Fourier Transform Spectrometer Controller for Partitioned Architectures

D. Tămaș-Selicean¹, D. Keymeulen², D. Berisford², R. Carlson², K. Hand², P. Pop¹, W. Wadsworth³, R. Levy⁴

- ¹ Technical University of Denmark
- ² The Jet Propulsion Laboratory
- ³ Designs & Prototypes, Ltd
- ⁴ Quant Engineering, LLC

DTU Compute Department of Applied Mathematics and Computer Science

- Introduction
- Fourier Transform Spectroscopy
- CIRIS: Compositional InfraRed Imaging Spectrometer
- CIRIS Controller Implementation
- Evaluation
- Partitioned Architecture
- Conclusions

Introduction

• Spectroscopic techniques allow scientists to determine the composition of remote substances

Traditional Michelson Spectrometer

Source: www.acs.psu.edu/drussel/Demos/superposition/interference.gif

CIRIS: Compositional InfraRed Imaging Spectrometer

- Spectral range of 2.8 to 18 $\mu m,$ or 3571 to 555 cm $^{-1}$
- 4 cm⁻¹ resolution, or 754 points between 3571 and 555 cm⁻¹

CIRIS Facts

- 4 interferograms per revolution
- 2.5 revolutions per second
- An interferogram is captured for 33 ms every 100 ms
- Operational in the spectral range of 2.8 to 18 μm , or 3571 to 555 $cm^{\text{-1}}$
- 4 cm⁻¹ resolution, or 754 points between 3571 and 555 cm⁻¹
- Spectra computable from a double sided interferogram insensitive to phase change of 3016 points
- CIRIS records 8192 points for each interferogram

CIRIS Setup Schematic

Acquisition and Processing Controller Algorithm

FPGA Implemented Algorithm

E2-360I Optical Encoder Signals

14 DTU Compute, Technical University of Denmark

FPGA Implemented Algorithm

RT Host Implemented Algorithm

Differences Between the Spectra Obtained at Different Rotational Positions

RT Host Implemented Algorithm

– Wavenumbers 6000 to 600 cm⁻¹

• MIDAC

Evaluation

- Transmittance comparison
- Transmittance comparison

- Resolution of 4 cm⁻¹

$$T(\upsilon) = \frac{T_{sample}(\upsilon)}{T_{background}(\upsilon)}$$

• Compare CIRIS results with a MIDAC M4500 FTIR spectrometer.

Evaluation

Federated architecture

Integrated architecture

Breaking System

Radio CD

- Each application is running in its own partition
- Partitioning mechanism
 - Temporal partitioning
 - Partitions the CPU time among applications

- OS enforced, with hardware support

• Benefits:

- Allows the safe and secure integration of applications of different criticality levels and from different stakeholders
- Provides a robust fault containment
- Reduces the development, verification and integration efforts and associated costs
- Proven in use in the avionics and automotive industries
- ESA views PAs as an intermediate step to introducing multi-core processors in spacecraft computers (Windsor et al., 2011)

Need for Partitioned Architecture: MCU

Rotating refractor velocity mean and standard deviation

Frequency [Hz]	Mean velocity [rad/s]	Standard deviation [rad/s]
3600	15.834	0.606000
10	16.028	0.003611
2.5	16.069	0.001211

Logic state numbers of the ZPD positions

ZPD position	Mean value of ChA ChB logic state number	Standard deviation
1	233	0
2	595	0
3	956	0
4	1315	0

Velocity Control Affected by Sinusoidal Noise

Impact of the Number of Spectral Scans

Conclusions

- Partitioned architectures allow the safe integration of applications of different criticality levels and from different stakeholders on the same platform
- We developed a controller for a rugged rotary FTIR spectrometer on a FPGA and real-time processor
- We evaluated the SNR performance impact of implementing the controller on a partitioned architecture.

Teaching math was way more fun after tenure.