
Analysis	 and	 Op,miza,on	 of	 	
Mixed-‐Cri,cality	 Applica,ons	 on	 	
Par,,oned	 Distributed	 Architectures	

Domițian	 Tămaș-‐Selicean,	 Sorin	 Ovidiu	 Marinescu	 	 and	 Paul	 Pop	
Technical	 University	 of	 Denmark	

2	

Outline 	 	

§ MoBvaBon	

§ SeparaBon	 of	 mixed-‐criBcality	 applicaBons	
§ At	 processing	 element	 level	
§ At	 communicaBon	 level	

§ Problem	 formulaBon	 and	 example	

§ OpBmizaBon	 strategy	

§ Experimental	 results	

§ Conclusions	

3	

Mo,va,on	
§ Safety	 is	 the	 property	 of	 a	 system	 that	 will	 not	 endanger	 human	
life	 or	 the	 environment	

§ A	 safety-‐related	 system	 needs	 to	 be	 cer,fied	
	
§ A	 Safety	 Integrity	 Level	 (SIL)	 is	 assigned	 to	 each	 safety	 related	
funcBon,	 depending	 on	 the	 required	 level	 of	 risk	 reducBon	

§ There	 are	 4	 SILs:	
§ SIL4	 (most	 criBcal)	 	
§ SIL1	 (least	 criBcal)	
§ SIL0	 (non-‐criBcal)	 –	 not	 covered	 by	 standards	

§ SILs	 dictate	 the	 development	 process	 and	 cerBficaBon	 procedures	 	

4	

Federated	 Architecture	

Mo,va,on	
§  Real	 Bme	 applicaBons	 implemented	
using	 distributed	 systems	

PE	
ApplicaBon	 A	 1	

ApplicaBon	 A	 2	

ApplicaBon	 A	 3	

§ Mixed-‐criBcality	 applicaBons	 share	 the	
same	 architecture	

SIL3

SIL3

SIL4

SIL4

SIL4 SIL1

SIL2

SIL1

SoluBon:	 parBBoned	 architecture	

Integrated	 Architecture	

5	

Separa,on	 at	 PE-‐level	

§ ParBBon	 =	 virtual	 dedicated	 machine	
	
§ ParBBoned	 architecture	

§ SpaBal	 parBBoning	
§  protects	 one	 applicaBon’s	 memory	
and	 access	 to	 resources	 from	 another	
applicaBon	

§ Temporal	 parBBoning	
§  parBBons	 the	 CPU	 Bme	 among	
applicaBons	

6	

Separa,on	 at	 PE-‐level	

§ Temporal	 parBBoning	
§ StaBc	 parBBon	 table	

§  Repeated	 with	 a	 period	 MF	
§  ParBBon	 switch	 overhead	
§  Each	 parBBon	 can	 have	 its	 own	
scheduling	 policy	

§  A	 parBBon	 has	 a	 certain	 SIL	

ParBBon	 ParBBon	 	
slice	

Major	 Frame	

PE	 1	 PE	 2	

PE	 3	

PE	 1	

PE	 2	

PE	 3	

7	

Separa,on	 at	 Network-‐level	

ES1

ES2

NS1 NS2

ES3

ES4

§  Full-‐Duplex	 Ethernet-‐based	 data	 network	 for	 safety-‐criBcal	 applicaBons	
§  Compliant	 with	 ARINC	 664p7	 “Aircraa	 Data	 Network”	

End	 System	

Network	 Switch	

8	

Separa,on	 at	 Network-‐level	 	

NS1 NS2

vl2	

vl1	

ES1
τ1

ES2
τ4

ES3
τ2 τ5

ES4
τ3

§  Highly	 criBcal	 applicaBon	 A	 1:	 τ1, τ2 and	 τ3	

§  τ1 sends	 message	 m1	 to	 τ2 and	 τ3	

§  Non-‐criBcal	 applicaBon	 A	 2:	 τ4 and	 τ5	

§  τ4 sends	 message	 m2	 to	 τ5	

virtual	 link	

9	

Separa,on	 at	 Network-‐level	

NS1 NS2

dp1	

vl1	
dp2	

l1	
l2	

l3	

l4	

ES1
τ1

ES2
τ4

ES3
τ2 τ5

ES4
τ3 dataflow	

path	

§  Highly	 criBcal	 applicaBon	 A	 1:	 τ1, τ2 and	 τ3	

§  τ1 sends	 message	 m1	 to	 τ2 and	 τ3	

§  Non-‐criBcal	 applicaBon	 A	 2:	 τ4 and	 τ5	

§  τ4 sends	 message	 m2	 to	 τ5	

dataflow	 link	

10	

TTEthernet	

§ Traffic	 classes	
§  Time	 Triggered	 (TT)	

