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Abstract 

Embedded computer systems are used as control systems in many products, such 
as VCRs, digital cameras, washing machines, automobiles, airplanes, etc. As the 
complexity of embedded applications grows and time-to-market of the products 
they are used in reduces, designing reliable systems satisfying multiple require-
ments is a great challenge. Successful design, nowadays, cannot be performed 
without good design tools based on powerful design methodologies. These tools 
should explore different design alternatives to find the best one and do that at high 
abstraction levels to manage the complexity and reduce the design time. 

A design is specified using models. Different models are used at different de-
sign stages and abstraction levels. For example, the functionality of an application 
can be specified using hierarchical functional blocks. However, for such design 
tasks as mapping and scheduling, a lower-level flat model of interacting processes 
is needed. Deriving this model from a higher-level model of functional blocks is 
the main focus of this thesis. Our objective is to develop efficient strategies for 
such derivations, aiming at producing a process graph specification, 
which helps the synthesis tasks to find schedulable implementations. We proposed 
several strategies and evaluated them experimentally. 
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1 Introduction 

Embedded systems is a huge class of computer systems that are used to control the 
operation of larger host systems in which they are embedded. The examples are 
television sets, microwave ovens, mobile phones, wristwatches, washing ma-
chines, etc. Most embedded systems are real-time computer systems, which means 
that they operate under strict timing constraints. Many such systems are used in 
safety-critical applications. In addition to functional and timing, embedded sys-
tems must satisfy other requirements (power consumption, cost, etc.) that often 
compete with each other. Besides that, the highly competitive market of devices 
embedded systems are used in puts additional pressure on designers in the form of 
the time-to-market requirement. In order for a product to succeed in the market, 
this time should be reduced as much as possible. All these make the design of em-
bedded systems very difficult. To manage the difficulty, it is extremely important 
to have powerful design methodologies and tools that would free the designer of 
low-level decisions and tasks. 

Design of embedded systems is usually an iterative process that explores differ-
ent design alternatives and chooses the one that satisfies all the requirements. A 
variety of models can be used during the design. They describe the functionality of 
the application or its structure at different abstraction levels. Refinement and syn-
thesis of models is necessary for the design space exploration. For safety-critical 
systems, which are implemented as time-triggered systems, the main model is a 
model of communicating processes that are assigned for execution (mapped) to 
computational resources of the system architecture and scheduled. This model 
must satisfy all the requirements to the system. Synthesising such a model from a 
higher-level specification of functionality is the topic of this thesis. The aim is to 
develop strategies for derivation of mapped and scheduled system models from 
higher-level behavioural system models. 

1.1 Thesis overview 

This thesis is structured in eight chapters. Chap. 2 gives an introduction to real-
time and embedded systems, and their design. Chap. 3 describes, states and moti-
vates the problem of the thesis. In Chap. 4, we dwell on a particular kind of em-
bedded systems, which are the main focus of the thesis, time-triggered embedded 
systems. We describe the hardware and software architectures that we consider. In 
Chap. 5, we propose strategies for derivation of system models represented as 
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process graphs from the ones represented as functional blocks. Chap. 6 presents 
the results achieved during experimentation with the implemented derivation 
strategies. Chap. 7 describes related work. And in Chap. 8, we conclude and pro-
pose ideas for future work. 



2 Technical Background: Embedded Systems 

The purpose of this chapter is to give an introduction to the subject area of this 
thesis that is of embedded computer systems, to define their key concepts, and de-
scribe their design methodologies. 

2.1 Real-Time Systems 

Most of embedded computer systems are real-time computer systems, so are those 
this thesis is aiming at. Therefore, first of all, we will define what a real-time sys-
tem is. 

“A computer system in which the correctness of the system behaviour depends 
not only on the logical results of the computations, but also on the physical instant 
at which these results are produced” is called a real-time computer system [8]. 

A real-time computer system always has an environment, in which it operates. 
The environment consists of a human operator and a controlled object with corre-
sponding interfaces – a man-machine interface (MMI) and an instrumentation in-
terface (II) (Fig. 2.1). The man-machine interface includes input and output de-
vices (e.g., keyboard and display). The instrumentation interface includes a set of 
sensors and actuators, which transform physical signals of the controlled object 
into a digital form understandable by the computer system and vice versa. The 
combination of a real-time computer system and its environment is called a real-
time system [8]. 

Examples of real-time systems are engine control systems in vehicles, ticket-
booking systems, automatic teller machines, plant automation systems, flight con-
trol systems, etc. 

 

Operator
Controlled

Object

MMI IIReal-Time
Computer
System

 
Fig. 2.1. Real-time system (adapted from [8]) 
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A real-time computer system must react to stimuli from its environment within 
time limits imposed by the environment. The instant of time at which a result must 
be produced is called a deadline. If a result is still useful after the deadline has 
passed, the deadline is called soft, if not, the deadline is firm. If missing a firm 
deadline may result in a catastrophe, the deadline is called hard. A real-time com-
puter system that must meet at least one hard deadline is classified as a hard real-
time computer system or a safety-critical real-time computer system  [8]. For ex-
ample, for a nuclear plant control system, failure to react at appropriate time may 
lead to catastrophic consequences. 

If a real-time computer system does not have any hard deadlines, then it is 
called a soft real-time computer system  [8]. For example, a multimedia system 
may occasionally miss its deadlines, which will result in a degraded quality of im-
age and sound, which in turn will cause only inconvenience to the user. 

There are several viewpoints real-time systems can be classified from  [8]. 

• Hard real-time versus soft real-time, 
• Fail-safe versus fail-operational, 
• Guaranteed-timeliness versus best-effort, 
• Resource-adequate versus resource-inadequate, and 
• Event-triggered versus time-triggered. 

The first two classifications depend on the characteristics of the application, 
i.e., the controlled object. The rest depend on the implementation of the computer 
system. 

Hard real-time systems are different from the soft ones in response time, peak-
load performance, control of pace, safety, size of data files, and redundancy type. 

Fail-safe and fail-operational systems are different in the way they behave 
upon occurrence of a failure. The systems, for which safe states exist, transition to 
one of the states in case of a failure. The systems, for which a safe state cannot be 
identified, remain operational, possibly providing a limited service. 

Guaranteed-response systems are designed in such a way that they guarantee a 
response in the case of a peak load and fault scenario with the probability that the 
assumptions about the peak load and faults made during the design will hold in re-
ality. Best-effort systems do not give such an analytic guarantee; instead, they es-
tablish the sufficiency of the design during testing and integration. 

Resource-adequate and resource-inadequate systems differ in availability of 
resources under peak load and fault scenarios. Guaranteed response requires re-
source adequacy. Hard real-time systems must be designed according to the guar-
anteed response paradigm. 

Event-triggered and time-triggered systems are different in the triggering 
mechanism used to start an action (e.g., execution of a task or sending a message) 
in a node of a computer system. 

 



      5 

Host Computer

CNI

Communication Controller

Messages

Communication Network

 
Fig. 2.2. Structure of a node in a distributed real-time system (adapted from [8]) 

2.2 Distributed Real-Time Systems 

Many real-time applications are distributed by their nature. For example, plant 
automation systems, or automotive electronics. In such applications, it makes 
sense to perform the data processing at the location of the controlled objects. In 
this case, the controlling computer system becomes a distributed real-time com-
puter system. It is implemented as a set of hardware components, called nodes, in-
terconnected by a real-time communication network. Many real-time systems are 
designed as distributed systems due to fault tolerance or performance issues.  

A node of a distributed real-time system can be structured as two subsystems 
(Fig. 2.2), the host computer, and the communication controller interfacing with 
each other through the communication network interface (CNI) [8]. 

The host computer contains a central processing unit (CPU), a memory, and a 
real-time clock that is synchronized with the real-time clocks of all the other 
nodes. The memory stores the node’s software – the real-time operating system, 
input/output drivers, and the application programmes. 

The set of all the communication controllers of the nodes and the physical in-
terconnection medium form the real-time communication system of a distributed 
real-time system  [8]. 

2.3 Embedded Real-Time Systems 

Due to constantly decreasing price-performance ratio of microcontrollers, it has 
become economically attractive to replace the conventional mechanical or elec-
tronic control systems inside many products by real-time computer systems. In 
this case, such a computer system is called an embedded computer system [8]. The 
examples of products with embedded computer systems are telephones, watches, 
electronic toys, digital cameras, television sets, computer printers, washing ma-
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chines, microwave ovens, automobiles, airplanes, etc. More than 99% of the mi-
croprocessors produced today are used in embedded systems [12]. 

Although the number and diversity of embedded systems is huge, they share a 
small set of common characteristics: 

• Since such computer systems are embedded into a host system, they are de-
signed to perform a dedicated set of functions determined by the purpose the 
host system serves to. 

• Besides correct functionality under timing constraints, the design of embedded 
systems has to consider many other tight, varied, and competing issues, such as 
development cost, unit cost, size, power consumption, flexibility, time-to-
prototype, time-to-market, maintainability, safety, etc. 

• Both hardware and software aspects, and under the above constraints, have to 
be considered simultaneously during the design of embedded systems. That 
makes the design very difficult. 

2.4 Real-Time Scheduling 

At run time, the functionality of a real-time system can be represented as a set of 
concurrent processes (tasks) executed by the system’s computational resources 
(e.g., programmable processors, application specific integrated circuits, etc.). 

