
DTU IMM

MSc Thesis

Analysis and Optimization of TTEthernet-based Safety Critical Embedded
Systems

Radoslav Hristov Todorov
s080990

16-08-2010

Acknowledgements

The work for this master thesis project continued 6 months. This was a time when I

encountered a lot of problems and challenges. For the resolution of and the help provided

for many of them, I am glad to say “Thank you” to whom were involved.

On first place, I would like to thank my supervisor, Paul Pop. He invited me to start

this project and also helped a lot with the establishment of the problem. Furthermore, our

meetings were always beneficial and extremely encouraging in the period when I still did not

have complete understanding of the domain of my thesis. Thanks to him, I was introduced

to similar problematic that was very helpful for the solving of my assignment. Thank you

for the support!

Next, I thank my family that was very understandable and supportive during the last

half an year.

I would like to say great “Thank you” to Roxana. She was the one I could rely on

everything in my daily life.

I am thankful to my colleges from my workplace. They were very patient with me not

only during this project but also during my entire education in DTU.

Special thanks to Philip for the correction of my English writing.

August 2010, Lyngby

1

Contents

1 Background 1

1.1 Introduction . 1

1.2 Avionic networks and IMA . 2

1.3 TTEthernet . 7

1.4 AFDX . 14

1.5 Integration . 25

2 Motivation 26

2.1 Introduction . 26

2.2 Hardware Architecture . 27

2.3 Software Architecture . 29

2.4 Application model . 31

2.5 Technological notations . 33

2.6 Problem formulation . 34

3 End-to-end delay analysis 37

3.1 Introduction . 37

3.2 State Of The Art . 38

3.3 Assumptions . 46

3.4 Preliminary Analysis . 47

3.5 Trajectory Approach . 54

2

CONTENTS CONTENTS

3.6 Computations . 60

4 (II) and (TT) messages 68

4.1 Introduction . 68

4.2 Indirect Influence (II) . 69

4.3 Time-Triggered (TT) messages . 73

5 Evaluation 78

5.1 Introduction . 78

5.2 Case Study 2 . 79

5.3 Comparison . 89

6 Implementation 92

6.1 Introduction . 92

6.2 Input model . 93

6.3 Preliminary setup . 94

6.4 Calculation algorithm . 95

7 Conclusion 97

A Input and Output files 103

3

List of Figures

1.1 IMA architecture . 3

1.2 IMA cabinets . 3

1.3 Open IMA architecture - detailed view . 4

1.4 Open IMA network architecture . 5

1.5 Safety-critical TTEthernet network . 7

1.6 TTEthernet — Traffic Integration . 9

1.7 TTEthernet — protocol integration with Ethernet 10

1.8 TTEthernet — Synchronization approach . 13

1.9 TTEthernet — Synchronization levels . 13

1.10 AFDX network . 15

1.11 End Systems and Avionics Subsystems . 16

1.12 End Systems — Architecture and principle of communication 17

1.13 Virtual Link . 18

1.14 Virtual Link — Traffic Regulator . 19

1.15 Virtual Link . 20

1.16 AFDX Latency in communication . 21

1.17 AFDX Switch . 22

2.1 Illustrative AFDX configuration . 27

2.2 Relation between hardware configuration and application model 31

4

LIST OF FIGURES LIST OF FIGURES

3.1 Examinating the dependecy from other virtual links 49

3.2 Examinating dependency on other Indirect Influence virtual links 50

3.3 Virtual link V1 has the first message from all virtual links ready for transmission 51

3.4 Virtual link Vx is indirectly influenced by virtual links - II1 and II2 52

3.5 Virtual link V2 has the first message from all virtual links ready for transmission 52

3.6 Virtual link V3 has the first message from all virtual links ready for transmission 53

3.7 Configuration example on which the Trajectory approach is tested 54

3.8 Configuration example on which the Trajectory approach is tested — time

line diagram for virtual link V1 . 56

3.9 End-to-end delay of a packet m . 56

3.10 End-to-end delay of a packet VL1 — formula starting times 58

4.1 Example of extended configuration developed from the architecture depicted

in Figure B.6 . 69

4.2 Example configuration with Time-Triggered (TT) messages on which the Tra-

jectory approach is tested . 74

4.3 Example configuration on which the Trajectory approach is tested 74

4.4 BAG of Time-Triggered (TT) messages . 77

5.1 Configuration example on which the Trajectory approach is tested 79

5.2 Total worst-case response times for Holistic and Trajectory approaches in

Case Study 1 . 90

5.3 Improvement (in %) achieved by the Trajectory approach compared to the

Holistic approach in Case Study 1 . 90

5.4 Total worst-case response time for Holistic and Trajectory approaches in Case

Study 2 . 91

5.5 Improvement (in %) achieved by the Trajectory approach compared to the

Holistic approach in Case Study 2 . 91

A.1 Test 1 configuration . 103

5

LIST OF FIGURES LIST OF FIGURES

A.2 Test 2 configuration . 105

A.3 Test 3 configuration . 109

A.4 Test 4 configuration . 112

A.5 Test 5 configuration . 116

A.6 Test 6 configuration . 118

A.7 Test 6 configuration (with Time-Triggered messages) 118

6

List of Tables

1.1 Virtual Link — permissible BAG values and respective frequency of the link . 18

3.1 Comparison between all known methods for measuring of end-to-end delays . 45

3.2 Virtual link data for the example depicted on 3.7 55

4.1 Virtual link V4 parameters . 70

5.1 Virtual link data for the example depicted on 5.1 80

5.2 Case Study 1 — Holistic vs. Trajectory Approach 89

5.3 Case Study 2 — Holistic vs. Trajectory Approach 90

7

Abstract

Embedded systems are everywhere and are increasingly used in safety-critical applications,

where failure could endanger human life and the environment. Many safety-critical appli-

cations are implemented using timeline scheduling, where the functions that have to be

executed are planned according to a schedule table. However, such an approach lacks flexi-

bility.

There are many situations where applications of different timeliness requirements (i.e.,

hard vs. soft real-time) and criticality requirements (e.g., safety-critical vs. non-safety criti-

cal) have to be implemented on the same platform. At the communication level, researchers

have proposed communication protocols such as TTEthernet, where several types of mes-

sages can be handled: Time-Triggered (TT) messages, Rate-Constrained (RC) messages and

Best-Effort (BE) messages.

The objective of this project is to design and implement an analysis for the optimization

of the communication infrastructure. The input consists of applications modeled as task

graphs, where both tasks and messages can have different criticality requirements. The

applications are mapped on a distributed heterogeneous architecture, where the processing

elements are interconnected using TTEthernet/AFDX network.

We are interested in determining that configuration which guarantees the deadlines for

the hard tasks and messages, tolerates the faults for the safety-critical tasks and messages

and maximizes the QoA (quality of service) for the soft real-time tasks and messages. The

analyses are evaluated using several case studies.

Chapter 1

Background

1.1 Introduction

The main purpose of this chapter is to provide the necessary background for the further

work presented in this thesis project.

First, we give a short history of and introduction to the current state of the art of avionics

networks, the de facto Integrated Modular Avionics (IMA).

Afterwards, we discuss two current standards:

� TTEthernet (Time-Triggered Ethernet) as a novel integrating infrastructure for trans-

parent and fault-tolerant clock synchronization protocol

� AFDX (Avionics Full-Duplex Switched Ethernet), ARINC 664 Part 7, as a standard

that defines the specifications for exchange of data between Avionics Subsystems1 by

means of asynchronous messaging.

Finally, the chapter concludes with directions in how these two technologies are used in

terms of the architecture explored in this project.

1End nodes in an avionics network

1

1.2. AVIONIC NETWORKS AND IMA CHAPTER 1. BACKGROUND

1.2 Avionic networks and IMA

1.2.1 Classical approaches

The term “avionic” stands for “aviation electronic” components. Devices like these are

used for different types of electronic equipment applied to an aircraft. The present-day

avionics industry embraces a wide variety of components with ever more and more complex

functionalities. Thus, the development and the integration of a new avionics communication

network was required to address the amount of exchanged data and the communications

between the different network nodes. The classical concept “one function = one computer”

could be no longer maintained. This led to “federated architectures”, which integrates

several software functions in one hardware component. However, multifunction integration

prone to non-transparent fault propagation, and the maintenance of avionics systems of this

type becomes nightmare [1].

1.2.2 Integrated Modular Avionics — IMA

A concept called Integrated Modular Avionics (IMA) or often referred to as Distributed

IMA was developed as result of the efforts of researchers. The industry adopted archi-

tectures which distribute the functional modules among a number of robust configurations

interconnected with a “virtual backplane” data communication network — Figure 1.1.

In the same figure the main parts of these systems are depicted — cabinet equipment,

LRUs - Line Replacement Units, sensors and auctors, display components. All of these are

interconnected via a centralized data bus.

The first prototypes of this architecture were presented by Honeywell[13] for the cockpit

functions of the Boeing 777 aircraft in 1995 [1],[2]. The architecture featured a modularized

cabinet-packaging with Time-Triggered (TT) backplane data communication.

Other important properties of the IMA are its Application Programming Interface (API)

middleware with specific services for strong software to software partitioning, its hardware

to software segregation, its precise fault monitoring and it onboard loading of software.

The IMA architectures highlight performance, reliability and flexibility for highly integrated

avionics systems, as is desired. Nowadays IMA cabinets are available from different suppliers.

IMA is a standard on many new aircraft and helicopter systems (Figure 1.2).

2

1.2. AVIONIC NETWORKS AND IMA CHAPTER 1. BACKGROUND

Figure 1.1: IMA architecture

Figure 1.2: IMA cabinets

3

1.2. AVIONIC NETWORKS AND IMA CHAPTER 1. BACKGROUND

1.2.3 Open IMA and Aircraft Full DupleX (AFDX)

Recently, Airbus developed “Open IMA” technology concept for the A380 aircraft. The

cabinet and backplane hardware were replaced with general purpose controllers — CPIOM

(Core Processing and Input/Output Module). CPIOMs are integrated hosting for several ap-

plications and signal acquisitions/transmissions. Moreover, “Aircraft Full DupleX (AFDX)”

100 Mbit/s switched Ethernet data communication network was introduced to connect all

CPIOMs and other devices on the aircraft (e.g. legacy LRU — Line Replacement Units,

IOM — Input Output Modules) — Figure 1.3, 1.4. The Ethernet switches and the gen-

eral purpose controllers are designed in accordance with to the common aeronautic ARINC

standards[5] and thus are open to all avionics manufacturers[1].

This concept changes the status of Airbus into that of IMA system integrator. The

development responsibility for the individual systems and their functions, however, remains

with the system manufacturers. The avionics module producers supply “empty” IMA mod-

ules to both, the system manufacturers and Airbus. The system manufacturer supplies the

CPIOMs for the target function implementations. From other side Airbus handles their own

system CPIOMs in order to establish the basic computing resource for the core functional-

ities of an aircraft. Finally, Airbus has to generate appropriate configuration files for the

aircraft data configuration network and the remaining CPIOM operations that take place

in it[3].

Figure 1.3: Open IMA architecture - detailed view

4

1.2. AVIONIC NETWORKS AND IMA CHAPTER 1. BACKGROUND

Figure 1.4: Open IMA network architecture

5

1.2. AVIONIC NETWORKS AND IMA CHAPTER 1. BACKGROUND

The configuration part mainly concerns the switches, and more specifically the Ethernet

address tables, the prescribed transmission rate and the required bandwidth of a commu-

nication channel (virtual link). Adding new modules or changing existing subscribers to

the network needs only the establishment of a new virtual link between the transmitting

and the receiving device. This makes the configuration and the modification of the avionics

architecture flexible and scalable.

1.2.4 Recap

There are several standards produced and maintained by ARINC[5] covering the onboard

data communication in an aircraft. It was in relation to this that we presented in this section

the IMA concept. In conclusion, the new AIRBUS IMA concept contributes the following

features:

� modularized packaging connected to an AFDX network

� robust partitioning of the computing resources and communications

� determinism of the application execution and data exchanges

� standard APIs

� scope for interfacing with conventional equipment

6

1.3. TTETHERNET CHAPTER 1. BACKGROUND

1.3 TTEthernet

Among the major problems related to the design of an avionics network are the synchro-

nization strategies and predictability of the operations (determinism) while the network is

in operational mode.

The TTEthernet technology, developed by TTTech Computertechnik AG[12], inspired

by the academic TT-Ethernet[14] and covered by specification SAE AS6802 (of the same

organization)[11], offers synchronization operations based on integrated time-triggered and

event-triggered traffic.

Figure 1.5 shows network of the denoted type, including a fault-tolerant configuration

capability. The network consists of host end systems with time-triggered Ethernet controllers

and two replicated store-and-forward switches interconnected with bidirectional point-to-

point links. The switches have a guardian function related to the fault-tolerant capabilities

of the network[14].

Figure 1.5: Safety-critical TTEthernet network

7

1.3. TTETHERNET CHAPTER 1. BACKGROUND

TTEthernet uses only standard Ethernet-compliant frames and thus remains compatible

with the underlying Ethernet. In fact, any technology could be chosen for an integrated

communication infrastructure, but Ethernet has also significant benefits. Ethernet is the

dominating standard for business communication, and, furthermore, there is a trend towards

applying it for distributed control systems. Areas where Ethernet has already been used for

solutions are industrial applications, the automotive industry and the avionics industry.

1.3.1 Traffic Classes[17], [16], [15]

The technology provides three traffic classes: Time-Triggered (TT) traffic, Rate-Constrained

(RC) traffic (this traffic is compliant with the AFDX traffic) and Best-Effort (BE) traffic.

Time-Triggered (TT) frames are used for applications with tight latency, jitter and de-

terminism requirements. All Time-Triggered (TT) messages are sent at predefined time slots

and they take precedence over the rest of the traffic. Time-Triggered (TT) traffic is opti-

mized for communication in distributed real-time systems with hard deadlines. Examples of

usage could be brake-by-wire and steer-by-wire systems, which use intensively rapid control

checking over the network and where the response time of the data is crucial.

Rate-Constrained (RC) messages are used for applications with less determinism and

real-time requirements. Rate-Constrained (RC) messages guarantee that their bandwidth is

predefined for each sender and the delays are within limited and predetermined boundaries.

Different controllers can send Rate-Constrained (RC) messages at the same time to the

same receiver or multiple receivers. In this case the messages may as a consequence queue

up in the network switches, which therefore need to have enough capacity. Otherwise there

will be an increase in the messages’ jitters and response times. The a priori setting of the

bandwidth and the intensity (period) of these messages is important realization for their

assets. From here their jitter and worst-case response time could be calculated offline .

The Best-Effort traffic (BE) is comparable with present-day Internet communication.

This means there is no guarantee whether the message is sent or when it will be sent. There

is no guarantee how long delay the message will incur before it arrives to its destination.

Best-Effort (BE) messages do not take precedence over any of the other traffic classes and

do not provide QoS (Quality Of Service) guarantees.

8

1.3. TTETHERNET CHAPTER 1. BACKGROUND

TTEthernet implements strong partitioning between the three different classes. Figure

1.6 depicts a fragment of TTEthernet network with a Gantt diagram of the traffic emitted.

Two separate end nodes (End System1 and End System2) are emitting different types of

messages. A TTEthernet switch is multiplexing their traffic and outputs a common one in

periods equal to the Least Common Multiplier (LCM) of both the source devices, preserving

the network classes for each message in the system.

Figure 1.6: TTEthernet — Traffic Integration

1.3.2 Principle of operation

TTEthernet provides time-triggered services which are controlled by a global time reference

for the whole system. This is implemented by local clock synchronization of the switch

devices in the network. The global time forms the basis for communication partitioning

and other properties of the TTEthernet networks (e.g. precise diagnostics, efficient resource

utilization). Because TTEthernet has backwards compatibility with Ethernet, the synchro-

nization services are on top and next to the existing Ethernet standard services (Figure

1.7). A communication unit (controller or switch) which implements these services can

9

1.3. TTETHERNET CHAPTER 1. BACKGROUND

communicate with other devices from the same type or from the Ethernet technology. The

communication is done by means of Time-Triggered (TT) messages.

The TTEthernet operation works as follows. The Time-Triggered (TT) switch transmits

Time-Triggered (TT) messages with constant delays. If, during the transmission of some

other type of traffic (i.e. Rate-Constrained (RC) and Best-Effort (BE)), a Time-Triggered

(TT) message arrives at a switch port, the traffic currently transmitted is pre-empted and

stored in the buffer of the switch until the higher priority Time-Traffic (TT) finishes transmis-

sion. Alternatively, if during the transmission of Time-Triggered (TT) messages a message

from one of the other two classes arrives in the switch, it is queued in the switch’s output

buffer until the Time-Triggered (TT) transmission finishes (Figure 1.6).

