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Mo,va,on	  
§ Safety	  is	  the	  property	  of	  a	  system	  that	  will	  not	  endanger	  human	  
life	  or	  the	  environment	  

§ A	  safety-‐related	  system	  needs	  to	  be	  cer,fied	  
	  
§ A	  Safety	  Integrity	  Level	  (SIL)	  is	  assigned	  to	  each	  safety	  related	  
funcBon,	  depending	  on	  the	  required	  level	  of	  risk	  reducBon	  

§ There	  are	  4	  SILs:	  
§ SIL4	  (most	  criBcal)	  	  
§ SIL1	  (least	  criBcal)	  
§ SIL0	  (non-‐criBcal)	  –	  not	  covered	  by	  standards	  

§ SILs	  dictate	  the	  development	  process	  and	  cerBficaBon	  procedures	  	  
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Federated	  Architecture	  

Mo,va,on	  
§  Real	  Bme	  applicaBons	  implemented	  
using	  distributed	  systems	  

PE	  
ApplicaBon	  A	  1	  

ApplicaBon	  A	  2	  

ApplicaBon	  A	  3	  

§ Mixed-‐criBcality	  applicaBons	  share	  the	  
same	  architecture	  

SIL3 

SIL3 

SIL4 

SIL4 

SIL4 SIL1 

SIL2 

SIL1 

SoluBon:	  parBBoned	  architecture	  

Integrated	  Architecture	  
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Separa,on	  at	  PE-‐level	  

§ ParBBon	  =	  virtual	  dedicated	  machine	  
	  
§ ParBBoned	  architecture	  

§ SpaBal	  parBBoning	  
§  protects	  one	  applicaBon’s	  memory	  
and	  access	  to	  resources	  from	  another	  
applicaBon	  

§ Temporal	  parBBoning	  
§  parBBons	  the	  CPU	  Bme	  among	  
applicaBons	  
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Separa,on	  at	  PE-‐level	  

§ Temporal	  parBBoning	  
§ StaBc	  parBBon	  table	  

§  Repeated	  with	  a	  period	  MF	  
§  ParBBon	  switch	  overhead	  
§  Each	  parBBon	  can	  have	  its	  own	  
scheduling	  policy	  

§  A	  parBBon	  has	  a	  certain	  SIL	  

ParBBon	   ParBBon	  	  
slice	  

Major	  Frame	  

PE	  1	   PE	  2	  

PE	  3	  

PE	  1	  

PE	  2	  

PE	  3	  
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Separa,on	  at	  Network-‐level	  

ES1 

ES2 

NS1 NS2 

ES3 

ES4 

§  Full-‐Duplex	  Ethernet-‐based	  data	  network	  for	  safety-‐criBcal	  applicaBons	  
§  Compliant	  with	  ARINC	  664p7	  “Aircraa	  Data	  Network”	  

End	  System	  

Network	  Switch	  
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Separa,on	  at	  Network-‐level	  	  

NS1 NS2 

vl2	  

vl1	  

ES1 
τ1 

ES2 
τ4 

ES3 
τ2 τ5 

ES4 
τ3 

§  Highly	  criBcal	  applicaBon	  A	  1:	  τ1, τ2 and	  τ3	

§  τ1 sends	  message	  m1	  to	  τ2 and	  τ3	  

§  Non-‐criBcal	  applicaBon	  A	  2:	  τ4 and	  τ5	

§  τ4 sends	  message	  m2	  to	  τ5	  

virtual	  link	  
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Separa,on	  at	  Network-‐level	  

NS1 NS2 

dp1	  

vl1	  
dp2	  

l1	  
l2	  

l3	  

l4	  

ES1 
τ1 

ES2 
τ4 

ES3 
τ2 τ5 

ES4 
τ3 dataflow	  

path	  

§  Highly	  criBcal	  applicaBon	  A	  1:	  τ1, τ2 and	  τ3	

§  τ1 sends	  message	  m1	  to	  τ2 and	  τ3	  

§  Non-‐criBcal	  applicaBon	  A	  2:	  τ4 and	  τ5	

§  τ4 sends	  message	  m2	  to	  τ5	  

dataflow	  link	  
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TTEthernet	  