A process is a sequence of computations, which starts when all its inputs are 
available. When it finishes executing, the process produces its output values [9]. 
The control signal that initiates the execution of a process is provided by the oper-
ating system. Important attributes of a process are: 

• Release (arrival, or request) time, the time when the process becomes ready for 
execution, 

• Execution time, the time it takes to execute the process, 
• Worst-case execution time (WCET), C, the maximal time it may take to execute 

the process, 
• Period, T, the time interval between successive release times, 
• Deadline, D, the time by which the execution of a process must be finished, 
• Priority, π, the level of importance of the process. 

Based on the release times, processes can be: 

• Periodic, when the release times are known and the intervals between them are 
constant, 

• Aperiodic, when the release times are not known, and 
• Sporadic, they are aperiodic processes for which minimal inter-release times 

are known. 

A real-time system must execute the set of its concurrent processes in such a 
way that all processes meet their deadlines. Then, the scheduling problem is which 
process and at what moment has to be executed on a given computational resource 
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in order for all timing requirements to be satisfied. The following classifications of 
scheduling approaches exist: 

• Static versus dynamic, 
• Off-line versus on-line, and 
• Preemptive versus non-preemptive. 

Scheduling is static if pre-run-time predictions about the worst-case behaviour 
of the system when the scheduling algorithm is applied are made. Examples of the 
static approach are cyclic scheduling and fixed priority scheduling (FPS). If no 
pre-run-time predictions are made but instead run-time decisions are used, the 
scheduling is dynamic. An example of the dynamic approach is earliest deadline 
first (EDF) scheduling. 

When there is complete a priori knowledge about the process-set characteris-
tics, e.g. release times, WCETs, precedence relations, etc., a schedule table for the 
run-time scheduler can be generated off-line. Such a table contains all the informa-
tion needed to decide at run time which task is to be dispatched next. An example 
of the off-line scheduling approach is static cyclic scheduling. If there is no such 
complete a priori knowledge, the scheduling decisions have to be made at run time 
(on-line). Examples of the on-line scheduling approach are FPS and EDF schedul-
ing. 

In preemptive scheduling, the currently executing task may be preempted (in-
terrupted), if a task with a higher priority has been released. In nonpreemptive 
scheduling, the currently executing task may not be interrupted. 

In order to determine whether a process set is schedulable, that is it can be 
scheduled so that each task meets its deadline, or not, a schedulability analysis 
(test) is performed. Schedulability analysis can be based on sufficient, necessary, 
or necessary and sufficient conditions. If the sufficient condition is satisfied, the 
process set is definitely schedulable; otherwise, the process set may be or not be 
schedulable. If the necessary condition is not satisfied, the process set is definitely 
not schedulable; otherwise, the set may be or not be schedulable. Tests based on 
both necessary and sufficient conditions give an exact answer at the expense of 
their complexity. Tests based either on sufficient or on necessary conditions may 
give either too pessimistic or too optimistic results respectively, but they are sim-
pler. For the off-line scheduling approach, construction of a schedule is considered 
a sufficient schedulability test. 

2.5 Embedded Systems’ Design Flow 

Design of embedded systems is a difficult task due to the following reasons: 

• It has to deal with the very complex functionality of modern applications. Many 
real-time applications have to be implemented as multiprocessor systems with 
heterogeneous structure. This means they contain both programmable proces-
sors and dedicated hardware components. For example, the programmable 
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processors can be general purpose or application specific microprocessors, mi-
crocontrollers, digital signal processors (DSPs). The dedicated hardware com-
ponents can be implemented as application specific integrated circuits (ASICs) 
or field programmable gate arrays (FPGAs). In addition to that, for distributed 
systems, the network structure can be heterogeneous too. It can consist of sev-
eral networks, interconnected with each other, with each network having its 
own communication protocol, 

• Both hardware and software have to be designed simultaneously, 
•  In addition to desired functionality and correct timing, it has to take into con-

sideration many tight, and often competing requirements, such as development 
cost, unit cost, size, power consumption, flexibility, time-to-prototype, time-to-
market, maintainability, safety, etc. 

In order to simplify the design process, to reduce its cost and time-to-market, 
and to address the complexity of applications, it is very important to have: 

• Powerful design methodologies, which would perform as many of the activities 
considering different design alternatives as possible at high abstraction levels, 

• Efficient design tools based on the above methodologies, which would allow to 
automate most of the design tasks, ideally the whole design process, 

• Reuse of previously designed and verified hardware and software blocks, and 
• Good designers. 

Design of embedded systems can be performed at different abstraction levels, 
with different types of models used at each level, behavioural and structural. A 
behavioural model describes the desired functionality of the system, and a struc-
tural model describes the composition of the system of physical elements. For ex-
ample, the hardware can be designed at: 

• Circuit level, the lowest abstraction level. The main building blocks here are 
transistors. The system’s functionality is described using differential equations, 

• Logic level. With building blocks being gates and flip-flops and the functional-
ity described as Boolean logic, 

• Register-transfer level. Where transfers of values between registers, multiplex-
ers, ALUs, etc. describe the functionality, 

• System level, the highest abstraction level. Here, the structure is captured using 
processors, memories, ASICs, and communication channels and the functional-
ity is described using system level specification formalisms (e.g., hardware de-
scription languages). 

It is the system level the design methodologies should make most of the design 
space exploration at. 

Fig. 2.3 shows such a design flow. It was suggested by researchers to system-
atically address the design of embedded systems [4]. 

The activities undertaken during the design based on this methodology are the 
following: 
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Fig. 2.3. Embedded systems’ design flow [4] 
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1. The flow starts from the informal specification (e.g., natural language) of the 
functionality and the set of constrains (e.g., power consumption, cost, etc.). 

2. As a result of modelling, the system model is produced, possibly using several 
refinement steps. The system model is a formal specification of the functional-
ity, based on a modelling concept (e.g. finite state machine, data-flow, Petri net, 
etc.). 

3. At this step, the system’s architecture (processors, custom intellectual property 
(IP) modules, busses, operating system, etc.) is chosen. 
 

4. Mapping of the system’s functionality on the computational resources is per-
formed. This means to choose a resource where a given piece of functionality is 
going to be executed in. Here, the decision about what will be implemented as 
hardware and what will be implemented as software is made. 

5. Next, based on the results of the mapping, on the estimation of the WCETs of 
the process-set with the given mapping, and on the chosen scheduling algo-
rithm, schedulability analysis is performed. If the static cyclic scheduling was 
chosen (the case in Fig. 2.3), then the scheduling tables for each processing 
element are built. Depending on the result, the flow may move forward or go 
back to the previous stages to explore different architectures, mappings, and 
schedules. 

6. Now, the partitioning of the system model into the software model and the 
hardware model can be done. The software model describes the functionality 
mapped to processors, and the hardware model describes the functionality 
mapped to ASICs and FPGAs. 

7. And finally, the low-level design tasks, which are automatic or manual software 
generation and hardware synthesis, prototyping, and testing the prototype, are 
performed. 

At all the stages of the design, the model should be either formally verified or 
simulated to check its validity. Depending on the results of validation, adjustments 
to the model can be made. 

The described approach is a so-called function/architecture co-design method-
ology. The main characteristic of this methodology is that it uses a top-down syn-
thesis approach and, at the same time, a bottom-up evaluation of design alterna-
tives [9]. 

Usually a design does not start from scratch. The design is based on a hardware 
platform, which is instantiated for the given application by parameterizing the 
platform’s components (e.g., the frequencies of the processors, the sizes of the 
memories, etc.). Such a design is called platform based. 



3 Problem Description 

As we have said in the previous chapter, it is very important for the design of em-
bedded system to have powerful design methodologies that could handle the high 
complexity and tight requirements of embedded applications. One of such meth-
odologies was described in Sect. 2.5. However, there are issues inside a methodol-
ogy itself that are essential for a successful design, such as strategies and tech-
niques used for a particular activity of the design. The activity this thesis is in 
concern of is automatic creation of a mappable system model from a higher-level 
behavioural specification (see Fig. 2.3). 

3.1 System-Level Modelling 

There are two models in the design flow shown in Fig. 2.3 denoted as “System 
model” and “Mapped and scheduled model” we are interested in. The system 
model is a behavioural model describing the functionality of the application being 
designed as a set of behaviours that can be directly mapped onto the processing 
elements of the system architecture. The mapped and scheduled model can be 
viewed as a structural model where each physical element from the system archi-
tecture is assigned a piece of functionality from the system model to execute (in a 
specified order and at specified time instances1). The process of transforming a 
behavioural representation into a structural representation is known as synthesis. 
Therefore, we say that the system model is synthesized into the mapped and 
scheduled model during the design. 

The model used for mapping and scheduling is a flat model of interacting be-
haviours that are represented as processes at run-time. For complex applications, it 
may be very difficult to construct such a model directly from the informal specifi-
cation of functionality. Therefore, a move to higher abstraction levels in formal 
behavioural descriptions is necessary. Then, the transition from the informal speci-
fication to the model of interacting processes can be done as a sequence of refine-
ment2 steps. 

A possible modelling scenario could be the following. First of all, based on the 
requirements and constraints of the informal specification, an overall behavioural 
                                                           
1 We assume that a static cyclic scheduling is used, which allows building scheduling tables 

off-line. 
2 Refinement is a process of lowering the abstraction level of a model by adding more de-

tails. 
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model of the system is constructed as a single black box transforming its inputs to 
the outputs. This model can be built using a system level modelling formalism 
(suitable for the given application), such as a Petri Net or a Finite State Machine 
(FSM), which is mathematically verifiable. Next, the overall behaviour is decom-
posed into a set of interacting concurrent hierarchical behaviours. The decomposi-
tion is done following, for instance, availability of reusable hardware and software 
IP components, implementation constraints, or the designer’s vision of how it 
should be done. And finally, the model of hierarchical behavioural blocks is re-
fined into a model suitable for processing by the synthesis task. 