Figure 1.7: TTEthernet — protocol integration with Ethernet

1.3.3 Main Properties and Requirements

One of the main properties of the network technology discussed so far is its determinism.

The determinism of a particular application is its temporal communication behaviour (i.e.

the message jitters and latencies produced by the application) or predictability of the used

bandwidth. As mentioned, the SAE AS6802 standard [11] provides both of these for sup-

porting common mixed criticality network messaging by using Time-Triggered (TT) and

Rate-Constrained (RC) messages. The network is designed to serve asynchronous (AFDX

10

1.3. TTETHERNET CHAPTER 1. BACKGROUND

— Rate-Constrained (RC) messages) and synchronous (Time-Triggered (TT) messages) ap-

proaches. System tasks can be scheduled offline and to take advantage of the global time

reference. This means that the network provides differentiated criticality[17].

TTEthernet technology enables robust system-level partitioning and distributed

computing to be achieved. As the TTEthernt technology supports global timing there is

scope for taking advantage of time/space/communication partitioning to design distributed

functions of mixed criticality applications in one network. All distributed functions can

be executed without being influenced by other less critical network functions. Finally, all

distributed periodic tasks play a role in the global shared system memory.[14].

TTEthernet is a transparent synchronization protocol which supports co-existence

with other traffic (in most cases legacy Ethernet traffic). The standard defines a transpar-

ent clock mechanism, which means that all devices in the distributed computer network

exchange synchronization messages. The current time permanence is calculated precisely

and a priori. The transparent clock mechanism allows a precise re-establishment of the

synchronization messages. First, the worst-case execution times are calculated offline, and

second, the synchronization message delay is calculated by the worst-case execution times

minus the dynamic delay (the current delay). So this point in time is called the permanence

point[17].

Safety and fault tolerant capabilities are provided when the safety-critical network

implements strong fault isolation. As was shown in the example in Figure 1.5, the network

supports redundant switches with guardian functions, which keep the system operational

even one of the switches is faulty. If a faulty node is detected in both redundant modules,

the guardian will detach the network segment or port[14].

The TTEthernet Network is a scalable solution. In fact, there are no design restrictions

on the number of nodes in the network. Provided that the other requirements are respected

the network could handle a variety of designs. As regards its speed limitation it is stated that

this could be extended up to 10 Gigabit/sec, which is much faster than other safety-critical

protocols such as FlexRay, CAN, TTP and etc.

11

1.3. TTETHERNET CHAPTER 1. BACKGROUND

1.3.4 Network topologies and Synchronization[17], [11]

Switches in TTEthernet have a major role of organizing the data communication. The

switches allows simultaneous distribution of traffic, independent of its type, to a group of

end systems of another interconnected switch devices. An end system will communicate

with another end system or a group of end systems in exactly this way by sending a message

to a network switch, which will forward it to the next recipient in its path. The architecture

described is referred as a multi-hop architecture. The communication links and the switches

form a communicational channel between the end systems that is bidirectional.

As is so far described, the events in the system occur at predefined times with precision.

This ensures that network communication is achieved precisely with neither collisions nor

congestion. Synchronization is an important feature of time-triggered systems and therefore

synchronization messages are always transmitted to keep the clocks of the switches and the

end systems synchronized. To fulfil this requirement, TTEthernet designates several of the

nodes and the switches as master nodes and master switches. This method is called master-

slave synchronization. It guarantees both fail-safe operation and quality of synchronization.

TTEthernet uses a two-step approach for the synchronization functions. In the beginning

the synchronization master nodes send protocol control frames to the compression master

nodes. The last ones to receive these frames calculate an average value for the relative arrival

times and send out a control frame in this step. The new protocol frame is announced by

sending it to the synchronization clients. The exact role of the devices is a design decision.

Most of the time the synchronization masters are the switches but it can also be the other

way around. The protocol is depicted in Figure 1.8.

There are four different layers embodied in the synchronization topology of TTEthernet

network. Three types of devices are involved in these levels: synchronization masters, syn-

chronization clients and compression masters. The first layer is the devices. In the next layer,

clusters are formed from devices (end systems and switches) that have the same synchroniza-

tion priority and synchronization domain. There is also a multi-cluster level, which adds to

the previous multiple synchronization priorities. On top of these is the network level, which

handles multiple synchronization levels with multiple priorities. Synchronization within a

cluster is done through the algorithm described above and those levels, comprising two or

more clusters (multi-cluster level), include synchronization through Rate-Constrained (RC)

12

1.3. TTETHERNET CHAPTER 1. BACKGROUND

Figure 1.8: TTEthernet — Synchronization approach

and Best-Effort (BE) messages. The following diagram summarizes the concept — Figure

1.9.

Figure 1.9: TTEthernet — Synchronization levels

1.3.5 Recap

The TTEthernet technology permits the design of advanced systems. The networks built

utilize asynchronous and synchronous communication. It is a scalable solution and supports

fault-tolerant, time-critical and mixed criticality functions in one network.

13

1.4. AFDX CHAPTER 1. BACKGROUND

1.4 AFDX

One way of fulfilling the network communication requirements in an aircraft is suggested

by ARINC in the specification ARINC 664, Part 7 — Avionics Full Duplex Switched Eth-

ernet (AFDX) Network (already mentioned in the previous section). This solution uses

an asynchronous approach constraining the rate (frequency) of the data transmission. The

technology described in the standard ARINC 664, Part 7 specifies the exchange of data

between avionics subsystems. The popularity of AFDX is due to its compatibility with Eth-

ernet technology. AFDX is a huge development step forward compared with ARINC 429

(the previous standard). The differences are related not only to the speed improvements

but also to the general approach of communication and interconnectivity. Contention (col-

lision) of messages is no longer a problem for the network links, because all the connections

are full duplex, and this means communication capability in both directions without any

restrictions.

1.4.1 Network Architecture [7]

AFDX networks generally are compliant with Ethernet IEEE 802.3 networks. They are a

special case of the profiled networks — i.e. deterministic networks.

Figure 1.10 depicts an entire AFDX system. It consists of:

� Avionics Subsystems — Each of these components assembles the computational

host for a particular operation, or more than one if the avionics subsystems support

partitioning of applications.

� End System — Each of these components has the role of proxy between the cor-

responding avionics subsystems and the AFDX Interconnect. It should guarantee a

secure and reliable data interchange between avionics subsystems and the network.

� AFDX Interconnect — This term stands for one or more Ethernet switches, which

store and forward messages produced by the end systems with their origins in the

avionics subsystems. Ethernet technology is replacing the unidirectional, point-to-

point ARINC 429 bus technology in this component. This improvement is one of the

reasons for the AFDX popularity. Ethernet is mature, proven technology.

14

1.4. AFDX CHAPTER 1. BACKGROUND

� Gateway — The gateway functionality of an AFDX network supports the network

with communication with external systems or other AFDX interconnects outside the

boundary of the current synchronization domain.

Figure 1.10: AFDX network

1.4.2 End Systems and Avionics Subsystems [6]

Figure 1.11 shows an avionics computer system that contains several avionics subsystems.

Each partition hosts one avionics subsystem. Partitions provide isolation between the dif-

ferent avionics subsystems. This isolation is achieved by restricting memory address space

and CPU utilization for each partition. The partitions have several functions including

restriction of erroneous data and distributing applications through multiple nodes. The

communication between the avionics subsystems and the corresponding end system is done

through ports. The document which defines these standards is the specification ARINC 653.

An application in an avionics subsystem has ports which communicate with the end system.

There are two types of ports for both components — sampling and queuing. This concept

is depicted in Figure 1.12. Although it is not related to the project there is also third type

of ports called SAP ports. These one are used for communication with an external system

from the current AFDX system.

End systems provide services whose aim is to guarantee the security and reliability goals

of application setups which reside in the partitions of the avionics subsystem. In order to

achieve this, only one traffic class is carried - Rate-Constrained (RC) messages involved

15

1.4. AFDX CHAPTER 1. BACKGROUND

in an AFDX computer network. Thus each network request must be serviced with the

same guarantees and quality (QoS i.e. Quality of Service). For this purpose, the latency

generated by the transmission from one end system to another has to be calculated offline;

more specifically, an upper-bound should be set. This value has to be mathematically

provable and to lead to guarantees. Another function of the end system is one related to

the maximum jitter (end-to-end delay variation). This value is for a specific message and is

gained in the Avionics Computer System until the messages leaves the end system.

Figure 1.11: End Systems and Avionics Subsystems

1.4.3 Principle of operation

Virtual Link [7]

One of the main elements in the communication between the end systems is the - Virtual

Link (VL). A virtual link is a logical unidirectional one-to.one or one-to-many end systems

communication link. Unlike the traditional Ethernet switch, which transfers frames on the

basis of the Ethernet destination or MAC address, an AFDX routes packets using a Virtual

Link ID. The Virtual Link ID is a 16-bit Unsigned integer value that follows a constant 32-

bit field. The correct processing of a virtual link is done through a flow control mechanism

in every source end system. The virtual link also provides guarantees about the bandwidth

16

1.4. AFDX CHAPTER 1. BACKGROUND

Figure 1.12: End Systems — Architecture and principle of communication

used, which appears as a property set by the system integrator. Figure 1.13 depicts an

example of virtual link with multiple destinations — two end systems.

Flow Control [6]

Three parameters associated with every virtual link relate to the flow control: bandwidth

allocation gap (BAG), maximum allowed length of frame — Smax and jitter.

The bandwidth allocation gap BAG, may take a value in the range from 20 to 27 mil-

liseconds. BAG is the minimum interval between two Ethernet frames transmitted on the

same virtual link. The following Table 1.1 shows the BAG value in millisecond and the

frequency of the respective port. This value will be used by the system designer for creating

the hardware port.

The jitter value stands for a maximum allowed delay time at the output end system which

emits the message. There are two constraints with which this parameter should comply:

 max jitter ≤ 40µs+
∑

i∈{V Ls}(160bit+Smax)

R=100Mbit/s

max jitter ≤ 500µs

17

1.4. AFDX CHAPTER 1. BACKGROUND

Figure 1.13: Virtual Link

BAG

ms

Hz

1 1000

2 500

4 250

8 125

16 62.5

32 31.25

64 15.625

128 7.8125

Table 1.1: Virtual Link — permissible BAG values and respective frequency of the link

18

1.4. AFDX CHAPTER 1. BACKGROUND

where R is the medium bandwidth of the network and V Ls are all the virtual links in

the system.

In order to “align” the output of an end node there is a regulator function. The following

illustration shows an example of unregulated traffic and, below it, after the regulator function

is applied — Figure 1.14. The maximum usable bandwidth dedicated to a link is the third

parameter — Smax. With the help of the BAG, the regulator carries out the alignment.

Figure 1.14: Virtual Link — Traffic Regulator

Scheduling, Virtual Links Scheduler and Sub-Virtual Links

The transmission of data is scheduled by the end system’s virtual link scheduler. The virtual

link scheduler is responsible for the bandwidth limitations, also called bandwidth regulations

(i.e. the BAG and Smax), and the multiplexing of all virtual links transmissions. The

boundaries acceptable for the jitter introduced by the multiplexing operations are prescribed

by ARINC 664 specification and explained in the preceding section. These arrangements

are necessary to ensure determinism across the AFDX networks. Once a frame has been

selected from the virtual link queue for transmission, a sequence number per this link has

been assigned and the frame is forwarded to the physical link. A virtual link could have

some Sub-Virtual Links (Figure 1.15) which first have to select the frame for transmission

before its sequence number is assigned. The mechanism for selecting a frame in both cases

is done in a round-robin process.

Latency [6]

Latency in sending is the delay from the end system’s communication ports to the physical

media. This process includes the virtual link scheduling, regulating and shaping, and, in

19

1.4. AFDX CHAPTER 1. BACKGROUND

Figure 1.15: Virtual Link

20

1.4. AFDX CHAPTER 1. BACKGROUND

addition, (optional) redundancy management processes. There is also technological latency

in this process which is bounded to 150µs.

The latency in receiving comprises the processes between the physical link and end

system’s AFDX ports. The only subprocess is redundancy management. The technological

latency is again 150µs.

Finally the latency bounds are determined by the following Equation 1.1.

MAX Latencyi ≤ BAGi +Max jitter + Technological Latency in transmission (1.1)

Figure 1.16 contains a diagram representing communication between two end systems

(one is transmitting and the second is receiving data). Additionally the processes involved

in the latency of the systems are shown.

Figure 1.16: AFDX Latency in communication

Switch [6]

A switch in an AFDX network has policing, filtering and switching functions. The switch

also interacts with end systems connected to its ports. There are several configuration

21

1.4. AFDX CHAPTER 1. BACKGROUND

tables from which the switch reads settings and implements them to perform the above

tasks. Finally, a switch is monitored by a network management function for operational

information and health-related status. This function logs events such as arrival of a frame

or a failed CRC check and in addition creates statistics about them. Figure 1.17 depicts an

AFDX switch and its interdependency with the other components in a network.

Figure 1.17: AFDX Switch

Filtering, Policing and Switching function

When a frame from virtual link i arrives at the input port1 of a switch, the following are

assumed:

� BAG (bandwidth allocation gap) of the link i

� Jitter — a time frame which is associated with and assured for, the link, resulting

from delays in the start end node owing mainly to scheduling and technological delays

� Smax — the maximum size of a frame. This is an integer in the range [84,1538] bytes.

� Smin — the minimum size of a frame. This is an integer in the range [84,1538] bytes

which should be equal to or less than the Smax.

The frame filtering policy is checked, on the basis of the above information, then the

frame size (i.e. whether the frame is longer or shorter than the desired size), the frame

integrity (i.e. whether the entire content delivered) and the path of the frame (i.e where it

1In general, there are several ports per switch, some of them could be input or output depending on the

context — a specific virtual link. Finally, all ports have equal capabilities

22

1.4. AFDX CHAPTER 1. BACKGROUND

is to be delivered). If a frame does not comply with these conditions it is discarded and the

monitoring function is modified according to the information for rejection of a frame.

The next step to be performed is the policing algorithm on the Destination Address basis

of a virtual link. The traffic policing has the task of regulating the bandwidth usage or in

other words the traffic “injected” into a network. This is done by one of two algorithms:

Byte-based traffic policing or Frame-based traffic policing. Both have the same function but

the measurement in one case is expressed in bits per second and in the other as frames per

seconds. A switch may implement both of them. The algorithm implements the following

function for the “account” ACi for the virtual link V Li:

Si
max.

(
1 +

J i
switch

BAGi

)
(1.2)

In the case where the switch is using the frame-based policing algorithm, the following

applies. If a frame ACi is greater than Si
max, then the frame is accepted and frame ACi

is debited by Si
max. If this condition is not obeyed, the frame is discarded, and ACi is not

changed. A notification is sent to the monitoring functions. In this way the containment

function of the network is ensured and implemented. Since an end system which is corrupted

does not disturb the other network traffic, its frames are not accepted furthermore by a

switch.

The choice of policing algorithm is based on the Destination Address of a virtual link.

There are two types of relationship between MAC destination addresses and ACi. First, one

ACi could service only one Destination Address (MAC). Second, this could be implemented

for several destinations. In this way the propagation of faulty frames is prevented. A

shared virtual link (used by many applications in the end node) is part of only one ACi

account. This technique could be beneficial for applications distributed across multiple

partitions and sharing one communication virtual link. This capability will compromise

the segregation between the respective virtual links, as well as eliminating the required

bandwidth guarantees.

The switching function obtains the Destination Address from the configuration tables

and then performs the forwarding. Conditions which are checked, when this action is taken,

are the status of the destination port (i.e. whether the buffer in the port contains enough

available memory) and the “max delay” of the frame (i.e. the delay for a frame calculated

using the formula compared with the one set in the configuration).

23

1.4. AFDX CHAPTER 1. BACKGROUND

The switching capabilities include a prioritization mechanism dependant on the Desti-

nation Address, with two priority classes. These are High priority and Low priority. The

priority level is configured in the configuration tables of the switch. For each output port,

frames with higher priority are sent a priori, and those of lower priority class are pre-empted

and delayed.

