
Design Optimization of Mixed-Criticality Real-Time Applications on
Cost-Constrained Partitioned Architectures

Domiţian Tămaş–Selicean and Paul Pop
DTU Informatics

Technical University of Denmark
Kongens Lyngby, Denmark

Email: dota@imm.dtu.dk, paul.pop@imm.dtu.dk

Abstract—In this paper we are interested to implement
mixed-criticality hard real-time applications on a given
heterogeneous distributed architecture. Applications have
different criticality levels, captured by their Safety-Integrity
Level (SIL), and are scheduled using static-cyclic scheduling.
Mixed-criticality tasks can be integrated onto the same
architecture only if there is enough spatial and temporal
separation among them. We consider that the separation
is provided by partitioning, such that applications run in
separate partitions, and each partition is allocated several
time slots on a processor. Tasks of different SILs can share
a partition only if they are all elevated to the highest SIL
among them. Such elevation leads to increased development
costs. We are interested to determine (i) the mapping of tasks
to processors, (ii) the assignment of tasks to partitions, (iii)
the sequence and size of the time slots on each processor
and (iv) the schedule tables, such that all the applications
are schedulable and the development costs are minimized.
We have proposed a Tabu Search-based approach to solve
this optimization problem. The proposed algorithm has been
evaluated using several synthetic and real-life benchmarks.

I. INTRODUCTION

Safety is a property of a system that will not endanger
human life or the environment. Safety-Integrity Levels
(SILs) are assigned to safety-related functions to capture
the required level of risk reduction, and will dictate
the development processes and certification procedures
that have to be followed. There are four SIL levels,
ranging from SIL 4 (most critical) to SIL 1 (least critical).
Certification standards require that safety functions of
different criticality levels are separated (or, isolated), so
they cannot influence each other. For example, without
separation, a lower-criticality task could corrupt the mem-
ory of a higher-criticality task.

Many such applications, following physical, modularity
or safety constraints, are implemented using distributed
architectures, composed of several different types of
hardware components (called nodes), interconnected in
a network. Initially, each function was implemented in
a separate node, which has led to a large increase in
the number of nodes. The current trends are towards
“integrated architectures”, where several functions are
integrated onto the same node. In this context, designers
are relying on partitioning mechanisms at the platform
level. For example, in the avionics area, the platform-
level separation mechanisms are provided by implemen-
tations of the ARINC 653 standard, also called “Integrated
Modular Avionics” (IMA) [29]. ARINC 653 consists

of hardware-mediated operating system-level spatial and
temporal partitioning [29] mechanisms. Similar platform-
level separation mechanisms are available in other indus-
tries [11], [19].

In this paper we are interested in the design optimiza-
tion of hard real-time applications with different SILs. We
consider heterogenous distributed platforms, consisting of
several processing elements (PEs) interconnected using a
broadcast bus. We assume that the platform provides both
spatial and temporal partitioning, thus enforcing enough
separation for the mixed-criticality applications. Each
partition can have its own scheduling policy. However, to
simplify the discussion, in this paper, we assume that all
applications are scheduled using static-cyclic scheduling
(SCS). In [33] we have shown how applications scheduled
using a fixed-priority preemptive scheduling (FPS) policy
can be handled in a partitioned architecture. Although
we address hard real-time applications, (non-critical) soft
real-time applications can also be handled using a tech-
nique such as the Constant Bandwidth Server [1], where
the server is seen as a hard task providing a desired level
of service to soft tasks.

We assume that the communication protocol has mech-
anisms to enforce partitioning at the bus level. For exam-
ple, space partitioning is attained in SAFEBus [14] by
mapping the messages to unique locations in the inter-
module memory, protected by a memory-mapping hard-
ware in the host, and temporal partitioning is achieved in
TTP [17] by enforcing a Time-Division Multiple Access
scheme. Researchers have shown how realistic bus pro-
tocols such as TTP [22] and FlexRay [28] can be taken
into account during the design. However, in this paper we
consider a simple statically scheduled bus.

Safety-critical real-time applications have to function
correctly and meet their timing constraints even in the
presence of faults. Fault tolerance can be addressed with
hardware architecture solutions, such as TTA [17], or
software-based solutions such as re-execution, replication
and checkpointing [25]. In this paper we do not address
the issue of fault-tolerance (which is orthogonal to our
problem), and we assume that the designer has developed
the applications such that they provide the required level
of fault-tolerance.



A. Contribution

In this paper we are interested to implement mixed-
criticality hard real-time applications on a given dis-
tributed architecture, such that all applications are schedu-
lable and the development costs are minimized. An im-
plementation consists of (i) the mapping of tasks to PEs,
(ii) the assignment of tasks to partitions, (iii) the sequence
and size of the partition time slots on each PE and (iv)
the schedule tables for all PEs. This is the first time, to
our knowledge, that such a problem has been addressed.
We propose a Tabu Search (TS)-based approach for this
design optimization problem.

In [33] we have presented a Simulated Annealing-based
approach for the optimization of the sequence and size
of time slots, considering a given fixed mapping. As the
experimental results will show, significant improvements
can be obtained if mapping is considered at the same
time with partitioning, as we propose in this paper. There
are cases when obtaining schedulable implementations is
not possible, even if mapping is considered at the same
time with partitioning. In such cases, one option is to
upgrade the hardware platform. This will increase the unit
cost of the system. However, there are many cost-sensitive
areas (e.g., automotive, which is a mass market), where
increasing unit costs are not an option.

Therefore, in this paper we address the case when
the sharing of partitions by tasks from applications with
different SILs is allowed, aiming at integrating more
applications onto a given platform, without increasing unit
costs. If tasks of different SILs share a partition, they will
have to be developed and certified at the highest SIL level
among them. This will increase the development costs.
Thus, we integrate more applications onto the same cost-
sensitive partitioned architecture by paying with increased
development costs, instead of increased unit costs.