This last refinement is a problem we are going to solve. 
In the following two subsections, we will describe the representations that will 

be used for the two models that are an input and an output of the refinement prob-
lem. 

3.1.1 Functional Blocks 

In our representation, a behaviour in the model of interacting concurrent hierarchi-
cal behaviours is called a functional block, or a function. Each function may con-
sist of other functions. We call the leaf functions elementary. Composite functions 
are the functions that include elementary or other composite functions. 

The model is represented as a directed hierarchical graph H = (Fe, Fc, D, h, c), 
where Fe is a set of elementary functions; Fc is a set of composite functions; 
Fe ∪ Fc = F, where F is a set of all functions; D is a set of edges between the ele-
ments of Fe; h: Fc → Fc is an inclusion relation between the composite functions; 
c: Fe → Fc is an inclusion relation between the elementary and composite func-
tions. An element of D is called a dependence and represents data dependency be-
tween a pair of functions. This graph is a kind of a dataflow graph. 

An elementary function is an implementable behaviour (the implementation can 
be done in a modelling or a programming language). A composite function is a 
specifying behaviour, which means that it defines how the functional hierarchy 
(with this function in the root) should behave. 

Given system architecture, timing information for elementary functions and de-
pendences can be specified. For an elementary function, the timing characteristics 
are its worst-case execution time and period. The worst-case execution time of a 
function is the maximal time it may take to execute the function on a reference 
computational resource of the system architecture. The WCETs of all the elemen-
tary functions are estimated for the same reference resource. For techniques on 
WCET estimation, please refer to [3]. The period is the time interval between suc-
cessive invocations of the function. It is specified in the requirements to the appli-
cation being modelled. 

For a dependence, the timing attribute is its worst-case transmission time. Each 
dependence is associated with an amount of data, which is passed between the two 
functions the dependence connects. Hence, its WCTT is the time it takes to trans-
mit those data over a reference bus of the system architecture. 
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Fig. 3.1. An example of a graph of functional blocks 

 
Example 3.1: In the graph of functional blocks shown in Fig. 3.1, Fe = {F1, F2, 
F3, F4, F5, F8, F9}, and Fc = {F6, F7}. 

3.1.2 Process Graphs 

We represent the model of interacting processes as a process graph (also called a 
task graph), which is a kind of a dataflow graph [2]. A process graph is a directed 
acyclic graph G = (P, M), where P is a set of processes, and M is a set of edges 
representing dependences between the processes in the form of messages [9]. 

The graph is a polar graph, which means that there are two special vertices in it, 
called source and sink that represent the first and the last processes respectively. 
These processes are dummy, they do not perform any computations, their execu-
tion time is zero, and they are not assigned to any computational resources. All the 
other processes in the graph are successors of source and predecessors of sink [9]. 

A mapped process graph G* = (P*, M*, m) is generated from a process graph G 
= (P, M) by introducing communication processes and by mapping each process to 
a processing element from the set of processing elements PE. PE = Rcomp ∪ Rcomm, 
where Rcomp is a set of the system’s computational resources (i.e., programmable 
processors and dedicated hardware), and Rcomm is a set of the systems communica-
tional resources (i.e. busses). Communication is performed using message passing 
through shared memory if the communicating processes are mapped to the same 
computational resource, or through a bus if the communicating processes are 
mapped to different computational resources. Communication processes are in-
serted in edges that represent messages sent using the busses. Function m: P* → 
PE gives the mapping of the processes in P to the processing elements in PE. For 
every process Pi ∈ P, m(Pi) is the processing element to which Pi is assigned for 
execution [9]. 
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Timing information for a process graph is the same as for a graph of functional 
blocks – worst-case execution times, periods, and worst-case transmission times. 
However, for a mapped process graph it can be expressed for those resources the 
processes and messages were mapped to. In addition, the messages between the 
processes mapped to the same computational resource are considered to take no 
time. 

Example 3.2: In the mapped process graph in Fig.3.2, P0 and P12 are source 
and sink processes, respectively. P1, P2, …, P11 are processes that perform 
computations. They are assigned for execution to one of the computational re-
sources (Processor 1, Processor 2, or ASIC), as indicated by the shadings. The 
solid black circles in the figure depict communication processes. They are in-
troduced after the mapping of the computations is done, and only for those 
communications that are performed between processes mapped to different 
computational resources. The communication processes are mapped to the sin-
gle bus. A number to the right of each process is the WCET of that process on 
the given resource. The worst-case execution time of a communication process 
is equal to the worst-case transmission time of the message this processes 
represents. 
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Fig. 3.2. An example of a process graph 
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3.2 Problem Statement 

We state the problem of this thesis as follows. 
Given a hierarchical behavioural model represented as a graph of functional 

blocks, system architecture, and a synthesis algorithm, the problem is to build a 
flat behavioural model represented as a process graph such that the implementa-
tion obtained using the synthesis algorithm is schedulable. The synthesis algo-
rithm produces mapping, and schedule tables (since we are interested in time-
triggered systems, static cyclic scheduling is used). 

The procedure of building a process graph based on the graph of functional 
blocks consists of building processes out of functional blocks. A process may be 
constructed out of one or several functions. We say that in this procedure, func-
tional blocks are allocated to processes. The goal is to find such an allocation that 
the resulting process graph is schedulable. The search is driven by the given syn-
thesis algorithm, which maps the process graph under consideration to the given 
architecture, schedules it, and gives the answer whether the process graph is 
schedulable or not. Often the designer is interested in finding a process graph that 
is not only schedulable but also has minimal schedule length. We will use sched-
ule length as a search criterion. 

3.3 Motivation 

We will motivate the problem by giving several motivational examples. 

Example 3.3: Let us consider a simple application that is modelled as the graph 
of functional blocks shown in Fig. 3.3a. It is a composite function F1 that in-
cludes two elementary functions F1/1 and F1/2. The elementary functions are in-
vocated every 6 time units, and they must finish executing before they are in-
vocated again. The application is to be implemented on the architecture in Fig. 
3.3b, consisting of two computational nodes N1 and N2, and a bus. The nodes 
have the same performance, and the execution of the elementary functions on 
either of them would take 2 time units for F1/1 and 4 time units for F1/2. There 
are two ways to transform the given hierarchical graph of functional blocks into 
a flat process graph. They are shown in Fig. 3.3c, d. In the first case, the proc-
ess graph consists of a single process P1 that performs the computations of both 
elementary functions F1/1 and F1/2. In the second case, two processes are cre-
ated, each corresponding to an elementary function. The worst-case execution 
time of a process is a sum of the WCETs of the elementary functions making 
up the process. In addition to that, a process’s WCET should also include the 
overhead for executing the process by the operating system at run-time (the 
overheads will be discussed in Sect. 5.2.1). For this example, we consider the 
overhead for each process to be equal to 1 time unit. Then the WCETs of the 
created processes are: 
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Fig. 3.3. The first motivational example 

 
• In the first case, 7 (the functions have to be executed sequentially inside the 

process), and 
• In the second case, 3 for P1/1 and 5 for P1/2. 
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Fig. 3.3c, d also illustrate the mappings of the processes to the computational 
nodes. With such mappings, scheduling can be performed as shown in Fig. 
3.3e, f (the width of the rectangle depicting a process corresponds to the proc-
ess’s execution time). As we can see, the first process graph is unschedulable, 
while the second solution satisfies all the deadlines (if the processes are 
mapped to different nodes). 
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Fig. 3.4. The second motivational example 
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Example 3.4: Let us consider the same application as in Fig. 3.3. However, the 
periods (and the deadlines) of the elementary functions equal to 7, and the ar-
chitecture consists only of one node (Fig. 3.4a, b). Using the same approach to 
creating process graphs, we get a schedulable solution when the elementary 
functions are combined into the same process (Fig. 3.4c, e), and an unschedul-
able solution when a separate process corresponds to each of the elementary 
functions (Fig. 3.4d, f). The total execution time of the application is larger in 
the second case because there are two processes and the overhead has to be 
considered twice. 

Example 3.5: Fig. 3.5 and Fig. 3.6 give an example of a more complex applica-
tion. Here, we assume that sending messages between the processes mapped to 
different nodes takes zero time since scheduling of messages is not relevant for 
this example. We also assume that the nodes have equal performance. In the 
first case, process P6 does not meet its deadline, and it is not possible to solve 
this problem by a different mapping because of the chain of dependences P1 – 
P3 – P4 – P6. However, if each of the elementary functions inside F3 is repre-
sented as a separate process (the second case), all the deadlines are met. 

It is clear from the above examples that the way processes are built out of func-
tional blocks affects the timing of an application and leads to either schedulable or 
not schedulable design. For complex graphs of functional blocks with large num-
ber of functions, multiple hierarchical levels, and constraints on function alloca-
tion, creating a schedulable flat process graph is not as straightforward as in the 
simple examples we have given. It may require more sophisticated and intelligent 
ways of finding the right grouping of elementary functions into processes. In the 
following chapters, we will elaborate and compare the methods of design space 
exploration during this design task. 
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Fig. 3.5. The third motivational example (the application and the architecture) 



      19 

 

a) Process graph, case 1

P0 P7

P1

7

P3

7

P5

4

P6

4

P4

5

P2

4

b) Process graph, case 2

P0 P7

P1

7

P5

4

P6

4

P2

4

5

P3/2P3/1

3

P4

5

c) Scheduling, case 1

D
e
a
d
li
n
e

N1
P1 P3

N3 MetP5

P4N2 MissedP2 P6

0 4 8 12 16 20 24

d) Scheduling, case 2

D
e
a
d
li
n
e

N3 MetP5

N2 MetP2 P4 P6

N1
P1 P3/1 P3/2

0 4 8 12 16 20 24

 
Fig. 3.6. The third motivational example (the process graphs and the scheduling)





4 Preliminaries: Time-Triggered Embedded 
Systems 

In Chap. 2, we shortly described embedded real-time systems in general. In this 
chapter, we will dwell on a particular kind of embedded systems, time-triggered 
embedded systems, which are the focus of this thesis. 