1.4.4 Recap

The AFDX technology combines concepts taken from an asynchronous network model with

well-known Ethernet technology. At the physical level AFDX has star topology with main

devices — the switches. In addition, the network is profiled on a frame level. All connections,

addressing tables and bandwidth requirements are well-known in advance. At protocol level

there is a notation called virtual link — a point-to-point or multicast connection between end

systems. Again, the network is profiled, and the addressing and bandwidth values are known

a priori. Moreover, the network is deterministic, with latency of each connection known at

the design stage. The traffic shaping and regulating mechanisms in the end system and

those in the switch (i.e. traffic policing) help to guarantee the latency, jitter and bandwidth

for each virtual link, ensuing the required QoS.

24

1.5. INTEGRATION CHAPTER 1. BACKGROUND

1.5 Integration

In this chapter we have introduced two technologies — TTEthernet and AFDX. As can be

seen, TTEthernet is compatible with AFDX and not the other way around. This is due to

TTEthernet supporting integration of different traffic classes. AFDX has only one traffic

class even though the switches may be able to support these capabilities.

In our work we rely on the TTEthernet. But as much of it is mature and proven

technology, we will use the details of AFDX when it comes to elaborative description of

the configurations. First, we will explain the scope of our problem in an environment

which contains properties fully compliant with AFDX, and afterwards we will extend the

configuration to include properties related to and available only in TTEthernet.

25

Chapter 2

Motivation

2.1 Introduction

In this chapter we provide a motivation for the problem featured in this project. First, we

will introduce:

� the hardware architecture

� the software architecture

� and the application model related to our problem.

Afterwards, the problem is described in the terms of the the constraints introduced and

the technologies discussed in the previous chapter.

Finally, the chapter also includes additional assumptions.

26

2.2. HARDWARE ARCHITECTURE CHAPTER 2. MOTIVATION

2.2 Hardware Architecture

An example of our architecture is depicted in Figure 2.1. The architecture is a model of an

avionics network based on the specifications in documents [6] and [11].

Figure 2.1: Illustrative AFDX configuration

The network is a single multi-cluster2, composed of interconnected switches SW1 to SW3.

Every switch has the same synchronization priority level and synchronization domain3. Such

a device has input and output ports. Examples of ports are the notations ES1 − SW1,

ES2 − SW1 and SW1 − SW2 for switch SW1. The role of the input ports is to accept

incoming frames and to queue them to the corresponding output ports. Every output port

contains a buffer with limited size. The buffer is used to process the incoming data according

to the traffic policing and filtering functions of the switch. The output port implements two

different transmission disciplines for queuing the frames: First In First Out (FIFO) and

Static Priority Queueing (SPQ), with only one predefined priority — Time-Triggered (TT)

flows. Configuration like this is reference [18]. Additionally, this configuration is presented

in the patent described in [30]. We assume that flows with predefined Time-Triggered (TT)

traffic take advantage of using the output ports immediately when they have to transmit

data.

2Cluster with multi-level priorities of the serviced data
3The switches belong to one synchronization domain

27

2.2. HARDWARE ARCHITECTURE CHAPTER 2. MOTIVATION

The inputs and outputs of the network architecture, called end systems, are denoted with

ES1 to ES7. Every end system is connected to exactly one switch port and each switch

port is connected to at most one end system. An end system can emit and receive data

simultaneously. The details describing the transmission flows of data structures and their

behaviour are given in section 2.3

The links between any switch and end system are full duplex Ethernet. This eliminates

the indeterminism of the underlying CSMA-CD Ethernet technology.

28

2.3. SOFTWARE ARCHITECTURE CHAPTER 2. MOTIVATION

2.3 Software Architecture

We have decided on a specific software architecture that runs on every end system node.

The architecture is in accordance with the specification in reference [6].

Our software architecture has the following functions:

� fetching data from a local bus

� constructing frames dependant on and restricted by the shaping unit4 of the end system

� scheduling of the frames for sending

� transmission of the frames

� acceptance of frames

When the data is available and fetched from the bus it is transformed and wrapped

in a virtual link before is sent as a sequence of frames. Only one end system can be the

source of a particular virtual link. Thus, all virtual links describe in an explicit way the

end-to-end communication. The sample configuration shown in Figure 2.1 contains virtual

links denoted by V1 to V5. As described in the ARINC-664 standard [6], the virtual link

is a concept based on a virtual communication channel where all communication flows are

statically defined offline. There are two types of virtual links:

� unicast (e.g. V1 with path ES1 − SW1 − SW3 − ES6). This is a case where a virtual

link has single start and end points

� multicast (e.g.V2 with subpaths ES2−SW2−SW3−ES6 and ES2−SW2−SW3−ES7).

In this example a virtual link again has a single starting point but more than one end

point. The data is cloned (from the traffic policing unit of a switch) in an appropriate

manner when the link is forked, without any extra timing penalty.

By definition, every virtual link is implemented with two parameters — BAG (Bandwidth

Allocation Gap) and minimum and maximum length (Sminand Smax). BAG is the minimum

delay between two full consecutive emissions of data in a virtual link. This means that a

virtual link that has to transmit an amount of data S must do it for an interval of time

4The constraints are related to proper time of emitting of a message and the size of it

29

2.3. SOFTWARE ARCHITECTURE CHAPTER 2. MOTIVATION

equal to BAG. The pair (Smin, Smax) determines the minimum and the maximum amount

of data respectively for transmission in the ingress node of a virtual link. (Obviously this

node is an end system). This means that, no matter how many transmissions are performed

in a period BAG5, the sum of them should not exceed S ≤ Smax. Alternatively, if there

is only one transmission, then S = Smax. These limitations are guaranteed by the shaping

unit software of the end system and the traffic policing unit in every switch input port in the

path of the link. Both properties will be taken into account when the virtual link scheduling

is performed in the end systems and the corresponding switches in the path.

We consider every virtual link to transmit a single predefined, dedicated service class of

frames according the specification in reference [11]. These can be Rate-Constrained (RC),

Time-Triggered (TT) and Best-Effort (BE) messages6. The architecture shown in Figure

2.1 contains five virtual links and their network classes could be 2 Time-Triggered (TT) —

V1, V4, 2 Rate-Constrained (RC) — V2, V3 and 1 Best-Effort (BE) — V5.

It is worth mentioning that the TCP/IP stack in the AFDX end systems is implemented

in the NIC 7 adapter. This is done in order to save limited CPU and memory resources

in the avionics subsystems partitions 8. The static configuration of the AFDX networks

described does not require many components of the traditional TCP/IP implementations

like ICMP, ARP and etc. Thus, the implementation highlights performance, with short

response times regarding the number of the emitted frames per any end system [19], and

limited other functionality.

5The restrictions for the BAG values are presented in the Background chapter, Ch. 1
6See the Background chapter, Ch. 1
7Network Interface Controller
8The applications are hosted at this level

30

2.4. APPLICATION MODEL CHAPTER 2. MOTIVATION

2.4 Application model

We model an application A as a set of directed, acyclic graphs G(V,E) ∈ A. A node

Pm
i ∈ V (m ∈ [1, n])9 describes a process of sending out data from a particular switch or

end system to another switch or end system within the boundary of a particular graph m.

An edge emij ∈ E from Pm
i to Pm

j indicates that the output of Pm
i is the input for Pm

j and it

represents a communication link from the hardware configuration. We define that a graph

m dimensions are equal to a virtual link paths — P. Moreover the application model makes

it possible to intersect the hardware configuration and to represent multiple virtual links

with the same ingress node to different independent nodes from the graphs. The concept

notation is depicted in Figure 2.2:

Figure 2.2: Relation between hardware configuration and application model

In the figure there are two end systems — ES1 and ES2. The first one feeds 1 virtual

link — V1 and the second 2 — V2 and V3. According to the description we transform this

hardware configuration to an application model which separates the virtual links into three

different starting nodes. Following this, there is 1 graph G with 9 processes ∈ V. The

processes are PV L1

ES1
in node ES1; PV L2

ES2
and PV L3

ES2
in node ES2; PV L1

SW1
, PV L2

SW1
and PV L3

SW1
for

SW2; PV L1

SW2
, PV L2

SW2
and PV L3

SW3
in node SW3.

A process in a graph can be activated after all of its data is available, and is terminated

when all of its data is sent out to the next process in the graph. This is equal to passing

forward the data in a virtual link path (graph).

The graphs have properties inherited from the software architecture described in section

2.3. Thus we consider a virtual link subpath, also known as flow, to represent an individual

9n — number of all processes in the system

31

2.4. APPLICATION MODEL CHAPTER 2. MOTIVATION

graph Gm. Overall each virtual link has minimum inter-arrival time at the ingress end system

node, denoted with Tm and maximum release jitter at the same node, denoted with Jm. The

maximum inter-arrival time is another way to denote the BAG property of a virtual link.

From the other side, the maximum jitter Jm stands for a function which accumulates the

maximum time allowed for subtranmissions (if they exist) when a virtual link transmits

partial data S (Smin < S < Smax) in multiple emissions.

There is contention between the different graphs for the hardware resources — e.g. every

switch output port or end system can emit only the data of a particular process Pm per unit

of time. Thus the scheduling policy for each process in the switch nodes is FIFO and for the

end nodes the graphs are scheduled in a round-robin sequence. A process Pm communication

with another process mapped to the same end system is not modelled explicitly and is not

considered as “influence”. Evidence for this is the intersecting application model. The

maximum process time of Pm on any node i from the path Pm is denoted as Cm
i . The

dependencies for this process time and the assumptions behind it are given in the section

2.5.

32

2.5. TECHNOLOGICAL NOTATIONS CHAPTER 2. MOTIVATION

2.5 Technological notations

The application model in section 2.4 introduced the required notations. We adhere to them

as follows:

Every edge eij in the application transmits any size of data for a time value L = Lmin =

Lmax = 16µs. This constant is relevant to the technological delay caused by the full duplex

Ethernet links in the hardware system.

The time taken by a process Pm for crossing node i (described as Pm
i in section 2.4) is

Ci
m = Smax/R, where Smax is the maximum length of the emitted data (by a virtual link)

and R the hardware-limited bandwidth of the network (usually 100 Mbit/s). Alternatively

the transmission time through the node can vary when the virtual link transmits less data

S (Smin < S < Smax).

33

2.6. PROBLEM FORMULATION CHAPTER 2. MOTIVATION

2.6 Problem formulation

We shall now consider statically predefined Time-Triggered (TT) messages in the network

applications that we are researching. These are compatible and integrated with the models

and the configurations described so far in sections 2.2, 2.3 and 2.4. At the same time

the application A is handling Rate-Constrained (RC) traffic. The following factors are

considered for the Time-Triggered (TT) traffic:

� Static messages take precedence over all other network traffic.

� Statically defined messages have hard deadlines denoted with Dm, where m ∈ [1, n]

and Dm < Tm (Tm is the period of a message).

� These messages occupy predefined time-segments in their paths in the corresponding

graphs G. Therefore the point of time at which every Time-Triggered (TT) process

Pm
i

TT passes every node in its path Pm can be identified exactly.

� This type of traffic uses synchronized switches and end systems in order to complete

the synchronization between all the Time-Triggered (TT) traffic. Any co-existence of

Time-Triggered (TT) and Rate-Constrained (RC) traffic in any particular end system

is impossible. If it is, the Rate-Constrained (RC) traffic can also be “synchronized” by

mapping it to the Time-Triggered (TT) traffic. Thus the application model does not

change. The presence of Time-Triggered (TT) traffic adds extra graphs on the top of

the existing ones.

� The Time-Triggered (TT) traffic segments are created offline and have an impact over

the rest of the traffic by preventing the communication of the Rate-Constrained (RC)

traffic from progressing during the transmission of the higher priority traffic.

In scenario I we consider a set s of defined Gs graphs (s ∈ [1, n]) executing prede-

fined Time-Triggered (TT) traffic. There is a function FTT : V → VoptRC which gives the

optimized result for the rest n − s Rate-Constrained (RC) graphs Gn−s. This function de-

terminates the scope for carrying the Time-Triggered (TT) traffic over the network and is

calculated offline by the system designer. We define a set of rules S which have to be fulfilled

or are considered as advisable with regard to the Rate-Constrained (RC) traffic.

34

2.6. PROBLEM FORMULATION CHAPTER 2. MOTIVATION

Alternatively, in scenario II, the n−s Rate-Constrained (RC) graphs Gn−s are inspected

and the virtual link parameters for Rate-Constrained (RC) are optimized. This is done

through a function FRC : V → VoptRC . This time the Time-Triggered (TT) traffic is not

changed at all. In this case the set of rules S are related to non-changeable Time-Triggered

(TT) traffic.

Our problem formulation is as follows:

� As input we have an application A with a set of graphs — Time-Triggered (TT) and

Rate-Constrained (RC).

� The available parameters data for every Time-Triggered (TT) graph are

< T,D, Smax, Smin, start− uptime >

� The available parameters for every Rate-Constrained (RC) graph are

< T = BAG,Smax, Smin >

� The goals of the application are set through S and they respect in scenario I the

opportunity to build the “best results” for constraints related to Rate-Constrained

(RC) traffic and in scenario II for limitations related to Time-Triggered (TT) traffic.

The ”best results” to which we point in both scenarios are the shortest end-to-end

delay times for the Rate-Constrained (RC) traffic, since the Time-Triggered (TT)

delays can vary but are always expected to be as they are designed. Moreover the

unpredictability of the Rate-Constrained (RC) traffic is the result of the dedicated

service class10 of this kind of messages and a satisfactory result is one that shows the

highest bounds of these end-to-end delays.

With the term “end-to-end delay” time for a given message we define the time needed

for crossing the message’s own ingress node, all links and switches in the network exactly,

before the message is delivered to the destination node of the network. This time could be

an absolute or relative value.

In conclusion we will determinate configuration ψ =< F ,S > for which the optimal

deviation F of the corresponding graphs is chosen for a set of rules S and the current

scenario.
10This is explained previously in the Background chapter

35

2.6. PROBLEM FORMULATION CHAPTER 2. MOTIVATION

From now on, our main focus in the next chapters will be to study and analyse Rate-

Constrained (RC) traffic, to work out an appropriate approach for determination of its end-

to-end delays and to apply the result to both scenarios as they were described. This process

will include exploration of the work already done in the area and consequently its extension.

We will reckon the problem as solved if we apply and show results for the methods developed

to different hardware and software configurations which support the models described so far.

36

Chapter 3

End-to-end delay analysis

3.1 Introduction

In this chapter we will analyse the core problem of this thesis project, i.e. how the timing

delay of Rate-Constrained (RC) messages can be determinated in terms of the configurations

examinated and described in the Motivation chapter, Ch.2.

A survey of all existing methods in the literature compliant with the problem will be

shown first. Second, we do preliminary analysis of the delays and show where exactly the

delays have dynamic/undefined parts which have to be calculated.

Afterwards, we adopt an analysis based on the Trajectory approach[28], [29] for the

purpose of our task.

37

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

3.2 State Of The Art

The AFDX network is a new innovative research discipline which has been studied from the

community recently. The area in which we are interested, is related to the produced end-

to-end delays of the flows. The scrupulous exploration of the determinism of these delays

is used for certification purposes. Different approaches have been proposed to analyse the

end-to-end delays.

3.2.1 Network Calculus

The network calculus approach is a traditional approach described in many papers. The

method is based on network theories. It is used to describe the arrival curves of the virtual

links traffic and further to estimate the minimal service offered by the network switches. The

calculus gives the latency of any network entity (virtual link) and, for those with queueing

capabilities (switches), the queue size bound in bits divisible by Smin of any virtual link.

If the service curve of the switches is designated by β and the network arrival curve of the

virtual links α then the calculus estimates the arrival curve α∗ of the output flow: α∗ = αφβ

where αφβ is defined by:

αφβ(t) = sup
u>0
{(α(t+ u)− β(u)} (3.1)

The equation described above simply shows that for any time t the function of the arrival

curve “minus” the offered service could not exceed a given boundary described by the sup

statement. Obviously this equation is valid only for the first node, and if a virtual link of

Rate-Constrained (RC) messages has to use it should be considered a concatenation which

will multiply the effects of several as the above. More details and the theoretical background

for these studies are given in reference [31].

The network calculus approach is described as holistic [26] because the considered worst

case scenarios lead to impossible situations. Whenever this approach is used the maximum

jitter delay is produced which will dramatically increase the end-to-end delays. There are

also other pessimism issues, intrinsic to the approach as envelopes (shaping curves produced

by the calculations of the service and network curves) instead of the exact arrival times of

the messages sent [25].

38

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

3.2.2 Grouping technique

Another approach to the analysis of end-to-end delays is the grouping technique. This

technique is used as improvement of the network calculus approach. It consists of a concept

for grouping the virtual links which share at least one edge 11. The key point is that the

frames of these virtual links are serialized after exiting the first multiplexer (an end node

or a switch) and thus they do not have to be serialized again in the following multiplexers.

