is considered blocked if it is actively used
(i.e. routed through), or if it cannot be used by another route,
since an adjacent component is used. This also means, that a
blocked component’s valves are either in the open or closed
state. A route with fewer blocked components allows for a
higher flexibility while scheduling since more components are
still available to be used by another route.

Fig. 10. Valves

B. Reducing the Pin-Count

Using the previously defined routes as input we can deter-
mine controls that can be combined to lower the chip’s pin-
count. As mentioned previously, combining controls without

Fig. 11. Valve Groups

Fig. 12. Routes

having a schedule in place provides additional possibilities
for combinations, but also has the potential to increase the
schedule length. This is due to scheduling constraints that
are introduced when combining controls. The reason for the
increase in schedule length is the same for all constraints: FPs
that were previously able to be executed in parallel, now have
to be executed in sequence to avoid unintentional mixing. The
increase in schedule length however can vary, depending on
the length of the FPs and the number of FPs that have to
be executed in sequence because of the introduced constraint.
Cases of such constraints will be shown using examples from
Table I. Consider Fig. 1 as an example architecture. To operate
the chip 32 valves are required. A partial example of where
those valves are located in our architecture is shown in Fig.
10. The first set of combinations performed by the algorithm
differ from other combinations, as they do not introduce any
constraints onto the schedule. Those combinations can be
found, regardless of the architecture, whenever multiple valves
are located in the same channel. Consider In1 and S1 in Fig.
10. They are connected by a channel which contains valves 1
and 2. There exist only two ways in which this channel can
be used: Either the channel is routed through, in which case
both valves have to be opened, or it is not routed through,
in which case both valves can be closed. The same principle
applies to the valves which close off any given FFU (e.g.
valves 5 and 6 in Fig. 10). Therefore, the valves’ controls can
be combined and share a control-pin, in what we call a Valve
Group (VG). Fig. 11 shows the result of applying this to the
presented architecture, where the previously mentioned valves
1 and 2 now form VG1, valves 4, 5, 6 and 7 form VG2 and so
on. Further combination of VGs means that all valves of both
groups share a single control-pin and are therefore activated
in unison.

Other types of combinations will introduce scheduling con-
straints, which may negatively affect the schedule length. To
reach the objective of minimizing the schedule length, it is
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TABLE I
VALVE GROUP COMBINATION EXAMPLES

Example Combined VGs Result Reason
1 VG1 and VG4 Route 1 invalidated VG1 has to be open to allow fluid transport. VG4 has to be closed to prevent leakage
2 VG1 and VG2 No increase in VG1 and VG2 are open for Route 1 and in a don’t care state for Routes 2 and 3.

schedule length Therefore no matter which routes are executed in parallel, VG1 and VG2 can always be open
3 VG6 and VG13 No increase in

schedule length
Even though this combination does prohibit routes 2 and 3 from being executed in parallel, no
increase in schedule length is possible since these routes were not able to run simultaneously
in the first place, due to their partially overlapping FPs

4 VG1 and VG12 Possible increase
in schedule length

VG1 has to be open for Route 1, while VG12 has to be closed for Route 3, prohibiting parallel
execution of these routes

5 VG1 and VG10 Possible increase
in schedule length

VG1 has to be open for Route 1, while VG10 has to be closed for routes 2 and 3, prohibiting
parallel execution of these routes

Example Constraint Result Schedule length
6 Routes 1 and 2 restricted from being executed at the same time Routes 1 and 3 are executed in parallel Route 2 is

executed as soon as Route 1 finishes
18

7 Routes 1 and 3 restricted from being executed at the same time Routes 1 and 2 are executed in parallel Route 3 is
executed as soon as Route 1 finishes

16

TABLE II
VALVE GROUP CONFIGURATION

Route Open VGs Closed VGs Don’t Care VGs
1 1, 2, 3 4, 5 6, 7, 8, 9, 10, 11, 12, 13
2 6, 9, 12, 13 4, 7, 10, 11 1, 2, 3, 5, 8
3 7, 8, 9, 11 4, 5, 6, 10, 12 1, 2, 3, 13

therefore necessary to determine combinations that introduce
constraints with minimal effect on the schedule. To clarify the
effects of such constraints we consider the application from
Fig. 4 on the architecture in Fig. 1. The three resulting routes
can be seen in Fig. 12.