4.1 Time-Triggered versus Event -Triggered Systems 

In a real-time computer system, every action, e.g., the execution of a process or 
the transmission of a message, must be initiated by a control signal. Such a control 
signal is called a trigger. Depending on the triggering mechanism for the start of 
processing and communication activities, two different approaches to the design 
of real-time applications exist, resulting in two types of systems [8]: 

• Event-triggered approach (systems). 
• Time-triggered approach (systems). 

In event-triggered (ET) systems, all processing and communication activities 
are initiated by events. An event is an occurrence of a significant change of the 
system’s state. For example, pressing of a button by the operator, an arrival of a 
message at a node, or termination of a process in a node. The signalling of events 
is realized by the interrupt mechanism. The worst-case execution time of an inter-
rupt handler, as well as the context switches before and after the interrupt handler, 
are added up to the worst-case administrative overhead (WCAO) of the operating 
system. The fact that WCAOs due to interrupts are variable and not every interrupt 
leads to activating a different application process, makes the timing behaviour of 
ET systems difficult to predict. Event-triggered systems require an on-line sched-
uling strategy (e.g. preemptive fixed priority scheduling) in order to activate the 
appropriate process to service the event. 

In time-triggered (TT) systems, all processing and communication activities are 
initiated by progression of time. The only interrupt available here is a periodic 
clock interrupt, which is generated whenever the real-time clock within a node 
reaches a preset value. At these instances, a so-called trigger process is invoked 
that scans the system for a change of state and decides whether another application 
process needs to be started. The scans introduce additional overhead. However, 
predictability of the WCAO in a TT system is high. Time-triggered systems are 
usually implemented with off-line scheduling, such as non-preemptive static cy-
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clic scheduling. In a distributed TT system, it is assumed that the clocks of all 
nodes are synchronized to form a global notion of time. 

Choosing an approach, the event-triggered or the time-triggered, depends on 
the particularities of the application. The high predictability of time-triggered sys-
tems makes the TT approach suitable for implementing safety-critical real-time 
systems. For complex distributed applications, such as modern automotive appli-
cations, the mixed event-triggered time-triggered approach can be used. 

4.2 The Time-Triggered Protocol 

Communication between the nodes in a distributed system is done using a com-
munication protocol. The protocol used in time-triggered systems is the Time-
Triggered Protocol (TTP). It was developed in the Vienna University of Technol-
ogy and primarily intended for the automotive industry. It is a protocol for distrib-
uted real-time applications that require predictability and reliability (e.g. x-by-wire 
systems in vehicles). The description of the TTP given in this section is based on 
[9] and [11]. 

In a distributed system, nodes communicate over a broadcast channel. The 
Time-Triggered Protocol relies on the Time-Division Multiple Access (TDMA) 
scheme to control access to the channel (see an example in Fig. 4.1). Each node Ni 
is allowed to transmit only during a predetermined (off-line) time interval Si, 
called TDMA slot. A node can send several messages packaged in one frame in its 
slot. If a node has no data to send, an empty frame is transmitted. A sequence of 
slots for every node in the system architecture forms a TDMA round. A node is al-
lowed to transmit only once in a TDMA round. The duration of the slot of a given 
node and the sequence of all the slots is the same in every round; however, the 
amount and contents of data the node sends may vary from round to round. The 
sequence of all different TDMA rounds can be combined together in a cycle, 
called a cluster cycle, which is repeated periodically. 

 
Time

TDMA round

Cluster cycle

TDMA slot

S2S1 S2 S3 S4 S1 S3 S4S5 S5

Frame  
Fig. 4.1. TTP bus access scheme 
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The protocol services in a node are executed by its communication controller 
(see Fig. 2.2). Communication with the CPU is performed through the communi-
cation network interface. In case of TTP, the CNI is called message base interface 
(MBI), which is usually implemented as a dual ported RAM. 

The DTMA bus access scheme is imposed by a so-called message descriptor 
list (MEDL), which is located in every communication controller (TTP controller). 
The MEDL determines when the TTP controller has to send a frame to or receive 
a frame from the communication channel. Thus, it serves as a schedule table for 
the controller. In addition, for each frame, the MEDL stores its address in the 
MBI, and its length. The size of the MEDL is one cluster cycle. 

By executing a synchronization algorithm, the TTP controller provides syn-
chronization of the local clock with the local clocks of all the other nodes. 

4.3 The Hardware Architecture 

In Sect. 2.2, we presented general hardware architecture for distributed real-time 
systems as a set of nodes interconnected with a communication network. The 
structure of a node is shown in Fig. 2.2. Fig. 4.2 gives a more detailed organiza-
tion of a node in a time-triggered system. A typical node contains a CPU to exe-
cute the application, a real-time clock synchronized with the real-time clocks of all 
the other nodes, a RAM and a ROM to store the software, an input/output inter-
face to sensors and actuators, a TTP controller to execute the time-triggered proto-
col, and it can also contain an ASIC to accelerate parts of the functionality. 
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Fig. 4.2. The Hardware Architecture (adapted from [9]) 



24      4 Preliminaries: Time-Triggered Embedded Systems  

4.4 The Software Architecture 

The main component of the software architecture in a time-triggered system is a 
real-time kernel running in the CPU of each node. The kernel of a node has a 
schedule table that contains all the information needed to decide which process 
has to be executed or which message has to be transmitted at a given time instant 
in this node. 

When a process finishes executing, it calls the send kernel function in order to 
send its messages. Sending a message between two processes mapped to the same 
node is done by copying its data from the memory location corresponding to the 
message of the first process to the memory location corresponding to the message 
of the second process. The time needed for this operation represents the WCAO 
for sending a message between processes located on the same node, δS. When the 
second process is activated, it will find the message in the right location. The 
scheduling policy is that whenever a receiving process needs a message, the mes-
sage is already placed in the corresponding memory location. Thus, there is no 
overhead on the receiving side for messages exchanged within the same node [9]. 

In order to send a message to a process mapped to a different node, the kernel 
transfers the message to the TTP controller by packing it into a frame and placing 
it in the MBI. The worst-case administrative overhead of this operation is δKS. The 
TTP controller knows from its MEDL when it has to take the frame from the MBI 
and broadcast it on the bus. The TTP controller of the receiving node knows from 
its MEDL when it has to read a frame from the bus and transfer it to the MBI. The 
kernel reads a message from the MBI with the WCAO of δKR. When the receiving 
process is activated according to the local schedule table, it will already have the 
message in its memory location [9]. 

4.5 Static Cyclic Scheduling 

Static cyclic scheduling is an off-line scheduling approach. The schedule built us-
ing this approach must guarantee all the deadlines, considering the precedence, re-
source, and synchronization requirements of the scheduled processes. In a distrib-
uted system, a schedule is constructed for each node, and plans both execution of 
the processes and access to the communication media. It will be used at run-time 
by a distributed scheduler. 

A static cyclic schedule is a periodic time-triggered schedule. It contains activa-
tion times for all the processes executed by the node the schedule is built for. In 
this schedule, the time line is partitioned into a sequence of intervals called minor 
cycles. Each minor cycle’s length, Lminor, is equal to the smallest of periods of the 
processes mapped to the current node, 

Lminor = min(T1, T2, …, Tn). (4.1) 
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The start of a minor cycle is denoted by a periodic clock interrupt. The whole 
schedule is called a major cycle. Its duration, Lmajor, is the least common multiplier 
of all the periods, 

Lmajor = LCM(T1, T2, …, Tn). (4.2) 

The periods of the processes should be a multiple of the minor cycle time. If this is 
not the case, the periods must be adjusted. The number of minor cycles in a major 
cycle is determined as 

N = Lmajor / Lminor. (4.3) 

A process Pi is activated in every m-th minor cycle of a major one: 

m = Ti / Lminor, (4.4) 

where Ti is the period of process Pi. The processes with execution times that do 
not fit into available time slots in the minor cycles should be split (off-line) into 
smaller parts. Then the schedule will be preemptive. 

Example 4.1: Fig. 4.3 presents scheduling of five independent processes on 
one processor. In this example, Lminor = 20, Lmajor = 80. The trigger process 
should also be considered. Its period is made equal to the duration of the minor 
cycle. In the schedule chart (Fig. 4.3b), each rectangle denotes a process, and 
the width of a rectangle corresponds to the process’s WCET. 

