
Synthesis of Communication Schedules for 
TTEthernet-based Mixed-Criticality Systems 

Acknowledgements This work has been funded by the Advanced Research & Technology for Embedded Intelligence and Systems (ARTEMIS) within the project 
”RECOMP”, support code 01IS1001A, agreement no. 100202.  

Domițian Tămaș-Selicean, Paul Pop, Wilfried Steiner 

4. Schedule Optimization Tabu Search 
(TS) based optimization strategy.  

•  The cost function:  

1.  Introduction  
•  Safety-critical real-time applications, 

implemented using distributed 
architectures. 

•  Separation is required to implement 
applications of different criticality levels on 
the same architecture. 

Figure 2. Example of a TTEthernet network, composed of 4 ESes, ES1 to ES4, and 2 
NSes, NS1 and NS2. Each ES consists of a PE containing a CPU, RAM and non-
volatile memory, and a network interface card (NIC).  

Figure  5. Worst case scenario for RC frame f1 (see Fig. 2 for system details):  initial TT schedule 
(upper figure) and optimized TT schedule (lower figure). In this example the network implements the 
timely block integration algorithm, thus a RC frame is blocked from transmission on a link if a TT frame 
is scheduled to be sent before the RC frame would complete its transmission. The white boxes 
represent these ”blocked” time intervals.  

2. TTEthernet is deterministic, synchronized 
and congestion-free, Ethernet based and 
ARINC 664p7 compliant.  

•  Separation achieved by using virtual links.   
•  Provides three traffic classes:  

•  Time Triggered (TT), sent based on 
static schedule tables and have the 
highest priority;  

•  Rate Constrained (RC), transmitted if 
there are no TT messages to be sent; 

•  Best Effort (BE), with the lowest priority.   

3. Problem Formulation   
•  Find the set of TT schedules  
•  such that  

•  the deadlines for the given TT and RC 
frames are satisfied and  

•  the end-to-end delay of RC frames is 
minimized.  

Figure 4. Example system model. Example architecture model (upper figure) and example application 
model (lower figure).  FTT is the set of TT frames, while FRC is the set of RC frames.  

Figure 3: Multiplexing two RC frames

is the case of fy in Fig. 3(c), which is delayed to allow for the
transmission of fx. Thus, the fy,1. jitter jitter for fy,1 equals to the
transmission duration of fx.

RC traffic also has to be integrated with TT traffic, which has
higher priority. Thus, RC frames are transmitted only when there
is no TT traffic on the dataflow link. Hence, for our example on
ES1, the T TS task on ES1 will transmit frame f1 (5) to NS1 on
the dataflow link [ES1,NS1] only when there is no TT traffic (6).
With integration, contention situations can occur when a TT frame
is scheduled for transmission, but an RC frame is already transmit-
ting.

There are three approaches in TTEthernet to handle such situa-
tions [5, 36]: (i) shuffling, (ii) pre-emption and (iii) timely block.
(i) With shuffling, the higher priority TT frame is delayed until the
RC frame finishes the transmission. Thus, in the worst-case sce-
nario, the TT frame will have to wait for the time needed to trans-
mit the largest Ethernet frame, which is 1542 Bytes. In the case (ii)
of timely block, the RC frame is blocked (postponed) from trans-
mission on a dataflow link if a TT frame is scheduled to be sent
before the RC frame would complete its transmission. In the case
(iii) of pre-emption, the RC frame is pre-empted, and its transmis-
sion is restarted after the TT frame finished transmitting. Note that,
as discussed in the previous subsection, the integration approaches
have an impact on the receiving window of a TT frame, which has
to account for the delays due to shuffling, for example.

When the RC frame f1 arrives at NS1, the Filtering Unit task
(7) will check its validity and integrity. As mentioned, TTEthernet
provides services to separate the mixed-criticality frames, such that
a faulty transmission of a lower-criticality frame will not impact
negatively a higher-criticality frame. Fault-containment at the level
of RC virtual links is provided by the Traffic Policing (TP) task,
see NS1 in Fig. 2. TP implements an algorithm known as leaky
bucket [3, 5], which checks the time interval between two consec-
utive instances on the same virtual link. If this interval is shorter
than the specified BAG, the frame instance is dropped. Thus, the
TP function prevents a faulty ES to send faulty RC frames (more
often than allowed) and thus to disturb the network.

