
Synthesis of Biochemical Applications with

Operation Variability on Digital Micro�uidic

Biochips

Christian Ejdal Sjøgreen - 072429

March 18, 2011

Supervised by: Paul Pop

1

Abstract

Digital micro�uidic biochips are small devices promising to replace much of
the equipment found in biochemical laboratories today. A digital biochip is
composed of a two-dimensional array of electrodes. A small drop of liquid (a
droplet) can occupy one electrode. The droplets can be manipulated on the
biochip using a technique called electrowetting-on-dielectric.

Any biochemical application (or bioassay), can be captured as a series of
basic micro�uidic operations performed using the droplets on a digital biochip.
The bioassays are modeled using a directed graph, where each node is an oper-
ation. Apart from the operations themselves, the graph indicates the order in
which they must be executed for the bioassay to be successful. Such a graph is
called an application graph.

In order for a digital micro�uidic biochip to execute the application graph
of a bioassay the graph must be synthesized into a schedule for the biochip
microcontroller. The schedule tells the biochip when and where to move the
droplets to perform the bioassay.

Errors can appear during the execution of an application, such as a stuck
droplet or an imperfect split operation resulting in imbalanced volumes. A
simple scheme has been proposed in literature, where several recovery schedules
are produced at design time and are stored in the microcontroller. However, in
this thesis we consider that the recovery schedules are produced during runtime,
based on the observed errors.

Researchers have proposed methods for schedule synthesis based on meta-
heuristics, but they are very time-consuming. Hence, the existing methods
cannot be used to synthesize a recovery schedule for the biochemical application
at run time, as a reaction to errors. The objective of the thesis is to develop a
fast and accurate heuristic for recovery schedule synthesis that can be applied
online for fault-tolerance.

We present the types of errors that can appear. Di�erent approaches for
the biochip controller to react to errors are discussed. The existing synthesis
method is presented, and a fast but accurate heuristic algorithm for recovery
schedule synthesis handling is proposed and implemented.

2

CONTENTS CONTENTS

Contents

1 Digital Micro�uidic Biochip 6

1.1 Lab on a Chip . 6
1.2 Continous or Digital Flow . 6
1.3 Working Principle of a DMB . 7
1.4 Operations . 8
1.5 Modules . 10
1.6 Synthesis . 10

1.6.1 Allocation . 11
1.6.2 Binding . 11
1.6.3 Placement . 11
1.6.4 Scheduling . 11

1.7 Solution . 12
1.8 Errors . 12
1.9 Simpli�cations . 12

2 Existing Synthesis Method 14

2.1 Tabu Search . 14
2.2 Error Handling . 15

2.2.1 Error Detection Points . 15
2.2.2 Error Correction . 16
2.2.3 Online Sequential fault-tolerant Scheduling 17

3 Fast Synthesis Method 19

3.1 List Scheduling . 19
3.1.1 Priorities . 19
3.1.2 Resources . 19

3.2 Algorithm . 20
3.3 Problems and solution choices . 22

3.3.1 One parent �nishing before another 22
3.3.2 No room to store output droplet 23

4 Implementation 25

4.1 Overview . 25
4.2 Module class . 25
4.3 Operation class . 26
4.4 GraphAnalysis class . 26
4.5 ListScheduling class . 27
4.6 Other classes . 28
4.7 Input �les . 28
4.8 Output �les . 30
4.9 Limitations . 31

3

CONTENTS CONTENTS

5 Testing 32

5.1 Evaluation . 32
5.2 Functional Testing . 33

6 Instructions of Use 35

7 Conclussions 36

4

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 a) Continuous �ow biochip[5]. b) Digital �ow biochip[6]. 7
2 Biochip cross section[7]. 7
3 Top-down view of an example DMB. 8
4 Example application graph. 9
5 Example library of modules for a DMB. 10
6 Modules placed on a chip. 11
7 Tabu Search algorithm for digital micro�uidic biochips[1]. 15
8 Application graph with error detection points. 16
9 Example FT graph. 17
10 Fast synthesis . 20
11 List scheduling for DMB . 21
12 Class diagram for fast synthesis implementation. 25
13 Area matrix example. 28
14 Module library input example. 29
15 Graph input example. 30
16 Output �le containing schedule. 32
17 Diagram of example schedule. 32
18 Chip layout for example schedule. 33

5

1 DIGITAL MICROFLUIDIC BIOCHIP

1 Digital Micro�uidic Biochip

This chapter introduces the principles of digital micro�uidic biochips (DMBs)
and the purpose of this technology. It includes information about how DMBs
work, what kinds of di�erent operations can be executed on them and how
operations are selected to execute a given task. The �nal section introduces the
di�erent errors that may occur when executing operations on the chip.

1.1 Lab on a Chip

Micro�uidic biochips are the most recent addition to laboratory equipment.
These new tools provide a miniature alternative to much of the equipment found
in a laboratory today. A micro�uidic biochip can be con�gured to perform
many of the same kinds of bioassays that would otherwise require a fullscale
laboratory. Because of this, a micro�uidic biochip is often referred to as a lab-
on-a-chip. These tiny laboratories only use a tiny amount of reagents contained
in a small device. This provides a higher level of safety when working with
hazardours materials and is more e�cient for expensive or scarce samples.

1.2 Continous or Digital Flow

A regular micro�uidic biochip is set up to mimic the �ow of reagents through
a laboratory. The reagents travel through a series of tiny pressurized tubes
or carvings in the chip. Along the way they mix, dissolve and split in order
to perform the desired bioassay. The droplets are moved using integrated mi-
crostructures, such as tiny pumps and valvels. These chips are the so called
continous �ow micro�uidic biochips and they are already deployed in analytical
equipment. A picture of a continous �ow biochip is shown in Figure 1a

Continous �ow chips excel at performing the same task over and over but
the tubes, carvings and microstructures cannot be recon�gured. For this reason
a seperate device is needed for each kind of bioassay.