§  based	 on	 staBc	 schedule	 tables	
§  Rate	 Constrained	 (RC)	

§  determinisBc	 unsynchronized	 communicaBon	
§  ARINC	 664p7	 traffic	

§  Best	 Effort	 (BE)	
§  no	 Bming	 guarantees	 provided	
	

11	

Applica,on	 Model 	 	

§ SCS	 apps	 transmit	 TT	 messages	
§ FPS	 apps	 transmit	 RC	 messages	

12	

Problem	 formula,on	 	
§ Given	

§  A	 set	 of	 applicaBons	
§  The	 criBcality	 level	 (or	 SIL)	 of	 each	 task	
§  A	 set	 of	 N	 processing	 elements	 (PEs)	 and	 topology	 of	 the	 network	
§  The	 set	 of	 TT	 and	 RC	 frames	
§  The	 set	 of	 virtual	 links	
§  The	 size	 of	 the	 Major	 Frame	 and	 of	 the	 ApplicaBon	 Cycle	

§ Determine	
§  The	 mapping	 of	 tasks	 to	 PEs	
§  The	 sequence	 and	 length	 of	 parBBon	 slices	 on	 each	 processor	
§  The	 assignment	 of	 tasks	 to	 parBBons	
§  The	 schedule	 for	 all	 the	 tasks	 and	 TT	 frames	 in	 the	 system	

§ Such	 that	
§  All	 applicaBons	 meet	 their	 deadline	
§  The	 response	 Bmes	 of	 the	 FPS	 tasks	 and	 RC	 frames	 is	 minimized	

13	

Mo,va,onal	 Example	 1	
§ Mapping	 and	 parBBoning	 opBmizaBon	
	

14	

Mo,va,onal	 Example	 1	

15	

Mo,va,onal	 Example	 1	

16	

Mo,va,onal	 Example	 2	

ES1

ES2

NS1 ES3

vl3	

vl1	

vl2	

period	 (us)	 deadline	 (us)	 Ci	 (us)	 M

f1	 ∈	 FRC 300	 300	 75	 vl1

f2	 ∈	 FTT 200	 200	 50	 vl2

f3	 ∈	 FTT 300	 300	 50	 vl3

§  	 OpBmizaBon	 of	 TT	 message	 schedules	
	

17	

Mo,va,onal	 Example	 2	 	

ES1

ES2

NS1 ES3

vl3	

vl1	

vl2	

period	 	
(us)	

deadline	
(us)	 Ci	 (us)	 M

f1	 ∈	 FRC 300	 300	 75	 vl1

f2	 ∈	 FTT 200	 200	 50	 vl2

f3	 ∈	 FTT 300	 300	 50	 vl3

§  IniBal	 TT	 schedule	

18	

Mo,va,onal	 Example	 2	 	

ES1

ES2

NS1 ES3

vl3	

vl1	

vl2	

period	 	
(us)	

deadline	
(us)	 Ci	 (us)	 M

f1	 ∈	 FRC 300	 300	 75	 vl1

f2	 ∈	 FTT 200	 200	 50	 vl2

f3	 ∈	 FTT 300	 300	 50	 vl3

§ OpBmized	 TT	 schedule	

19	

Op,miza,on	 Strategy	

§ Tabu	 Search	 meta-‐heurisBc	
§ Task	 mapping	 and	 parBBon	 slice	 opBmizaBon	 (TO)	

§  Considering	 TT	 frame	 schedules	 fixed	

§ TT	 frame	 schedules	 opBmizaBon	 (TM)	
§  Considering	 the	 task	 mapping	 and	 parBBon	 slices	 fixed	