The paper is organized in eight sections. The related
work is presented in Section VII. The next two sections
present the application and system models considered,
respectively. The problem formulation is presented in
Section IV. Our proposed TS optimization approach is
outlined in Section V and evaluated in Section VI. The
last section presents our conclusions.

II. APPLICATION MODEL

The set of all applications in the system is denoted
with Γ. We model an application as a directed, acyclic
graph Gi(Vi,Ei) ∈ Γ. The graph is polar, which means
that there is a source node, which is a node that has
no predecessors and a sink node that has no successors.
Each node τ j ∈ Vi represents one task. The mapping
is denoted by the function M : Vi → N , where N is
the set of processing elements (PEs) in the architecture.
This mapping is not yet known and will be decided by
our approach. For each task τi we know the worst-case
execution time (WCET) C

N j
i for each processing element

N j where τi is considered for mapping.
An edge e jk ∈Ei from τ j to τk indicates that the output

of τ j is the input of τk. A task becomes ready after all

(a) Example mixed-criticality applications

(b) WCET and mapping restrictions

(c) Development costs (kEuro)

Figure 1: Application model example

its inputs have arrived, and it issues its outputs when
it terminates. Communication between tasks mapped to
different PEs is performed by message passing over the
bus. We assume that the message sizes smi of each
message mi are known. All the applications are scheduled
using SCS. A deadline DGi ≤ TGi , where TGi is the period
of Gi, is imposed on each graph Gi.

An example mixed-criticality system composed of three
applications is presented in Fig. 1a. The periods and
deadlines are presented under the application graphs. The
WCETs of tasks are given in Fig. 1b for two PEs, N1
and N2. An “x” in the table means that the task is not
considered for mapping on the respective PE. The size of
the messages is depicted on the graph edges.

If dependent tasks are of different periods, they are
combined into a merged graph capturing all activations
for the hyper-period (LCM of all periods). Release times
of some tasks as well as multiple deadlines can be also
be modeled [22].

A. Safety Integrity Levels

As mentioned, a safety-critical system should not en-
danger human life or the environment. A hazard is a
situation in which there is actual or potential danger to
people or to the environment. Risk is a combination of the
frequency or probability of a specified hazardous event,
and its consequence. If, after performing an initial hazard
and risk analysis, a system is deemed safety-related, it
has to be certified [32]. Certification is a “conformity
of assessment” performed by a third party. The current
certification practice is “standards-based” [30], and re-



quires that prescribed certification standards are followed,
depending on the application area. For example, IEC
61508 is used in industrial applications, ISO 26262 is for
the automotive area, whereas DO-178B refers to software
for airborne systems.

During the engineering of a safety-critical system, the
hazards are identified and their severity is analyzed, the
risks are assessed and the appropriate risk control mea-
sures are introduced to reduce the risk to an acceptable
level. A Safety-Integrity Level (SIL) captures the required
level of risk reduction. SIL allocation is typically a
manual process, which is done after performing hazard
and risk analysis [32], but researchers have proposed au-
tomatic approaches for SIL allocation [20]. Although SILs
differ slightly among areas (for example, the avionics
area uses five “Design Assurance Levels” (DAL), from
DAL A to DAL E), the approach presented in this paper
is applicable to all safety-critical areas, regardless of the
standard. SILs are assigned to safety functions, from
SIL 4 (most critical) to SIL 0 (non-critical). Functions
are decomposed into tasks. We introduce the notation
SIL : Vi→{SIL k}, where k ∈ {0..4}, to capture the SIL
of a task. The tasks of an application may have different
SILs. The SILs for the example in Fig. 1a are presented
next to the tasks.

B. Development Cost Model

The SIL assigned to a task will dictate the develop-
ment processes and certification procedures that have to
be followed. SIL 0 functions are non-critical and can
be developed using any methods. For SIL 1, a more
systematic approach is needed, to the level required by
quality management standards such as ISO 9001. SIL 2
is quite similar to SIL 1, but typically involves more
reviewing and testing. SIL 3 is significantly more difficult.
Certification standards will suggest specific methods to be
followed, and provide a checklist of techniques that are
recommended to be applied. If “semi-formal” methods
are acceptable in lower SILs, SIL 4 often requires formal
methods, increasing further the difficulty and development
costs associated to building safety-critical systems.

Software development cost estimation is a widely re-
searched topic, and is beyond the scope of this paper. The
reader is directed to [16], [4] for reviews on this topic.
One of the most influential software cost models is the
Constructive Cost Model (COCOMO) [5]. Researchers
have shown how to take into account the development
costs during the design process of embedded systems [9].
The development of safety-critical systems is a highly
structured and systematic process dictated by standards.
Hence, we believe that is reasonable to assume that the
designer will use a cost model to capture the development
costs associated to a given SIL.

Thus, we define the development cost (DC) function
DC(τi,SIL j) to capture the cost to develop and certify a
task τi to safety integrity level SIL j. Fig. 1c shows an
example of the development costs for each of the tasks in
Fig. 1a. Knowing the DC for each task, we can compute
this cost at the application level. The DC of application

Ai, denoted with DC(Ai), is the sum of the development
costs of each task in the application. Similarly, we define
the DC for the set of all the applications, DC(Γ), as the
sum of the costs for each application.

C. Separation Requirements

Tasks of different SILs have to be separated. Otherwise,
for example, a lower-criticality task could write in the
code or data area of a higher-criticality task, leading
thus to a failure. Separation also imposes constraints on
the type of communication that is allowed. Thus, within
an application, a task can only receive an input from a
task of the same criticality level or higher than its own.
In addition, we assume that there is no communication
between two applications of different SILs.