This utilizes the bandwidth and minimizes the blocking interdependency of the flows when

they have to use common hardware resources.

This approach is used and mentioned in [26] and [25].

3.2.3 Simulation approach

The simulation approach is designed to determinate experimentally the maximum upper

bounds on a set of scenarios, which will eventually be “sharper” than network calculus

calculations. This is so because network calculus is a generalization and derives sure upper

bounds on the delays contrariwise the simulation approach, which tests only limited and

known cases.

The simulation strategy is used in [20] and [24]. The approach described has discussions

about certain parameters which are taken into account. These are related to the virtual link

emission strategy. More specifically these are options that:

� decide whether the frames can be generated periodically, using the BAG as a period,

OR frames can be generated sporadically, using the BAG (Bandwidth Allocation Gap,

equal to the period Tm) as a minimum inter-emission time

� experiment with the phasing between virtual links (a synchronized one, in which the

first frame of every virtual link is transmitted at the same time, OR a desynchronized

one, in which we assign a phase randomly distributed between 0 and its BAG) to each

virtual link

� try different frame sizes such as e.g. the minimum length for every frame of every

virtual link, the maximum length for every frame of every virtual link, the average

length between the minimum and the maximum ones for every frame of every virtual

11In our case this is when emij = elij and where m,l ∈ [1, n], n — all graphs G in the application A

39

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

link, or a random length between the minimum and the maximum ones for every

frames of every virtual link

On the other hand the simulation approach can describe generic models of predefined

configurations. These configurations are examined for influence in between the composed

virtual links. As result the simulation space is reduced. Moreover larger configurations can

be represented as a composition of such predefined models. In this way larger architectures

can be simplified and they tend to be simulated more easily. This extension of the approach

is considered in [24].

3.2.4 Time automata

There is also a timed automation modelling approach based on timed automata. It

is suitable only for small configurations because the models used lead to a combinatorial

explosion in larger configurations and they become unsolvable. This method consists of the

exploration of all the possible states of a system and will thus determine an exact worst-case

end-to-end delay. It implies computing whether a property, expressed by a timed logic,

is verified or not. A timed automaton is a finite automaton with a set of clocks with time

variables that are increased uniformly in the time. The model checking approach determines

an exact worst-case end-to-end delay in the corresponding scenario, since it explores all the

possible states of the system. The composition of the time is obtained in a synchronous

way. This means if two actions lead to one which could be performed, then the time for

both is considered. Performing the transitions does not cost time, but conversely the time

is running in the nodes. Thus reachability analysis is performed by model-checking and this

means that a property is verified if it is reachable from the initial configuration.

If we consider a system with 5 virtual link flows and 3 intersecting switches, their compo-

nents can be modelled by automata as in the following equation. The global system model

is obtained by composition of all automata:

System = Switch1‖Switch2‖Switch3‖F0‖F1‖F2‖F3‖F4 (3.2)

These analyses are implemented in [20]. In the same work some techniques are suggested

which have as their the reduction of the overload of the calculations, e.g using a generalization

approach which takes into account the separate modules of the system, already calculated.

40

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

3.2.5 Stochastic network calculus

The next technique proposed is stochastic network calculus. This method gives an

evaluation for the distribution of end-to-end delays of a given flow in the configuration. The

distribution obtained is pessimistic if it is compared with the real behaviour of a network

observed through simulation. On the other hand, the pessimism is less than the upper

bounds obtained by a network calculus approach.

We will describe briefly the background configuration for the approach. Every switch

output port has to aggregate traffic with its capacity at a constant rate c which is the

capacity of the output link (100 Mbit/s). Every single flow is shaped separately at network

access level by the BAG (Bandwidth Allocation Gap). This corresponds to a network subject

to EF PHB (Expedited Forwarding Per-Hop Behaviour) service of DiffServ (Differentiated

Services) [32]. The nodes, in this case the switch output ports, are denoted as PSRG (Packet

Scale Rate Guarantee) nodes and the EF traffic in a node is served with a rate independently

of any other traffic transiting through the same node.

A node is PSRG (c, e), where c is the guaranteed rate with latency (error rate) e. If we

denote the departure of nth packet of the EF aggregate flow, in order of arrivals as dn , then

dn satisfies the inequality: dn ≤ fn + e where fn is calculated recursively as f0 = 0 and

fn = max {an,min {dn−1, fn−1}}+
ln
c
, n ≥ 1 (3.3)

where the nth packet arrives at time an with ln bits.

The further analysis of Vojnović and Le Boudec [21], [22] of networks with EF PHB

services are used to calculate the distribution of the waiting time for each switch. The

calculations are based on the probability of bound buffer overflow in the switch output port.

The authors of the above-mentioned references made several assumptions and set out proof

that identify the AFDX traffic flows as the one modelled in sections 2.2, 2.3 and 2.4 and

the background configuration above described.

In order to determinate the waiting delay in the output port of the switch, the waiting

delay at the moment of the arrival of frame f needs to be known. This is called compli-

mentary distribution of the backlog12. There is a probability that the size of all frames in

the output buffer including f exceeds level b. This kind of probability is denoted with PA

12Backlog is the quantity of bits that are held inside the output port

41

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

and is named palm probability. P(d(0) > 0) is the probability that d(0) (denotes the delay

through a node of a frame arriving in the node at time 0) exceeds u. In order to calculate

the probability of the end-to-end delay for a given virtual link, we compute it for different

values of u. At the end we consider:

P(d(0) = u) = P(d(0) > u− 0.5)− P(d(0) > u+ 0.5) (3.4)

The approach described is used in [23] and [24].

Another known and suggested method related to this approach is described in [24]. The

theory in this resource is based on the same principles as those described above. Starting

from this point, the main discussion is how to apply the probabilistic network analysis to a

chain of nodes and more especially in a sequence that is equal to the path of a virtual link.

The discussion of the approach ends with results achieved in Equation 3.4 transformed to

multihop flows.

3.2.6 Heuristic optimizations

In order to obtain more qualitative results several heuristic optimization methods are

mooted in [25]. Among the suggested alternatives are a tentative Alpha-Beta-assisted brute-

force approach, genetic algorithms and priority experiments. The paper shows significant

improvements in end-to-end delays and the availability of the queueing buffers while series

of genetic algorithms is used.

In the following paragraph we are describe a genetic optimization method related to

assigning a priority to a virtual link. By default the priority of the virtual links is not a part

of the specification described in [6]. This work uses several ways for spreading out of the

priorities but the important conclusion in it is the ability to assign one of only two priority

classes to a virtual link - low priority and high priority. Setting priorities should play only a

balancing role for an AFDX network. The standard [6] characterizes the AFDX networks as

“profiled networks” and more specifically as “deterministic networks”. The latter signifies

the paramount quality of the timed services offered. Thus all virtual links should respect

the same jitter and latency delay constraints independent of their priority class.

The process of assigning priority to virtual links is described in several steps. Firstly

an approach is tried where these values are randomly assigned. The problem in this case is

42

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

the unpredictability of the approach. Some segments of the network could show very low

performance as result of the technique.

As a second step the network calculus model is updated, so the derived values regarding

the influence of the priorities are correct. The assumption that only two priorities exist is

turned into a combinatorial problem (e.g. if there are 1007 virtual links, there should be

21007 combinations of priority assignment). Some of the cases are insignificant but they still

have some influence.

Finally the process of searching for an optimal minimum for the end-to-end delays is

carried on a “good” configuration. Several of these configuration and the corresponding

results can give the optimal solution when a Alpha-Beta reduction in a binary-tree is used.

The same resource [25] proposes optimization using genetic algorithms that are a subset

of the evolutionary algorithms. Basically the genetic algorithms represent points in the

optimization space by individuals, themselves represented by genes, and iterate generations

of population with reproduction and “natural” selection.

3.2.7 Stochastic upper bounds for heterogeneous flows

A step forward in the priority assignment of virtual flows is the work repeated in [18]. The

results presented here are for flows with static priorities in a configuration that uses static

priority queuing. The analyses are based on the stochastic network approach and include

an extension to take account priority queues. When the frames arrive in the buffer they are

stored in its priority queue. Afterwards the frames from the queue with highest priority are

scheduled first and the rest follow in regressive order of queue priority. All these extensions

have some influence on the way how the network service curve of a switch is calculated. For

this purpose a new algorithm accommodating these changes is proposed.

Finally the study presented in this paper considers different scenarios with audio and

Best-Effort (BE) flows among its configurations. Overall the results show the usage of

priority in the virtual link flows.

3.2.8 Trajectory Approach

The last approach in this survey to have been found and the last to be discussed is the

trajectory approach. This approach considers the sequence of nodes visited by a frame

43

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

along its trajectory with the potential other influences of other frames for each corresponding

node. Thus only possible scenarios are considered. This makes it possible to focus on a

specific packet from a given flow and construct the packet sequences in each node crossed

. The work presented in this master thesis is based on this approach and therefore the

approach will be analysed in greater details in the following chapters.

This approach is presented in [26]

3.2.9 Summary

The following Table 3.1 gives a summary of all found methods in the literature and discussed

in the section:

44

3.2. STATE OF THE ART CHAPTER 3. END-TO-END DELAY ANALYSIS

Method name Advantages Disadvantages

Network calculus Conventional and well

known method

Leads to impossible sce-

narios and higher values

than the real bounds

Grouping technique Decreases the end-to-end

delays for specific scenar-

ios

Covers only dedicated sce-

narios depending on the

configuration

Simulation approach Easy to implement and

understand

Covers only specific sce-

narios; Could not be used

to give guarantees for the

results

Time automata modelling Exact calculation of the

modelled configurations

Can be applied only to

scenarios with a limited

number of nodes

Stochastic network calculus Improves some of the dis-

advantages of the Network

calculus approach

Considered as hard to un-

derstand due the complex-

ity of the theory

Heuristic optimization methods

over network calculus

Tighter experimental re-

sults for the bounds com-

pared to the network cal-

culus method

Requires a lot of experi-

mental work

Heuristic optimization methods

over network calculus with prior-

ity assignments

Tighter experimental re-

sults for the bounds com-

pared to the network cal-

culus method

Requires a lot of experi-

mental work and the re-

sults are not comparable

with whose any other ap-

proach

Stochastic network calculus with

priority assignments

Enables priorities to be set

for the traffic flows

The results are not com-

parable with those of any

other method

Trajectory approach Easy to understand and to

implement; Shows tighter

bounds than the network

calculus approach

The approach analysis in-

cludes pessimism which

cannot be avoided ow-

ing to the nature of the

method

Table 3.1: Comparison between all known methods for measuring of end-to-end delays

45

3.3. ASSUMPTIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

3.3 Assumptions

We have already described the hardware, software configurations and application model

in which we are interested. This has been done in sections 2.2, 2.3 and 2.4. There is

more that has to be considered before we formulate an analysis for the end-to-end delays

of the messages. Firstly we will examine the assumptions for traffic which considers Rate-

Constrained (RC) messages:

� Rate-Constrained (RC) traffic is sporadic. This means that there is no predictability

in the emitting process of the flows. Any time in the period, denoted with Tm for flow

m, could be used as starting time. The constraint is that this should be within the

bounds of the the jitter constraint Jm.

� For the sake of simplicity and further analysis the hardware architecture and the

application model are merged in a manner such that all end systems emit exactly one

virtual link. This is so because the delays produced inside an end system node are

disregarded. This case study excludes processes within the end system.

� The application model and the results of the analysis do not consider any delays due

to a redundancy management system. These modules are not within the scope of the

analysis.

Afterwards the analysis will be extended to include predefined Time-Triggered (TT)

messages. The assumptions related to these were presented in section 2.4. More will be

added if needed.

46

3.4. PRELIMINARY ANALYSIS CHAPTER 3. END-TO-END DELAY ANALYSIS

3.4 Preliminary Analysis

We are interested in the upper bound of the end-to-end delay of Rate-Constrained (RC)

traffic, which represents the maximum waiting service time for emitting, transmitting and

receiving a message, as well as the distribution of this time between its lower and upper

bounds.

By calculating the end-to-end delay of the messages we are aiming:

� to avoid packet loss i.e. none of the switches buffers will overflow

� to limit the end-to-end delay messages to an acceptable time, which is necessary to

maintain the deterministic nature of the AFDX networks

� to prepare the results of the calculations for integration with networks carrying mixed

traffic (Rate-Constrained (RC) and Time-Triggered (TT) messages).

3.4.1 End-to-end delay formula

The first task in our analysis it to build reliable formula that can be used to calculate the

delay if we know the exact constituent parts of it. Let’s consider a virtual link path pm

(the representative of a graph Gm from the configuration). The end-to-end delay Dpm of a

message Fpm
is defined as:

Dpm = Tsm + LDFpm
+ SDFpm

+WDFpm
+ Tr (3.5)

where

� Tsm is the latency of the source end system. This include to the maximum time taken

to obtain application data, tc the maximum time for fragmentation of a message and

ts the maximum time used for polling over the buffers and concatenating the available

frames.

Tsm = to + tc + ts (3.6)

� LDFpm
is the transmission delay over the links (between the end system and the switch

or connections between switches). The delay is dependent on the link bandwidth R

47

3.4. PRELIMINARY ANALYSIS CHAPTER 3. END-TO-END DELAY ANALYSIS

(usually 100 Mbit/s). We will denote this delay by L and it will be fixed at 16 µs

multiplied by the number of links (nblpm
) in the virtual link path pm

LDFpm
= nblpm × L (3.7)

� SDFpm
is the transmission delay in the switches for a message Fpm

with length SFpm
.

This delay specifically accounts for the time between the input port and the output

port. It is dependant on the size of the messages SFpm
and the bandwidth R (usually

100 Mbit/s). As we assume that all devices in a configuration are equal we can

conclude:

SDFpm
= nbspm

×
(
SFpm

/R
)

(3.8)

where nbspm is the number of switches in the virtual link path pm.

� WDFpm
is the transmission delay in the output port of the switches. This delay is

dependant on the output port load at the moment when the frame/message has to be

transmitted. The delay is

WDFpm
=

∑
Sk∈nbspm

WDFpm
(Sk) (3.9)

where nbspm is the number switches from the path pm and WDFpm
(Sk) is the delay

in the output port buffer Sk.

� Tr is the latency of delivery through the destination end system. This delay currently

is considered static.

In conclusion the delay Dpm
can be defined as the sum of the dynamic part (WDFpm

)

and the static part (LDFpm
+ SDFpm

).

The results for the cost function Dpm for a frame Fpm transmitted along a virtual link

path pm is are also dependent on these “secondary” factors which have influence on the

dynamic part of Equation 3.9:

� The patterns of message generation (i.e., periodic or sporadic). A given emission might

cause very limited interference with other virtual links messages or the conversely it

might be stacked all the time in the output port of the switches

48

3.4. PRELIMINARY ANALYSIS CHAPTER 3. END-TO-END DELAY ANALYSIS

� The possibilities for the size of the messages. By definition a message has to be emitted

within its period (i.e. Bandwidth Allocation Gap — BAG) but how exactly this will

happen is not specified. It could be transmitted at once using its Smax or at multiple

times using Smin or higher values. This could change the end-to-end delay significantly

if a message was able to avoid contention in the output ports of the switches

� There is also a dependency on the topology of the network. This is a question of how

the different nodes and switches are designed and the corresponding virtual link flows

fit into. Extreme overload of the network could increase the end-to-end delay results

3.4.2 Classification of the virtual links

In order to obtain exact knowledge of the influence of the dynamic part of Equation 3.5,

and, more specifically, how the network design effects the end-to-end delays, we define a

classification of the virtual link flows by reference a specific network. Let’s consider the

configuration depicted in Figure 3.1:

Figure 3.1: Examinating the dependecy from other virtual links

In the illustrated configuration p3 is chosen for virtual link which will be investigated.

The path of the virtual link is ES3 − SW2 − SW3 − ES6. The paths of the other virtual

links or portions of them can be classified into 3 types:

49

3.4. PRELIMINARY ANALYSIS CHAPTER 3. END-TO-END DELAY ANALYSIS

� Direct Influence — paths or partial paths which share at least one output buffer.

In Figure 3.1 these are V1 with subpath: ES1 − SW1 − SW3 −ES6, V4:ES4 − SW2 −

SW3 − ES6, V5:ES5 − SW3 − ES6 and V9 partial path: ES4 − SW2 − SW3

� Indirect Influence — paths or partial path which do not share output buffers with

pm but share at least one output buffer with a Direct Influence or Indirect influence

path. In Figure 3.1 this is the case for virtual link V2 with subpath: ES2−SW1−SW3.