In the case when all the processes have equal periods, there is only one minor 
cycle, which coincides with the major cycle. 
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Fig. 4.3. Example of scheduling independent processes with different periods 
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Example 4.2: Fig. 4.4 illustrates scheduling of a distributed application. The 
application is modelled as a process graph in which processes have equal peri-
ods (Fig. 4.4a). It has to be implemented on the architecture consisting of three 
nodes and a time-triggered bus. The chart (Fig. 4.4b) shows a possible sched-
ule. 
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Fig. 4.4. Example of scheduling a distributed application 
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Optimal scheduling (e.g., minimizing the schedule length) has been proven to 
be an NP-complete problem. Heuristic approaches to the scheduling problem ex-
ist. They produce results of good quality within reasonable amount of time. A 
classical heuristic algorithm for static cyclic scheduling is the list scheduling algo-
rithm (Fig. 4.5). The algorithm is based on maintaining a list of processes eligible 
for activation, ReadyProcessesList, for every processing element. Such a list con-
tains the processes, mapped to the given processing element, that have not been 
scheduled yet, however, all their predecessors have been scheduled and termi-
nated. The process to be scheduled next is the process with the highest priority in 
the ReadyList. Priorities are assigned to processes according to a priority function. 
An example of a priority function is a partial critical path from the given process 
to the sink process; the longer is the critical path the higher is the priority. A proc-
ess is scheduled on that processing element which is available at the current time. 

 
1 assign priorities to all the processes;

2 for each processing element PE do

3 IsAvailableTimePE = 0;

4 end for;

5 CurrentTime = 0;

6 repeat

7 for each processing element PE do

8 if CurrentTime IsAvailableTimePE then

9 update ReadyProcessesListPE;

10 select the highest priority process P from ReadyProcessesListPE;

11 schedule P at CurrentTime;

12 IsAvailableTime PE = CurrentTime + WCETp;

13 end if;

14 end for;

15 CurrentTime = the earliest of the termination times of the

scheduled but not yet finished processes;

16 until all the processes are scheduled;  
Fig. 4.5. The list scheduling algorithm 



 



5 Functional Blocks to Process Graph 
Translation 

In Chap. 3, we described the problem of transitioning from a hierarchical behav-
ioural application model to a flat behavioural application model represented as a 
graph of functional blocks and a process graph respectively. In this chapter, we 
propose strategies that can be used for such transitions. 

5.1 Inputs and Outputs 

According to the problem statement (see Sect. 3.2) the inputs to the problem are: 

1. A graph of functional blocks, 
2. System architecture, and 
3. The synthesis algorithm. 

The graph of functional blocks represents the system’s functionality specified 
as a set of interacting hierarchical behaviours. The mathematical model of the 
graph was described in Sect. 3.1.1. We assume that the graph of functional blocks 
is pre-processed in such a way that: 

• Global variables are removed; the functions have only local variables, and shar-
ing of data is done by message passing, 

• Loops are removed, 
• All the functions have the same period of invocation, 
• Dependences represent synchronous communication, 
• The worst-case execution time (WCET) for each elementary function, and the 

worst-case transmission time (WCTT) for each dependence are given. 

System architecture is specified as a set of computational nodes and a bus. The 
system is time-triggered. For each node, its performance is known and is given as 
a factor by which it differs from the reference node’s performance. We consider 
the fastest node in the architecture as a reference. In the time-triggered bus, there 
is a TDMA slot for every node. We assume that all the slots are of the same size, 
and the size is given as the maximum of WCTTs of dependences between func-
tions in the graph of functional blocks. 

The synthesis algorithm is an algorithm that takes a process graph and system 
architecture as an input, allocates the processes from the process graph to the 
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nodes of the system architecture1, and produces schedule tables for every node us-
ing not-preemptive static cyclic scheduling approach. The implementation of the 
algorithm we will use is based on the balancing and several heuristic strategies 
(greedy, simulated annealing, tabu search) for mapping, and on the list algorithm 
for scheduling (see Sect. 4.5). Balanced mapping tries to distribute the computa-
tional load on the nodes evenly by simply choosing the least loaded node to map 
the current process to. Heuristic mapping tries to find the mapping that minimizes 
the schedule length. The synthesis routine takes into consideration the overhead of 
the trigger process. This overhead is expressed as a fraction of CPU power it util-
izes, and, therefore, affects the execution times of the processes executed by the 
given CPU [9]. 

As a result of transformations applied to the graph of functional blocks, we 
want to get: 

1. A process graph with minimal schedule length, 
2. Mapping information for each node, that is which processes will be executed by 

the given node, and 
3. Schedule tables for each node, containing the times at which the processes 

mapped to the given node are activated and the messages are transmitted. 

5.2 Allocation Groups 

The translation strategies we propose are based on the notion of an allocation 
group. An allocation group is a set of elementary functions of a graph of func-
tional blocks that are allowed to be allocated to the same process. This means that 
functions belonging to a group may be executed within the same process or within 
different processes, however they may not be executed together with functions 
from other groups within the same process. 

Having such allocation groups, translation of a graph of functional blocks to a 
process graph can be done using two approaches to allocation of these groups to 
processes, which we call direct allocation and search-based allocation. The trans-
lation strategies that use these approaches are, correspondingly, straightforward 
translations and optimizing translations. In the direct allocation, every group is di-
rectly allocated to a process. In the search-based allocation, these groups are parti-
tioned into sub-groups in such a way that allocating each of the sub-groups to a 
process results in a schedule with the minimal schedule length. Hence, the task 
here is to find the optimal partitioning. 

 Allocation groups are identified according to grouping criteria, which can be 
the following: 

• Compatibility of characteristics of elementary functions (e.g., the same period 
of activation), 

                                                           
1 Since there is a single bus in our architecture, all the inter-node communications will be 

mapped to that bus. 
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Fig. 5.1. Allocation groups based on constraints for the example graph in Fig.3.1 

 
• Allocation constraints, 
• The hierarchy of the graph of functional blocks, or 
• No grouping. 

Allocation constraints are design constraints on which elementary functions to 
allow to execute within the same process. Allocation groups can be formed based 
on them. For example, a design may have a requirement that particular functions 
must be executed on processing elements of a particular type (e.g. DSPs, or 
ASICs, etc.); therefore, these functions are included into one allocation group. 
Suppose that for the graph in Fig.3.1, we have the following constraints. Functions 
F1 and F3, functions F2, F4 and F5, and functions F8 and F9 are allowed to be allo-
cated to the same processes. Then, the allocation groups are as shown in Fig. 5.1. 
Such constraints may have different strictness. From saying that the functions in a 
group can be combined into processes in any way, to saying that the functions in a 
group must be a single process. 

When the hierarchy of a graph of functional blocks is used as a grouping crite-
rion, allocation groups are formed according to the containment of elementary 
functions in composite functions. Two cases of this kind of grouping are possible. 
In the first case, a group corresponding to each composite function at the highest 
level of hierarchy (topmost composite function) is created. For a given topmost 
composite function and the corresponding group, all the elementary functions con-
tained in the composite function and all its sub-functions are included in the 
group. For example, for the graph of functional blocks in Fig.3.1, the allocation 
groups created based on topmost composite functions are shown in Fig. 5.2 In the 
second case, a group corresponding to every composite function at any level of hi-
erarchy is created. For a given composite function and the corresponding group, 
all the elementary functions contained in the composite function are included in 
the group. For example, for the graph of functional blocks in Fig.3.1, the alloca-
tion groups created using this kind of grouping are shown in Fig. 5.3. In both 
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cases, the elementary functions that do not belong to any composite functions are 
considered as separate groups. This criterion can be taken into consideration after 
the previous two in order to decrease the solution space if the search-based alloca-
tion is used. 

A special type of grouping is no grouping. Alternatively, for the sake of com-
monality with the previous grouping types, we can say that a separate group for 
every elementary function is created. A given elementary function is included in 
the corresponding group. 
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Fig. 5.2. Allocation groups based on topmost composite functions for the example graph in 
Fig.3.1 
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Fig. 5.3. Allocation groups based on composite functions for the example graph in Fig.3.1 
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Fig. 5.4. An allocation group in the case with no constraints for the example graph in 
Fig.3.1 

 
In the case when allocation is not constrained and no other grouping criteria is 

used, a single allocation group for the graph of functional blocks is created, which 
includes all the elementary functions (see the example in Fig. 5.4). 

5.3 Worst-Case Execution Overhead, Execution Time and 
Transmission Time 

As we have noted in the problem motivational examples in Chap. 3, when deter-
mining the worst-case execution time of a process, we should take into considera-
tion the overhead introduced by the operating system when it executes the process. 
The sources making up this overhead when non-preemptive scheduling is used are 
the following: 

• Process creation time, 
• Process termination time, and 
• Execution time of the system calls for message passing. 

A process is created by the operating system via a create-process system call. 
During this operation, the system allocates resources to the process (e.g. memory), 
and creates the process control block (PCB) [10]. The time needed for this system 
call is the WCAO for creating a process, δC. 

Termination of a process is done by executing an exit system call, which deallo-
cates the resources and deletes the PCB [10]. The time this operation takes is the 
WCAO for terminating a process, δT. 

The message passing mechanism in time-triggered systems was explained in 
Sect. 4.4. The worst-case administrative overheads associated with it are the 
WCAO for sending a message between processes located on the same node, δS, 
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the WCAO for sending a message to a process located on a different node, δKS, 
and the WCAO for receiving a message from a process located on a different 
node, δKR [9]. 

The first two components of the overall process execution overhead, process 
creation time and process termination time, may or may not be present depending 
on when a process is created, during the initialization phase of the system or when 
it is time to execute it. In the first case, the process stays in the RAM all the time 
the system runs, and the scheduler activates it when needed. The process termi-
nates only if the system shuts down. Activities that take place during initialization 
or shutdown are not captured in the schedule table; therefore, process creation and 
termination times are not considered as overheads. In the second case, the process 
is created every time it is scheduled for execution; hence, the associated overheads 
are taken into consideration. 

In a time-triggered system, execution times of the above system calls are pre-
dictable, therefore, so is the process execution overhead. 