After passing the checks of the TP task (8), f1 is copied to the
outgoing queue QT x (9). In this paper we assume that all the RC
frames have the same priority, thus the T TS (10) will send the RC
frames in QT x in a FIFO order, but only when there is no scheduled
TT traffic. At the receiving ES, after passing the FU (11) checks,
f1 is copied in the receiving Q2,Rx queue (12). Finally, when τ3 is
activated, it will take f1 (13) from this queue.

6. MOTIVATIONAL EXAMPLE
Let us illustrate the schedule synthesis problem presented in Sec-

tion 4 using the setup from Fig. 4, where we have an architecture
model for a cluster composed of three ESes, ES1 to ES3 and a net-
work switch NS1 (see Fig. 4a) and an application model with three
frames, see the table in Fig. 4b. We have three virtual links, vl1, vl2

and vl3 one for each frame, f1, f2 and f3, respectively, as captured
by the function M in the table. The periods fi.period, deadlines
fi.deadline and transmission times Ci on a dataflow link are given
in the table for each frame. The dataflow links have the same speed,
hence the Ci of a frame fi is the same for each link. For this ex-
ample we consider that the RC and TT traffic are integrated using
a timely block policy, i.e., an RC frame will be delayed if it could
block a scheduled TT frame.

Our problem is to determine the TT schedules S such that all
the TT and RC frames are schedulable. The schedulability of a TT
frame fi is easy to determine: we just have to check the sched-
ules S to see if the times are synthesized such that the TT frame
fi is received before its deadline fi.deadline. To determine the
schedulability of an RC frame f j we have to compute its worst-
case end-to-end delay, from the moment it is sent to the moment it
is received. We denote this worst-case delay with R f j

. Section 7.2
will present a schedulability analysis technique for determining the
worst-case end-to-end delay of an RC frame, which can then be
compared to the deadline f j.deadline to determine if the RC frame
f j is schedulable.

Fig. 5 presents two possible solutions for synthesizing the TT
schedules S . In both cases, Fig. 5a and 5b, instead of presenting
the actual schedule tables, we show a Gantt chart, which shows on a
timeline from 0 to 600 µs what happens on the three dataflow links,
[ES1,NS1], [ES2,NS1] and [NS1,ES3]. For the TT frames f2 and
f3 the Gantt chart captures their sending times (the left edge of the
rectangle) and transmission duration (the length of the rectangle).

Since the transmission of RC frames is not synchronized with
the TT frames, there are many scenarios that can be depicted for f1,
depending on when f1 is sent in relation to the schedule tables. Be-
cause we are interested in the schedulability of RC frames, for the
RC frame f1 we show in both cases (a) and (b) in Fig. 5 the worst-
case scenario, i.e., the situation which has generated the largest
(worst-case) end-to-end delay. The two TT frames are schedula-
ble in both cases. In Fig. 5a the TT schedules are constructed such
that the end-to-end delay of TT frames is minimized, i.e., the TT
frames arrive at their destination as soon as possible. In this case,
the worst-case end-to-end delay of the RC frame f1, namely R f1

, is
470 µs, which is greater than its deadline of 300 µs, hence f1 is not
schedulable. This worst-case for f1 happens for the first frame in-
stance f1,1, see Fig. 5a, when f1,1 happens to be sent by ES1 at 105
µs. In this case, as the network implements the timely block integra-
tion algorithm, the frame cannot be forwarded by NS1 to ES3 until
there is a big enough time interval to transmit the frame without

(a) Example architecture model

period (µs) deadline (µs) Ci (µs) M
f1 ∈ F RC 300 300 75 vl1
f2 ∈ F T T 200 200 50 vl2
f3 ∈ F T T 300 300 50 vl3

(b) Example application model

Figure 4: Example system model

Set Test case ES NS Messages
Frame Load ∆cost

instances [%] [%]

1

11 13 4 80 12593

50

2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904

70
9.17

22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3

31

25 6

76 1387 40 37.97
32 88 1787 50 24.44
33 115 2503 60 40.47
34 179 2523 70 20.61
35 155 2960 80 32.10

4

41

35 8

65 1976 40 38.75
42 103 2285 50 20.06
43 89 2801 60 12.73
44 176 3856 70 12.75
45 135 3490 80 20.23

5 automotive 15 3 170 38305 80 50.88

Table 1: Experimental results

net analysis from [35], which shows how to consider TT messages.
In our future work, we plan to extend the Trajectory Approach [12]
to consider TT messages, with the aim to reduce the pessimism of
the analysis from [35]. However, note that the analysis used for RC
frames is orthogonal to our optimization problem.