� No Influence - paths or partial paths which cannot be classified as either Direct

Influence or Indirect Influence paths. In the example these are V1 subpath:ES1 −

SW1−SW2−SW4−ES8, V7:ES2−SW1−SW4−ES8 and V8:ES5−SW3−ES7.

3.4.3 Influence of virtual links

Our next task is to research how far Indirect Influence is important for the analysis and

how much impact it has on the end-to-end delays. Let’s consider the following simple

configuration depicted in Figure 3.2:

Figure 3.2: Examinating dependency on other Indirect Influence virtual links

The hardware configuration consists of 4 end systems ES1..ES4 and a switch SW1, which

interconnects the nodes. The software configuration is represented by 3 virtual links V1..V3

with identical Smax and BAG parameters. We aim to identify the delays produced by the

Indirect Influence — V2 to the virtual link V3.

There are 6 possible scenarios. Whether V2 has an influence or not depends on the

scenario and if it does then the end-to-end delay of V3 is changed. For the sake of the

simplicity and the purpose of the research presented in here, we will omit the delays produced

50

3.4. PRELIMINARY ANALYSIS CHAPTER 3. END-TO-END DELAY ANALYSIS

in ES1 regarding V1 and V2. This was agreed in the preceding assumptions. We will use the

application model that overcomes these limitations. This is model depicted in Figure 3.2.

The distinct variants are shown in Figures 3.3, 3.5, 3.6.

The first figure, 3.3, contains Case A and Case B. In these scenarios the V1 is the first

virtual link to be emitted by ES1 and the delays of V3 depend solely on the arrival time of

the last message in the switch’s output port SW1 − ES3.

Figure 3.3: Virtual link V1 has the first message from all virtual links ready for transmission

Case C and Case D, depicted in Figure 3.5, the Indirect Influence when virtual link V2

is the first one which transmits data over the channel. This time (Case C) the end-to-end

delay of V3 depends on V2 because the Direct Influence of V1 is delayed (waiting to finish the

transmission of V2). Nevertheless the output port SW1 − ES3 could contain only messages

from V1 and V3. Such influence is significant and can be accumulated through a chain of

Indirect Influence virtual links. Figure 3.4 shows the indirect influence at different levels as

result of a virtual link Vx.

Discussion is not necessary in Case D because link explored V3 is transmitted before the

Direct Influence of V2, the last link that appears in the queue.

Finally in Case E and Case F depicted in Figure 3.6 the virtual link V3 is free of any

waiting limitation because it is the first one from the three which can be transmitted. The

results of both Direct Influence and Indirect Influence are disregarded.

We conclude that the Indirect Influence has an impact on the end-to-end delay calcula-

tions per virtual link but this is true only in certain cases. One of the further goals is to

provide a method of bounding the delay.

51

3.4. PRELIMINARY ANALYSIS CHAPTER 3. END-TO-END DELAY ANALYSIS

Figure 3.4: Virtual link Vx is indirectly influenced by virtual links - II1 and II2

Figure 3.5: Virtual link V2 has the first message from all virtual links ready for transmission

52

3.4. PRELIMINARY ANALYSIS CHAPTER 3. END-TO-END DELAY ANALYSIS

Figure 3.6: Virtual link V3 has the first message from all virtual links ready for transmission

3.4.4 Summary

On the basis of on the formula presented in section 3.4.1, we have found that the end-to-end

delay is dependant on the output buffers content in the virtual links’s path (the succeeding

sections 3.4.2, 3.4.3). Moreover we have eliminated any other influence.

53

3.5. TRAJECTORY APPROACH CHAPTER 3. END-TO-END DELAY ANALYSIS

3.5 Trajectory Approach

The Trajectory approach was initially introduced in [28] and [29]. Its first applications to the

AFDX field are reported in [26] and [27]. The approach is based on the analysis of the worst-

case scenario for a packet on the basis of its trajectory through the nodes in the network. It

considers the longest busy period of a message (i.e. all other possible transmissions before

the current one or in other words a period of time in which there is at least one message for

transmission before the current one in the output buffer of a switch.).

3.5.1 Case Study 1

Let us consider the shown configuration, Figure 3.7, which consists of six end systems

ES1...ES33, three switches SW1...SW3 and three virtual links V1...V3. All the virtual links

have standalone ingress node and there is no need to do application model transformation

from the hardware/software configuration.

Figure 3.7: Configuration example on which the Trajectory approach is tested

The values of Smax (in bits) and BAG (in µs) for each of the virtual links are given in

Table 3.2 below:

54

3.5. TRAJECTORY APPROACH CHAPTER 3. END-TO-END DELAY ANALYSIS

V L Smax BAG

V1 3000 500

V2 2000 500

V3 1000 500

Table 3.2: Virtual link data for the example depicted on 3.7

Let us consider the trajectory of V1. Its scenario is depicted in Figure 3.8:

We define an absolute moment of time aES1
3 where arbitrary packet from the virtual link

V1 starts its transmission. In the figure this packet is shown crossing all the nodes from its

path. Firstly the packet needs time to cross its own starting point — the end system ES1.

This costs Ch
i = Ci = Smax/R, where Ci is the processing time of virtual link packet Vi in

a node h - Ch
i . R is the bandwidth of the link (usually 100 Mbit/s). After the first node

has been crossed there is a technological delay before the packet reaches the second node

SW1. This is expressed by L = Lmin = Lmax0 = 16µs. In switch SW1 the packet arrives

and is queued to the output port SW1 − SW2 in time aSW1
1 . In this port the virtual link

V1 is influenced by the packet coming from virtual link V2 and therefore the busy period

for V1 starts when the packet from V2 is available and finishes when it has been entirely

transmitted.

Moreover we can define the following generalized notations for each processing node of

the path of V1: f(N) — the first packet processed in the busy period in node N ; and p(N−1)

— the first packet processed between f(N) and the packet in which we are interested (in

our case the packet from virtual link V1) such that p(N − 1) comes from node (N − 1). This

concept is depicted in Figure 3.9:

Packet p(N − 1) has been processed in node N − 1. For this node we define the same

f(N − 1) as the first packet processed in node N − 1 and so on until we get to f(1). By

adding these time periods together in Equation 3.10 we arrive at the latest starting time of

packet m from the example illustrated 3.9 through the concept in the calculations below:

55

3.5. TRAJECTORY APPROACH CHAPTER 3. END-TO-END DELAY ANALYSIS

Figure 3.8: Configuration example on which the Trajectory approach is tested — time line

diagram for virtual link V1

Figure 3.9: End-to-end delay of a packet m

56

3.5. TRAJECTORY APPROACH CHAPTER 3. END-TO-END DELAY ANALYSIS

(processing time on node 1 of packets from f(1) to p(1)) + Lmax+

(processing time on node 2 of packets from f(2) to p(2)) + Lmax − (a2
p(1) − a

2
f(2)) + ...+

(processing time on node N of packets from f(N) to (m− 1))− (aNp(N−1) − a
N
f(N))

(3.10)

where a denotes arrival times.

We assume also af(1)1 = 0. This means that an absolute starting time for our calcu-

lations. Moreover, if packet p(h − 1) = f(h) then we have ahp(h−1) = ahf(h) and thus the

subtraction ahp(h−1)−a
h
f(h) is equal to zero. Generally, if we do not subtract ahp(h−1)−a

h
f(h),

it means that we always assume the worst case for the trajectory and this will lead to

calculations with higher boundaries.

Returning to the example and the data for it, Table 3.2, we have for virtual link V1:

� In Switch 1 f(SW1) = V2, p(ES1) = V1. These packets arrive at time aSW1

f(SW1)=V2
and

aSW1

p(ES1)=V1

� In Switch 2 f(SW2) = V3, p(SW1) = V2. The arrival times of these are aSW2

f(SW2)=V3
,

aSW2
p(SW1)=V2

� In Switch 3 f(SW3) = V1, p(SW2) = V1 with times aSW3

f(SW3)=V1
, aSW3

p(SW2)=V1

Finally we can have the end-to-end delay of V1 with the following formula according to

Equation 3.10:

WCETV1
= CES1

V1
+ L

+CSW1

V2
− (aSW1

p(ES1)=V1
− aSW1

f(SW1)=V2
) + L

+(CSW2

V3
+ CSW2

V2
)− (aSW2

p(SW1)=V2
− aSW2

f(SW2)=V1
) + L

+CSW3

V1
+ L

(3.11)

The starting times used in Equation 3.11 are depicted on Figure 3.10:

If we have the following values:

� aSW1

f(SW1)=V2
= 32, aSW1

p(ES1)=V1
= 46

57

3.5. TRAJECTORY APPROACH CHAPTER 3. END-TO-END DELAY ANALYSIS

Figure 3.10: End-to-end delay of a packet VL1 — formula starting times

58

3.5. TRAJECTORY APPROACH CHAPTER 3. END-TO-END DELAY ANALYSIS

� aSW2

f(SW2)=V3
= 85, aSW2

p(SW1)=V2
= 102, aSW2

1 = 115

� aSW3

f(SW3)=V1
= 155, aSW3

p(SW2)=V1
= 155

and we calculate with Equation 3.11, then as final result for the WCET of packet of virtual

link V1 we have:

WCETV1 = 30+16+20−(46−32)+16+(20+10)−(102−85)+16+30+16 = 143 (3.12)

where C is calculated as C = Smax/R according the virtual link.

59

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

3.6 Computations

The Trajectory approach result is computed in [28]. In this section we summarize the results

and give the necessary formula for the computations.

The worst case end-to-end response time of any packet from virtual link i is bounded by:

Ri = max
t≥−Ji

(W lasti
i,t + Clasti

i − t) (3.13)

where lasti is the last node visited in the path Pi and W lasti
i,t is the latest starting time

of a packet generated at time t at the last node it visited. More specifically W lasti
i,t is

W lasti
i,t =

∑
j∈[1,n];j 6=i;Pi∩Pj 6=∅

(
1 + b t+Ai,j

Tj
c
)+

× Cj +

(
1 + b t+ Ji

Ti
c
)
× Ci

+
∑

h∈Pi;h 6=lasti

(
max

j∈[1,n];h∈Pj

{Cj}
)
− Ci + |Pi + 1|.Lmax (3.14)

where

� (x+) = max {0, x}

�

∑
j∈[1,n];j 6=i;Pi∩Pj 6=∅

(
1 + b t+Ai,j

Tj
c
)+

× Cj is the processing time of the packets from

flows crossing the flow being investigated - virtual link Vi. The analysis in [28] shows

that this time has to be considered in the slowest node, but apparently all switches in

the AFDX network are equal. Ai,j is the maximum jitter of any flow intersecting Vi

� Ai,j = min(S
firstj,i
maxi = W

lasti,j
i,t − Sfirstj,i

minj
; t)−Mfirsti,j

i + S
firsti,j
maxj + Jj

� Mh
i =

∑prei(h)

h́=firsti
(minj∈[1,n];firstj,i=firsti,j {Cj}+ Lmin)

� Sh
min is the minimum time taken by a packet of Vi to go from its source node to node

denoted by h

� Sh
max is the maximum time taken by a packet of Vi to go from its source node to node

denoted by h

�

(
1 + b t+Ji

Ti
c
)
× Ci is the processing time of virtual link Vi on the slowest node on its

path

60

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

�

∑
h∈Pi;h6=lasti

(
maxj∈[1,n];h∈Pj

{Cj}
)

is the processing time of the longest packet for

each node from the path of Pi except the last one

� Ci is subtracted, because W lasti
i,t is the latest starting time and not the ending time of

Vi on the last node

� |Pi + 1|.Lmax are the delays caused by links in the path

3.6.1 Worst-case response time for V1

According to the data from Table 3.2 related to the example depicted in 3.7, we calculate

the worst-case response time for packets in virtual link V1. This will be done consecutively

for each switch in the path of the link:

First, we calculate the worst-case response time for switch SW1:

1.

WSW1
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1
})− C1 + (|P1| − 1).Lmax (3.15)

where A1,2 = min(S
first2,1
max1 = W

last1,2
1,t − Sfirst2,1

min2
; t)−Mfirst1,2

1 + S
first1,2
max2 + J2.

2. Consequently,

WSW1
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1
})− C1 + (|P1| − 1).Lmax (3.16)

where A1,2 = min(30 + 16− 20− 16; t)−Mfirst1,2
1 + (20 + 16) + J2, M

first1,2
1 = 0 and

J1 = 0.

3. Since t ≥ −J1 and J1 = 0 we have A1,2 = t− 0 + (20 + 16) + 0 = t+ 36 for t ≤ 10 or

A1,2 = 10− 0 + (20 + 16) + 0 = 46 for t > 10.

4. Returning to WSW1
1,t , we have:

61

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

WSW1
1,t =

(
1 + b t+A1,2

500
c
)+

× 20 +

(
1 + b t+ 0

500
c
)
× 30

+ (max {20})− 30 + (|1| − 1).Lmax (3.17)

5. Because SW1 is not the last switch of the path of V1, we have

S
first2,1
max1 = maxt≥−J1(WSW1

1,t − t) + CSW1
1 + Lmax

6. Finally, the maximum value of the above response time is incurred when t = 0:

S
first2,1
max1 = maxt≥−0(40− t) + 30 + 16 = 86.

Second, we calculate the worst-case response time for switch - SW2:

1.

WSW2
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+A1,2

T2
c
)+

× C2

+

(
1 + b t+A1,3

T3
c
)+

× C3 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1
}) + (max {CSW1

})− C1 + (|P1| − 1).Lmax (3.18)

where A1,2 is known from the previous switch calculations and A1,3 = min(S
first3,1
max1 =

W
last1,3
1,t − Sfirst3,1

min3
; t)−Mfirst1,3

1 + S
first1,3
max3 + J3.

2. Consequently,

WSW2
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+A1,2

T2
c
)+

× C2

+

(
1 + b t+A1,3

T3
c
)+

× C3 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1}) + (max {CSW1})− C1 + (|P1| − 1).Lmax (3.19)

where A1,2 is known from the previous switch calculations and A1,3 = min(86− 10−

16; t)−Mfirst1,3
1 + (10 + 16) + J3, M

first1,3
1 = 0 and J3 = 0.

3. Since t ≥ −J1 and J1 = 0 we have A1,3 = t+ 0 + (10 + 16) + 0 = t+ 26 for t ≤ 60 or

A1,3 = 60 + 0 + (10 + 16) + 0 = 86 for t > 60.

62

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

4. Returning to WSW2
1,t , we have:

WSW2
1,t =

(
1 + b t+A1,2

500
c
)+

× 20 +

(
1 + b t+A1,2

500
c
)+

× 20

+

(
1 + b t+A1,3

500
c
)+

× 10 +

(
1 + b t+ 0

500
c
)
× 30

+ (max {20}) + (max {20})− 30 + (|2| − 1).Lmax (3.20)

5. Switch SW2 is the last one in the path V1 where it intersects with other virtual links.

Thus, we have:

R1 = maxt≥−J1
(WSW2

1,t − t) + CSW2
1

6. Finally, the maximum value of the above response time is incurred when t = 0: R1 =

maxt≥−J1
(106− t) + 30 = 136

Virtual link V1 has one more switch in its path. This is switch SW3, which is crossed

without any influence from another virtual link. The final result for R1 is:

R∗1 = R1 + Lmax + CSW3
1 + Lmax = 136 + 16 + 30 + 16 = 198

3.6.2 Worst-case response time for V2

We can use the same sequence of steps to calculate the worst-case response time for packets

of virtual link V2. Again, this will be done consecutively for each switch in the path of the

link:

First, we calculate, for switch SW1:

1.

WSW1
2,t =

(
1 + b t+A2,1

T1
c
)+

×C1 +

(
1 + b t+A2,1

T1
c
)+

×C1 +

(
1 + b t+ J2

T2
c
)
×C2

+ (max {CES2
})− C2 + (|P2| − 1).Lmax (3.21)

where A2,1 = min(S
first1,2
max2 = W

last2,1
2,t − Sfirst1,2

min1
; t)−Mfirst2,1

2 + S
first2,1
max1 + J1.

2. Consequently,

63

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

WSW1
2,t =

(
1 + b t+A2,1

T1
c
)+

×C1 +

(
1 + b t+A2,1

T1
c
)+

×C1 +

(
1 + b t+ J2

T2
c
)
×C2

+ (max {CES2
})− C2 + (|P2| − 1).Lmax (3.22)

where A2,1 = min(20 + 16− 30− 16; t)−Mfirst2,1
2 + (30 + 16) + J1, M

first1,2
1 = 0 and

J1 = 0.