The overall process execution overhead is different for every process. It de-
pends on the length of the transmitted messages [9] and on the mapping. However, 
in this thesis, we assume it to be the same for all processes, and equal to 1 time 
unit. 

Thus, the worst-case execution time of a process is composed of the WCETs of 
the elementary functions allocated to this process, and its worst-case execution 
overhead (WCEO): 
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where Ci is the WCET of process Pi, is the WCET of elementary function F
jFC j, 

Falloc.i is the set of elementary functions allocated to process Pi, and δexec.i is the 
worst-case execution overhead for process Pi. 

The worst-case transmission time of a message is the same as the WCTT of the 
corresponding dependence. 

When performing transformations over a graph of functional blocks, there may 
be situations when several parallel dependences have to be merged into a single 
message. In this case, the WCTT of the message is determined as a sum of the 
WCTTs of the merged dependences (the amount of data to be transmitted is 
summed): 
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where Ci-k is the WCTT of message Mi-k sent from process Pi to process Pk, 
is the WCTT of dependence D

ljDC
− j-l between elementary functions Fj and Fl, 

Dalloc.i-k is the set of dependences between the elementary functions allocated to 
process Pi and process Pk correspondingly. 
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Fig. 5.5. An example of the translation based on direct allocation without grouping 

5.4 Translation Strategies 

5.4.1 Straightforward Translation Strategies 

Straightforward translation strategies directly allocate an allocation group to a 
process. Let us consider two examples. 

Example 5.1: Fig. 5.5 illustrates the translation based on direct allocation 
without grouping. The given graph of functional blocks with WCETs and 
WCTTs of elementary functions and dependences is shown in Fig. 5.5a, and the 
derived process graph – in Fig. 5.5b (the source and the sink processes are not 
shown). 
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The translation is done by simply ignoring all the hierarchy in the graph of 
functional blocks and adding the process execution overhead to the WCET of each 
elementary function. The dependences between the elementary functions now be-
come messages between processes with the same WCTTs. 
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Fig. 5.6. An example of the translation based on direct allocation with grouping according 
to topmost composite functions 
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Example 5.2: Consider the same graph of functional blocks as in the 
previous example. Then, using the translation based on direct allocation 
with grouping according to topmost composite functions, a process graph 
can be derived as shown in Fig. 5.6b, c. The worst-case execution and 
transmission times are calculated according to Eq. 5.1 and Eq. 5.2. For exam-
ple, Falloc.7 = {F1, F2, F3, F4, F5}, Falloc.9 = {F9}, Dalloc.7-9 = {D3-9, D4-9}, then 

, 

, . 

221752347.7 54321
=+++++=+++++= execFFFFF CCCCCC δ

3129.9 9
=+=+= execFCC δ 431

949397 =+=+=
−−− DD CCC

The straightforward translations do not search for a better solution in terms of 
schedule length. However, they are fast, and we can predict that in case of direct 
allocation without grouping very good scheduling results may be achieved if the 
process execution overheads are small, and an effective mapping optimization 
heuristic is used. 

5.4.2 Optimizing Translation Strategies 

The advantage of the straightforward translation strategies is that their execution is 
fast. However, the scheduling results they produce may be not satisfactory. In this 
subsection, we introduce optimizing translation strategies that use search-based 
allocation approach. These strategies try to find optimal allocation of elementary 
functions to processes. 

Given a graph of functional blocks with defined allocation groups (an alloca-
tion graph), the task is to find the partitioning of these groups into sub-groups 
such that after allocating the sub-groups to processes a schedule of optimal (mini-
mal) length is produced. 

The best strategy, in terms of scheduling results, is to find all possible partitions 
and to choose the optimal one. 

Example 5.3: Consider the graph with allocation groups shown in Fig. 5.3. Ini-
tial grouping is: {F1, F2, F3}, {F4, F5}, {F8}, {F9}. Then, the possible partitions 
are the following: 

1. {F1, F2, F3}, {F4, F5}, {F8}, {F9}; 
2. {F1, F2, F3}, {F4}, {F5}, {F8}, {F9}; 
3. {F1, F2}, {F3}, {F4, F5}, {F8}, {F9}; 
4. {F1, F2}, {F3}, {F4}, {F5}, {F8}, {F9}; 
5. {F1, F3}, {F2}, {F4, F5}, {F8}, {F9}; 
6. {F1, F3}, {F2}, {F4}, {F5}, {F8}, {F9}; 
7. {F1}, {F2, F3}, {F4, F5}, {F8}, {F9}; 
8. {F1}, {F2, F3}, {F4}, {F5}, {F8}, {F9}; 
9. {F1}, {F2}, {F3}, {F4, F5}, {F8}, {F9}; 
10. {F1}, {F2}, {F3}, {F4}, {F5}, {F8}, {F9}. 

In total, there are ten partitions of the given grouping, and a process graph cor-
responds to each of them. Each sub-group in a partition is allocated to a proc-
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ess. Next, every process graph is mapped and scheduled by the synthesis algo-
rithm, and the one that gives the shortest schedule length is chosen as the solu-
tion. 

An allocation group is a set (of elementary functions). The number of ways a 
set can be partitioned into disjoint subsets exponentially depends on the number of 
elements in the set, and is given by the so-called Bell number. For example, for 
the number of elements being 1, 2, ..., 14, the Bell numbers have the values 1, 2, 5, 
15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322 
[1]. For more information on set partitions, please refer to appendix A. For a 
grouping consisting of several allocation groups, the number of possible partitions 
is given by the following equation: 
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where bi is the Bell number for the i-th allocation group, and NA is the number of 
allocation groups. 

 With large allocation groups (consisting of many elementary functions), it may 
be not feasible to find all possible partitions of the given grouping, and to perform 
mapping and scheduling of corresponding process graphs within the acceptable 
time period. The solutions are: 

• To decrease the number of possible partitions by making the allocation groups 
smaller and increasing their quantity. For example, let us suppose that there is 
an allocation group with 12 functions in it. This means that the group can be 
partitioned into sub-groups in 4,213,597 different ways. Making instead of this 
large group two smaller groups of size 7 and 5 would decrease the number of 
partitions to 877 · 52 = 45,604 (according to Eq. 5.3). 

• To use a heuristic approach to searching for a partition that gives the optimal 
allocation. Any general-purpose heuristic algorithm can be used (e.g., 
neighbourhood search, simulated annealing, tabu search, genetic algorithms, 
etc.). The neighbourhood search, simulated annealing and tabu search algo-
rithms are described in Appendix B. 

In both exhaustive and heuristic approaches, the partitioning can be done using 
partitioning vectors. A partitioning vector for a graph of functional blocks with al-
location groups is a collection of restricted growth strings for each allocation 
group in the graph. For instance, the partitioning vectors for the Example 5.2 are: 

1. 000  00  0  0 
2. 000  01  0  0 
3. 001  00  0  0 
4. 001  01  0  0 
5. 010  00  0  0 
6. 010  01  0  0 
7. 011  00  0  0 
8. 011  01  0  0 
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9. 012  00  0  0 
10. 012  01  0  0 

When heuristic algorithms are used, generation of neighbouring solutions of a 
current solution is necessary. A neighbour solution can be obtained by applying a 
simple design transformation to the current solution. For an allocation graph, a 
simple design transformation can be a move of a single elementary function to a 
new sub-group or to another existing sub-group, which is a partition of the initial 
allocation group the function belonged to. The neighbourhood of a given alloca-
tion graph is a set of other allocation graphs produced through such transforma-
tions. Applied to partitioning vectors, a move of an elementary function means a 
change of the value of the element corresponding to the function in the restricted 
growth string corresponding to the initial allocation group the function belonged 
to. For example, the neighbours of solution 011  00  0  0 are: 

1. 001  00  0  0 
2. 010  00  0  0 
3. 012  00  0  0 
4. 011  01  0  0 

When using tabu search algorithm, a tabu history should be maintained. The 
history contains the partitioning vectors corresponding to the design transforma-
tions accepted during a number of the previous iterations. This is explained in the 
following example. 

Example 5.4: The size of the history is 2. Suppose that the partitioning vector 
corresponding to the initial solution is 000 00 0 0. This vector is put into the 
history. During the next iteration the neighbour 000 01 0 0 was accepted. It is 
also pushed into the history. Vector 000 00 0 0 is a neighbour of the current 
vector but it is not considered because it is a tabu vector. Next, solution 010 01 
0 0 was accepted. It is pushed into the history. However, since the size of the 
history is 2, the first vector in the history, which is 000 00 0 0, is popped out of 
it, and this means it is not prohibited to consider it as an alternative during the 
following iterations until it gets into the history again. 





6 Experimental Results 

Based on the theory presented in Chap. 5, six translation strategies were imple-
mented. They are: 

1. Direct allocation without grouping, or elementary function to process (EFP), 
2. Direct allocation with grouping, or allocation group to process directly 

(AGPD), 
3. Exhaustive search based allocation (AGPES), 
4. Steepest descent neighbourhood search based allocation (AGPSD), 
5. Simulated annealing based allocation (AGPSA), and 
6. Tabu search based allocation (AGPTS). 

The goal of the experiments is to compare the quality of the results produced by 
the six strategies and the time it takes to execute them for different sizes of the 
problem of translation. 

6.1 Experimental Setup 

The size of the problem depends on the number of allocation groups in a graph of 
functional blocks and on the number of elementary functions in an allocation 
group (see Eq. 5.3), and indirectly on the total number of elementary functions. 
For the experiments, we used the most difficult transformation case when there are 
no constraints on allocation of elementary functions to processes, which means 
that all the elementary functions are included in a single allocation group. There-
fore, in this case, the size of the problem directly depends on the total number of 
elementary functions in a graph of functional blocks. In addition, for such a case, 
using the AGPD type of transformation does not make much sense; thus, it was 
not executed. 