§ Traffic	  classes	  
§  Time	  Triggered	  (TT)	  

§  based	  on	  staBc	  schedule	  tables	  
§  Rate	  Constrained	  (RC)	  

§  determinisBc	  unsynchronized	  communicaBon	  
§  ARINC	  664p7	  traffic	  

§  Best	  Effort	  (BE)	  
§  no	  Bming	  guarantees	  provided	  
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Applica,on	  Model 	  	  

§ SCS	  apps	  transmit	  TT	  messages	  
§ FPS	  apps	  transmit	  RC	  messages	  
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Problem	  formula,on	  	  
§ Given	  

§  A	  set	  of	  applicaBons	  
§  The	  criBcality	  level	  (or	  SIL)	  of	  each	  task	  
§  A	  set	  of	  N	  processing	  elements	  (PEs)	  and	  topology	  of	  the	  network	  
§  The	  set	  of	  TT	  and	  RC	  frames	  
§  The	  set	  of	  virtual	  links	  
§  The	  size	  of	  the	  Major	  Frame	  and	  of	  the	  ApplicaBon	  Cycle	  

§ Determine	  
§  The	  mapping	  of	  tasks	  to	  PEs	  
§  The	  sequence	  and	  length	  of	  parBBon	  slices	  on	  each	  processor	  
§  The	  assignment	  of	  tasks	  to	  parBBons	  
§  The	  schedule	  for	  all	  the	  tasks	  and	  TT	  frames	  in	  the	  system	  

§ Such	  that	  
§  All	  applicaBons	  meet	  their	  deadline	  
§  The	  response	  Bmes	  of	  the	  FPS	  tasks	  and	  RC	  frames	  is	  minimized	  
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Mo,va,onal	  Example	  1	  
§ Mapping	  and	  parBBoning	  opBmizaBon	  
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Mo,va,onal	  Example	  1	  
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Mo,va,onal	  Example	  1	  
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Mo,va,onal	  Example	  2	  

ES1 

ES2 

NS1 ES3 

vl3	  

vl1	  

vl2	  

period	  (us)	   deadline	  (us)	   Ci	  (us)	   M 

f1	  ∈	  FRC 300	   300	   75	   vl1 

f2	  ∈	  FTT 200	   200	   50	   vl2 

f3	  ∈	  FTT 300	   300	   50	   vl3 

§  	  OpBmizaBon	  of	  TT	  message	  schedules	  
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Mo,va,onal	  Example	  2	  	  

ES1 

ES2 

NS1 ES3 

vl3	  

vl1	  

vl2	  

period	  	  
(us)	  

deadline	  
(us)	   Ci	  (us)	   M 

f1	  ∈	  FRC 300	   300	   75	   vl1 

f2	  ∈	  FTT 200	   200	   50	   vl2 

f3	  ∈	  FTT 300	   300	   50	   vl3 

§  IniBal	  TT	  schedule	  
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Mo,va,onal	  Example	  2	  	  

ES1 

ES2 

NS1 ES3 

vl3	  

vl1	  

vl2	  

period	  	  
(us)	  

deadline	  
(us)	   Ci	  (us)	   M 

f1	  ∈	  FRC 300	   300	   75	   vl1 

f2	  ∈	  FTT 200	   200	   50	   vl2 

f3	  ∈	  FTT 300	   300	   50	   vl3 

§ OpBmized	  TT	  schedule	  
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Op,miza,on	  Strategy	  

§ Tabu	  Search	  meta-‐heurisBc	  
§ Task	  mapping	  and	  parBBon	  slice	  opBmizaBon	  (TO)	  

§  Considering	  TT	  frame	  schedules	  fixed	  

§ TT	  frame	  schedules	  opBmizaBon	  (TM)	  
§  Considering	  the	  task	  mapping	  and	  parBBon	  slices	  fixed	  

§ Tabu	  Search	  
§ Minimizes	  the	  cost	  funcBon	  
§ Explores	  the	  soluBon	  space	  using	  design	  transformaBons	  
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Op,miza,on	  Strategy	  

§ Degree	  of	  schedulability	  
§ Captures	  the	  difference	  between	  the	  worst-‐case	  response	  Bme	  
and	  the	  deadline	  

§ Cost	  FuncBon	  

the task will take place online, based on the partition
scheme P loaded into the kernel and tO contains the time
needed to do a context switch to another partition. LS
also schedules the messages on the bus.