6

1.3 Working Principle of a DMB 1 DIGITAL MICROFLUIDIC BIOCHIP

Figure 1: a) Continuous �ow biochip[5]. b) Digital �ow biochip[6].

Then what are digital micro�uidic biochips? DMBs are set apart from con-
tinous �ow biochips by operating in a discrete world. In this world the reagents
exist as tiny volumes (droplets) occupying speci�c locations on the chip. On a
DMB operations are performed on a two dimensional array of cells, using elec-
tricity. A droplet can move from one cell to any adjacent cell and may move in
any direction. The cells are identical allowing a DMB to be recon�gured to per-
form many di�erent bioassays. An example of a fabricated digital micro�uidic
biochip is shown in Figure 1b.

1.3 Working Principle of a DMB

A digital micro�uidic biochip works by manipulating small amounts of liquid
(or droplets) contained between two surfaces. The cross section of such a chip
can be seen in �gure 2.

Figure 2: Biochip cross section[7].

A chip can consist of any number of individual cells and is connected to reser-

7

1.4 Operations 1 DIGITAL MICROFLUIDIC BIOCHIP

voirs for storing the liquid. Each cell is de�ned as the immediate area around
a control electrode. A droplet can be moved from one cell to a neighbouring
cell by activating the neighbouring cells control electrode. By activating the
control electrode an electric �eld is created. This �eld pulls the closest edge of
the droplet down towards the electrode thereby expanding its contact surface
in that direction. This e�ect is called electrowetting. Due to surface tension
the opposite end of the droplet has its contact surface reduced in an attempt to
maintain the shape of a sphere. The droplets must overlap into neighbouring
cells for this technique to work.

In addition to a control electrode some cells may be equipped with an optical
device or other sensors to determine the characteristics of a droplet occupying
that cell. The example in Figure 3 is a six by six DMB. Arrows indicate where
droplets may enter and exit the chip that is, the input and waste reservoirs
correspondingly. The chip in Figure 3 also contains an integrated sensor in one
of the cells. Droplets are usually moved to sensor cells as the last step of a
bioassay to validate the results.

Sensor

Figure 3: Top-down view of an example DMB.

Everything on a DMB is controlled by an embedded system.

1.4 Operations

A bioassay is performed by moving droplets around on the biochip. A bioassay
consists of a number of operations arranged in a directed graph (the application
graph). Each operation is considered a node and each link represents a droplet
moving between operations. Because the links between nodes are directed an
operation cannot be executed before all of its inputs have been ful�lled. These
are the key operations available:

� dispense - a droplet enters the chip from one of the reservoirs. No parents,
one child.

� detect - the characteristics of a droplet are determined. The droplet must
remain in place during this operation. One parent, one child.

� merge - two droplets are united into a single droplet. Two parents, one
child.

8

1.4 Operations 1 DIGITAL MICROFLUIDIC BIOCHIP

� mix - two droplets are moved around, split and merged until they are
properly mixed. Two parents, one child.

� split - a droplet is ripped apart by activating electrodes in two opposite
cells. One parent, two children.

� dilute (mix) - a droplet is diluted in a solvent using a sequence of mix and
split steps. Two parents, two children.

� store - a droplet is stored in a cell on the chip until needed. One parent,
one child.

� waste - a droplet is removed from the chip. One parent, no children.

The application graph in Figure 4 is comprised of some of these operations.

0 1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Color legend: mix dilution detection store dispensing merge

Figure 4: Example application graph.

9

1.5 Modules 1 DIGITAL MICROFLUIDIC BIOCHIP

1.5 Modules

There may exist more than one pattern of droplet movements that can imple-
ment a given operation. In order to reduce complexity of the synthesis process, a
subset of movement patterns must be selected. For simplicity the selected move-
ment patterns are often con�ned to rectangular shaped areas called modules.
For some operations modules only represent a reserved area for that operation
to execute within. Such modules can be placed anywhere on the chip and can
even be moved during execution. But some operations, like dispensing, waste
and detection can only occur at certain locations on the chip (i.e. detection
can only be done on top of a sensor cell). In reality the number of sensor cells
may be limited. Dispensing/waste would only be possible where reservoirs are
connected to the chip. The number of reservoirs and sensors will be taken into
account when creating the synthesis method.

The available modules make up a library. The library contains type, size
and execution time of each module. This provides a higher level of abstraction
than dealing with individual droplet moves. In this way it is also possible to
test the correctness of the selected movement patterns.

Module type Dimensions Execution time

Mix 2x4 3
Mix 1x3 5
Dilute 2x5 4
Dilute 2x2 12
Detect 1x1 5
Dispense - 7
Store 1x1 -

Figure 5: Example library of modules for a DMB.

Figure 5 shows an example library for a DMB. The dispense module has no
dimensions since reservoirs are located outside the micro�uidic array. The store
module has no execution time because a droplet may be stored inde�nitely.

1.6 Synthesis

The controller unit on the DMB conducts bioassays by executing operations in
accordance with a schedule. The schedule is a list of commands denoting when,
where and for how long the operations are executed on the biochip. A schedule
is synthesised to minimize the execution time of the bioassay. The synthesis
process consist of four tasks:

1. Allocation,

2. Binding,

3. Placement,

10

1.6 Synthesis 1 DIGITAL MICROFLUIDIC BIOCHIP

4. Scheduling.

1.6.1 Allocation

Allocation is choosing which modules from the library to use for the given
bioassay. The number of special cells, like sensor cells and cells connected to
reservoirs, is also speci�ed during allocation. In this project allocation is given
as input along with the application graph.

1.6.2 Binding

In order to be executed on the chip each operation must be bound to an allocated
module. Since modules for the same operation may have di�erent dimensions
and execution times, the binding decision will a�ect the execution time of the
schedule.