3. Since t ≥ −J2 and J2 = 0 we have A2,1 = −10− 0 + (30 + 16) + 0 = 36 for every t.

4. Returning to WSW1
2,t , we have:

WSW1
2,t =

(
1 + b t+A2,1

500
c
)+

× 30 +

(
1 + b t+A2,1

500
c
)+

× 30 +

(
1 + b t+ 0

500
c
)
× 20

+ (max {20})− 20 + (|1| − 1).Lmax (3.23)

5. Because SW1 is not the last switch of the path of V1, we have

S
first1,2
max2 = maxt≥−J1(WSW1

2,t − t) + CSW1
2 + Lmax

6. Finally, the maximum value of the above response time is incured when t = 0:

S
first1,2
max2 = maxt≥−0(80− t) + 20 + 16 = 116.

Second, we calculate the worst-case response time for switch SW2:

1.

WSW2
2,t =

(
1 + b t+A2,1

T1
c
)+

× C1 +

(
1 + b t+A2,1

T1
c
)+

× C1

+

(
1 + b t+A1,3

T3
c
)+

× C3 +

(
1 + b t+ J2

T2
c
)
× C2

+ (max {CES2
}) + (max {CSW1

})− C2 + (|P2| − 1).Lmax (3.24)

where A2,1 is known from the previous switch calculations and A2,3 = min(S
first3,2
max2 =

W
last2,3
2,t − Sfirst3,2

min3
; t)−Mfirst2,3

2 + S
first2,3
max3 + J3.

2. Consequently,

64

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

WSW2
2,t =

(
1 + b t+A2,1

T1
c
)+

× C1 +

(
1 + b t+A2,1

T1
c
)+

× C1

+

(
1 + b t+A2,3

T3
c
)+

× C3 +

(
1 + b t+ J2

T2
c
)
× C2

+ (max {CES2
}) + (max {CSW1

})− C2 + (|P2| − 1).Lmax (3.25)

where A2,1 is known from the previous switch calculations and A2,3 = min(96− 10−

16; t)−Mfirst2,3
2 + (10 + 16) + J3, M

first2,3
2 = 0 and J3 = 0.

3. Since t ≥ −J2 and J2 = 0 we have A2,3 = t+ 0 + (10 + 16) + 0 = t+ 26 for t ≤ 70 or

A2,3 = 70 + 0 + (10 + 16) + 0 = 96 for t > 70.

4. Returning to WSW2
2,t , we have:

WSW2
2,t =

(
1 + b t+A2,1

500
c
)+

× 30 +

(
1 + b t+A2,1

500
c
)+

× 30

+

(
1 + b t+A2,3

500
c
)+

× 10 +

(
1 + b t+ 0

500
c
)
× 20

+ (max {20}) + (max {30})− 20 + (|2| − 1).Lmax (3.26)

5. Switch SW2 is the last one in the path of V2 where it intersects with other virtual

links. Thus, we have:

R2 = maxt≥−J2
(WSW2

2,t − t) + CSW2
2

6. Finally, the maximum value of the above response time is incurred when t = 0: R2 =

maxt≥−J2
(126− t) + 20 = 146

Virtual link V2 has one more switch in its path. This is switch SW3, which is crossed

without any influence from another virtual link. The final result for R2 is:

R∗2 = R2 + Lmax + CSW3
2 + Lmax = 146 + 16 + 20 + 16 = 198

3.6.3 Worst-case response time for V3

We can use the same sequence of steps to calculate the worst-case response time for packets

of virtual link V3. Again, this will be done consecutively for each switch in the path of the

link:

65

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

First, we calculate the worst-case response time for switch SW2:

1.

WSW2
3,t =

(
1 + b t+A3,1

T1
c
)+

×C1 +

(
1 + b t+A3,2

T2
c
)+

×C2 +

(
1 + b t+ J3

T3
c
)
×C3

+ (max {CES3
})− C3 + (|P3| − 1).Lmax (3.27)

where A3,1 = min(S
first1,3
max3 = W

last3,1
3,t − Sfirst1,3

min1
; t)−Mfirst3,1

3 + S
first3,1
max1 + J1

and

A3,2 = min(S
first2,3
max3 = W

last3,2
3,t − Sfirst2,3

min2
; t)−Mfirst3,2

3 + S
first3,2
max2 + J2.

2. Consequently,

WSW2
3,t =

(
1 + b t+A3,1

T1
c
)+

×C1 +

(
1 + b t+A3,2

T2
c
)+

×C2 +

(
1 + b t+ J3

T3
c
)
×C3

+ (max {CES3
})− C3 + (|P3| − 1).Lmax (3.28)

where A3,1 = min(10 + 16− 30− 16− 30− 16; t)−Mfirst3,1
3 + 86 + J1, M

first3,1
3 = 0

and J1 = 0

and

A3,2 = min(10 + 16 − 20 − 16 − 20 − 16; t) −Mfirst3,2
3 + 106 + J2, M

first3,2
3 = 0 and

J2 = 0.

3. Since t ≥ −J3 and J3 = 0 we have A3,1 = t − 0 + 86 + 0 = t + 86 for every t and

A3,2 = t− 0 + 106 + 0 = 106 for every t.

4. Returning to WSW2
3,t , we have:

WSW2
3,t =

(
1 + b t+A3,1

500
c
)+

× 30 +

(
1 + b t+A3,2

500
c
)+

× 20 +

(
1 + b t+ 0

500
c
)
× 10

+ (max {10})− 10 + (|1| − 1).Lmax (3.29)

5. Switch SW2 is the last switch in the path of V3 where it intersects with other virtual

links

R3 = maxt≥−J3(WSW2
3,t − t) + CSW1

3

66

3.6. COMPUTATIONS CHAPTER 3. END-TO-END DELAY ANALYSIS

6. Finally, the maximum value of the above response time is incurred when t = 0: R3 =

maxt≥−0(60− t) + 10 = 70

Virtual link V3 has one more switch in its path. This is switch SW3, which is crossed

without any influence from another virtual link. The final result for R3 is:

R∗3 = R3 + Lmax + CSW3
3 + Lmax = 70 + 16 + 10 + 16 = 112

67

Chapter 4

(II) and (TT) messages

4.1 Introduction

In this chapter we investigate two important aspects of AFDX networks and the models

covered so far.

The first one is related to the Indirect Influence (II) of the virtual links. This influence is

introduced in section 3.4, but there is no example yet of how it is integrated in the Trajectory

approach.

The second feature which is discussed in this chapter is related to the integration of

Rate-Constrained (RC) messages with Time-Triggered (TT) ones. Again, this is done by

modifying the formula for the Trajectory approach and using a special case of it.

68

4.2. INDIRECT INFLUENCE (II) CHAPTER 4. (II) AND (TT) MESSAGES

4.2 Indirect Influence (II)

Previously all calculations were considered for configurations with virtual links that contain

influence only by Direct Influence (DI) virtual links (this is according to the definition of

the term influence in section 3.4).

Let us examine the configuration from section 3.5, Figure A.6. In addition we shall add

a new switch and a new virtual link to the configuration. The modified one is depicted in

Figure 4.1:

Figure 4.1: Example of extended configuration developed from the architecture depicted in

Figure A.6

The additional switch is SW4. The switch intersects virtual link V3 before it enters into

switch SW2. The other change is the existence of virtual link V4 whose path is ES4−SW4−

ES44.

To set an Indirect Influence (II) for virtual links V1 and V2, virtual link V3 is transformed

from a unicast link with path ES3−SW2−SW3−ES33 to a multicast link with two paths

ES3 − SW2 − SW3 − ES33 and ES3 − SW2 − ES44.

V4 is an Indirect Influence (II) on V1 and V2 because it shares one output port SW44 −

ES44 with the Direct Influence (DI) virtual link V3.

The parameters for V4 a given in Table 4.1:

69

4.2. INDIRECT INFLUENCE (II) CHAPTER 4. (II) AND (TT) MESSAGES

V L Smax BAG

V4 1500 500

Table 4.1: Virtual link V4 parameters

On the basis of the Trajectory approach formula, we will rebuild the calculations of the

worst-case response time of the virtual links. Obviously, the delay of virtual link V3 will be

increased by at least CSW
V3

+ Lmax. Moreover, we recalculate the delay of V3:

First, we calculate the worst-case response time for switch SW4 — the new first switch

in the virtual links path:

1.

WSW4
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+ J3

T3
c
)
× C3

+ (max {CES3})− C3 + (|P3| − 1).Lmax (4.1)

where A3,4 = min(S
first4,3
max3 = W

last3,4
3,t − Sfirst4,3

min4
; t)−Mfirst3,4

3 + S
first3,4
max4 + J4 .

2. Consequently,

WSW4
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+ J3

T3
c
)
× C3

+ (max {CES3
})− C3 + (|P3| − 1).Lmax (4.2)

where A3,4 = min(10 + 16− 15− 16; t)−Mfirst3,4
3 + 0 + J1, M

first3,1
3 = 0 and J1 = 0.

3. Since t ≥ −J3 and J3 = 0 we have A3,4 = t− 0 + 0 + 0 = t+ t for every t.

4. Returning to WSW4
3,t , we have:

WSW4
3,t =

(
1 + b t+A3,4

500
c
)+

× 15 +

(
1 + b t+ 0

500
c
)
× 10

+ (max {10})− 10 + (|1| − 1).Lmax (4.3)

5. Switch SW2 is the last switch in the path of V3 where it intersects with other virtual

links

R3 = maxt≥−J3(WSW2
3,t − t) + CSW1

3

70

4.2. INDIRECT INFLUENCE (II) CHAPTER 4. (II) AND (TT) MESSAGES

6. Finally, the maximum value of the above response time is incurred when t = 0: R3 =

maxt≥−0(25− t) + 10 = 35

Virtual link V3 has one more switch (SW2) in its path, namely which intersects with

other virtual links V1 and V2.

We will calculate the worst-case response time for switch SW2:

1.

WSW2
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,1

T1
c
)+

× C1

+

(
1 + b t+A3,2

T2
c
)+

× C2 +

(
1 + b t+ J3

T3
c
)
× C3

+ (max {CES3
}) + (max {CSW4

})− C3 + (|P3| − 1).Lmax (4.4)

where A3,1 is known from previous calculations, A3,1 = min(S
first1,3
max3 = W

last3,1
3,t −

S
first1,3
min1

; t)−Mfirst3,1
3 + S

first3,1
max1 + J1

and

A3,2 = min(S
first2,3
max3 = W

last3,2
3,t − Sfirst2,3

min2
; t)−Mfirst3,2

3 + S
first3,2
max2 + J2.

2. Consequently,

WSW2
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,1

T1
c
)+

× C1

+

(
1 + b t+A3,2

T2
c
)+

× C2 +

(
1 + b t+ J3

T3
c
)
× C3

+ (max {CES3
}) + (max {CSW4

})− C3 + (|P3| − 1).Lmax (4.5)

where A3,1 = min(10 + 16− 30− 16− 30− 16; t)−Mfirst3,1
3 + 86 + J1, M

first3,1
3 = 0

and J1 = 0

and

A3,2 = min(10 + 16 − 20 − 16 − 20 − 16; t) −Mfirst3,2
3 + 106 + J2, M

first3,2
3 = 0 and

J2 = 0.

3. Since t ≥ −J3 and J3 = 0 we have A3,1 = t − 0 + 86 + 0 = t + 86 for every t and

A3,2 = t− 0 + 106 + 0 = 106 for every t.

71

4.2. INDIRECT INFLUENCE (II) CHAPTER 4. (II) AND (TT) MESSAGES

4. Returning to WSW2
3,t , we have:

WSW2
3,t =

(
1 + b t+A3,4

500
c
)+

× 15 +

(
1 + b t+A3,1

500
c
)+

× 30

+

(
1 + b t+A3,2

500
c
)+

× 20 +

(
1 + b t+ 0

500
c
)
× 10

+ (max {10}) + (max {15})− 10 + (|2| − 1).Lmax (4.6)

5. Switch SW2 is the last switch in the path of V3 where it intersects with other virtual

links

R3 = maxt≥−J3
(WSW2

3,t − t) + CSW2
3

6. Finally, the maximum value of the above response time is incurred when t = 0: R3 =

maxt≥−0(90− t) + 10 = 100

Virtual link V3 has one more switch in its path. This is switch SW3, which is crossed

without any influence from another virtual link. The final result for R3 is:

R∗3 = R3 + Lmax + CSW3
3 + Lmax = 100 + 16 + 10 + 16 = 142

We showed in the above calculations that the worst-case response time is changed in

terms of the added additional time needed for processing V3 packets.

If we apply new calculations for V1 and V2 the results will be changed for A1,3 and A2,3

in the respective formulas. Therefore, we will not investigate further the Indirect Influence

(II) of the virtual links in this category. We accept that this influence is irrelevant for

the Trajectory approach. This is so because of the asynchronous nature of the network end

nodes. If a message from virtual link V3 is delayed owing to V4 (the Indirect Influence (II) for

V1 and V2), then the possible influence resulting from this delay is equal to the asynchronous

behaviour of the arrival time in SW2.

72

4.3. TIME-TRIGGERED (TT) MESSAGES CHAPTER 4. (II) AND (TT) MESSAGES

4.3 Time-Triggered (TT) messages

We have skipped the Indirect Influence (II) virtual links in the example configuration de-

picted in Figure A.6. They were introduced in the previous section 4.2. We will do the

same for the Time-Triggered (TT) messages which will exist next to the Rate-Constrained

(RC) messages. The properties of the Time-Triggered (TT) messages are given in section

1.3.1. By their nature these messages are traffic which has predefined timeslots and takes

precedence over any other traffic. Therefore we will not calculate the worst-case response

time of it. Our goal is to estimate the influence by the Time-Triggered (TT) traffic over the

Rate-Constrained (RC) traffic.

We use the original Trajectory approach document [29] which presents several cases of

the method. One of them is related to FP/FIFO∗13 scheduling. This alternative is a

method that is similar to the scheduling produced from Time-Triggered (TT) traffic and

Rate-Constrained (RC) traffic for TTEthernet networks. From now on we will assume

that all examples that combine Rate-Constrained (RC) messages and Time-Triggered (TT)

messages are configurations compatible with the described in 2.2, 2.3 and 2.4 but with

Time-Triggered (TT) capabilities (as the ones presented in section 1.3).

Let us consider the configuration from section 3.5, Figure A.6, which consists from six

end systems ES1...ES33, three switches SW1...SW3 and three virtual links V1...V3. All

virtual links have standalone ingress nodes and it is not required to do an application

model transformation of the hardware/software configuration. Additionally V3 emits no

more Rate-Constrained (RC) messages. They are replaced by Time-Triggered (TT) mes-

sages. Illustratively this is depicted in Figure A.7. SW2 can handle both types of traffic

(Rate-Constrained (RC) and Time-Triggered (TT))and the end nodes ES3, ES33 have the

same capabilities.

We assume that the virtual link V3 has the same values for the BAG and Smax properties

as previously when it was dedicated only for Rate-Constrained (RC) traffic. On the basis

of the Trajectory approach formula and special case of it, we redo the calculations of the

worst-case response time of virtual links V1 and V2. Obviously virtual link V3 worst-case

response time will not be changed because the link has guarantees provided from its traffic

class. It is expected that the worst-case response time of links V1 and V2 will be increased.

13Fixed Priority / First In, First Out

73

4.3. TIME-TRIGGERED (TT) MESSAGES CHAPTER 4. (II) AND (TT) MESSAGES

Figure 4.2: Example configuration with Time-Triggered (TT) messages on which the Tra-

jectory approach is tested

This could be explained with Figure 4.3. The figure shows a sample of arriving messages

from V1 (Rate-Constrained (RC) message) and V3 (Time-Triggered (TT) message). If the

Time-Triggered (TT) message arrives first in switch SW2, the time for transmission of V1 is

not changed. Exactly the other way around is depicted. The message from V1 arrives first.

After some time (not enough for full transmission of the message from V1), a message from

V3 arrives. The last takes precedence and therefore increases the total processing time for

the message from V1 with ∆, as it is depicted in the figure.

Figure 4.3: Example configuration on which the Trajectory approach is tested

In order to understand the size of the ∆, we redo calculations of the worst-case response

time for V1. The formula is dealing with a case like the described:

First, we calculate for switch SW1:

74

4.3. TIME-TRIGGERED (TT) MESSAGES CHAPTER 4. (II) AND (TT) MESSAGES

1.