We considered problem dimensions of 10, 25, 50, 75, and 100 elementary func-
tions, with hardware architectures consisting of 2, 2, 3, 4, and 5 nodes respec-
tively. Ten graphs were randomly generated for each of the dimensions. In total, 
we evaluated 50 applications. The worst-case execution and transmission times for 
elementary functions and dependences were assigned randomly using uniform dis-
tribution. 

The mapping algorithm used within the synthesis algorithm is the one of bal-
anced mapping. 
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The experiments were run on a computer system with AMD Athlon 1.84 GHz 
processor, 1 GB of RAM, and MS Windows XP operating system. 

6.2 Experimental Decisions 

There is a number of decisions that had to be taken in order to achieve better re-
sults when using heuristic-based translation strategies. 

1. Selection of the initial solution. Two alternatives exist here, either the solution 
produced by the EFP transformation or by the AGPD transformation. We tried 
both for the problem dimensions of 10 and 25 elementary functions. The first 
alternative showed better results. In addition to that, the heuristic-based transla-
tion with the second alternative for the initial solution may not always find a 
problem solution at all if the initial process graph and all others explored are 
cyclic or have messages with WCTTs that does not fit into corresponding slots 
in the TT bus. While the first alternative guarantees a solution which, in the 
worst case, is the initial one. 

2. The cost function. As the cost function, we used the schedule length produced 
by the synthesis algorithm. 

3. The cooling schedule and its parameters for the simulated annealing based 
translation. We used the cooling schedule by Lundy and Mees (eq. B.2). The 
initial temperature was selected such that any non-improving solution was ac-
cepted at temperatures close to the initial one. The low limit for the temperature 
parameter was set such that no non-improving solutions were accepted at tem-
peratures close to the final one. In this way, the search is allowed to converge to 
a local optimum at its concluding stage. With β parameter, we controlled rigor-
ousness of the search. We used the same values of the initial and final tempera-
tures, which are 1000 and 10 respectively, for all sizes of applications and var-
ied only β to achieve desired results. 

4. The stopping condition and the tabu tenure (the size of the history record) for 
the tabu search based translation. The search is terminated after a given number 
of iterations without improvement has passed. By changing this parameter, we 
made the search more or less rigorous. [5] reports that the best results with tabu 
search heuristic for some size-dependent problems are achieved when the tabu 
tenure is in the range [0.5 N , 2 N ], where N is the size of the problem. For 
the dimensions we use, the respective integer ranges are [1, 7], [2, 10], [3, 15], 
[4, 18], [5, 20]. We ran the tabu search based translation for every value of tabu 
tenure in the ranges corresponding to dimensions of 10, 25, and 50 elementary 
functions. The best results were achieved for those tenures that are in the mid-
dle of a range. For example, for the size of 10, the value of tenure is 4, for the 
size of 25, the value is 6, and for the size of 50, the value is 9. Based on these 
results, we set the values of tenures for the sizes of 75 and 100 to 11 and 13 re-
spectively. 
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Table 6.1. Parameters of the simulated annealing and tabu search algorithms 

Problem 
size 

Initial 
tempera-
ture 

Final 
tempera-
ture 

β Tabu 
tenure 

Iter. w/o 
improv. 

10 1000 10 0.000009 4 100 
25 1000 10 0.00001/0.000001 6 15/1000 
50 1000 10 0.00003/0.000003 9 15/60 
75 1000 10 0.00001 11 10/15 
100 1000 10 0.00001, 

0.000009, 
0.000008 

13 5/10 

The values of β and tabu tenure are given for the normal and longer runs (normal 
run/longer run). For the size of 100, the simulated annealing based transformation was exe-
cuted with 3 different values of β and the overall best results were chosen. 

 
The experimentation strategy was the following. For function graphs of 10 

elementary functions, all types of translations included in the setup were run. The 
necessary parameters of the simulated annealing and tabu search algorithms were 
adjusted to achieve results close to the ones produces by the exhaustive search al-
gorithm. For function graphs of larger dimensions, execution of the exhaustive 
search based translation would take infeasible amount of time. Therefore, the pa-
rameters of the simulated annealing and tabu search algorithms were chosen such 
that to get results better than the ones produced by the neighbourhood search algo-
rithm. Then, we showed that with longer runs it is possible to achieve even better 
results. The selected parameters are given in Table 6.1. 

6.3 Comparison of Translation Strategies 

The chart in Fig.6.1a presents average schedule length improvements produced by 
optimizing translation strategies with respect to EFP translation. The average exe-
cution times of the translation algorithms are depicted in Fig. 6.1b. Please refer to 
Appendix C for the values of average schedule length deviations and execution 
times of the translation algorithms that were used as a source for Fig 6.1. 

Experimenting with the simulated annealing based translation on graphs of 100 
elementary functions using different parameters, we did not manage to get an im-
provement compared to the steepest descent based translation. We modified the 
simulated annealing algorithm in such a way that it does not accept any non-
improving solutions for a number of iterations (temperatures) since the last im-
provement. This modified algorithm produced much better results, both schedule 
lengths and execution times, for the size of 100. We achieved an average improv-
ing deviation from the descent algorithm of 2.07%, and average execution time of 
42m 22s. However, we did not get improvement for all ten graphs with a single 
value of β. Therefore, we had to use different values of β, which are 0.00009, 
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0.00008, 0.00007, 0.00006 and 0.00005, and to choose the best one and the corre-
sponding solution for a given graph as a result. 

The conclusion is that the optimizing translation strategies produce much better 
scheduling results than the straightforward ones. By adjusting the parameters of 
those based on simulated annealing and tabu search algorithms, it is possible to 
achieve the desired quality of results and the desired optimization times. However, 
simulated annealing needs to be tuned more thoroughly. 
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Fig. 6.1. Comparison of the translation algorithms 



7 Related Work 

[13] and [7] focus on model transformations during the design of embedded soft-
ware. The process of design and implementation of embedded software is parti-
tioned into behaviour design, software structure design, runtime system design, 
and code generation. In each of these design stages, a different specification model 
is used – behavioural model, structural model, runtime model, and programming 
model. And in each stage, the corresponding model is refined into a model for the 
next stage. 

The special attention is to transformation of a structural software model to a 
runtime model. The structural model is defined as a graph in which vertices are 
software components, and edges are links representing data or control flow be-
tween the components. The runtime model is represented as a task graph. A task 
may consist of subtasks executed in a predefined order. Each task has a set of at-
tributes associated with it – period, deadline, execution location, and scheduling 
parameters. The links between tasks represent communications with given costs. 
The attributes of tasks and links are derived from the software structural model, 
platform model, and system constraints. Given such structural and runtime mod-
els, the problem of transformation of a structural software model to a runtime 
model is to map the actions of the components in the structural model to tasks in 
the runtime model in such a way that the execution sequence of actions defined in 
the structural model to achieve functional objectives is preserved, and the timing 
and scheduling constraints of the system are met. 

The proposed transformation method relies on the notion of transaction. A 
transaction is a sequence of actions of software components performed in the end-
to-end processing of an input event. During a transformation, all such transactions 
are identified. Each action in a transaction is assigned a priority. The actions with 
the same priority are grouped in a task. The communications between tasks are de-
rived based on the links between components. The tasks are mapped to the given 
hardware platform and schedulability analysis is performed. The mapping is done 
using the first-fit algorithm to minimize the required usage of both processors and 
network links. The priorities of the actions in a transaction must be such that the 
schedulability and timing requirements of the transaction are satisfied. Changing 
an action’s priority changes the task within which the action is executed, and 
hence, changes that task’s timing attributes. Priority assignment, mapping, and 
schedulability analysis is an iterative process based on the simulated annealing 
heuristic. The optimal solution must satisfy timing and schedulability constraints, 
and must have low runtime overheads for task and inter-task communications.



 



8 Conclusions and Future Work 

8.1 Conclusions 

In this thesis, we addressed and solved the problem of automatic transitioning 
from a hierarchical behavioural application model represented as a graph of func-
tional blocks to a flat behavioural application model represented as a process 
graph. We proposed strategies that can be used for such transitions. In order to 
confirm that the chosen approach is correct as well as to test the strategies, a tool 
translating graphs of functional blocks into process graphs was implemented, and 
experimentation on a number of randomly generated applications was done. The 
tool integrated the new translation algorithms with existing mapping and schedul-
ing algorithms. It allows to explore the design space on three levels: 

1. Different process graphs for a given graph of functional blocks, 
2. Different mappings of a given process graph to the system architecture, and 
3. Different schedule tables for a given mapping. 

Not only schedule length can be used as a cost function within the tool, but 
also, for example, utilization of computational resources, or power and energy 
consumption, etc. 

8.2 Future Work 

In order to achieve better quality of results and to reduce optimization time, a 
problem specific heuristic translation algorithm is necessary. Such an algorithm 
could address the following issues: 

1. Using feedback from the synthesis algorithm to guide the search process by 
analyzing the current solution and taking decision what the next solution should 
be. 

2. Ability to tell if putting given functions into the same process will result in a 
better solution without running mapping and scheduling algorithms. 

3. Allowing to create several instances of a function. Different instances will be 
included into different processes. This may improve the utilization of process-
ing elements and save time on message passing. 