1.6.3 Placement

When an operation has been bound to a module, the module can be placed on
the chip. The modules must be placed so that no two active modules take up
the same cells. Additionally, to ensure that droplets do not accidently merge,
the modules must be placed at least one cell apart. Cells separating droplets
are called segregation cells. Figure 6 shows modules placed on a chip. The dark
area represents the modules themselves and the lighter areas are segregation
zones.

detect

mix

Figure 6: Modules placed on a chip.

1.6.4 Scheduling

In order to produce a correct schedule, the operations must obey the precedence
constraints of the graph. This means that no child node may be scheduled
before all operations of its parent nodes have �nished. A node that ful�ls this
requirement is called a ready node. Using binding and placement the chosen
scheduling algorithm must schedule the execution of the ready nodes as they
become available.

The schedule must make use of all droplets on the chip at all times. If a
droplet is on the chip but not part of an operation at any time, the schedule
is invalid. Droplets that cannot be accounted for at all times during execution

11

1.7 Solution 1 DIGITAL MICROFLUIDIC BIOCHIP

pose a danger to all other droplets on the chip. They may accidently mix and
there is no way to know where to �nd the droplet, when it is needed again.

1.7 Solution

As mentioned, the goal of the synthesis is to provide an optimal solution to
the problem of executing a bioassay on the DMB. But is it even possible to
ensure an optimal solution for this kind of problem? Unfortunatly, the answer
is no. The issue of placement alone could be considered a 2D packing problem
with packages of rectangular shape. This kind of problem is classi�ed as NP-
complete. Since the synthesis also include the other choices of binding and, to
some extend, allocation it may be even harder.

1.8 Errors

As is the case for many systems, errors may occur during some operations on the
DMB. The errors of interest to this project are so called intrinsic errors. These
occur when an operation produces a droplet of incorrect volume. For instance
when a splitting operation produces two droplets of di�erent size. Such an error
in one operation will be carried over to any child operations. This will also cause
the result of the child operation to deviate from the expected result. In this way
errors occuring at the beginning of a long chain of operations may render the
�nal bioassay results invalid. To guarantee the correctness of a bioassay, error
limits (I) are put in place. This represents the worst case percentage o�set
from the target volume. A normal distribution can be used to calculate the
accumulating e�ect of intrinsic errors. These are the equations for some key
operations[]:

� Dispense (EDs). The dispensed droplet diviates from the expected volume.
The o�set EDs is found through testing. The error limit of a new droplet
is then: 1± EDs

� Mix (EMix) is the child of two previous operations. If the error limit of
these operations were I1 and I2 then the error limit at the end of the
mixing operation is:

√
(0.5I1)2 + (0.5I2)2 + E2

Mix

� Split (ESlt) has one parent and two children. The input droplet has error
limit I so each output droplet has error limit:

√
I2 + (2ESlt)2

By using these equations the error limit of an entire application graph can be
calculated. For instance, the error limit of dilute (EDlt), which is the combina-
tion of mix and then split, is:

√
(0.5I1)2 + (0.5I2)2 + E2

Mix + (2ESlt)2

1.9 Simpli�cations

In order to reduce the complexity of the synthesis process, the following simpli-
�cations are used during this project.

12

1.9 Simpli�cations 1 DIGITAL MICROFLUIDIC BIOCHIP

� How to move the droplets between operations (routing) is not considered.
Routing is assumed to take no time.

� Each module is surrounded by one layer of segregation cells. This layer of
segregation cells is even applied when the module is next to the edge of
the chip or when the module is placed next to other segregation cells.

� Detect modules do not have to be �xed in place - there is no distinction
between sensor cells and regular cells.

13

2 EXISTING SYNTHESIS METHOD

2 Existing Synthesis Method

Due to the small scale of the components and the complexity of the bioassays,
computer aided design tools are used during production of micro�uidic biochips.
Such tools help optimize and verify the layout of a chip, simulate execution and
error handling as well as performing the synthesis.

At the beginning of this project a method to synthesize an implementation
was already in place[1]. The existing method uses a meta-heuristic called Tabu
search in an attempt to �nd the optimal solution - the global minimum of
schedule execution time.

2.1 Tabu Search

The principle of Tabu search is to navigate through the solution space of an
NP-complete problem by visiting neighbouring solutions[1]. A neighbouring
solution, in this context, is obtained in the current solution in two ways: either
by re-binding one operation from the current solution to a new module or by
swapping the priority of two operations. To prevent revisiting solutions the
Tabu search algorithm maintains a history of recently visited solutions (a tabu
list). The current implementation of Tabu search starts out with a solution in
which operations are bound to modules at random.

The initial solution is primarily changed by rebinding. Only when the best
solution has not changed for a number of iterations (numiter) will priorities be
swapped. The pseudo code for the implementation is displayed in Figure 7.

14

2.2 Error Handling 2 EXISTING SYNTHESIS METHOD

Figure 7: Tabu Search algorithm for digital micro�uidic biochips[1].

The algorithm takes as input the graph G, the two-dimensional array of cells
C, the module library L and the initial allocation A°, binding B° and priorities
Π°. The algorithm terminates when it has been running for a given amount of
time.

2.2 Error Handling

Due to the accumulating intrinsic errors it may be necessary to implement er-
ror handling procedures. This is not done during synthesis but as part of the
planning of the bioassay.

2.2.1 Error Detection Points

In order to handle an error it must �rst be detected. To do this, the designer
adds error detection points to the application graph. An error detection point

15

2.2 Error Handling 2 EXISTING SYNTHESIS METHOD

(or EDP) should be added whenever the error limit of the next operation exceeds
the threshold set for the bioassay. Figure 8 shows an application graph with
two error detection points, EDP 1 and EDP 2.

disp disp

mix

EDP 1

split

store

disp

mix

EDP 2

...