8. EXPERIMENTAL EVALUATION
For the evaluation of our proposed optimization approach, “TTEth-

ernet Schedules Optimization” (TTESO), we used 17 synthetic bench-
marks and one real-life case study. The TTESO algorithm was im-
plemented in Java (JDK 1.6), running on SunFire v440 computers
with UltraSPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

The results are presented in Table 1. For the synthetic bench-
marks, we have used 6 network topologies, and we have randomly
generated the parameters for the frames, taking into account the
details of the TTEthernet protocol. All the dataflow links have a
transmission speed of 100 Mbps. In columns 3–7, we have the
details of each benchmark, the number of ESes, NSes, number of
messages, the number of frame instances and the load on the net-
work, respectively. The load within an application cycle Tcycle is
calculated as the ratio of the sum of the sizes of all frame instances
divided by the network speed (in our case 100 Mbps).

For all experiments, we have compared TTESO with a baseline
solution, namely the Straightforward Solution (SS), which builds
the TT schedules with the goal of minimizing the end-to-end re-
sponse time of the TT frames without using the analysis of RC
traffic. The comparison between SS and TTESO, ∆cost , is shown in
the last column in the table as a percentage improvement of TTESO
over SS, in terms of the cost function (Eq. 1).

In the first two sets of experiments, labeled “Set 1” and “Set 2”
in Table 1, we were interested to evaluate the quality of the results
obtained with TTESO as the size of the system increases. Thus,
we have used 7 synthetic benchmarks, with the number of network
nodes ranging between 16 and 55 nodes. The first set of 4 bench-
marks have a load of 50%, and the second set of benchmarks have
a load of 70%. As we can see, TTESO is able to significantly im-
prove the cost function over SS, even as the size of the system in-
creases. We used a time limit of 45 minutes for the first set and 90
minutes for the second set.

In the third sets of experiments, labeled “Set 3” were interested
on how TTESO performs as the load of the network increases from
40% to 80%. As we can see, TTESO is able to significantly im-
prove on the the solution provided by SS. These results were ob-

tained using a time limit of 30, 45, 70, 90 and 120 minutes for
the test cases with a load of 40%, 50%, 60%, 70% and 80%, re-
spectively. A similar evaluation was performed in the case of ex-
perimental “Set 4”, with the difference that we considered a larger
architecture.

Finally, we used one real-life benchmark derived from [24], based
on the SAE automotive communication benchmark [1]. In this
benchmark we have 18 network nodes (ESes and NSes), and 83
frames (with the parameters generated based on the messages pre-
sented in [24]). Table 1 contains the results for this benchmark—
the last line labeled with “Set 5”. The results obtained for the real-
life benchmark confirms the results of the synthetic benchmarks.

9. CONCLUSIONS
In this paper we have addressed the optimization of the TTEth-

ernet protocol. TTEthernet is very suitable for mixed-criticality
systems, both in the temporal and safety domain. In the tempo-
ral domain, TTEthernet offers three types of traffic classes, Time-
Triggered, Rate Constrained and Best Effort. In the safety domain,
the protocol offers separation between mixed-criticality frames us-
ing the concept of virtual links, and protocol-level specialized de-
pendability services.

We have considered mixed-criticality hard real-time applications
implemented on distributed heterogenous architectures. Given the
sets of TT and RC frames and the topology of the virtual links to
which they are assigned, we have proposed a Tabu Search optimiza-
tion strategy for the synthesis of the TT schedules. The synthesis is
performed such that the frames are schedulable, and the degree of
schedulability is improved. The results on several synthetic bench-
marks and a real-life case study show that through the careful op-
timization of TT static schedules, significant improvements can be
obtained.

10. ACKNOWLEDGEMENTS
This work has been funded by the Advanced Research & Tech-

nology for Embedded Intelligence and Systems (ARTEMIS) within
the project ‘RECOMP’, support code 01IS10001A, agreement no.
100202.

11. REFERENCES

[1] SAE Technical Report J2056/1. Technical report, SAE
International.

[2] ISO 11898: Road Vehicles – Controller Area Network
(CAN). International Organization for Standardization (ISO),
Geneva, Switzerland, 2003.