Standard practice in certain areas may place addi-
tional separation requirements. For example, it may be
recommended that two tasks of SIL 4 from different
applications should be separated, although they are at
the same SIL level. To capture such requirements, and
any additional separation requirements desired by the
designer, we define the separation requirements graph
Π(V ,E) as a bidirectional graph. V represents the set
of all tasks, while E is the set of edges. An edge sri j ∈E
means that tasks τi and τ j are not allowed to share a
partition.

III. SYSTEM MODEL

We consider architectures composed of a set N of
PEs which share a broadcast communication channel.
In this paper we use a simple statically scheduled bus,
where the communication takes place according to a static
schedule table computed offline. Also, all applications are
scheduled using non-preemptive static-cyclic scheduling.

A. Separation through Partitioning

If two tasks are of different SILs, or if they have to
be separated according to the separation requirements
graph Π, we consider that the separation is achieved
through partitioning. We denote the assignment of tasks to
partitions using the function φ : V →P , where V is the set
of tasks in the system and P is the set of partitions. On a
processing element Ni, a partition Pj ∈ P is defined as the
sequence Pi j of k partition slices pk

i j, k ≥ 1. A partition
slice pk

i j is a predetermined time interval in which the
tasks mapped to Ni and allocated to the partition Pj are
allowed to use Ni.

All the slices on a processor are grouped within a Major
Frame (MF), that is repeated periodically. The period TMF
of the major frame is given by the designer and is the
same on each PE. Several MFs are combined together
in a system cycle that is repeated periodically, with a
period Tcycle. Within a Tcycle, the sequence and length of
the partition slices in a MF are the same (on a given PE),
but the contents of the slices can differ.

Fig. 2 presents the partitions for 3 applications of
different SILs, A1, A2 and A3, implemented on an ar-
chitecture of 2 PEs, N1 and N2, with TMF = 10 and
Tcycle = 2×TMF = 20. Using the partitions in the figure,



Figure 2: Partitioned architecture

the tasks of A3, for example, can execute only in partition
P3 on PE N1, composed of the sequence P1,3 of partition
slices p1

1,3 and p2
1,3. In this example, all the tasks of A3

have the same SIL. However, tasks of different SILs in
an application have to be in separate partitions. Another
example of partitioning is presented in Fig. 3c, where we
have the 3 applications from Fig.1a implemented on 2
PEs, with TMF = 15 and Tcycle = 30.

The schedule tables S have to be constructed such
that they take into account the partitions P . Note that
a task can extend its execution over several partition
slices and MFs. When a task does not complete during a
partition slice, its execution is suspended until its partition
is activated again. Such an example is task τ14 in Fig. 3c,
which shows the schedule tables for the applications in
Fig.1a. The time overhead due to partition switching is
denoted with tO, and our optimization approach takes into
account the partition switching overheads.

B. Elevation and Software-based Separation

Partitioning introduces overheads because it constrains
the way tasks can use the PEs, leading to unused slack
inside certain partition slices. Our goal in this paper is
to optimize the mapping and partitions such that these
overheads are minimized, increasing thus the chance to
find schedulable implementations.

However, there might be situations when finding
schedulable implementations is possible only if we allow
sharing of partitions by tasks with different SILs. This
would help to further reduce the unused slack, and thus
allow us to integrate more applications onto a given
cost-sensitive platform. Note that two tasks can share a
partition only if they have the same SIL (and are not
required by Π to be separated). However, to a task of a
lower SIL can always be assigned a higher SIL, i.e., it
can be elevated. Tasks elevated to the same SIL can then
share a partition.

This will not only increase the development costs for
the elevated task, but it may trigger the elevation of other
tasks. As mentioned in Section II-C, a task can only
receive inputs from predecessors of the same or higher
SIL. This means that elevating a task τi to a higher SIL
may trigger recursively the elevation of its predecessors.
This, in turn, can trigger the elevation of other tasks, if

such predecessors will thus have a higher SIL in another
partition slice. For example, considering the application
details from Fig. 1a, in Fig. 3d task τ3 shares the partition
with tasks τ13 and τ12. The two tasks have a lower SIL
than τ3, and as such they have to be elevated to SIL 3. This
in turn triggers the need to elevate all of τ12’s and τ13’s
predecessors, namely τ10 and τ11. Since tasks τ14 and τ15,
share the partition with τ10 and τ11, they in turn need to
be elevated to SIL 3. Thus, all the tasks of application A2
have been elevated from SIL 1 to SIL 3.

Partition sharing of tasks with different SILs may also
be possible if software-based separation mechanisms are
employed. Such separation mechanisms1 are typically
used between lower SIL tasks (e.g., SIL 1 and SIL 2).
Spatial separation can be obtained using methods such
as Software Fault Isolation (SFI) [29], or compiler and
linker mechanisms [12]. Temporal separation can rely on
watchdogs. For simplicity, we have decided to classify
such methods as “elevation”, since they are conceptually
similar: paying with increased development costs to attain
separation.

IV. PROBLEM FORMULATION

The problem we are addressing in this paper can be
formulated as follows: given (1) a set Γ of applications,
(2) the criticality level SIL(τi) of each task τi, (3) the
separation requirements Π between the tasks, (4) an
architecture consisting of a set N of processing elements,
(5) the size of the major frame TMF and (6) the application
cycle Tcycle, we are interested to find an implementation
Ψ such that all applications meet their deadlines and the
development costs are minimized. Deriving an implemen-
tation Ψ means deciding on (1) the mapping M of tasks to
PEs, (2) the set P of partition slices on each processor,
including their order and size, (3) the assignment φ of
tasks to partitions and (4) the schedule S for all the tasks
in the system.