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm “Mixed-
Criticality Design Optimization” (MCDO) approach we
used 7 synthetic benchmarks and 3 real life case studies.
The MCDO algorithm was implemented in Java (JDK
1.6), running on SunFire v440 computers with Ultra-
SPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed MCDO in terms of its ability to
find schedulable implementations. Thus, we have used
3 synthetic benchmarks with 3 to 5 mixed-criticality
applications (with a total of 15 to 41 tasks). We have used
MCDO to implement these applications on architectures
with 2 to 5 processing elements. The execution times and
message lengths were assigned randomly within the 1 to
19 ms and 1 to 5 bytes ranges, respectively.

We were interested to compare the number of schedu-
lable implementations found by MCDO with two other
setups: (i) when the sharing of partitions by tasks of
different criticality levels is not allowed, but mapping and
partitioning optimization (MPO) is performed simultane-
ously. In the second setup, (ii) sharing is not allowed,
and in addition, mapping optimization (MO) is performed
separately from partitioning optimization (PO). We call
such an approach MO+PO.

MO+PO and MPO are based on the MCDO strategy
presented in Fig. 4, and use the same Tabu Search
for the optimization. The difference is in the types of
moves performed by TS: there are only mapping moves
for MO (without considering partitions), we use only
partition-related moves in PO, considering mapping fixed,
as determined by MO, and MPO does not allow re-
assignment moves that would lead to partition sharing
by mixed-criticality tasks. Also, MO, PO and MPO use a
slightly different cost function (compared to Eq. 1), where
we do not consider development costs (the term c2), which
are constant since we do not elevate tasks to higher SIL
levels:

Cost(⇥) =

⇢
c1 = ⇤Ai⇥� max(0,Ri �Di) i f c1 > 0
c2 = ⇤Ai⇥�(Ri �Di) i f c1 = 0

(2)
where now the term c2 is used when the applications are

schedulable and captures the “degree of schedulability” of
an implementation. To have a fair comparison, we have
used time limits corresponding to the size of the design
space. Thus, MO+PO has a time limit of 30 minutes,
MPO uses a time limit of 60, while MCDO runs for 480
minutes.

The three strategies, MO+PO, MPO and MCDO corre-
spond to Fig. 3b, Fig. 3c and Fig. 3d, respectively, in the
motivational example discussed in Section IV. The results
for the first set of experiments are presented in Table I
in rows 2-6. The number of schedulable applications,

resulted after implementing the system using MO+PO,
MPO and MCDO are reported in columns 6, 7 and 9,
respectively, in Table I.

As we can see from the comparison between MO+PO
and MPO, there is a significant improvements in the
number of schedulable applications if the optimization
of mapping is considered at the same time with the
optimization of partitioning. For example, for the second
benchmark with 4 applications mapped to 4 PEs, MO+PO
is unable to successfully schedule any of the applications.
MPO, which performs mapping and time optimization in
the same run, is able to schedule 3 out 4 applications.

If MPO produces a schedulable solution, i.e., the appli-
cations are schedulable without using sharing, we do not
have to run MCDO. This is indicated in the table using
a dash “–” in the MCDO columns. However, MPO is
not able to find schedulable implementations in the first
two cases. In such situations, using elevation to allow
partition sharing can find schedulable implementations in
all cases. There are situations where MCDO is able to
find schedulable implementations using partition sharing,
but without the need of elevating tasks (the tasks have
the same criticality level). Such a situation is in line 2
and in line 11 in the table, where the zero development
cost means that the solution was produced without using
elevation.