[3] ARINC 664P7: Aircraft Data Network, Part 7, Avionics
Full-Duplex Switched Ethernet Network. ARINC
(Aeronautical Radio, Inc), 2009.

[4] ISO 10681: Road vehicles – Communication on FlexRay.
International Organization for Standardization (ISO),
Geneva, Switzerland, 2010.

[5] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[6] M. Adnan, J.-L. Scharbarg, J. Ermont, and C. Fraboul.

Model for worst case delay analysis of an AFDX network
using timed automata. In Proceedings of the Conference on
Emerging Technologies and Factory Automation, pages 1 –4,
2010.

[7] N. Audsley, K. Tindell, and A. Burns. The end of the line for
static cyclic scheduling. In Proceedings of Euromicro
Workshop on Real-Time Systems, pages 36–41, 1993.

[8] S. Baruah and G. Fohler. Certification-Cognizant
Time-Triggered Scheduling of Mixed-Criticality Systems.

Figure  6. Experimental evaluation results. The last column presents the comparison between the 
proposed strategy and the baseline solution, as a percentage improvement in terms of the cost 
function (see Eq. 1).   

(a) Initial TT schedule

(b) Optimized TT schedule

Figure 5: Worst-case scenario for RC frame f1

disturbing the scheduled TT frames. We denote these “blocked”
time intervals with hatched boxes. The first big enough interval
starts only at time 500, right after f2,3 is received by ES3, which is
too late.

However, if we instead schedule the TT frame f3 such that its
second instance f3,2 will be sent by ES2 to NS1 at 350 µs, the worst
case end-to-end delay for f1 is reduced to 275, hence f1 is schedu-
lable. Such a solution is depicted in Fig. 5b, where we also depict
the worst-case scenario for f1.

This example shows that by considering the RC traffic when
scheduling the TT frames, the impact of the TT schedule on the
latency of the RC frames can be greatly reduced.

7. SCHEDULE OPTIMIZATION
The problem presented in Section 4 is NP-complete [38]. In or-

der to solve this problem, we will use the “TTEthernet Schedule
Optimization” (TTESO) strategy from Fig. 7. TTESO takes as in-
put the topology of the network G , the set of TT and RC frames
F T T ∪F RC (including the size, period/rate and deadline), the set
of virtual links V L and the mapping of frames to virtual links M ,
and returns the schedules S for the TT frames.

Our synthesis strategy uses a tree model to represent each frame
fi. Each frame fi is assigned to a virtual link vli. A virtual link
is a tree structure, where the sender is the root and the receivers
are the leafs. In the case of a virtual link, the ESes and NSes are
the nodes, and the dataflow links are the edges of the tree. How-
ever, in our tree model of a frame, the dataflow links are the nodes
and the edges are the precedence constraints. A periodic frame fi
has several frame instances. We denote with fi,x the xth instance

of frame fi, and with f
[ν j ,νk]
i,x the instance sent on the dataflow link

[ν j,νk]. Fig. 6 presents the tree model of a frame instance f1,1
transmitted on virtual link vl1, from ES1 to ES3 and ES4 consid-

Figure 6: Representation of a frame as a tree

ering the topology from Fig. 1. Naturally, frame instance f1,1 on
dataflow link [NS2,ES3] cannot be sent before it is transmitted on
[NS1,NS2] and received in NS2. Such a precedence constraint is

captured in the model using an edge, e.g., f
[NS1,NS2]
1,1 → f

[NS2,ES3]
1,1 .

We denote with pred( f
[ν j ,νk]
i,x ) the set of predecessor frame in-

stances of the frame instance fi,x on dataflow link [ν j,νk].

In Fig. 6, pred( f
[NS2,ES3]
1,1 ) = { f

[ES1,NS1]
1,1 , f

[NS1,NS2]
1,1 }. We denote

with succ( f
[ν j ,νk]
i,x ) the set of successor frame instances of the frame

instance f
[ν j ,νk]
i,x . In Fig. 6, succ( f

[NS1,NS2]
1,1 )= { f

[NS2,ES3]
1,1 , f

[NS2,ES4]
1,1 }.