More accurate modelling of process execution overheads is also needed. 
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F1 4

F2 2
F3 5

F4 3

m 1

P1 5

P2 3 P3 6

P4 4

TTP

N 2N 1

 
Fig. 8.1. An example application 

 
The solution space to be explored may be reduced if the optimization is per-

formed not on a graph of functional blocks but on a mapped and scheduled proc-
ess graph. In this case, the simplest translation, when each elementary function is 
transformed into a process, can be used; and afterwards, a powerful mapping op-
timization algorithm, for instance, a tabu search based one. After we get the final 
mapped and scheduled model, further optimization can be done by merging some 
of the processes that have been mapped to the same node. Consider the following 
example. 

Example 8.1: Fig. 8.1 gives an application modelled as a graph of functional 
blocks, the system architecture, and the produced process graph with mapping, 
which we consider optimal. The numbers next to functions and processes are 
their worst-case execution times. Those of processes include the process execu-
tion overhead, δexec, which is equal to 1 time unit. The processes were sched-
uled as shown in Fig. 8.2a. We can see that three process, P1, P2, and P3, were 
mapped to the same node and scheduled one after the other. These processes 
can be merged, and three alternatives exist, which are shown in Fig. 8.2b, c, d. 
Merging of n processes leads to reduction of the WCET of the resulting process 
compared to the total WCET of separate processes of (n – 1)δexec. This may re-
sult in reduction of the schedule length as in alternative 1 (Fig. 8.2b). However, 
not necessarily, due to dependences between the merged processes and the 
processes mapped to other nodes, as in alternatives 2 and 3 in Fig. 8.2c,d. 
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P1N 1 P3P2
- overhead

P4N 2

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

N 1 P1/2 P3

P4N 2

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

N 2 P4

N 1 P2/3P1

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

P4N 2

N 1 P1/2/3

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

a) Initial schedule

b) Schedule after merging, alternative 1

c) Schedule after merging, alternative 2

d) Schedule after merging, alternative 3

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

 
Fig. 8.2. Schedules for the example application in Fig.8.1 
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Hypothetically, the rules of merging are: 

• A process that transmits (Pi) can be merged with a process it depends on (Pj) 
only if Pj does not transmit, or Pi and Pj transmit to the same process, or Pi and 
Pj transmit to different nodes; and 

• A process that transmits (Pi) can be merged with a concurrent process (Pk) only 
if Pi and Pk transmit to the same process, or Pi and Pk transmit to different 
nodes. 

Otherwise, there will be no improvement in schedule length. 



Appendix A 

Set Partitions 

The source of information provided here is [6]. A set partition of the set [n] = 
{1, 2, …, n} is a collection B0, B1, ..., Bj of disjoint subsets of [n] whose union is 
[n]. Each Bi is called a block. Below, the partitions for n = 4 are shown. The peri-
ods separate the individual sets so that, for example, 1.2.34 is the partition 
{{1}, {2}, {3, 4}}. 

1 block: 1234 
2 blocks: 123.4, 124.3, 12.34, 134.2, 13.24, 14.23, 1.234 
3 blocks: 12.3.4, 13.2.4, 1.23.4, 14.2.3, 1.24.3, 1.2.34 
4 blocks: 1.2.3.4 

The blocks in each partition above are listed in increasing order of smallest ele-
ment; thus block 0 contains element 1, block 1 contains the smallest element not 
in block 0, and so on. A restricted growth string (RG string) is a string a1a2… an 
where ai is the block in which element i occurs. Here are the RG strings corre-
sponding to the partitions shown above: 

1 block: 0000 
2 blocks: 0001, 0010, 0011, 0100, 0101, 0110, 0111 
3 blocks: 0012, 0102, 0112, 0120, 0121, 0122 
4 blocks: 0123 

The name "restricted growth" comes from the fact that RG strings are charac-
terized by the following growth inequality (for i = 1, 2, ..., n-1, and with a1 = 0): 

ai+1   <   1 + max(a1, a2, ..., ai}.  (A.1) 

The number of partitions of an n-set is called a Bell number, bn. For n = 0, 1, 
2, ..., 14, the Bell numbers have the values 1, 1, 2, 5, 15, 52, 203, 877, 4140, 
21147, 115975, 678570, 4213597, 27644437, 190899322. The Bell numbers have 
the exponential generating function  and satisfy the recurrence relation 1−xee

n

∑
=

+ =
k

n
kkn bb

0
1 )(  (A.2) 





Appendix B 

Heuristic Algorithms 

B.1 Neighbourhood Search 

Neighbourhood search overcomes the problem of computational expensiveness of 
searching the entire solution space for the optimal solution by searching only a 
small subset of the solution space. This is achieved by defining a neighbourhood 
structure on it and searching the neighbourhood of the current solution for an im-
provement. If there is no neighbour, which results in an improvement to the cost 
function, the current solution is taken as an approximation to the optimum. If an 
improvement is found, the current solution is replaced by the improvement and the 
process is repeated. The method of steepest descent searches the whole 
neighbourhood and selects that neighbour which results in the greatest improve-
ment to the cost function. Random descent selects neighbouring solutions ran-
domly and accepts the first solution, which improves the cost function. The algo-
rithm of neighbourhood search with steepest descent is illustrated in Fig. B.1, 
where N(s) denotes the neighbourhood of s, which is a set of solutions reachable 
from s by a simple transformation; and c(s) is the cost of solution s. 

 
Step 1 (Initialization)

(A) Select a starting solution ;

(B) Record the current best known solution by setting

= , = ( ).

Step 2 (Choice and termination)

Choose a solution ( ) to satisfy ( ) < ( )

and terminate if no such can be found.

Step 3 (Update)

Reset = ;

( ) < perform Step 1(B);

Step 2.

s S

s s best_cost c s

s N s c s c s

s

s s

c s best_cost

now

best now best

next now next now

next

now next

now
If then

Goto

�

�

 
Fig. B.1. The algorithm of neighbourhood search with steepest descent 
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Select an initial solution ;

Select an initial temperature > 0;

Select a temperature reduction function ;

Randomly select ( );

= ( ) - ( );

< 0 =

generate random uniformly in the range (0, 1);

< exp(- / ) = ;

=

Set = ( );

stopping condition = .

as the solution.

s S
t

s N s

c s c s

s s
x

x t s s
iteration_count nrep

t t
true

s

now

next now

next now

now next

now next

now

0

Repeat

Repeat

If then else

If then

Until

Until

Return

�

�

�

�

�

�

�

 
Fig. B.2. The algorithm of simulated annealing 

B.2 Simulated Annealing 

The main disadvantage of neighbourhood search is its likelihood of finding a lo-
cal, rather than global, optimum. By allowing uphill moves in a controlled man-
ner, simulated annealing (SA) offers a way of alleviating this problem. The an-
nealing algorithm is similar to the random descent method in that the 
neighbourhood is sampled at random. It differs in that a neighbour giving rise to 
an increase in the cost function may be accepted and this acceptance will depend 
on the control parameter called temperature, and the magnitude of the increase. 
The algorithm is given in Fig. B.2. 

The simulated annealing algorithm has to be carefully tuned in order to provide 
good enough solutions in a short time. There is a number of generic and problem 
specific decisions that have to be taken to achieve this. 

The generic decisions involve the cooling schedule, including the initial tem-
perature (t0), the number of iterations at a given temperature (nrep), the tempera-
ture reduction function (α), and the stopping criterion. The initial temperature 
must be “hot” enough to allow almost free exchange of neighbouring solutions. 
There are two most widely used temperature reduction schemes: 

• Geometric reduction function 

α(t) = at, (B.1) 

where a < 1. At each temperature a number of iterations is performed. 
• Cooling schedule by Lundy and Mees 

α(t) = t / (1 +β t), (B.2) 

where β is a suitably small value. Here, only one iteration is executed at each 
temperature. However, the temperature is reduced very slowly. 
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The stopping criteria can be the following: a small enough value of the tem-
perature is reached, a number of iteration without acceptance has passed, the pro-
portion of accepted and rejected solutions has dropped below a given value, or a 
given total number of iterations has been completed. 

The problem specific decisions of simulated annealing deal with the solution 
space, neighbourhood structure, and the cost function. 

B.3 Tabu Search 

Tabu search (TS) is a neighbourhood search method that allows uphill moves in 
order to avoid local optima. However, compared to simulated annealing such 
moves are controlled in a more intelligent way. Tabu search maintains a selective 
history H of the states encountered during the search, and replaces N(snow) by a 
modified neighbourhood N(H, snow). History therefore determines which solutions 
may be reached by a move from the current solution, selecting snext from 
N(H, snow). 

N(H, snow) is a subset of N(snow). N(H, snow) is formed by excluding forbidden 
(tabu) neighbouring solutions from N(snow). Tabus are used to restrict the search 
space and avoid cyclic behaviour. The algorithm of tabu search is presented in 
Fig. B.3. 

 
Step 1 (Initialization)

(A) Select a starting solution ;

(B) Record the current best known solution by setting

= , = ( );

(C) Set the history record empty.

Step 2 (Choice and termination)

Determine ( , );

Select from ( , ) to minimize ( ) over this set;

Terminate by a chosen stopping condition and

return as a result.

Step 3 (Update)

Reset = ;

( ) < perform Step 1(B);

Update the history record ;

s S

s s best_cost c s
H

N H s

s N H s c s

s

s s

c s best_cost
H

now

best now best

now

next now

best

now next

now
If then

�

 
Fig. B.3. The algorithm of tabu search 





Appendix C 

Evaluation of translation algorithms 

Tables C.1 and C.2 present average schedule length deviations and average execu-
tion times produced by the translation algorithms. The deviations are given from 
EFP. In addition, for size 10, the deviations from AGPES are given for all the 
other algorithms. 
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