Figure 8: Application graph with error detection points.

2.2.2 Error Correction

When an error occurs the entire bioassay must be restarted - hoping that the er-
ror does not occur again. It may take several attempts to complete the bioassay
with this approach.

An alternative solution is to pause the bioassay while the faulty droplet is
reconstructed. This can be done by dispensing a new droplet from the reservoir
or by using a backup droplet stored earlier. Either way, a new graph has to be
created. This graph must contain the operations leading up to the error. Such
a graph, called a Fault Tolerant (FT) Graph, must be available to the DMB
controller for each error detection point along with a pre-synthesized schedule.
Figure 9 shows one of the two possible FT graphs for errors occuring at the
second EDP in Figure 8.

16

2.2 Error Handling 2 EXISTING SYNTHESIS METHOD

store disp

mix

EDP 2

...

Figure 9: Example FT graph.

In this scenario the droplet from the storage is used to rerun the operations
leading up to EDP 2. If EDP 2 detects an error again, the storage will be empty.
In that case the only way to reconstruct the faulty droplet is to start over. The
FT graph of that scenario would equal the application graph in Figure 8.

2.2.3 Online Sequential fault-tolerant Scheduling

An even better solution is to combine the remaining operations of the bioassay
with the FT graph. This will allow for other parts of the bioassay to proceed
during error correction. This method also requires a graph and a schedule to
be computed for each error detection point. In fact, not only is an FT graph
and a schedule needed for every EDP, but additonal graphs and schedules must
be created to handle errors occuring in combination with other errors. Using
the current synthesis method this is possible by creating a large library of error
correcting graphs and schedules in advance. Due to the potientially huge amount
of error combinations, this is not desirable.

To avoid pre-computing the many schedules, the synthesis procedure will
have to run �online�. This means that all operations on the DMB will have to
be halted when an error is detected. They will remain halted until the error
correcting schedule has been synthesized. This new schedule then replaces the
original schedule and operations on the DMB can resume. This method is called
Online Sequential fault-tolerant Scheduling (or OSS).

The problem in this setup is the execution time of the synthesis method.
Because it uses the Tabu search heuristic it may take a long time to synthesize
a good schedule.

Previous research[2] in OSS suggests that the synthesizer should spend no
longer than two seconds working on the new schedule. If the Tabu search
method is only allowed to run for two seconds, the resulting schedule will be
close to the initial, random schedule. This is not a good result either. It

17

2.2 Error Handling 2 EXISTING SYNTHESIS METHOD

must be possible to create a synthesis method that is faster than the Tabu
search heuristic but provides a schedule that is better than a random schedule.
Creating and implementing such a method is the objective of this project.

18

3 FAST SYNTHESIS METHOD

3 Fast Synthesis Method

The new synthesis method must give a good solution to an NP-complete prob-
lem without using time consuming search space techniques. In this project a
heuristic technique called List Scheduling is used.

3.1 List Scheduling

List Scheduling is a general approach to scheduling problems[3]. It works by
maintaining two lists. One list containing ready tasks and one containing avail-
able resources. Tasks could be jobs, program threads, trailers or ready nodes in
an application graph. Resources would then be employees, cpu cores, trucks or
modules on a chip. The list of tasks is sorted so that the task of highest priority
is scheduled �rst. How to de�ne the priority of tasks and the availability of
resources depends on the context in which List Scheduling is used.

3.1.1 Priorities

A task in the context of the DMB scheduling problem is a node from the appli-
cation graph. A node from the application graph cannot be executed until it is
a ready node - all of its parents must have �nished executing. Apart from this
precendence constraint there are no requirements for the priorities. Setting the
priorities is only a matter of optimizing the solution.

Getting a good solution is important though. If the schedule provided by
this synthesis method is bad, the bene�t of using OSS could be negated. Due
to the complexity of the problem it is not possible to predict which priorities
are optimal.

Looking at the application graph shown in Figure 4 it is clear that one
branch is larger than the other. At some point during succesful execution all
remaining operations will �t on the chip at the same time. I assume that the
sooner this point is reached the shorter the �nal execution time of the bioassay
will be. This point can only be reached when all remaining nodes in the graph
are ready nodes. Since the execution time of each operation is assumed to be
equal, because it is unknown at this point, the fastest way to make the last
node ready is to execute the greatest grand parent in the graph. Finding the
greatest grand parent is equivalent to �nding the �rst node of the critical path
(the longest path in the graph). The second greatest grand parent is then the
�rst node of the second longest path and so on.

Priorities are assigned to nodes by giving them a value equal to the number
of generations (or levels) of nodes below them. The initial ready nodes are then
sorted based on this value.

3.1.2 Resources

The resources of a DMB are the modules. Whether a module is available or not
depends on three things:

19

3.2 Algorithm 3 FAST SYNTHESIS METHOD

1. Has the module been allocated to this implemention?

2. Does the module �t the next operation in the ready list?

3. Can the module �t on the chip in the current state of the chip?

If a module ful�lls these requirements it is available and can be placed on the
chip. There may be more than one module available that completes the same
operation. Some modules may be large but fast and some may be small and
slow. At a given time in the schedule it may be more optimal to bind operations
to smaller, slower modules. Or maybe choosing the larger, faster modules is
better. As mentioned earlier this part of the problem is equivalent to a 2D
packing problem and it is NP-complete. Choosing the optimal module is not
guaranteed.

Taking a greedy aproach to the problem, the available module that provides
the shortest execution time for a given operation is always chosen.

3.2 Algorithm

With priorities and resources for List Scheduling de�ned an algorithm for the
new synthesis method can take shape. The algorithm will require three input
parameters: an application graph, a module library and the dimensions of the
chip. The �rst part of the algorithm can be seen in Figure 10.