Our strategy has 2 steps:
(1) In the first step, we determine an initial set of TT schedules S◦,
line 1 in Fig. 7. The initial schedules S◦ are built without using
the analysis of RC traffic, and with the goal of minimizing the end-
to-end response time of the TT frames. In this step we use a List
Scheduling (LS) based heuristic to construct the static schedules
S◦. Before LS is called, we merge [27] all the trees representing the
frames (which can have different periods) into a single graph cov-
ering the least common multiple of all the periods. The graph has
a dummy source node to which all root nodes are connected, and a
dummy sink node to which all leafs are predecessors. LS schedules
this graph onto the given architecture considering the given virtual
link topology. The ESes, NSes and dataflow links are considered
the resources onto which the frame instances have to “execute”.

(2) In the second step, we use a Tabu Search meta-heuristic (see
Section 7.1) to determine the TT schedules S , such that the TT and
RC frames are schedulable, and the end-to-end delay of RC frames
is minimized.

7.1 Tabu Search
Tabu Search (TS) [18] is a meta-heuristic optimization, which

sear- ches for that solution which minimizes the cost function. Tabu
Search takes as input the topology of the network G , the set of
TT and RC frames F T T ∪F RC (including the size, period/rate and
deadline), the set of virtual links V L and the mapping of frames
to virtual links M , and returns at the output the best TT schedules
S found during the design space exploration, in terms of the cost
function. We define the cost function of an implementation as:

Cost = wT T ×δT T +wRC ×δRC (1)

where δT T is the “degree of schedulability” for the TT frames and
δRC is the degree of schedulability for the RC frames. These are
summed together into a single value using the weights wT T and
wRC, given by the designer. In case a frame is not schedulable, its
corresponding weight is a very big number, i.e., a “penalty” value.
This allows us to explore unfeasible solutions (which correspond
to unschedulable frames) in the hope of driving the search towards

TTESO(G , F T T ∪F RC, V L, M )

1 S◦ = InitialSolution(G , F T T ∪F RC, V L, M )
2 S = TabuSearch(G , F T T ∪F RC, V L, M , S◦)
3 return S

Figure 7: TTEthernet Schedule Optimization strategy

(1) 

•  Moves applied to TT frames:  
•  advance  
•  advance predecessors  
•  postpone  
•  postpone successors  

•  The strategy reserves space for RC 
traffic using: 
•  add blank  
•  remove blank 
•  resize blank 

(a) Postpone move on f
[NS1,ES2]
2,3 from Fig. 5b

(b) Advance move on f
[ES2,NS1]
3,2 from Fig. 8a

Figure 8: Moves for TT traffic

a feasible region. Once the TT frames are schedulable we set the
weight wT T to zero, since we are interested to minimize the end-
to-end delays for the RC frames. The degree of schedulability is
calculated as:

δT T/RC =

{

c1 = ∑i max(0,R fi
− fi.deadline) ifc1 > 0

c2 = ∑i(R fi
− fi.deadline) ifc1 = 0

(2)

If at least one frame is not schedulable, there exists one R fi
greater

than the deadline fi.deadline, and therefore the term c1 will be
positive. However if all the frames are schedulable, this means
that each R fi

is smaller than fi.deadline, and the term c1 = 0. In
this case, we use c2 as the degree of schedulability, since it can
distinguish between two schedulable solutions.

Tabu Search explores the design space by using design transfor-
mations (or “moves”) applied to the current solution in order to
generate neighboring solutions. As it is practically impossible to
exhaustively evaluate the whole design space, in order to increase
the efficiency of the Tabu Search, and to drive it intelligently to-
wards the solution, these “moves” are not performed random, but
chosen based on a candidate list of moves that may improve the
search. Each candidate is evaluated. If the currently explored solu-
tion is better than the best known solution, it is saved as the “best-
so-far” solution. To escape local minima, TS incorporates an adap-
tive memory (called “Tabu list”), to prevent the search from revis-
iting previous solutions. Thus, moves that improve the search are
saved as “Tabu”. In case there is no improvement in finding a better
solution for a number of iterations, we use diversification, i.e., we
visit previously unexplored regions of the search space. In case the
search diversification is unsuccessful, we restart the search from
the best known solution.

We use four types of moves applied to TT frame instances: ad-
vance, advance predecessors, postpone and postpone successors.
The advance move will advance the scheduled send time of a TT

frame instance fi,x from a node ν j on a dataflow link [ν j,νk] to
an earlier moment in time. The advance predecessors applied to

a frame instance f
[ν j ,νk]
i,x , will advance the scheduled send time for

all its predecessors, pred( f
[ν j ,νk]
i,x ). Similarly the postpone move

will postpone the schedule send time of a TT frame instance from
a node, while postpone successors will postpone the send time for
all the successors of that frame instance.