A. Partition-Aware Mapping Optimization
Let us illustrate the problem using the mixed-criticality

applications A1, A2 and A3 from Fig. 1a, to be im-
plemented on two PEs, N1 and N2. We initially do not
consider task τ3, i.e., it is not part of application A1. We
have set TMF to 15 time units and Tcycle = 2×TMF = 30.
In this example we ignore the partition switch overhead.
Note that in this subsection we do not yet consider
partition sharing by tasks of different criticality, which
is discussed in Section IV-B.

Let us first consider the case when mapping and
partitioning optimization are performed separately. Thus,
Fig. 3a presents the mapping and schedules for the case
when there is no partitioning, i.e., the tasks do not have
to be separated, and they can use the PEs without restric-
tions. The mapping and scheduling are optimal in terms
of the cost function presented in Eq. 2 (Section VI), which
tries to minimize the schedule lengths of the applications.

1Such separation may introduce additional performance overheads,
e.g., may require runtime checks of memory accesses. Our model can
easily be extended to capture these overheads.



Figure 3: Motivational example

In Fig. 3a we show the schedules on each resource, PEs
N1 and N2 and the bus, using a Gantt chart. The messages
on the bus are labeled with the indices of the sender and
receiver task, e.g., the first message on the bus, “10–
12” is sent from task τ10 to τ12. The dashed vertical
lines are timeline guides, and should not be interpreted
as partitions.

Using this optimal mapping, we are interested to obtain
the partitions and the schedules, such that, the separations
are enforced and the schedule lengths are minimized
with the goal of producing a schedulable implementa-
tion. Thus, Fig. 3b presents the optimal partitions and
schedules (in terms of Eq. 2, which drives the opti-
mization towards schedulable solutions), considering the
fixed mapping decided in Fig. 3a. The continuous line at
time 15 represents the major frame boundary, while the
shorter continuous lines, such as the one between tasks τ10
and τ20 represent partition slice boundaries. The partition
slices are denoted with the notation pk

i j introduced in
Section III-A.

With partitioning, tasks can only execute in their as-
signed partition. Hence, partitioning may lead to unused
slack in the schedule, even in the case of an optimal
partitioning and schedule, as depicted in Fig. 3b. In this
case, although application A3 is schedulable, task τ15 and

the second instance of task τ2 do not fit into the schedule,
and thus applications A1 and A2 are not schedulable.

In this paper we consider that the optimization of
mapping and partitioning is done at the same time, and not
separately. By deciding simultaneously the mapping and
partitioning we have a better chance of obtaining schedu-
lable implementations. Such a solution is depicted in
Fig. 3c, where all applications are schedulable. Compared
to the solution in Fig. 3b, we have changed the mapping of
tasks τ13 and τ22 from N1 to N2 and of task τ2 from N2 to
N1, and we have resized the partition slices and changed
the schedule accordingly. This example shows that by
optimizing the mapping at the same time with partitioning
we are able to obtain schedulable implementations.

B. Partition-Sharing Optimization

However, there might be cases when obtaining schedu-
lable implementations is not possible, even if mapping
and partitioning are considered simultaneously. For ex-
ample, let us consider a similar setup as in the previous
section, with the only difference that we add task τ3 to
application A1, see Fig. 1a. In this case, we are unable to
obtain a schedulable implementation. Note that, although
it may seem that task τ3 would fit in-between tasks τ13
and τ23 in the schedule of N2 in Fig. 3c, τ3, which is
SIL 3, cannot use that partition, which is for SIL 1 tasks.



Moreover, the particular partition slice cannot be split,
because then it would not fit task τ12 in the first major
frame.

For such situations, in this paper we consider the
elevation of tasks to allow partition sharing, and we
are interested to derive schedulable implementations that
minimize the development costs associated to elevation.
Thus, in Fig. 3d we allow τ3 of SIL 3 to share the
partition with tasks τ12 and τ13 of SIL 1, by elevating
these two tasks to SIL 3. This will trigger the elevation
of the predecessors of τ12 and τ13, namely τ10 and τ11, to
SIL 3. In addition, since τ10 and τ11 share partitions with
tasks τ14 and τ15, these will also have to be elevated to
SIL 3, leading to a complete elevation of application A2
from SIL 1 to SIL 3, which, according to the costs from
Fig. 1c, means an increase in development costs from
85,000 Euros to 127,000 Euros. The solution in Fig. 3d is
schedulable, and is optimal in terms of development costs
as captured by the cost function from Eq. 1 discussed in
Section V-A.

Note that, in many application areas, such a devel-
opment cost increase is preferred to an increase in unit
costs. Our optimization approach provides to a trade-off
analysis tool to the designer, who can decide what is the
best option: to upgrade the platform and increase the unit
costs, or to increase the development costs, but keep the
same architecture.

V. TABU SEARCH-BASED DESIGN OPTIMIZATION

The problem presented in the previous section is NP-
complete [34]. In order to solve this problem, we will use
the “Mixed-Criticality Design Optimization” (MCDO)
strategy from Fig. 4. MCDO takes as input a set of
applications Γ (including the SIL information, develop-
ment costs DC and the separation requirements graph Π)
and the set of processing elements N , and returns the
implementation Ψ consisting of the mapping M of tasks
to PEs, the set of partitions slices P on each PE, the
assignment φ of tasks to partitions and the schedules S
for the applications. Our strategy has 3 steps:

(1) In the first step, we determine an initial task
mapping M◦, an initial set of partition slices P ◦ and an
initial assignment of tasks to partitions φ◦, line 1 in Fig. 4.
The initial mapping M◦ is done such that the utilization
of processors is balanced and the communication on the
bus is minimized. P ◦ consists of a simple straightforward
partitioning scheme which allocates for each application
A j a total time on PE Ni proportional to the utilization of
the tasks of A j mapped to Ni. The initial assignment φ◦

of tasks to partitions consists of a separate partition for
each SIL level in each application, and does not allow
partition sharing.