§ Tabu	 Search	
§ Minimizes	 the	 cost	 funcBon	
§ Explores	 the	 soluBon	 space	 using	 design	 transformaBons	

20	

Op,miza,on	 Strategy	

§ Degree	 of	 schedulability	
§ Captures	 the	 difference	 between	 the	 worst-‐case	 response	 Bme	
and	 the	 deadline	

§ Cost	 FuncBon	

the task will take place online, based on the partition
scheme P loaded into the kernel and tO contains the time
needed to do a context switch to another partition. LS
also schedules the messages on the bus.

VI. EXPERIMENTAL EVALUATION

For the evaluation of our proposed algorithm “Mixed-
Criticality Design Optimization” (MCDO) approach we
used 7 synthetic benchmarks and 3 real life case studies.
The MCDO algorithm was implemented in Java (JDK
1.6), running on SunFire v440 computers with Ultra-
SPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

In the first set of experiments we were interested to
evaluate the proposed MCDO in terms of its ability to
find schedulable implementations. Thus, we have used
3 synthetic benchmarks with 3 to 5 mixed-criticality
applications (with a total of 15 to 41 tasks). We have used
MCDO to implement these applications on architectures
with 2 to 5 processing elements. The execution times and
message lengths were assigned randomly within the 1 to
19 ms and 1 to 5 bytes ranges, respectively.

We were interested to compare the number of schedu-
lable implementations found by MCDO with two other
setups: (i) when the sharing of partitions by tasks of
different criticality levels is not allowed, but mapping and
partitioning optimization (MPO) is performed simultane-
ously. In the second setup, (ii) sharing is not allowed,
and in addition, mapping optimization (MO) is performed
separately from partitioning optimization (PO). We call
such an approach MO+PO.

MO+PO and MPO are based on the MCDO strategy
presented in Fig. 4, and use the same Tabu Search
for the optimization. The difference is in the types of
moves performed by TS: there are only mapping moves
for MO (without considering partitions), we use only
partition-related moves in PO, considering mapping fixed,
as determined by MO, and MPO does not allow re-
assignment moves that would lead to partition sharing
by mixed-criticality tasks. Also, MO, PO and MPO use a
slightly different cost function (compared to Eq. 1), where
we do not consider development costs (the term c2), which
are constant since we do not elevate tasks to higher SIL
levels:

Cost(⇥) =

⇢
c1 = ⇤Ai⇥� max(0,Ri �Di) i f c1 > 0
c2 = ⇤Ai⇥�(Ri �Di) i f c1 = 0

(2)
where now the term c2 is used when the applications are

schedulable and captures the “degree of schedulability” of
an implementation. To have a fair comparison, we have
used time limits corresponding to the size of the design
space. Thus, MO+PO has a time limit of 30 minutes,
MPO uses a time limit of 60, while MCDO runs for 480
minutes.

The three strategies, MO+PO, MPO and MCDO corre-
spond to Fig. 3b, Fig. 3c and Fig. 3d, respectively, in the
motivational example discussed in Section IV. The results
for the first set of experiments are presented in Table I
in rows 2-6. The number of schedulable applications,

resulted after implementing the system using MO+PO,
MPO and MCDO are reported in columns 6, 7 and 9,
respectively, in Table I.

As we can see from the comparison between MO+PO
and MPO, there is a significant improvements in the
number of schedulable applications if the optimization
of mapping is considered at the same time with the
optimization of partitioning. For example, for the second
benchmark with 4 applications mapped to 4 PEs, MO+PO
is unable to successfully schedule any of the applications.
MPO, which performs mapping and time optimization in
the same run, is able to schedule 3 out 4 applications.

If MPO produces a schedulable solution, i.e., the appli-
cations are schedulable without using sharing, we do not
have to run MCDO. This is indicated in the table using
a dash “–” in the MCDO columns. However, MPO is
not able to find schedulable implementations in the first
two cases. In such situations, using elevation to allow
partition sharing can find schedulable implementations in
all cases. There are situations where MCDO is able to
find schedulable implementations using partition sharing,
but without the need of elevating tasks (the tasks have
the same criticality level). Such a situation is in line 2
and in line 11 in the table, where the zero development
cost means that the solution was produced without using
elevation.