Synthesis(graph, deviceLibrary, chip)

1. priorities = SetPrioritiesBasedOnLevel(graph);

2. readyNodes = FindInitialReadyNodes(graph);

3. SortList(readyNodes, priorities);

4. schedule = ListScheduling(priorities, graph, chip, deviceLibrary, readyN-
odes);

5. return schedule;

Figure 10: Fast synthesis

Based on its position in the graph, each operation in the bioassay is assigned
a priority value. Then the inital ready nodes are de�ned and sorted. The initial
ready nodes are the nodes that have no parents. The priorities and list of ready
nodes is then sent to the ListScheduling part of the algorithm in Figure 11.

20

3.2 Algorithm 3 FAST SYNTHESIS METHOD

Figure 11: List scheduling for DMB

The List Scheduling algorithm maintains four lists while running:

1. readyNodes - The list of current ready nodes. Initially containing the
nodes of the graph with no parents.

2. moduleLibrary - A list of modules allocated for this implementation.

3. activeOperations - The list of operations currently being executed on mod-
ules on the chip.

4. schedule - The result of the algorithm. Operations and modules are added
as they are bound and placed.

21

3.3 Problems and solution choices 3 FAST SYNTHESIS METHOD

The �rst step of every iteration of the large while-loop is selecting the next
operation to schedule. This is done by picking the �rst node from the sorted
list of ready nodes. All modules that can execute the selected operations are
then found and added to the list modules. Those modules are then tested in a
for-loop to see if they �t on the chip at this moment. If a module does �t and
�nishes faster than the fastest tested module so far, it is saved as the fastest
module. At the end of the for-loop there are two possible scenarios:

1. False - None of the available modules can currently be placed on the chip.

2. True - The module with the earliest �nishing time, that can be placed on
the chip, has been found.

If no module was found the algorithm advances to line 19. The if-statement in
this line is ful�lled if there are no remaining ready nodes or (as in this case) no
available module for the selected operation. If ful�lled the variable currentTime
is advanced to the earliest �nishing time of any operation in activeOperations.
Children of operations �nishing at this time are added to the list of ready nodes
and �nishing operations are removed from activeOperations.

If the statement in line 13 is true, the selected operation and module are
added to the list of active operations, added to the schedule and placed on the
chip. The operations is then removed from the list of ready nodes. The algo-
rithm does not terminate until there are no more ready nodes and no operations
being executed on modules on the chip.

3.3 Problems and solution choices

The algorithm from Figure 11 will not guarantee an optimal solution. In fact
it will not even guarantee a valid solution. These are the problems that have
been identi�ed.

3.3.1 One parent �nishing before another

In the case of a node having two parents (mix operations for instance), one
parent may �nish before the other. At this point the output droplet of the
�nished parent cannot immediately be used in the child operation (since the
child is not yet a ready node). This droplet must be stored temporarily or there
is a risk that it will accidently come into contact with another droplet. To do
this, a store operation must be added to the schedule even though it is not part
of the graph. This operation has three unique features:

� This storage operation may not have been allocated and may not even be
part of the device library.

� Additionally, this type of operation must receive the highest priority no
matter the priority of its parent. This is in contrast to regular list schedul-
ing in which all priorities are static during scheduling.

22

3.3 Problems and solution choices 3 FAST SYNTHESIS METHOD

� And �nally, the storage operation has a starting time de�ned by the �nish-
ing time of its parent and it is active on the chip until the child operation
can be executed.

This problem must be addressed by the scheduling algorithm so the following
changes to the algorithm in Figure 11 are required.

1. If an operation �nishes and has children that do not qualify as ready nodes.
A droplet must be stored for each of those children. This should be done
by the AddReadyChildrenOfFinishedOperations() subroutine in line 21.

2. Before time is advanced (in line 20) a storage must be created for ready
nodes that have not been placed at this point. This only applies to ready
nodes that have parents since the �rst nodes in a graph have no incomming
edges.

3. If the selected operation (the next operation to be bound and placed) uses
a droplet being stored, the storage is removed. The storage is removed �rst
so it does not block placement of the module for the selected operation.
This should be done before the for-loop in line 8.

This solution gives rise to a new problem.

3.3.2 No room to store output droplet

If an output droplet cannot immediatly be part of another operation because
the chip is out of space, the produced schedule will be invalid. If droplets are
left unaccounted for in the schedule, they might accidently end up comming
into contact with other droplets on the chip. The risk of running out of space
depends on the distribution of operations in the graph. For the key operations
this has the following implications:

� dispensing - this opreration takes up no space so when it �nishes it may
not be possible to store the output droplet.

� detection - the module for this operation requires at least one cell to
execute (and 8 segregation cells) - the same as the storage module. There
will always be room to store the output droplet.

� mixing - this operation only has one child and takes up more space than
the storage module. The ouput droplet can always be stored.

� splitting - this operation produces two output droplets. Splitting modules
are larger than a single storage module but smaller than two. There
may not be enough room to schedule or store both output droplets upon
completion.

� dilution (mixing) - since dilution includes splitting it has the same impli-
cations.

23

3.3 Problems and solution choices 3 FAST SYNTHESIS METHOD

� store - if there ever is a need to store the output of a scheduled store
operation the droplet can always be stored in the same space.

� waste - no output droplet so no problem.

Changing the priorities of new ready nodes can prevent the scheduling algorithm
from overcrowding the chip with droplets. The priorities should be changed so
the scheduling algorithm favors scheduling operations from the same path of
the application graph over scheduling operations from new paths. The simplest
way to do that is to insert all new ready nodes at the front of the priority list.

Because the initial ready nodes in many graphs are dispense operations, they
pose the greatest risk. Fortunately the number of reservoirs is often limited,
which will limit the number of simultanous dispense operations. This problem
is left to be solved by the designer of the application graph and allocation.
However, a good rule of thumb is to use DMBs with a number of cells greater
than nine times the number of connected input reservoirs. This will ensure that
there is enough space on the micro�uidic array to store the dispensed droplets,
if not used immediately as input to other operations. So a chip with four input
reservoirs connected to it, should be larger than a 6x6 DMB.