(2) In the second step, we use a Tabu Search meta-
heuristic (see Section V-A) to determine the task mapping
M, the set of partition slices P and the assignment of tasks
φ to partitions, such that the applications are schedulable
and the development costs are minimized.

(3) Finally, given the task mapping M, the optimized
partitions P and the assignment φ of tasks to partitions

obtained in line 2 in Fig. 4, we use a List Scheduling
heuristic (see Section V-B) to determine the schedule
tables for the applications.

A. Tabu Search
Tabu Search (TS) [13] is a meta-heuristic optimization,

which searches for that solution which minimizes the cost
function. Tabu Search takes as input the set of applications
Γ, the set of PEs N , and the initial solution, consisting
of M◦, P ◦, and φ◦, and returns at the output the best
solution Ψ found during the design space exploration, in
terms of the cost function. We define the cost function of
an implementation Ψ as:

Cost(Ψ) =

{
c1 = ∑Ai∈Γ max(0,Ri−Di) i f c1 > 0
c2 = DC(Γ) i f c1 = 0

(1)
Ri is the response time of the application, while Di

is the deadline of the application. For each alternative
solution visited by TS we use the List Scheduling-based
heuristic from Section V-B to produce the schedule tables
S . We define the response time Ri of an application Ai
as the time difference between the finishing time of the
sink node and the start time of the application. DC(Γ)
is the development cost of the set Γ of all applications
(see Section II-B). If at least one application is not
schedulable, there exists one Ri greater than the deadline
Di, and therefore the term c1 will be positive. However if
all the applications are schedulable, this means that each
Ri is smaller than Di, and the term c1 = 0. In this case,
we use c2 as the cost function, since the applications are
schedulable, we are interested to minimized the develop-
ment cost.

Tabu Search explores the design space by using de-
sign transformations (or “moves”) applied to the current
solution in order to generate neighboring solutions. To
escape local minima, TS incorporates an adaptive memory
(called “Tabu list”), to prevent the search from revisiting
previous solutions, thus avoiding cycling. If the currently
explored solution is better than the best known solution,
it is saved as the “best-so-far” solution and, to prevent
cycling, the move that created this solution is saved as
“Tabu”. In case there is no improvement in finding a better
solution for a number of iterations, we use diversification,
i.e., we visit previously unexplored regions of the search
space. In case the search diversification is unsuccessful,
we restart the search from the best known solution.

We use one re-assignment move, which changes the
assignment of a task to another partition and four types
of moves applied to partition slices: resize, swap, join
and split. The task re-assignment move re-assigns a task
to another partition. Randomly chosen by the algorithm,

MCDO(Γ, N )
1 < M◦,P ◦,φ◦ > = InitialSolution(Γ, N )
2 < M,P ,φ > = TabuSearch(Γ, N , M◦, P ◦, φ◦)
3 S = ListScheduling(Γ, N , M, P , φ)
4 return Ψ =< M,P ,φ,S >

Figure 4: Mixed-Criticality Design Optimization strategy



the partition can be either an existing one, or a newly
created one. The partition can be on another PE, thus,
implicitly, the re-assignment move will also re-map the
task. The re-assignment move respects the separation
requirements graph Π, but does not prevent partition
sharing by tasks of different SILs. In case the move will
lead to sharing, we recursively elevate tasks as required,
and update the development costs accordingly. In case
the partition the task is moved from, has no other tasks
assigned to it, it is deleted and the processing time is
distributed to a randomly chosen partition. As a result,
the algorithm creates and deletes partitions on the fly as
needed, depending on the task re-assignment moves.

The resize move, as its name implies, resizes the se-
lected partition slice. This is done either by increasing the
size of the partition slice at the expense of a neighboring
partition slice, or by decreasing it and giving the extra
space to a neighboring slice. The amount with which the
partition can be resized is randomly chosen, but we have
imposed an upper limit (half the size of the partition). The
swap move swaps the chosen partition slice with another
randomly chosen partition slice. The join move joins two
partition slices belonging to the same application, while
the split move splits a partition slice into two, and adds
the second slice to the end of the MF.

Fig. 5 illustrates how Tabu Search works. We consider
applications A1 and A3 from Fig. 1, with periods and
deadlines equal to 16. The size of the major frame TMF
is set to 8 and the Tcycle is 16. The current solution is
presented in Fig. 5a, which is also the best-so-far solution.
Note that this solution is not schedulable, since tasks τ21
and τ23 from A3 do not fit into the schedules. Several
neighbor solutions generated starting from Fig. 5a, are
presented in Fig. 5b–5e, and are intended to illustrate the
types of moves performed by TS and how TS updates the
“Tabu history”. None of these solutions are schedulable,
but we can see improvements in the cost function, which
will drive the search to a schedulable solution.

Next to each solution we present the type and details
of the move, the “Tabu history” and the cost function.
For the partition moves, the tabu attributes are the PEs,
whereas in the case of the task re-assignment moves, the
tabu attributes are the applications. The move in Fig. 5d is
Tabu, and it is not better than the current solution, hence
it is removed from the set of solutions to be explored.
Fig. 5e presents a re-assignment move which delivers a
solution that is Tabu, but it is better than the best-so-far
solution. Note that, because of the re-assignment of τ2 to
the partition of A3 on N1, the partition assigned to A1 is
deleted and the time is given to the other partition. Also,
tasks τ20 and τ21 have to be elevated to SIL 3, since τ2
is SIL 3. The Tabu history is updated as shown next to
Fig. 5e and the iterations continue with this solution as
the current solution.