Once a schedulable implementation is found by using
elevation, the cost function from Eq. 1 will drive MCDO
to solutions that minimize the development cost. The
increase in development cost that we have to pay in order
to find schedulable implementations, compared to MPO
which does not perform SIL elevation, is reported in the
last column of Table I.

We have also compared MPO to MO+PO in terms of
the cost function. The percentage improvement in the cost
function, i.e., the “degree of schedulability” is reported in
column 8. An increase in the “degree of schedulability”,
in the case of a schedulable implementation, as is the
case for the third test case, means that it is possible to
implement the solution on a slower (cheaper) architecture.

In the second set of experiments, labeled “Set 2” in
Table I, we were interested to see how MCDO performs
compared to MO+PO and MPO as the utilization of the
system increases. Thus, we have mapped the number of
mixed-criticality applications from 3 to 6, but we have
used the same architecture of 4 PEs. As we can see, for
the smaller benchmarks of 3 and 4 applications, MO+PO
is able to find schedulable implementations. Optimizing
the mapping and time partitions using MPO leads to
more schedulable implementations. However, as the sys-
tem utilization increases, as is the case for the largest
benchmark in this set, where we used 6 applications on
4 PEs, only MCDO, which considers elevation to allow
partition sharing by tasks of mixed-criticality, is able to
provide schedulable solutions.

Finally, we have also used 3 real life benchmarks de-
rived from the Embedded Systems Synthesis Benchmarks
Suite (E3S) version 0.9 [10]. We have used the consumer-
cords, networking-cords and telecom-cords benchmarks.

21	

Op,miza,on	 Strategy:	 Design	 Transforma,ons	

§ ParBBon	 slice	 moves	
§  resize	 parBBon	 slice	
§ swap	 two	 parBBon	 slices	
§  join	 two	 parBBon	 slices	
§ split	 parBBon	 slice	 into	 two	

§ Task	 moves	
§  re-‐assign	 task	 to	 another	 parBBon	

22	

Op,miza,on	 Strategy:	 Design	 Transforma,ons	

23	

Op,miza,on	 Strategy:	 Design	 Transforma,ons	

24	

Op,miza,on	 Strategy:	 Design	 Transforma,ons	

25	

Op,miza,on	 Strategy:	 Design	 Transforma,ons	

26	

Op,miza,on	 Strategy:	 Design	 Transforma,ons	

27	

Op,miza,on	 Strategy:	 Design	 Transforma,on	

§ Task	 re-‐assignment	 move	
§ To	 another	 parBBon	 of	 the	
same	 applicaBon	

	 § To	 a	 parBBon	 of	 another	
applicaBon	

§ To	 a	 newly	 created	
parBBon	

§ Empty	 parBBons	 are	
deleted	

28	

Op,miza,on	 Strategy:	 Design	 Transforma,ons	

§ TT	 frame	 moves	
§ advance	 frame	 transmission	 Bme	
§ advance	 frame	 predecessors	 transmission	 Bme	
§ postpone	 frame	 transmission	 Bme	
§ postpone	 frame	 successors	 transmission	 Bme	

§ RC	 frame	 moves	
§  reserve	 space	 for	 RC	 frame	
§  resize	 reserved	 space	 for	 RC	 frame	
§  remove	 reserved	 space	 for	 RC	 frame	

29	

Frame	 Representa,on	 for	 Moves	

ES1

ES2

NS1 NS2

ES3

ES4
vl1	

f1,1	
[ES1,	 NS1]	 f1,1	

[NS1,	 NS2]	

f1,1	
[NS1,	 NS2]	

f1,1	
[NS1,	 NS2]	

30	

Design	 transforma,ons:	 Postpone	 move	

31	

Design	 transforma,ons:	 Advance	 move	

32	

Design	 transforma,ons:	 Reserve	 space	 for	 RC	

33	

Design	 transforma,ons:	 Resize	 RC	 reserved	 space	

34	

RC	 Frame	 End-‐to-‐End	 Analysis	

§ On	 a	 dataflow	 link,	 a	 RC	 frame	 can	 be	 delayed	 by:	
§ scheduled	 TT	 frames	
§ queued	 RC	 frames	
§  technical	 latency	
§ policy	 specific:	