24

4 IMPLEMENTATION

4 Implementation

The purpose of this project is to implement a useful algorithm to schedule FT
graphs during runtime. It is a 'proof of concept' so there is no need to consider
how to interface with the DMB controller. The program is coded in Java like the
existing synthesis method. This should make the source code and executable
more easily available to people working on related projects.

4.1 Overview

The program is split into three parts:

1. Reading the input �les.

2. Creating the schedule.

3. Verifying the output �les.

The simple class diagram in Figure 12 shows how the classes associate.

FastSynthesis

Veri�cation

SolutionOutput

DeviceLibReader

GraphFinder

ListScheduling

GraphAnalysis

Module

Operation

Used TS classes

Figure 12: Class diagram for fast synthesis implementation.

4.2 Module class

The module class is used to store information about the di�erent modules avail-
able to the scheduler. The class contains the following variables:

� String superType.

� String type.

� int exeTime.

� int length.

� int width.

The �ve types of information must be provided when the class is constructed.

25

4.3 Operation class 4 IMPLEMENTATION

4.3 Operation class

This class stores information about the operations of the bioassay. It uses the
following variables and collections:

� String name - unique name of the operation (could be anything).

� String superType.

� String type.

� int sizeX - width of the operation when placed.

� int sizeY - height of the operation when placed.

� int posX - x-coordinate of operation when placed.

� int posY - y-coordinate of operation when placed.

� int level - an integer representing the relative position of the operation in
the graph. A heigher value means the operation is closer to the end of the
graph.

� int group - the group to which this operation belongs. The free nodes are
sorted so that operations from the same group are scheduled together.

� ArrayList parents - list holding names of this operations parents.

� ArrayList children - list holding names of this operations children.

� ArrayList storage - list holding information about temporary storage of
output droplets.

The constructor requires name, superType and type. Parents and children are
added right after construction and sizeX, sizeY, posX, posY are added when
the operation is scheduled. Storage operations are added to ArrayList storage
if needed.

4.4 GraphAnalysis class

This class is the implementation of the algorithm from Figure 10 with additions
from section 3.3.2. At construction it receives the graph as a HashMap with
operation names as the key and intances of the Operation class as the value. It
then performs a three step analysis of the graph.

1. The recursive method �ndDepth is called to identify at which level of
the graph each node is located. The method starts at a random node
of the graph. This node has depth = 0. Each parent of the node is
assigned parent.depth = node.depth− 1 and for each child child.depth =
node.depth+1. The method then calls �ndDepth for each parent and child.
If a node has no parents it is added to the list of initial ready nodes.

26

4.5 ListScheduling class 4 IMPLEMENTATION

2. By going through a triple nested for-loop, parents of the same children are
assigned similar group numbers.

3. The last step is to sort the list of initial ready nodes. The list is sorted
into a list of increasing node depth using quicksort. Nodes in the list are
then swapped so nodes from the same group appear in sequence.

The list of initial ready nodes is retrieved by calling the method getReadyN-
odes().

4.5 ListScheduling class

This class is the implementation of the algorithm from Figure 11 with the ad-
ditions from section 3.3.1. The constructor of this class takes six arguments:

1. HashMap containing the graph. Keys are operation names and values are
operations.

2. ArrayList containing allocated modules.

3. Integer containing the width of the chip.

4. Integer containing the height of the chip.

5. Sorted ArrayList of initial ready nodes.

The schedule is created by calling the method schedule. The method schedule
performs the same actions as the algorithm in Figure 11 using methods of the
ListScheduling class. The methods are listed here along with a reference to a
line in the algorithm.

� insertFreeChildren(Operation s, int currentTime) - (Line 21) - Using the
graph, which is a global variable in this class, this method inserts the chil-
dren of the operation s if their parents have been scheduled and are not in
the global list of active operations. The method storeResult(s,currentTime)
is called for every child.

� storeResult(Operation s, int currentTime) - This method adds a special
storage module (described in section 3.3.1) to the chip and a similar op-
eration to the schedule.

� updateStoredResults(Operation s, int currentTime) - (Between line 4 and
5) - This method removes all special storage modules holding input droplets
for operation s from the chip. If currentTime is equal to the starting time
of the special storage operation then the storage operation was not needed.
In that case the special storage operation is removed from the schedule.

� insertAsActiveOperation(Operation s) - (Line 14) - This method is called
when an operation is bound to a module and placed on the chip. The
method inserts s into the global list activeOperations, which is sorted by
increasing �nishing time of operations. The operation s is inserted so
activeOperations remains sorted.

27

4.6 Other classes 4 IMPLEMENTATION

� updateActiveOperations(int time) - (Line 22) - This method is called when
time is advanced. It removes operations from activeOperations if they
�nish at this time. The method insertFreeChildren is called from this
method.

4.6 Other classes

Placing the rectangular modules on the chip, so that they do not overlap, re-
quires an advanced algorithm. This algorithm is already being used for the im-
plementation of the Tabu search heuristic. The implementation of the placement
algorithm, called Placer, is imported into the implementaion for this project. A
number of helper classes are also imported to support Placer.

The placer is based on the maximal empty rectangles algorithm proposed
in [9] and is implemented using the area matrix data structure from [4]. Each
point in the area matrix represents a cell on the chip and holds an integer. If
the integer is positive, it means that the cell is unoccupied. The value of a
positive integer indicates the number of unoccupied cells above it. If the integer
is negative, it means the cell is occupied.

Figure 13: Area matrix example.

The maximum height of a module three cells wide at position (3,1) is revealed
by �nding the minimum value of the same row of three adjacent columns (see
Figure 13).