B. List Scheduling

The applications are scheduled using static-cycling
non-preemptive scheduling. Given a mapping M , a parti-
tion set P and the assignment φ of tasks to partitions, we

Figure 5: Moves and tabu history

use a List Scheduling (LS)-based heuristic to determine
the schedule tables S for each application. LS heuristics
use a sorted priority list, Lready, containing the tasks
ready to be scheduled. A task τi is ready if all the
predecessor tasks have finished executing and all the
incoming messages are received. We use the Modified
Partial Critical Path priority function [22] to sort Lready.

We have modified the classical LS algorithm to take
into account the partitions. Thus, when scheduling a task,
we are allowed to use only the corresponding partitions
slices from P . If a partition slice finishes before a task
has completed its execution (as is the case with τ21 ∈ A3
in Fig. 3d), we assume that the task is suspended and
will continue its execution in the next partition where
is assigned. Our LS implementation takes into account
the partition switching overhead tO. The suspension of



the task will take place online, based on the partition
scheme P loaded into the kernel and tO contains the time
needed to do a context switch to another partition. LS
also schedules the messages on the bus.

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm “Mixed-
Criticality Design Optimization” (MCDO) approach we
used 7 synthetic benchmarks and 3 real life case studies.
The MCDO algorithm was implemented in Java (JDK
1.6), running on SunFire v440 computers with Ultra-
SPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed MCDO in terms of its ability to
find schedulable implementations. Thus, we have used
3 synthetic benchmarks with 3 to 5 mixed-criticality
applications (with a total of 15 to 41 tasks). We have used
MCDO to implement these applications on architectures
with 2 to 5 processing elements. The execution times and
message lengths were assigned randomly within the 1 to
19 ms and 1 to 5 bytes ranges, respectively.

We were interested to compare the number of schedu-
lable implementations found by MCDO with two other
setups: (i) when the sharing of partitions by tasks of
different criticality levels is not allowed, but mapping and
partitioning optimization (MPO) is performed simultane-
ously. In the second setup, (ii) sharing is not allowed,
and in addition, mapping optimization (MO) is performed
separately from partitioning optimization (PO). We call
such an approach MO+PO.

MO+PO and MPO are based on the MCDO strategy
presented in Fig. 4, and use the same Tabu Search
for the optimization. The difference is in the types of
moves performed by TS: there are only mapping moves
for MO (without considering partitions), we use only
partition-related moves in PO, considering mapping fixed,
as determined by MO, and MPO does not allow re-
assignment moves that would lead to partition sharing
by mixed-criticality tasks. Also, MO, PO and MPO use a
slightly different cost function (compared to Eq. 1), where
we do not consider development costs (the term c2), which
are constant since we do not elevate tasks to higher SIL
levels:

Cost(Ψ) =

{
c1 = ∑Ai∈Γ max(0,Ri−Di) i f c1 > 0
c2 = ∑Ai∈Γ(Ri−Di) i f c1 = 0

(2)
where now the term c2 is used when the applications are

schedulable and captures the “degree of schedulability” of
an implementation. To have a fair comparison, we have
used time limits corresponding to the size of the design
space. Thus, MO+PO has a time limit of 30 minutes,
MPO uses a time limit of 60, while MCDO runs for 480
minutes.

The three strategies, MO+PO, MPO and MCDO corre-
spond to Fig. 3b, Fig. 3c and Fig. 3d, respectively, in the
motivational example discussed in Section IV. The results
for the first set of experiments are presented in Table I
in rows 2-6. The number of schedulable applications,

resulted after implementing the system using MO+PO,
MPO and MCDO are reported in columns 6, 7 and 9,
respectively, in Table I.

As we can see from the comparison between MO+PO
and MPO, there is a significant improvements in the
number of schedulable applications if the optimization
of mapping is considered at the same time with the
optimization of partitioning. For example, for the second
benchmark with 4 applications mapped to 4 PEs, MO+PO
is unable to successfully schedule any of the applications.
MPO, which performs mapping and time optimization in
the same run, is able to schedule 3 out 4 applications.

If MPO produces a schedulable solution, i.e., the appli-
cations are schedulable without using sharing, we do not
have to run MCDO. This is indicated in the table using
a dash “–” in the MCDO columns. However, MPO is
not able to find schedulable implementations in the first
two cases. In such situations, using elevation to allow
partition sharing can find schedulable implementations in
all cases. There are situations where MCDO is able to
find schedulable implementations using partition sharing,
but without the need of elevating tasks (the tasks have
the same criticality level). Such a situation is in line 2
and in line 11 in the table, where the zero development
cost means that the solution was produced without using
elevation.

Once a schedulable implementation is found by using
elevation, the cost function from Eq. 1 will drive MCDO
to solutions that minimize the development cost. The
increase in development cost that we have to pay in order
to find schedulable implementations, compared to MPO
which does not perform SIL elevation, is reported in the
last column of Table I.

We have also compared MPO to MO+PO in terms of
the cost function. The percentage improvement in the cost
function, i.e., the “degree of schedulability” is reported in
column 8. An increase in the “degree of schedulability”,
in the case of a schedulable implementation, as is the
case for the third test case, means that it is possible to
implement the solution on a slower (cheaper) architecture.

In the second set of experiments, labeled “Set 2” in
Table I, we were interested to see how MCDO performs
compared to MO+PO and MPO as the utilization of the
system increases. Thus, we have mapped the number of
mixed-criticality applications from 3 to 6, but we have
used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications, MO+PO
is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to
more schedulable implementations. However, as the sys-
tem utilization increases, as is the case for the largest
benchmark in this set, where we used 6 applications on
4 PEs, only MCDO, which considers elevation to allow
partition sharing by tasks of mixed-criticality, is able to
provide schedulable solutions.