Once a schedulable implementation is found by using
elevation, the cost function from Eq. 1 will drive MCDO
to solutions that minimize the development cost. The
increase in development cost that we have to pay in order
to find schedulable implementations, compared to MPO
which does not perform SIL elevation, is reported in the
last column of Table I.

We have also compared MPO to MO+PO in terms of
the cost function. The percentage improvement in the cost
function, i.e., the “degree of schedulability” is reported in
column 8. An increase in the “degree of schedulability”,
in the case of a schedulable implementation, as is the
case for the third test case, means that it is possible to
implement the solution on a slower (cheaper) architecture.

In the second set of experiments, labeled “Set 2” in
Table I, we were interested to see how MCDO performs
compared to MO+PO and MPO as the utilization of the
system increases. Thus, we have mapped the number of
mixed-criticality applications from 3 to 6, but we have
used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications, MO+PO
is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to
more schedulable implementations. However, as the sys-
tem utilization increases, as is the case for the largest
benchmark in this set, where we used 6 applications on
4 PEs, only MCDO, which considers elevation to allow
partition sharing by tasks of mixed-criticality, is able to
provide schedulable solutions.

Finally, we have also used 3 real life benchmarks de-
rived from the Embedded Systems Synthesis Benchmarks
Suite (E3S) version 0.9 [10]. We have used the consumer-
cords, networking-cords and telecom-cords benchmarks.
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Op,miza,on	  Strategy:	  Design	  Transforma,ons	  

§ ParBBon	  slice	  moves	  
§  resize	  parBBon	  slice	  
§ swap	  two	  parBBon	  slices	  
§  join	  two	  parBBon	  slices	  
§ split	  parBBon	  slice	  into	  two	  

§ Task	  moves	  
§  re-‐assign	  task	  to	  another	  parBBon	  
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Op,miza,on	  Strategy:	  Design	  Transforma,ons	  
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Op,miza,on	  Strategy:	  Design	  Transforma,ons	  
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Op,miza,on	  Strategy:	  Design	  Transforma,ons	  
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Op,miza,on	  Strategy:	  Design	  Transforma,ons	  
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Op,miza,on	  Strategy:	  Design	  Transforma,ons	  
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Op,miza,on	  Strategy:	  Design	  Transforma,on	  

§ Task	  re-‐assignment	  move	  
§ To	  another	  parBBon	  of	  the	  
same	  applicaBon	  

	  § To	  a	  parBBon	  of	  another	  
applicaBon	  

§ To	  a	  newly	  created	  
parBBon	  

§ Empty	  parBBons	  are	  
deleted	  
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Op,miza,on	  Strategy:	  Design	  Transforma,ons	  

§ TT	  frame	  moves	  
§ advance	  frame	  transmission	  Bme	  
§ advance	  frame	  predecessors	  transmission	  Bme	  
§ postpone	  frame	  transmission	  Bme	  
§ postpone	  frame	  successors	  transmission	  Bme	  

§ RC	  frame	  moves	  
§  reserve	  space	  for	  RC	  frame	  
§  resize	  reserved	  space	  for	  RC	  frame	  
§  remove	  reserved	  space	  for	  RC	  frame	  
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Frame	  Representa,on	  for	  Moves	  

ES1 

ES2 

NS1 NS2 

ES3 

ES4 
vl1	  

f1,1	  
[ES1,	  NS1]	   f1,1	  

[NS1,	  NS2]	  

f1,1	  
[NS1,	  NS2]	  

f1,1	  
[NS1,	  NS2]	  
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Design	  transforma,ons:	  Postpone	  move	  
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Design	  transforma,ons:	  Advance	  move	  
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Design	  transforma,ons:	  Reserve	  space	  for	  RC	  
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Design	  transforma,ons:	  Resize	  RC	  reserved	  space	  
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RC	  Frame	  End-‐to-‐End	  Analysis	  

§ On	  a	  dataflow	  link,	  a	  RC	  frame	  can	  be	  delayed	  by:	  
§ scheduled	  TT	  frames	  
§ queued	  RC	  frames	  
§  technical	  latency	  
§ policy	  specific:	  