§ Bmely	 block	 	 	
§ pre-‐empBon	

35	

RC	 Frame	 End-‐to-‐End	 Analysis	

ES1

NS2

NS1 ES4

vl3	

vl2	
vl1	

NS3

NS2 → NS1
f3,j

0 100 200 300 400 500 600

f4,1 NS3 → NS1

NS1 → ES4

f2,1 ES1 → NS1
f1,i

f2,1 f4,1 f1,i f3,j

C [NS1, ES4]
f1

QTT

[NS1, ES4] QRC
[NS1, ES4]

QTL
NS1

R f1

vl4	

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M (fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-

(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M (fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-

36	

RC	 Frame	 End-‐to-‐End	 Analysis	

§ Approaches	 for	 analysis	 of	 ARINC	 644p7	 network	 traffic:	
§ Network	 Calculus,	 (Boyer,	 2008)	
§ Finite	 State	 Machine,	 (Saha,	 2007)	
§ Timed	 Automata,	 (Adnan,	 2010)	
§ Trajectory	 Approach,	 (Bauer,	 2009)	

§ We	 use	 the	 method	 proposed	 in	 (Steiner,	 2011)	
§  it	 takes	 into	 account	 also	 the	 TT	 traffic	
§  it	 is	 pessimisBc:	

§  does	 not	 ignore	 frames	 that	 already	 delayed	 a	 RC	 frame	 	
	 on	 a	 previous	 link	

§  assumes	 	 uniformly	 distributed	 intervals	 of	 equal	 length	 	
	 reserved	 for	 RC	 traffic	

37	

Experimental	 Results:	 TO	

§ Benchmarks	
§ 5	 syntheBc	 	
§ 2	 real	 life	 test	 cases	 from	 E3S	

§ TO	 compared	 to:	
§ Straighnorward	 SoluBon	 for	 Tasks	 (SST)	

§  Simple	 parBBoning	 scheme,	 each	 applicaBon	 Ai	 is	 allocated	 a	 total	 Bme	
proporBonal	 to	 the	 uBlizaBon	 of	 tasks	 of	 Ai	 on	 the	 processor	 they	 are	
mapped	 to	

38	

Experimental	 Results:	 TO	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

39	

Experimental	 Results:	 TO	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

40	

Experimental	 Results:	 TM	

§ Benchmarks	
§ 7	 syntheBc	 	
§ 1	 real	 life	 test	 case	 based	 on	 the	 SAE	 AutomoBve	 benchmark	

§ TM	 compared	 to:	
§ Straighnorward	 SoluBon	 for	 Messages	 (SSM)	

§  Builds	 TT	 schedules	 with	 the	 goal	 to	 opBmize	 the	 end-‐to-‐end	 response	
Bme	 of	 the	 TT	 frames	 without	 considering	 the	 RC	 traffic	

41	

Experimental	 Results:	 TM	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

42	

Experimental	 Results:	 TM	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

43	

Experimental	 Results:	 TM	

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in d

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame Dcost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, Dcost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References
[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

44	

Conclusions	

§ ApplicaBons	 of	 different	 criBcality	 levels	 can	 be	 integrated	 onto	
the	 same	 architecture	 only	 if	 there	 is	 enough	 separaBon:	
§  SeparaBon	 at	 PE-‐level	 achieved	 with	 IMA.	
§  SeparaBon	 at	 network-‐level	 using	 TTEthernet.	

§ We	 proposed	 a	 Tabu	 Search	 based	 opBmizaBon	 of	 task	 mapping	
and	 allocaBon	 to	 parBBons,	 and	 of	 Bme	 parBBons.	

§ Only	 by	 opBmizing	 the	 implementaBon	 of	 the	 applicaBons,	 taking	
into	 account	 the	 parBculariBes	 of	 IMA	 and	 TTEthernet,	 are	 we	
able	 to	 support	 the	 designer	 in	 obtaining	 schedulable	
implementaBons.	 	

45	