Finally, we have also used 3 real life benchmarks de-
rived from the Embedded Systems Synthesis Benchmarks
Suite (E3S) version 0.9 [10]. We have used the consumer-
cords, networking-cords and telecom-cords benchmarks.



Table I: Comparison of MO+PO, MPO and MCDO

Set Test Case Apps Tasks PE MO+PO MPO MCDO
Sched.
Apps

Sched.
Apps

δSched (%) Sched.
Apps

δDC
(kEuro)

1
1 3 15 2 2 2 450.00 All 0
2 4 34 4 0 3 3600.00 All 99
3 5 41 5 3 All 235.00 – –

2

4.1 3 20 4 All All 1.10 – –
4.2 4 30 4 All All 23.96 – –
4.3 5 34 4 4 All 13.27 – –
4.4 6 39 4 3 5 208.11 All 835

3 consumer 2 12 3 0 1 343.45 All 25
networking 4 13 3 2 2 31.78 All 15

telecom 9 30 3 5 8 8915.09 All 0

In all three cases we were interested to implement the
applications to an architecture of 3 PEs. The results
obtained from these real-life benchmarks are reported in
the last 3 lines in Table I and confirm the results of the
synthetic benchmarks.

VII. RELATED WORK

There is a large amount of research on hard real-
time systems [6], [17], including task mapping to hetero-
geneous architectures [26]. Researchers have addressed
systems with mixed time-criticality requirements, showing
how Time Triggered (TT)/Event Triggered (ET) tasks or
hard/soft real-time tasks can be integrated onto the same
platform. However, there is little research work on the
integration of mixed safety-criticality applications onto
the same platform.

In the context of mixed TT/ET systems, Pop et al. [27]
have shown how the static schedules can be optimized
such that both the TT applications (scheduled using
SCS) and the ET applications (scheduled using FPS)
are schedulable. Their approach could be extended to
constrain the TT schedules to follow a given partition-
ing. They have later addressed the problem of mapping
and partitioning, but in their context partitioning means
deciding which tasks should be TT and which ET [24].
While in [27] and [24] TT and ET tasks share the same
processor, the work in [23] considers that TT and ET tasks
are implemented on different clusters. In this context,
partitioning means deciding in which cluster (TT or ET)
to place a task.

Researchers have shown how to integrate mixed
hard/soft real-time tasks onto the same platform. The
order of tasks is decided by quasi-static scheduling in [7]
(several schedules are determined offline, and are acti-
vated online depending on when tasks finish executing),
such that the hard tasks meet their deadlines and the total
“utility” of soft tasks is maximized. This work has been
extended in [15] to handle transient faults, by switching
online to backup recovery schedules. Soft real-time tasks
can be integrated in fixed-priority preemptive scheduling
using the Constant Bandwidth Server (CBS) [1], where
the server is a hard task providing a desired level of ser-
vice to soft tasks. Thus, the CBS-servers provide a time-
partitioning between hard and soft tasks. The optimization

of CBS-server capacity in the context of mixed hard and
soft real-time tasks has been addressed in [31], such that
the hard tasks are schedulable and the quality of service
for the soft tasks is maximized.

The problem of the optimization of time-partitions has
been addressed at the bus level, but without considering
partitions at the processor level. Researchers have shown
how a Time-Division Multiple Access bus such as the
TTP [21] and a mixed TT/ET bus such as FlexRay [28]
can be optimized to decrease the end-to-end delays. The
optimization implies deciding on the sequence and length
of the communication slots.

Lee et al. [18] consider an IMA-based system where
all tasks are scheduled using FPS. The time-partition
optimization problem is formulated as a static cyclic
scheduling problem, where the partitions are statically
scheduled such that the FPS tasks are schedulable. A
similar approach to IMA is used in the DEOS operating
system [3], with the difference that FPS is used for
scheduling both the partitions (which are normally sched-
uled using SCS) and the tasks. Binns [3] has proposed
several slack-stealing approaches, where the unused time
in one partition is given to the other partitions, thus the
partitions are implicitly adjusted online.

Our work allows tasks with different criticality levels
to share a partition only if the lower-criticality tasks are
elevated at the higher-criticality level. Current certification
practice requires separation, and can only remove such a
requirement if the two tasks are at the same criticality
level.

There are several works where mixed-criticality tasks
are addressed. For example, Baruah et al. [2] propose
a task model that can capture mixed-criticality functions,
together with an associated schedulability analysis. Niz et
al. [8] discuss the issue of “criticality inversion”, similar
to the classical priority inversion problem, and propose a
“zero-slack scheduling” scheme for such a context. How-
ever, this work assumes that tasks of different criticality
share the same processor with little or no separation (i.e.,
there is no spatial-partitioning). Today, this practically
means that all the tasks are developed and certified at the
highest criticality level, which is not feasible, due to the
prohibitive development and certification costs. Such re-
search assumes that in the future the certification practice



will change, to allow different criticality tasks to share
the same platform. For example, a vision of “just-in-time
certification” [30] is proposed by Rushby. However, the
current standards-based certification practice is unlikely
to change in the near future.

VIII. CONCLUSIONS

In this paper we have presented a Tabu Search-based
approach for the optimization of mixed-criticality appli-
cations on cost-constrained partitioned architectures. The
architectures consist of a set of heterogeneous processing
elements interconnected by a broadcast bus. With parti-
tioning, tasks of different criticality are allowed to use the
PEs only during predetermined time slots, and are thus
separated in both space and time. We have considered
that tasks and messages are scheduled using Static Cyclic
Scheduling.

We were interested to derive schedulable implementa-
tions that minimize the development costs. We have seen
that significant improvements can be gained considering
the optimization of task mapping to PEs at the same
time with the optimization of partitions, which decides
the sequence and size of the time partition time slots on
each PE.