WSW1
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1
})− C1 + (|P1| − 1).Lmax (4.7)

where A1,2 = min(S
first2,1
max1 = W

last1,2
1,t − Sfirst2,1

min2
; t)−Mfirst1,2

1 + S
first1,2
max2 + J2.

2. Consequently,

WSW1
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1
})− C1 + (|P1| − 1).Lmax (4.8)

where A1,2 = min(30 + 16− 20− 16; t)−Mfirst1,2
1 + (20 + 16) + J2, M

first1,2
1 = 0 and

J2 = 0.

3. Since t ≥ −J1 and J1 = 0 we have A1,2 = t− 0 + (20 + 16) + 0 = t+ 36 for t ≤ 10 or

A1,2 = 10− 0 + (20 + 16) + 0 = 46 for t > 10.

4. Returning to WSW1
1,t , we have:

WSW1
1,t =

(
1 + b t+A1,2

500
c
)+

× 20 +

(
1 + b t+ 0

500
c
)
× 30

+ (max {20})− 30 + (|1| − 1).Lmax (4.9)

5. Because SW1 is not the last switch in the path of V1, we have

S
first2,1
max1 = maxt≥−J1

(WSW1
1,t − t) + CSW1

1 + Lmax

6. Finally, the maximum value of the above worst-case response time is incurred when

t = 0: S
first2,1
max1 = maxt≥−0(40− t) + 30 + 16 = 86.

Second, we calculate the worst-case response time for switch SW2 where one of the

Direct Influence (DI) links is the Time-Triggered (TT) link V3. Because of this reason the

formula will be changed slightly:

75

4.3. TIME-TRIGGERED (TT) MESSAGES CHAPTER 4. (II) AND (TT) MESSAGES

1.

WSW2
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+A1,2

T2
c
)+

× C2

+

(
1 + b t+A1,3

T3
c
)+

× C3 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1}) + (max {CSW1})− C1 + (|P1| − 1).Lmax (4.10)

where A1,2 is known from the previous switch calculations and A1,3 is changed this

time: A1,3 = S
first3,1
max1 = W

last1,3
1,t − Sfirst3,1

min3
−Mfirst1,3

1 + S
first1,3
max3 + J3.

2. Consequently,

WSW2
1,t =

(
1 + b t+A1,2

T2
c
)+

× C2 +

(
1 + b t+A1,2

T2
c
)+

× C2

+

(
1 + b t+A1,3

T3
c
)+

× C3 +

(
1 + b t+ J1

T1
c
)
× C1

+ (max {CES1
}) + (max {CSW1

})− C1 + (|P1| − 1).Lmax (4.11)

where A1,2 is known from the previous switch calculations and A1,3 is recalculated

based on the change as: A1,3 = 86−10−16−Mfirst1,3
1 +(10+16)+J3, M

first1,3
1 = 0

and J3 = 0.

3. Since t ≥ −J1 and J1 = 0 we have A1,3 = 60 + 0 + (10 + 16) + 0 = 86.

4. Returning to WSW2
1,t , we have:

WSW2
1,t =

(
1 + b t+A1,2

500
c
)+

× 20 +

(
1 + b t+A1,2

500
c
)+

× 20

+

(
1 + b t+A1,3

500
c
)+

× 10 +

(
1 + b t+ 0

500
c
)
× 30

+ (max {20}) + (max {20})− 30 + (|2| − 1).Lmax (4.12)

5. Switch SW2 is the last of the path in V1 where is intersected with other virtual links.

Thus, we have:

R1 = maxt≥−J1
(WSW2

1,t − t) + CSW2
1

6. Finally, the maximum of the above worst-case response time is incurred when t = 0:

R1 = maxt≥−J1(106− t) + 30 = 136

76

4.3. TIME-TRIGGERED (TT) MESSAGES CHAPTER 4. (II) AND (TT) MESSAGES

This result is exactly the same as the one calculated for systems without Time-Triggered

(TT) messages. Furthermore, we did not find this t value for which the result is different.

There is additional requirement for the BAG parameter. It is caused by two consequen-

tial transmissions of Time-Triggered (TT) messages. The problem is depicted in Figure 4.4.

When a Time-Triggered (TT) message is transmitted, it takes precedence over the rest of

the traffic. If the transmissions are quite often (the case on left), this means shorter BAG

value, then queueing of messages from Rate-Constrained (RC) type may occur. In fact, the

queueing can be so long that a new scheduled Time-Traffic (TT) message can arrive for

transmission before the queue is processed. In this way the currently transmitted messages

will be suspended and possibly never transmitted. This will lead to buffer overflow and

infeasibility of the system.

Figure 4.4: BAG of Time-Triggered (TT) messages

The network architect should resolve the presented problem offline while the network is

in design phase.

77

Chapter 5

Evaluation

5.1 Introduction

In this chapter we provide an evaluation of the problem featured in this project. We do it

in several steps.

First, we introduce a larger example to which the same computations regarding the

Trajectory approach are applied. The example contains compound hardware configuration

with several virtual links (as application configuration) that have Direct Influence (DI)

virtual links. In section 4.2 we concluded that only the Direct Influence (DI) virtual links

from three presented classes (Direct Influence (DI), Indirect Influence (II) and No Influence)

have impact on the worst-case response times.

Second, we do a comparison between our approach and the Holistic one and conclude

the domination of the Trajectory approach. The parallel between both approaches is based

on the worst-case response times achieved. The comparison considers two examples, the one

presented in section 3.5 and the other presented in the current chapter.

Finally, the chapter also includes additional evaluation of the dependency of the parame-

ters related to the calculations. The intention is to present how the parameters of the virtual

link can influence the worst-case response times.

78

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

5.2 Case Study 2

Let us consider the following extended configuration shown in Figure 5.1, which consists from

eight end systems ES1...ES44, eleven switches SW1...SW11 and five virtual links V1...V5.

All the virtual links have standalone ingress nodes and there is no need to carry out an

application model transformation from the hardware/software configuration.

Figure 5.1: Configuration example on which the Trajectory approach is tested

The values ofSmax (in bits) and BAG (in µs) for each of the virtual links are given in

the Table 5.1 below:

79

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

V L Smax BAG

V1 4000 360

V2 4000 360

V3 4000 360

V4 4000 360

V5 4000 360

Table 5.1: Virtual link data for the example depicted on 5.1

5.2.1 Worst-case response time for V3 and V4

In accordance with the data from Table 5.1 related to the example depicted in Figure 5.1,

we will calculate the worst-case response time for packets in the virtual link V3. We can

consider the same worst-case for virtual link V4 because the path includes the same nodes

intersecting with other nodes.

Next, we do the calculations for V1 and V5. Finally, we do not calculate the delays for

V2 because it is independent. This means that there is neither direct influence nor indirect

influence from other virtual links in the network.

For V3 and each switch from the path of the link, we have:

First, we calculate the worst-case response time for switch SW2:

1.

WSW2
3,t =

(
1 + b t+A3,4

T4
c
)+

×C4 +

(
1 + b t+A3,5

T5
c
)+

×C5 +

(
1 + b t+ J3

T1
c
)
×C3

+ (max {CES3
})− C3 + (|P3| − 1).Lmax (5.1)

where A3,4 = min(S
first4,3
max3 = W

last3,4
3,t − Sfirst4,3

min4
; t)−Mfirst3,4

3 + S
first3,4
max4 + J4.

and

A3,5 = min(S
first5,3
max3 = W

last3,5
3,t − Sfirst5,3

min5
; t)−Mfirst3,5

3 + S
first3,5
max5 + J5.

2. Consequently,

80

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

WSW2
3,t =

(
1 + b t+A3,4

T4
c
)+

×C4 +

(
1 + b t+A3,5

T5
c
)+

×C5 +

(
1 + b t+ J3

T1
c
)
×C3

+ (max {CES3
})− C3 + (|P3| − 1).Lmax (5.2)

where A3,4 = min(40 + 16− 40− 16; t)−Mfirst3,4
3 + (40 + 16) + J4, M

first3,4
3 = 0 and

J4 = 0

and

A3,5 = min(40 + 16− 40− 16; t)−Mfirst3,5
3 + (4 + 1) + J5, M

first3,5
3 = 0 and J5 = 0.

3. Since t ≥ −J3 and J3 = 0 we have A3,4 = 0− 0 + (40 + 16) + 0 = 56 for every t.

4. Returning to WSW2
3,t , we have:

WSW2
3,t =

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40 +

(
1 + b t+ 0

360
c
)
× 40

+ (max {40})− 40 + (|1| − 1).Lmax (5.3)

5. Because SW2 is not the last switch in the path of V3, we have

S
first4,3
max3 = maxt≥−J3

(WSW2
3,t − t) + CSW2

3 + Lmax

6. Finally, the maximum value of the above response time is incurred when t = 0:

S
first4,3
max3 = maxt≥−0(120− t) + 40 + 16 = 176.

Next, we calculate for switch SW3, where virtual link V1 is added on the same output

port as V3 next to V4 and V5:

1.

WSW3
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+A3,1

T1
c
)+

×C1+

(
1 + b t+A3,4

T4
c
)+

×C4+

(
1 + b t+A3,5

T5
c
)+

×C5+

(
1 + b t+ J3

T1
c
)
×C3

+ (max {CES3
}) + (max {CSW2

})− C3 + (|P3| − 1).Lmax (5.4)

where A3,4 and A3,5 are known from previous calculations. A3,1 = min(S
first1,3
max3 =

W
last3,1
3,t − Sfirst1,3

min1
; t)−Mfirst3,1

3 + S
first3,1
max1 + J1.

81

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

2. Consequently,

WSW2
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+A3,1

T1
c
)+

×C1+

(
1 + b t+A3,4

T4
c
)+

×C4+

(
1 + b t+A3,5

T5
c
)+

×C5+

(
1 + b t+ J3

T1
c
)
×C3

+ (max {CES3}) + (max {CSW2})− C3 + (|P3| − 1).Lmax (5.5)

where A3,4 and A3,5 are known from previous calculations. A3,1 = min(176 − 40 −

16; t)−Mfirst3,1
3 + (40 + 16) + J1, M

first3,1
3 = 0 and J1 = 0.

3. Since t ≥ −J3 and J3 = 0 we have A3,1 = t− 0 + (40 + 16) + 0 = t+ 56 for t ≤ 120 or

A3,1 = 0− 0 + (40 + 16) + 0 = 56 for t 120.

4. Returning to WSW2
3,t , we have:

WSW3
3,t =

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40

+

(
1 + b t+A3,1

360
c
)+

×40+

(
1 + b t+A3,4

360
c
)+

×40+

(
1 + b t+A3,5

360
c
)+

×40+

(
1 + b t+ 0

360
c
)
×40

+ (max {40}) + (max {40})− 40 + (|2| − 1).Lmax (5.6)

5. Because SW3 is not the last switch in the path of V3, we have

S
first1,3
max3 = maxt≥−J3

(WSW3
3,t − t) + CSW2

3 + Lmax

6. Finally, the maximum value of the above response time is incurred when t = 0:

S
first1,3
max3 = maxt≥−0(296− t) + 40 + 16 = 352.

Next, we calculate the worst-case response time for switch SW4, where V4 and V5 are

the only other links on the same output port as V3:

82

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

1.

WSW4
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+A3,1

T1
c
)+

× C1 +

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+ J3

T1
c
)
×C3+(max {CES3

})+(max {CSW2
})+(max {CSW3

})−C3+(|P3|−1).Lmax

(5.7)

where A3,4, A3,5 and A3,1 are known from previous calculations.

2. Returning to WSW4
3,t , we have:

WSW4
3,t =

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40

+

(
1 + b t+A3,1

360
c
)+

× 40 +

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40

+

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40

+

(
1 + b t+ 0

360
c
)
×40 + (max {40}) + (max {40}) + (max {40})−40 + (|3|−1).Lmax

(5.8)

3. Finally, the maximum value of the above response time is incurred when t = 0:

WSW4
3,t = maxt≥−0(432− t) + 40 + 16 = 488.

Next, we calculate the worst-case response time for switch SW7, where V4 is the only

link on the same output port as V3:

83

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

1.

WSW7
3,t =

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+A3,1

T1
c
)+

× C1 +

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+A3,5

T5
c
)+

× C5

+

(
1 + b t+A3,4

T4
c
)+

× C4 +

(
1 + b t+ J3

T1
c
)
× C3

+(max {CES3})+(max {CSW2})+(max {CSW3})+(max {CSW4})−C3+(|P3|−1).Lmax

(5.9)

2. where A3,4, A3,5 and A3,1 are known from previous calculations.

3. Returning to WSW7
3,t , we have:

WSW7
3,t =

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40

+

(
1 + b t+A3,1

360
c
)+

× 40 +

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40

+

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+A3,5

360
c
)+

× 40

+

(
1 + b t+A3,4

360
c
)+

× 40 +

(
1 + b t+ 0

360
c
)
× 40

+ (max {40}) + (max {40}) + (max {40})− 40 + (|4| − 1).Lmax (5.10)

4. Finally, the maximum value of the above response time is incurred when t = 0:

WSW7
3,t = maxt≥−0(528− t) + 40 + 16 = 584.

By analogy WSW10
3,t = 640 for t = 0.

Finally, the rest of the path of virtual links is not intersected with any other virtual links.

Thus, we have:

R3 = maxt≥−J3
(WSW10

3,t − t) + CSW10
3 (640− t) + 40 = 680

Virtual link V3 has one more switch in its path. This is switch SW1, which is crossed

without any influence from another virtual link. The final result for R3 is:

R∗3 = R3 + Lmax + CSW11
3 + Lmax = 61 + 16 + 40 + 16 = 752

84

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

5.2.2 Worst-case response time for V1

The path of virtual link V1 crosses switch SW1 at the beginning of its path, independently,

without any direct or indirect influence from other virtual links. The same can be observed

for the last two switches SW4 and SW5. Thus, we can formulate the Trajectory approach

only for SW3:

1.

WSW3
1,t =

(
1 + b t+A1,3

T3
c
)+

×C3+

(
1 + b t+A1,4

T4
c
)+

×C4+

(
1 + b t+A1,5

T5
c
)+

×C5

+

(
1 + b t+ J1

T1
c
)
× C1 + (max {CES1

})− C1 + (|P1| − 1).Lmax (5.11)

where A1,3, A1,4 and A1,5 are known from previous calculations.

2. Returning to WSW3
1,t , we have:

WSW3
1,t =

(
1 + b t+A1,3

360
c
)+

×40+

(
1 + b t+A1,4

360
c
)+

×40+

(
1 + b t+A1,5

360
c
)+

×40

+

(
1 + b t+ 0

360
c
)
× 40 + (max {40})− 40 + (|P1| − 1).Lmax (5.12)

3. Finally, the maximum value of the above response time is incurred when t = 0:

WSW3
1,t = maxt≥−0(160− t) + 40 + 16 = 216.

Finally, the rest of the path of virtual links is not intersected with any other virtual links.

Thus, we have:

R1 = maxt≥−J1
(WSW3

1,t − t) + CSW3
1 (216− t) + 40 = 256

As previously mentioned, virtual link V1 contains additional switches in its path. These

are switches SW1, SW4, SW5, which are crossed without any influence from another virtual

link. The final result for R1 is:

R∗1 = R1 +Lmax +CSW1
1 +Lmax +CSW4

1 +Lmax +CSW5
1 +Lmax = 256 + 16 + 40 + 16 +

40 + 16 + 40 + 16 = 384

5.2.3 Worst-case response time for V5

For V5 and each switch in the path of the link, we have:

85

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

First, we calculate the worst-case response time for switch SW2:

1.

WSW2
5,t =

(
1 + b t+A5,3

T3
c
)+

×C3 +

(
1 + b t+A5,4

T4
c
)+

×C4 +

(
1 + b t+ J5

T5
c
)
×C5

+ (max {CES5})− C5 + (|P5| − 1).Lmax (5.13)

where A5,3 = min(S
first3,5
max5 = W

last5,3
5,t − Sfirst3,5

min3
; t)−Mfirst5,3

5 + S
first5,3
max3 + J3.

and

A5,4 = min(S
first4,5
max5 = W

last5,4
5,t − Sfirst4,5

min4
; t)−Mfirst5,4

5 + S
first5,4
max3 + J4.

2. Consequently,

WSW2
5,t =

(
1 + b t+A5,3

T3
c
)+

×C3 +

(
1 + b t+A5,4

T4
c
)+

×C4 +

(
1 + b t+ J5

T5
c
)
×C5

+ (max {CES5})− C5 + (|P5| − 1).Lmax (5.14)

where A3,4 = A4,3 and A3,5 = A5,3 and is known from previous calculations.

