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Introduction 

• Spectroscopic techniques allow scientists to determine the 
composition of remote substances  

• Most space based are dispersive spectrometers working in the 
near-infrared spectrum (1-5 µm) 

• Fourier Transform infrared spectrometers are better suited for 
remote sensing:  

– Offer considerable higher throughput than the dispersive 
spectrometers 

– They operate in the mid infrared range, which contains the 
fundamental vibrations for most of the relevant compounds 
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Traditional Michelson Spectrometer 
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Traditional Michelson Spectrometer 
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Source: www.acs.psu.edu/drussel/Demos/superposition/interference.gif 
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Traditional Michelson Spectrometer 
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FFT’d Interferogram Resulting Spectrum 
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CIRIS: Compositional InfraRed Imaging 
Spectrometer 

•  Spectral range of 2.8 to 18 µm, or 3571 to 555 cm-1 

•  4 cm-1 resolution, or 754 points between 3571 and 555 cm-1 
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CIRIS Facts 

•  4 interferograms per revolution 

•  2.5 revolutions per second 

•  An interferogram is captured for 33 ms every 100 ms 

•  Operational in the spectral range of 2.8 to 18 µm, or 3571 to 555 cm-1 

•  4 cm-1 resolution, or 754 points between 3571 and 555 cm-1 

•  Spectra computable from a double sided interferogram insensitive to 

phase change of 3016 points 

•  CIRIS records 8192 points for each interferogram 
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CIRIS Setup Schematic 

•  CompactRIO 
based  

•  cRIO 9025 
controller 

•  NI 9118 chassis 
•  NI 9223 ADC 
•  NI 9512 SDI 
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FPGA Implemented Algorithm 
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E2-360I Optical Encoder Signals 
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Complete revolution reading as a function of logic states
Sensor Raytheon; 800um;sr570 current to voltage gain=20 uA/V

Center with Zero OPD; Current AC Couple; Band pass filter: 3KHz and 100kHz
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Differences Between the Spectra Obtained at 
Different Rotational Positions 
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Sensor Raytheon; 800um;sr570 current to voltage gain=20ua/volt
Band pass filter: 3KHz and 100kHz; No dispersion correction; No calibration

 

 
ZPD Position 2 vs Position 1
ZPD Position 3 vs Position 1
ZPD Position 3 vs Position 14 
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Evaluation 

•  Compare CIRIS results with a MIDAC M4500 FTIR spectrometer.  

• MIDAC  

– Resolution of 4 cm-1 

– Wavenumbers 6000 to 600 cm-1 

•  Transmittance comparison 

T (υ) =
Tsample(υ)
Tbackground (υ)
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Evaluation 
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Transmittance comparison.
 MIDAC acquires 1024 scans, 4096 points per scan

CIRIS acquires 480 scans, 8192 points per scan
Sensor Raytheon; 800um;sr570 current to voltage gain=20ua/volt
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Partitioned Architectures 

High criticality application 

Medium criticality application 

Low criticality application 

Federated architecture Integrated architecture 
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Partitioned Architectures 
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Partitioned Architectures 

High criticality application 

Medium criticality application 

Low criticality application 

Federated architecture Integrated architecture 

Partitioned architecture 
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Partitioned Architectures 

• Each application is running in its own partition 

• Partitioning mechanism 

– Temporal partitioning 

•  Partitions the CPU time among applications 

– Spatial partitioning 

•  Protects one application’s memory and access to 

resources from another application 

– OS enforced, with hardware support 
 

P1 P1 P1 P2 P2 
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Partitioned Architectures 

• Benefits:  

– Allows the safe and secure integration of applications of 

different criticality levels and from different stakeholders  

– Provides a robust fault containment 

– Reduces the development, verification and integration efforts 

and associated costs 

– Proven in use in the avionics and automotive industries 

• ESA views PAs as an intermediate step to introducing multi-core 

processors in spacecraft computers (Windsor et al., 2011) 
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Need for Partitioned Architecture: MCU 
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Frequency 
[Hz] 

Mean velocity  
[rad/s] 

Standard deviation 
[rad/s] 

3600 15.834 0.606000 
10 16.028 0.003611 
2.5 16.069 0.001211 

Rotating refractor velocity mean and standard deviation 

ZPD  
position 

Mean value of ChA ChB 
logic state number 

Standard 
deviation 

1 233 0 
2 595 0 
3 956 0 
4 1315 0 

Logic state numbers of the ZPD positions 
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Velocity Control Affected by Sinusoidal Noise 
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Impact of the Number of Spectral Scans 
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Conclusions 

•  Partitioned architectures allow the safe integration of applications of 

different criticality levels and from different stakeholders on the same 

platform 

 

• We developed a controller for a rugged rotary FTIR spectrometer on a 

FPGA and real-time processor 

• We evaluated the SNR performance impact of implementing the 

controller on a partitioned architecture.  
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