The maximum amount of time a frame instance is advanced or
postponed at a node ν j ∈ V is computed such that the frame in-
stance will not be sent before it is received, or sent too late to
meet its deadline. Also, after each move we may need to adjust
the schedules (move other frame instances later or earlier) to keep
the solution valid, i.e., the schedules respect the precedence and
resource constraints.

Let us illustrate these moves using the example presented in Sec-
tion 6. The setup from Fig. 4 shows the architecture model in
Fig. 4a and the application model in Fig. 4b. Fig. 5a presents a
possible solution for synthesizing the TT schedule. In this case,
the worst-case end-to-end delay R f1

for the RC frame f1 is 470
µs. Fig. 5b shows the result of a postpone successors move applied
to the frame instance f3,2 from Fig. 5a on dataflow link [ES2,NS1].

Consequently, frame instance f
[NS1,ES3]
3,2 is also postponed, thus cre-

ating sufficient space for f1,1 to execute. The latency of frame in-
stance f1,2 can be further reduced by applying a postpone move to

f
[NS1,ES3]
2,3 from Fig. 5b, as shown in Fig. 8a. Fig. 8b presents the

result of an advance move applied to f3,2 from Fig. 8a on dataflow
link [NS1,ES3], with no effect on the latencies of any of the frames
involved.

For situations when there are several TT frames scheduled for
transmission back-to-back on a dataflow link [ν j,νk] which may
lead to large delays for RC frames, our optimization applies an

add blank move, which adds a blank interval bi
[ν j ,νk]
i on dataflow

link [ν j,νk], which is reserved for RC traffic. Blank spaces will
also be introduced by advance/postpone moves. The difference be-
tween an add blank and these moves is that the blank interval intro-
duced through advance/postpone may be used by other TT frames,
while the space introduced by an add blank move is reserved for
RC frames only. In case a TT frame instance misses its deadline

due to a certain blank interval bi
[ν j ,νk]
i on dataflow link [ν j,νk], the

optimization will either remove or resize the blank interval, by per-
forming a remove blank move or a resize blank move, respectively.

Let us consider the situation presented in Fig. 9. We assume the
topology presented in Fig. 4a, and we consider dataflow links [ES1,
NS1] and [NS1,ES2]. We assume that the dataflow links have equal
transmission speeds. For this example, we have one RC frame, f10

sent by ES1 to ES2, with the transmission duration Cf10
= 100 µs,

and 5 TT frames f1 to f5 to be forwarded by NS1 to ES2. The
transmission durations for the TT frames f1 to f5 are 100 µs, 75 µs,
100 µs, 50 µs and 125 µs, respectively. Let us consider the TT
schedule presented in Fig. 9a, where the TT frames are sched-
uled back-to-back on dataflow link [NS1,ES2], starting at time 150
µs. In this case, the worst-case delay for the RC frame f10 is 725
µs. The network implements the timely block approach (see Sec-
tion 5.2), and we represent with a hatched box the time interval RC
frame is blocked to transmit so it does not disturb the TT frames.

For situations such as the one presented in Fig. 9a, where an RC
frame is blocked from transmission due to TT frames scheduled
back-to-back, the candidate list will contain an add blank move to
reduce the delay of the RC frame. By applying an add blank move
to dataflow link [NS1,ES2], as shown in Fig. 9b, the algorithm re-
serves a time interval of 175 µs for RC traffic, marked by a green
box on the schedule. In this case, the worst-case delay for f10 is of
only 550 µs.

(2) 

5. Experimental Evaluation 

Federated Architecture 

PE 
Application A 1 

Application A 2 

Application A 3 

SIL3 

SIL3 

SIL4 

SIL4 

SIL4 SIL1 

SIL2 

SIL1 

Partitioned Architecture 

Figure 1. Mixed-criticality applications implemented using a federated architecture (left) and using a 
partitioned architecture (right).  

Figure 3. TT and RC message transmission example.  

Contact information: 
Domițian Tămaș-Selicean 

Technical University of Denmark 
Kongens Lyngby, Denmark 
dota@imm.dtu.dk 

Paul Pop 
Technical University of Denmark 
Kongens Lyngby, Denmark 
paul.pop@imm.dtu.dk 

Wilfried Steiner  
TTTech Computertechnik AG 
Vienna, Austria 
wilfried.steiner@tttech.com 