However, there are situations when finding schedulable
implementations on cost-constrained architectures is only
possible if we allow tasks of different criticality to share a
partition. This implies the elevation of tasks to the highest
Safety-Integrity Level of a partition, or separation using
software-based mechanisms. Both approaches to sharing
lead to increased development costs. Our optimization
approach finds that schedulable implementation on a cost-
constrained architecture, which minimizes the develop-
ment costs.

ACKNOWLEDGEMENTS

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. In Proc. of Real-Time Systems Symposium,
pages 4 –13, 1998.

[2] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In Real-Time and Embedded Technology
and Applications Symp., 2010.

[3] P. Binns. A robust high-performance time partitioning algorithm:
the digital engine operating system (DEOS) approach. In Conf. on
Digital Avionics Systems, volume 1, pages 1B6/1 –1B6/12, 2001.

[4] B. Boehm, C. Abts, and S. Chulani. Software development cost
estimation approachesA survey. Annals of Software Engineering,
10(1):177–205, 2000.

[5] B. Boehm, R. Madachy, and B. Steece. Software Cost Estimation
with Cocomo II. Prentice Hall PTR, USA, 2000.

[6] G. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Pub-
lishers, Boston, 1997.

[7] L. Cortés, P. Eles, and Z. Peng. Quasi-static scheduling for real-
time systems with hard and soft tasks. In Proceedings of the
conference on Design, automation and test in Europe-Volume 2,
page 21176. IEEE Computer Society, 2004.

[8] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling
of mixed-criticality real-time task sets. In Proc. of the Real-Time
Systems Symposium, pages 291–300, 2009.

[9] J. A. Debardelaben, V. K. Madisetti, and A. J. Gadient. Incorpo-
rating cost modeling in embedded-system design. IEEE Des. Test,
14:24–35, July 1997.

[10] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[11] R. Ernst. Certification of trusted mpsoc platforms. 10th Interna-
tional Forum on Embedded MPSoC and Multicore, 2010.

[12] EUROCAE. ED-94B - Final annual report for clarification of ED-
12B. Technical report, EUROCAE.

[13] F. Glover and M. Laguna. Tabu Search. Kluwer Academic
Publishers, Norwell, MA, USA, 1997.

[14] K. Hoyme and K. Driscoll. SAFEbus. IEEE Aerospace Electronic
Systems Magazine, 8:34–39, 1993.

[15] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Scheduling of fault-
tolerant embedded systems with soft and hard timing constraints.
In Proceedings of the conference on Design, automation and test
in Europe, pages 915–920. ACM, 2008.

[16] M. Jorgensen and M. Shepperd. A systematic review of software
development cost estimation studies. Software Engineering, IEEE
Transactions on, 33(1):33–53, 2007.

[17] H. Kopetz. Real-Time Systems-Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 1997.

[18] Y.-H. Lee, D. Kim, M. Younis, J. Zhou, and J. McElroy. Resource
scheduling in dependable integrated modular avionics. In Proc. of
Dependable Systems and Networks, pages 14 –23, 2000.

[19] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Com-
parison of Partitioning Operating Systems for Integrated Systems.
Computer Safety, Reliability, and Security, pages 342–355, 2007.

[20] Y. Papadopoulos et al. Automatic allocation of safety integrity
levels. In Proceedings of the 1st Workshop on Critical Automotive
applications: Robustness & Safety, pages 7–10. ACM, 2010.

[21] P. Pop, P. Eles, and Z. Peng. Scheduling with optimized com-
munication for time-triggered embedded systems. In Proc. of the
Workshop on Hardware/software Codesign, pages 178–182, 1999.

[22] P. Pop, P. Eles, and Z. Peng. Analysis and Synthesis
of Communication-Intensive Heterogenous Real-Time Systems.
Kluwer Academic Publishers, 2004.

[23] P. Pop, P. Eles, Z. Peng, V. Izosimov, M. Hellring, and O. Bridal.
Design optimization of multi-cluster embedded systems for real-
time applications. 2004.

[24] P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and optimization
of distributed real-time embedded systems. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 2006.

[25] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design optimization of
time- and cost-constrained fault-tolerant embedded systems with
checkpointing and replication. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 17(3):389 –402, march 2009.

[26] R. Pop. Mapping Concurrent Applications to Multiprocessor
Systems with Multithreaded Processors and Network on Chip-
based Interconnections. PhD thesis, Linköping University, 2011.

[27] T. Pop, P. Pop, P. Eles, and Z. Peng. Analysis and optimisation of
hierarchically scheduled multiprocessor embedded systems. Intl.
Journal of Parallel Programming, 2008.

[28] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of
the FlexRay communication protocol. Real-Time Systems, 39(1-
3):205–235, 2008.

[29] J. Rushby. Partitioning for avionics architectures: Requirements,
mechanisms, and assurance. NASA Contractor Report CR-1999-
209347, NASA Langley Research Center, June 1999.

[30] J. Rushby. Just-in-time certification. 2007.
[31] P. K. Saraswat, P. Pop, and J. Madsen. Task mapping and

bandwidth reservation for mixed hard/soft fault-tolerant embedded
systems. Real-Time and Embedded Technology and Applications
Symposium, IEEE, 0:89–98, 2010.

[32] N. Storey. Safety critical computer systems. Addison-Wesley
Longman Publ. Co., Inc. Boston, MA, USA, 1996.

[33] D. Tamas-Selicean and P. Pop. Optimization of time-partitions
for mixed-criticality real-time distributed embedded systems.
Object/Component/Service-Oriented Real-Time Distributed Com-
puting Workshops , IEEE International Symposium on, 0:1–10,
2011.

[34] J. D. Ullman. NP-complete scheduling problems. J. Comput. Syst.
Sci., 10(3):384–393, 1975.