From these routes we can extract the valve states for each
route, which is illustrated in Table II. Each route has sets of
VGs in the previously explained states open, closed and don’t
care. Using this data we can determine the potential effect
on the schedule length for each combination of VGs. Since a
combination of any VGs is generally possible, an algorithm
determines the potential effect of every possible combination
of VGs. This algorithm first checks two special cases, one
occurs if the combination invalidates any of the given routes.
This is the case whenever one VG is in the open state, while
the other is in the closed state for any of the routes, as shown
in Example 1 in Table I. The second special case occurs when
all valves can be in the same state for all routes, i.e. both
VGs are either in the open or don’t care state, or in the closed
or don’t care state, for all routes. If so, no conflict during
parallel execution can arise and the schedule length can’t be
affected. Example 2 shows such a case. For the rest of the
combinations the algorithm checks, for each pair of routes,
whether the scheduling constraint introduced by the current
combination would prohibit previously possible parallelism.
Hence, we determine if the two routes were parallelizable
in the first place, as some routes can’t be executed at the
same time, since they partially overlap as demonstrated in
Example 3. Furthermore a constraint can only prohibit the
parallel execution of two routes, if they require the combined
VGs to be in opposing states. Example 4 states such a case,
where routes 1 and 3 can not be executed in parallel if this

combination is made. When a case such as in Example 4 arises,
we determine how much this combination and the resulting
scheduling constraint affects the schedule length. Exact results
can however only be gathered by scheduling the application
and comparing the schedule lengths. Since this is too time
consuming, we propose a cost function to predict the affect
on the schedule length. This prediction is based on how many
parallel executions of routes are prohibited by a scheduling
constraint. Example 5 prohibits route 1 from being executed
at the same time as either route 2 or 3. Example 4 on the
other hand only prohibits parallel execution of routes 1 and 3,
leaving the possibility to execute routes 1 and 2 at the same
time, leading to a prediction of a smaller increase in schedule
length than for Example 5. Additionally the execution time of
each route (how long it takes to transport the fluid along the
FP) is taken into account. The function predicts that constraints
affecting routes with long execution times have a larger effect
on the schedule length. This can be seen in examples 6 and 7
where we assume that routes 1-3 have an execution time of 10,
8 and 6 respectively. Both examples prohibit one pair of routes
from parallel execution, yet Example 7 results in a shorter
schedule length, since the longest routes are not affected by
constraints. Using this prediction we can directly compare the
potential impact of any combination on the schedule length,
allowing for a specific order in which the combinations are
applied, until the desired number of required control pins is
reached. As explained previously, the algorithm determines
and discards combinations that would invalidate one or more
routes. It is however possible to find alternate routes for such
cases, which would allow these additional combinations to
be made. This is possible if an alternate route can be found,
which is valid with all previously determined combinations
left in place. Finding such routes however exceeds the scope
of this paper and is left for future work.

V. EXPERIMENTAL RESULTS

We evaluate our approach on two test cases using the
before mentioned IVD architecture and application from Figs.
5 and 6 and a more complex, multi-purpose architecture and

!

!



TABLE III
COMPARISON BETWEEN [7] AND OUR ALGORITHM USING OUR

MULTI-PURPOSE ARCHITECTURE AND IVD.

MP-Architecture Valves Required Pin-Count Execution time
Previous research 66 25 45
Proposed method 66 14 70

IVD Valves Required Pin-Count Execution time
Previous research 46 20 81
Proposed method 46 14 107

according application shown in Figs. 14 and 15. Using our
own architecture from Fig. 14 we demonstrate the trade-off
between the number of required control pins and the schedule
length in Fig. 13. The figure shows the control count, starting
at 31, which is the initial number of VGs created, on the Y-
axis and the execution time on the X-axis. The progression
shows that the algorithm introduces multiple constraints that
effect the schedule length during pin-count reduction. Other
combinations do not affect the schedule length, for reasons as
shown in Examples 2 and 3. This is however only true for this
particular order in which the combinations have been made.
For example, the combinations that reduced the control count
from 24 to 16 do not generally have no effect on the schedule
length. Instead, the scheduling constraint introduced by the
combinations before, create a scenario similar to Example 3
for the following combinations. Further combinations bring
the control count to 14, which is the minimal number of
control pins required to run the application as determined by
the algorithm.

Fig. 13. Pin-count reduction chart

Tables III show a direct comparison between the pin-
count reduction presented in [7] and our technique. The table
contains the number of valves in each architecture, the number
of controls required and the corresponding execution time for
each method.

VI. CONCLUSIONS

In this paper we have proposed a new technique to reduce
the required pin-count for flow-based biochips. Contrary to
previous work, this method is able to trade off execution time
to reduce the pin-count even further. Experimental results have
shown that our algorithm is capable of reducing the pin-count
significantly, while keeping the increase in schedule length

acceptable. To produce realistic results, the current state-of-
the-art routing model has been extended.

Fig. 14. Multi-purpose architecture able to transport fluid from every type of
FFU to every other, allowing for a wide range of applications to be run.

Fig. 15. One of many possible applications that can be carried out by the
multi-purpose architecture.
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