§ Bmely	  block	  	  	  
§ pre-‐empBon	  



35	  

RC	  Frame	  End-‐to-‐End	  Analysis	  

ES1 

NS2 

NS1 ES4 

vl3	  

vl2	  
vl1	  

NS3 

NS2 →  NS1 
f3,j 

0 100 200 300 400 500 600 

f4,1 NS3 →  NS1 

NS1 →  ES4 

f2,1 ES1 →  NS1 
f1,i 

f2,1 f4,1 f1,i f3,j 

C [NS1, ES4] 
f1 

QTT 

[NS1, ES4] QRC 
[NS1, ES4] 

QTL 
NS1 

R f1 

vl4	  

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M ( fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M ( fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-
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RC	  Frame	  End-‐to-‐End	  Analysis	  

§ Approaches	  for	  analysis	  of	  ARINC	  644p7	  network	  traffic:	  
§ Network	  Calculus,	  (Boyer,	  2008)	  
§ Finite	  State	  Machine,	  (Saha,	  2007)	  
§ Timed	  Automata,	  (Adnan,	  2010)	  
§ Trajectory	  Approach,	  (Bauer,	  2009)	  

§ We	  use	  the	  method	  proposed	  in	  (Steiner,	  2011)	  
§  it	  takes	  into	  account	  also	  the	  TT	  traffic	  
§  it	  is	  pessimisBc:	  

§  does	  not	  ignore	  frames	  that	  already	  delayed	  a	  RC	  frame	  	  
	  on	  a	  previous	  link	  

§  assumes	  	  uniformly	  distributed	  intervals	  of	  equal	  length	  	  
	  reserved	  for	  RC	  traffic	  
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Experimental	  Results:	  TO	  

§ Benchmarks	  
§ 5	  syntheBc	  	  
§ 2	  real	  life	  test	  cases	  from	  E3S	  

§ TO	  compared	  to:	  
§ Straighnorward	  SoluBon	  for	  Tasks	  (SST)	  

§  Simple	  parBBoning	  scheme,	  each	  applicaBon	  Ai	  is	  allocated	  a	  total	  Bme	  
proporBonal	  to	  the	  uBlizaBon	  of	  tasks	  of	  Ai	  on	  the	  processor	  they	  are	  
mapped	  to	  
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Experimental	  Results:	  TO	  

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d
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26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
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TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6



40	  

Experimental	  Results:	  TM	  

§ Benchmarks	  
§ 7	  syntheBc	  	  
§ 1	  real	  life	  test	  case	  based	  on	  the	  SAE	  AutomoBve	  benchmark	  

§ TM	  compared	  to:	  
§ Straighnorward	  SoluBon	  for	  Messages	  (SSM)	  

§  Builds	  TT	  schedules	  with	  the	  goal	  to	  opBmize	  the	  end-‐to-‐end	  response	  
Bme	  of	  the	  TT	  frames	  without	  considering	  the	  RC	  traffic	  
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Experimental	  Results:	  TM	  

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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Experimental	  Results:	  TM	  

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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Experimental	  Results:	  TM	  

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.
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[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.
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Conclusions	  

§ ApplicaBons	  of	  different	  criBcality	  levels	  can	  be	  integrated	  onto	  
the	  same	  architecture	  only	  if	  there	  is	  enough	  separaBon:	  
§  SeparaBon	  at	  PE-‐level	  achieved	  with	  IMA.	  
§  SeparaBon	  at	  network-‐level	  using	  TTEthernet.	  

§ We	  proposed	  a	  Tabu	  Search	  based	  opBmizaBon	  of	  task	  mapping	  
and	  allocaBon	  to	  parBBons,	  and	  of	  Bme	  parBBons.	  

§ Only	  by	  opBmizing	  the	  implementaBon	  of	  the	  applicaBons,	  taking	  
into	  account	  the	  parBculariBes	  of	  IMA	  and	  TTEthernet,	  are	  we	  
able	  to	  support	  the	  designer	  in	  obtaining	  schedulable	  
implementaBons.	  	  
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