4.7 Input �les

The program uses two input �les: a module library and a graph. If either of the
�les are not found, or if none of their contents match, the program produces an
empty output �le and terminates.

An example of a module library �le is displayed in Figure 14 and a graph is
displayed in Figure 15.

28

4.7 Input �les 4 IMPLEMENTATION

mix mix 2x4 3 4 6
mix mix 1x3 5 3 5
mix mix 2x5 2 4 7
mix mix 2x2 10 4 4
mix mix 3x3 7 5 5
mix mixDlt 2x4 5 4 6
mix mixDlt 1x3 7 3 5
mix mixDlt 2x5 4 4 7
mix mixDlt 2x2 12 4 4
mix mixDlt 3x3 10 5 5
opt opt 1x1 30 3 3 1
dis disS reservoirS 7 0 0 1
dis disB reservoirB 7 0 0 2
dis disR reservoirR 7 0 0 2
opt sensing 1x1 5 3 3 2
merge merge 1x1 2 3 3

storeDlt storeDlt 1x1 5 3 3

Figure 14: Module library input example.

Each line of the module library can be split into six or seven tokens: The
�rst token is the super type of the module. The next is the type. The third is
the dimensions of the module but it is ignored by the program. The fourth is
the execution time of the module. The �fth and sixth are the width and height
of the module (including segregation cells!). The inconsistent seventh token is
the number of modules available but this is not considered in this project. For
each line a module class instance is constructed and added to an ArrayList of
modules.

29

4.8 Output �les 4 IMPLEMENTATION

0 mix mix
1 mix mix
2 mix mix
3 mix mix
4 mix mix
5 mix mix
6 mix mix
7 mix mixDlt
8 dis disB
9 opt sensing
10 merge merge
11 storeDlt storeDlt
12 mix mixDlt
13 dis disB
14 opt sensing
15 merge merge
16 storeDlt storeDlt
17 mix mix
18 opt opt
ARC a1_0 FROM t1_0 TO t1_2 TYPE 1
ARC a1_1 FROM t1_1 TO t1_2 TYPE 1
ARC a1_3 FROM t1_3 TO t1_5 TYPE 1
ARC a1_4 FROM t1_4 TO t1_5 TYPE 1
ARC a1_5 FROM t1_2 TO t1_6 TYPE 1
ARC a1_5 FROM t1_5 TO t1_6 TYPE 1
ARC a1_5 FROM t1_6 TO t1_7 TYPE 1
ARC a1_5 FROM t1_8 TO t1_7 TYPE 1
ARC a1_5 FROM t1_7 TO t1_9 TYPE 1
ARC a1_5 FROM t1_7 TO t1_11 TYPE 1
ARC a1_5 FROM t1_9 TO t1_10 TYPE 1
ARC a1_5 FROM t1_11 TO t1_10 TYPE 1
ARC a1_5 FROM t1_10 TO t1_17 TYPE 1
ARC a1_5 FROM t1_13 TO t1_12 TYPE 1
ARC a1_5 FROM t1_12 TO t1_14 TYPE 1
ARC a1_5 FROM t1_12 TO t1_16 TYPE 1
ARC a1_5 FROM t1_14 TO t1_15 TYPE 1
ARC a1_5 FROM t1_16 TO t1_15 TYPE 1
ARC a1_5 FROM t1_15 TO t1_17 TYPE 1
ARC a1_5 FROM t1_17 TO t1_18 TYPE 1

Figure 15: Graph input example.

The graph �le contains two di�erent formats of information. The �rst kind
of lines contain three tokens. These are the names, super types and types of the
operations to be scheduled. The second kind of lines represent the links between
the operations. The program constructs an instance of the Operation class for
each operation and adds them to a list. A link between two operations is listed
in both objects - as child in one and parent in the other.

4.8 Output �les

The program produces output �les of the same format as the program of the
existing synthesis method. Each line consists of at least 7 tokens:

1. Operation name.

2. Operation type.

3. Module width.

4. Module height.

30

4.9 Limitations 4 IMPLEMENTATION

5. Position on chip as (x,y)-point.

6. Starting time.

7. Finishing time.

A line may include any number of additional sequences of six tokens. Each
of these sequences represent a temporary storage used to store the operations
output. The six tokens of each sequence contain the following:

1. The string 'storage' to underline the reason for this additional sequence
of tokens.

2. Width (always 3).

3. Height (always 3).

4. Position as (x,y)-point.

5. Starting time.

6. Finishing time.

The name of the output �le is the name of the input �le containing the graph
with the width, height of the chip and the tag 'LS' added to the end.

4.9 Limitations

The �nal program has some weaknesses that sets it apart from the program for
the tabu search synthesis method.

� The �rst weakness is related to the previously dicussed problem of running
out of space to store unused droplets. Even though measures have been
implemented to minimize the impact of this problem, this program may
not be able to provide a solution for a given graph and chip even though
a solution exists.

� The second weakness is the assumption that the given graph is a con-
nected graph. If this is not the case only the operations of the �rst graph
discovered by the program is scheduled.

� The resulting schedule from this synthesis method may take longer to
execute than the resulting schedule of the tabu search synthesis method,
shown in section 6.1. If this program is used to undo errors occuring early
in large graphs, the penalty of using a less e�cient synthesis method to
reschedule the remaining graph may be greater than the speedup from the
parallel execution of the droplet recovery sequence.

31

5 TESTING

5 Testing

5.1 Evaluation

To show that the program can provide valid schedules an example will be syn-
thesized.

The example is the biosassay using the FT graph from Figure 4. It is sched-
uled on a 10x8 DMB using the input �les in Figure 14 and Figure 15. The
output �le contains the schedule seen in Figure 16.

4 mix 4 7 (0,9) 0 2
3 mix 4 7 (4,9) 0 2
5 mix 4 7 (0,9) 2 4 store 3 3 (0,2) 4 8
1 mix 4 7 (4,9) 2 4 store 3 3 (3,9) 4 6
0 mix 4 7 (3,6) 4 6
13 disB 0 0 (7,9) 4 11
8 disB 0 0 (7,9) 4 11
2 mix 4 7 (3,9) 6 8
6 mix 4 7 (0,9) 8 10 store 3 3 (0,9) 10 11
7 mixDlt 4 7 (0,6) 11 15
12 mixDlt 4 7 (4,9) 11 15
16 storeDlt 3 3 (0,9) 15 20
14 sensing 3 3 (0,6) 15 20
11 storeDlt 3 3 (0,3) 15 20
9 sensing 3 3 (3,9) 15 20
10 merge 3 3 (0,3) 20 22
15 merge 3 3 (0,9) 20 22
17 mix 4 7 (0,9) 22 24
18 opt 3 3 (0,9) 24 54

Figure 16: Output �le containing schedule.

The diagram in Figure 17 provides a clear picture of the order in which the
operations are being executed.

4

3

5

1

(5)

(1)

0

13

8

2

6 (6) 7

12

16

14

11

9

10

15

17 18

0 5 10 15 20 25

Figure 17: Diagram of example schedule.

The numbers are the operation names and the colors identify the type of
operation. Numbers in brackets are the special storage operations. Comparing
the schedule diagram with the graph of Figure 4 shows that the schedule ful�lls
the precendence requirements. The layout of the chip at three di�erent points
in time during the execution of the schedule can be seen in Figure 18.

32

5.2 Functional Testing 5 TESTING

t=1 t=5 t=16

4

3

(5)

(1)0

16

14

119

Figure 18: Chip layout for example schedule.

For this example the program terminates in a fraction of a second, which is
well below the two second maximum for online sequential fault-tolerant schedul-
ing to work.

5.2 Functional Testing

A veri�cation procedure has been implemented to test if the schedules produced
by the program are valid. The veri�cation tool reads a schedule from a �le and
translates each line into an instance of the Operation class. The operations
of the schedule are sorted by increasing start time and stored in a list. The
relations between operations are obtained by reading the �le containing the
application graph. The veri�cation tool determines if the schedule ful�lls three
requirements.

1. No operation is scheduled before all of its parents have �nished. For a
given operation s it is veri�ed by �nding all parents of s in the schedule
and comparing their �nishing times with the starting time of s.

2. No module is placed so it shares cells with other modules (this includes
segregation cells). A two-dimensional array contains a list of timestamps
for each cell. When a module is placed on the chip for a period of time, a
new timestamp is created for each discrete moment in that period of time.
The timestamp is added to each cell of the chip occupied by the module.
If a cell already contains an indentical timestamp the schedule is invalid.

3. Output droplets produced by all operations must be consumed (used as
input) by other operations. The droplet production and consumption
must be synchronized so that droplets on the chip are constantly part of
an operation. For a given operation s a Droplet class instance is created for
each child of s. The droplet is indenti�ed by the operation that created it
and its time of creation. The droplets are added to a list. Other operations
from the schedule can then search the list for input droplets matching their
parents and their start time. Matching input droplets are removed from
the list. The schedule is invalid if any droplets remain in the list after the
last operation has been processed.

33

5.2 Functional Testing 5 TESTING

If a schedule is invalid the veri�cation tool will print an error message in the
command prompt.

34

6 INSTRUCTIONS OF USE

6 Instructions of Use

The program is used by running the executable with the following arguments:
java FastSynthesis fileGraph fileDevices arrayLength arrayWidth

�leGraph and �leDevices are the �lenames of the two input �les, arrayLength
and arrayWidth specify the size of the chip.

35

7 CONCLUSSIONS

7 Conclussions

The thesis gives an insight into the working principles of digital micro�uidic
biochips. The synthesis process is introduced and the requirements for a valid
schedule are established. The challenges of handling intrinsic errors during
execution are introduced. Some of the existing solutions to these problems are
described and the currently implemented solution is outlined.

The concept of using List Scheduling to provide a solution for the complex
problem of synthesizing an implementation for a digital micro�uidic biochip has
been proven. Despite some limitations the program is working and is delivering
satisfying results that enable online sequential fault-tolerant scheduling to be
implemented.

The working principles of a functioning synthesis program are explained and
the results are discussed.

36

7 CONCLUSSIONS

Bibliography

1. Elena Maftei, Paul Pop, and Jan Madsen - Tabu Search-Based Synthesis
of Dynamically Recon�gurable Digital Micro�uidic Biochips. Manuscript,
2009.

2. Mirela Alistar - Home Exam 2010 page 21. Findings not published to my
knowledge.

3. Oliver Sinnen - Task Scheduling for Parallel Systems. Wiley-Interscience.

4. M. Handa and R. Vemuri - An E�cient Algorithm for Finding Empty
Space for Online Placement. Proceedings of the Design Automation Con-
ference (2004) 960 � 965.

5. http://www.astrobio.net/pressrelease/2405/biologys-dark-matter.

6. F. Su and S. Ozev and K. Chakrabarty - Concurrent testing of droplet-
based micro�uidic systems for multiplexed biomedical systems. Interna-
tional Test Conference, 2004, p. 883-892.

7. Elena Maftei, Paul Pop, and Jan Madsen - Routing-Based Synthesis of
Digital Micro�uidic Biochips. Compilers, Architecture, and Synthesis for
Embedded Systems Conference (CASES), 2010.

8. Zhao, Yang, Xu, Tao, Chakrabarty, Krishnendu - Control-Path Design and
Error Recovery in Digital Micro uidic Lab-on-Chip. Journal of Emerging
Technologies in Computing Systems 2009.

9. K. Bazargan and R. Kastner and M. Sarrafzadeh - Fast Template Place-
ment for Recon�gurable Computing Systems - IEEE Design and Test of
Computers, 2000, p. 68-83.

37