3. Returning to WSW2
5,t , we have:

WSW2
5,t =

(
1 + b t+A5,3

360
c
)+

× 40 +

(
1 + b t+A5,4

360
c
)+

× 40 +

(
1 + b t+ 0

360
c
)
× 40

+ (max {4})− 40 + (|P5| − 1).Lmax (5.15)

4. Because SW2 is not the last switch in the path of V5, we have

S
first4,5
max5 = S

first3,5
max5 = maxt≥−J5

(WSW2
5,t − t) + CSW2

5 + Lmax

5. Finally, the maximum of the above response time is when t = 0: S
first4,5
max5 = S

first3,5
max5 =

maxt≥−0(120− t) + 40 + 16 = 176.

Next, we calculate the worst-case response time for switch SW3, where virtual link V1

is added next to V3 and V4:

86

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

1.

WSW3
5,t =

(
1 + b t+A5,3

T3
c
)+

× C3 +

(
1 + b t+A5,4

T4
c
)+

× C4

+

(
1 + b t+A5,1

T5
c
)+

×C1+

(
1 + b t+A5,3

T3
c
)+

×C3+

(
1 + b t+A5,4

T4
c
)+

×C4+

(
1 + b t+ J5

T5
c
)
×C5

+ (max {CES5
}) + (max {CSW2

})− C5 + (|P5| − 1).Lmax (5.16)

where A5,1, A5,3 and A5,4 are known from previous calculations.

2. Returning to WSW3
5,t , we have:

WSW3
5,t =

(
1 + b t+A5,3

360
c
)+

× 40 +

(
1 + b t+A5,4

360
c
)+

× 40

+

(
1 + b t+A5,1

360
c
)+

×40+

(
1 + b t+A5,3

360
c
)+

×40+

(
1 + b t+A5,4

360
c
)+

×40+

(
1 + b t+ 0

40
c
)
×40

+ (max {40}) + (max {40})− 40 + (|2| − 1).Lmax (5.17)

3. Because SW3 is not the last switch in the path of V3, we have

S
first1,5
max3 = maxt≥−J5

(WSW3
5,t − t) + CSW2

5 + Lmax

4. Finally, the maximum value of the above response time is incurred when t = 0:

S
first1,5
max5 = maxt≥−0(296− t) + 40 + 16 = 352.

Next, we calculate the worst-case response time for switch SW4, where V3 and V4 are

on the same output port as V5:

1.

WSW4
5,t =

(
1 + b t+A5,3

T3
c
)+

× C3 +

(
1 + b t+A5,4

T4
c
)+

× C4

+

(
1 + b t+A5,1

T1
c
)+

× C1 +

(
1 + b t+A5,3

T3
c
)+

× C3 +

(
1 + b t+A5,4

T4
c
)+

× C4

+

(
1 + b t+A5,3

T3
c
)+

× C3 +

(
1 + b t+A5,4

T4
c
)+

× C4

+

(
1 + b t+ J5

T5
c
)
×C5+(max {CES3

})+(max {CSW2
})+(max {CSW3

})−C5+(|P3|−1).Lmax

(5.18)

where A5,1, A5,3 and A3,4 are known from previous calculations.

87

5.2. CASE STUDY 2 CHAPTER 5. EVALUATION

2. Returning to WSW4
5,t , we have:

WSW4
3,t =

(
1 + b t+A5,3

360
c
)+

× 40 +

(
1 + b t+A5,4

360
c
)+

× 40

+

(
1 + b t+A5,1

360
c
)+

× 40 +

(
1 + b t+A5,3

360
c
)+

× 40 +

(
1 + b t+A5,4

360
c
)+

× 40

+

(
1 + b t+A5,3

360
c
)+

× 40 +

(
1 + b t+A5,4

360
c
)+

× 40

+

(
1 + b t+ 0

360
c
)
×40 + (max {40}) + (max {40}) + (max {40})−40 + (|3|−1).Lmax

(5.19)

3. Finally, the maximum value of the above response time is incurred when t = 0:

WSW4
3,t = maxt≥−0(436− t) + 40 + 16 = 492.

As previously mentioned, virtual link V5 contains additional switches in its path. These

are switches SW7, SW8, which are crossed without any influence from another virtual link.

The final result for R5 is:

R∗5 = R5 + Lmax +CSW7
1 + Lmax +CSW8

1 + Lmax = 496 + 16 + 40 + 16 + 40 + 16 = 626

88

5.3. COMPARISON CHAPTER 5. EVALUATION

V L Holistic Trajectory

V1 234 198

V2 214 198

V3 128 112

Table 5.2: Case Study 1 — Holistic vs. Trajectory Approach

5.3 Comparison

We will do a comparison between the Trajectory approach and the Holistic one. This latter

approach was not presented in section 3.2, the state-of-the-art section. In its essence the

approach assumes the worst-case for every transmission and it misses possible improvements

of the worst-case response time as in the Trajectory one.

With the term “holistic” we refer to a method for calculating the entire worst-case

response times incurred in transmission of a message from a virtual link. This is done by

making the worst-case assumption, i.e. when a message arrives at a port it always waits for

all other messages dedicated to the same port to be transmitted. This is depicted in Figure

3.8.

In contrast to the holistic approach, the Trajectory approach lends possible improve-

ments. This is depicted in Figure 3.10. We always subtract the absolute packet time ap

times from the absolute frame af , thereby reducing the waiting time of the message that is

currently being explored when it arrives at the respective output port.

We have applied both methodologies to Case Study 1 and Case Study 2.

For Case Study 1 results produced are shown in Figure 5.2 and Table 5.2:

The overall improvement is shown in Figure 5.3 and it varies between 7 and 15 % de-

pending on the individual virtual link.

Next to these results, we present the results from Case Study 2. These ones are not so

obviously better, but are still showing some improvements for some virtual links (around

5-6 %) - Figure 5.4 and Table 5.3.

The average improvement is around 10 % for both configurations tested - Case Study 1

and Case Study 2. However there are some cases — e.g. V1 of Case Study 2 — where the

method results not in an improvement but in decreased performance.

89

5.3. COMPARISON CHAPTER 5. EVALUATION

Figure 5.2: Total worst-case response times for Holistic and Trajectory approaches in Case

Study 1

Figure 5.3: Improvement (in %) achieved by the Trajectory approach compared to the

Holistic approach in Case Study 1

V L Holistic Trajectory

V1 400 384

V2 280 280

V3 752 752

V4 752 752

V4 616 626

Table 5.3: Case Study 2 — Holistic vs. Trajectory Approach

90

5.3. COMPARISON CHAPTER 5. EVALUATION

Figure 5.4: Total worst-case response time for Holistic and Trajectory approaches in Case

Study 2

Figure 5.5: Improvement (in %) achieved by the Trajectory approach compared to the

Holistic approach in Case Study 2

91

Chapter 6

Implementation

6.1 Introduction

In this chapter we will explain details about our programming implementation of the cal-

culations that we have developed and presented so far. The main code structures and

functionalities of the algorithms are demonstrated. All the source code is written in Java.

92

6.2. INPUT MODEL CHAPTER 6. IMPLEMENTATION

6.2 Input model

The entire program is modelled by the help of 4 configuration files in GraphML[34] file

format.

� architectureGraphXXX.graphml — The file is related to the hardware architec-

ture (section 2.2). It contains description of all end systems, switches, ports of switches

and links between end systems and switches.

� configurationMXXX.graphml — The file contains information about all parame-

ters related to a message sent from an end system. Multiple messages can be assigned

to a virtual link. Modifiable parameters of a message are: type of the message, prior-

ity, size, period (equal to virtual link’s BAG, deadline (usually is set as equal to the

period).

� configurationVLXXX.graphml — The file is responsible for the configuration of

the virtual links. Each virtual link has BAG, Smax and Smin parameter values. This

setup also contains a path parameter value, which can be unicast or multicast.

� configurationTTXXX.graphml — The file contains the exact times of emissions

by Time-Triggered (TT) messages in the system environment.

93

6.3. PRELIMINARY SETUP CHAPTER 6. IMPLEMENTATION

6.3 Preliminary setup

The input is read from the GraphML files described in the above section. Consequently

from the first file are build the objects which represents the end nodes, the switches, and

the ports of the respective switches. The next task is to distribute the virtual link informa-

tion (read from file configurationVLXXX.graphml). Some of the objects (e.g. the end

systems) contains containers which keep track of the incoming and outcoming virtual links.

A process fills up the required information for them. In parallel of this operation are done

validations of the the virtual links paths. Finally the messages are read from file configu-

rationMXXX.graphml and assigned to the respective components from the configuration

(i.e. end nodes and ports of the switches).

The preliminary setup finishes with printout of the loaded configuration. This is done

by showing of all elements described in the configuration files in appropriate order (i.e. from

hardware perspective of view — node by node and from application point of view — virtual

link by virtual link). In these phase is done also validation checking of the input and if the

printout is successful all the validations are passed affirmatively.

94

6.4. CALCULATION ALGORITHM CHAPTER 6. IMPLEMENTATION

6.4 Calculation algorithm

We calculate the worst-case response times with the help of two algorithm. The first one is

known as “holistic” and the second is the Trajectory approach.

Firstly is implemented the “holistic” approach. The method consists in assumptions for

the worst-case scenarios. It accumulates the longest busy period times for a given virtual

link along its path. The following algorithm schema describes it:

for every Vi do

Ri+ = CIngressEndSystem
i + Lmax

for h = firsti to lasti do

Ri+ =
∑

j=everyV
⋂

Vi;Vj∈h C
h
j

Ri+ = Ch
i + Lmax

end for

end for

An extension of the algorithm is the case when the one is used in configurations with

Time-Triggered (TT) messages. In this case is checked the maximum length of the busy

period and the last one is compared with the next Time-Triggered (TT) message execution.

It is again considered the worst-case and i.e when the busy period might interfere in the next

Time-Triggered (TT) time slot. If this is possible we add the time until this higher priority

message is transmitted. The next step is to do another attempt to transfer the whole busy

period until another Time-Triggered (TT) message is scheduled. The repetition of the last

can follow to enormous delays. The following algorithm schema describes it:

95

6.4. CALCULATION ALGORITHM CHAPTER 6. IMPLEMENTATION

for every Vi do

Ri+ = CIngressEndSystem
i + Lmax

for h = firsti to lasti do

if ∃Vj
⋂
Vi;Vj ∈ h;Vj

∫
STT then

∇ = locate next time slot between two TT messages enough to

transfer all
∑

j=∀V
⋂

Vi;Vj∈h +Ch
i

if ∇ <
∑

j=∀V
⋂

Vi;Vj∈h C
h
j then

repeat

locate next time slot between two TT messages

until ∇ ≥
∑

j=∀V
⋂

Vi;Vj∈h C
h
j

Ri+ = ∇

end if

end if

Ri+ =
∑

j=∀V
⋂

Vi;Vj∈h C
h
j

Ri+ = Ch
i + Lmax

end for

end for

The second implemented algorithm is according the Trajectory approach. This approach

gives the guarantees for both executions (with Time-Triggered (TT) and without Time-

Triggered (TT) messages). A detail overview of the calculations was presented in sections

5.2 and 3.6. The following algorithm schema describes the method:

for every Vi do

for h = firsti to lasti do

if h 6= lasti then

calculate Smax = W lasti
i,t − t+ Ch

i + Lmax

end if

if h = lasti then

calculate R = W lasti
i,t − t+ Ch

i with the last Smax values

R∗ = R+ [AditionalCost]

end if

end for

end for

96

Chapter 7

Conclusion

Embedded systems exploration is related to the creation of safety-critical applications, where

precise requirements are involved. Many safety-critical applications exist in heterogeneous

environments and the production of parts for them is often shared between different vendors.

All this makes the achievement of common scheduling of the shared tasks difficult.

One universal solution is offered by the TTEthernet networks. This technology offers

a medium at communication level where several types of messages can be handled: Time-

Triggered (TT) messages, Rate-Constrained (RC) messages and Best-Effort (BE) messages.

This helps in situations such as the above where the requirements for different tasks(e.g.,

safety-critical vs. non-safety critical) have to be implemented on the same platform. A

special case of the TTEthernet is the AFDX network where only Rate-Constrained (RC)

messages occur.

We propose an extension of the Trajectory approach introduced in [26], [27], [28] and [29]

applied firstly to an AFDX network. Originally, this approach was addressed to distributed

networks which contains FP/DP ∗ (fixed priority and dynamic priority established on the

first node visited in the network). This scheduling has two forms - FP/FIFO∗14 and

FP/EDF ∗15. Because of its nature, the former is compatible with the AFDX network

scheduling, which provides FIFO functionality for Rate-Constrained (RC) messages.

We did the calculations for the configuration that contains virtual links with Rate-

Constrained (RC) messages, influenced only by Direct Influence (DI) virtual links. After-

14Fixed Priority / First In, First Out
15Fixed Priority / Earliest Deadline First

97

CHAPTER 7. CONCLUSION

wards, Indirect Influence (II) virtual links were attached and the results were recalculated.

The results after recalculation showed that the method is not dependent on these links.

Next, we have introduced the Time-Triggered (TT) class of messages, which transformed

the network to TTEthernet network. We have substituted some Rate-Constrained (RC)

messages with Time-Triggered (TT) ones. The corresponding formula was changed and the

calculations were redone.

Finally, there were some recommendations about the integration of Time-Triggered (TT)

messages with the Rate-Constrained (RC) traffic.

The method was evaluated for a larger configuration, which showed satisfactory results

for some of the virtual links. Additionally, there were comments about the parameter

dependency of the formula parameters.

In future, the importance of the research work for these networks (TTEthernet / AFDX)

will be enormous. The study throughout this thesis is based on a number of assumptions

simplifying the various lines of research in this area. We concentrated on devising a method

for easy calculation of the end-to-end delays of the traffic (Time-Triggered (TT) and Rate-

Constrained (RC)) and we have not investigated specific events in the network that could

change these end-to-end delays. By specific events, we mean any event in the course of

normal operation or one caused by a failure in the network. Therefore and in addition, the

work presented in this project can be extended in these examples to aspects such as the

following:

� There is a need to research the influence of the the computation time inside the end

nodes. An end node is usually subject to contention from several logical partitions

that have to cooperate over the usage of the single resource CPU

� Another area which can be improved is the intercommunication between different

synchronization domains in these networks. As previously explained, the topology

could be complex, and this calls for additional assumptions for the calculations of the

worst-case response times

� The third domain of future work is the integration of the Best-Effort (BE) traffic

with the rest of the ongoing traffic (Rate-Constrained (RC) and Time-Triggered (TT)

traffic). A quantitative or quality method should be developed which can show or

predict the trends of the behaviour of this traffic class.

98

CHAPTER 7. CONCLUSION

These few prospects show just how much more work needs to be done in this area.

The recent trend for using AFDX / TTEthernet networks in the avionics industry requires

detailed study of their performance and even more higher focus on the certification of these

networks. Therefore, any methods developed will be welcomed for contributing to the precise

control of these networks (trajectory, network calculus, model approach and etc).

99

Bibliography

[1] Henning Butz Open Integrated Modular Avionic (IMA): State of the Art and future

Development Road Map at Airbus Deutschland

[2] Richard L. Alena, John Ossenfort, André Goforth, Fernando Figueroa Communications

for Integrated Modular Avionics

[3] RenAndré L.C. Eveleens Integrated Modular Avionics Development Guidance and Cer-

tification Considerations

[4] Jean-Bernard ITIER A380 Integrated Modular Avionics - Presentation

[5] ARINC http://www.arinc.com

[6] ARINC 664 Aircraft Data Network, Part 7, Avionics Full Duplex Switched Ethernet

(AFDX) Network, 2005

[7] General Electric AFDX/ARINC 664 Protocol, Tutorial

[8] Xillinx Architecting ARINC 664, Parr 7 (AFDX), Tutorial

[9] Condor Engineering AFDX / ARINC 664 Tutorial, 2005

[10] techSAT AFDX / ARINC 664 Tutorial, 2008

[11] TTTech Computertechnik AG TTEthernet Specification, 2008

[12] TTTech Computertechnik AG http://www.tttech.com/

[13] Honeywell http://www.honeywell.com/

[14] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, Klaus Steinhammer The Time-

Triggered Ethernet (TTE) Design

100

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Wilfried Steiner, Michael Paulitsch, Brenden Hall, Günthler Bauer The TTEthernet

Synchronization Strategy: A Model-Driven Design Using SAL

[16] Wilfried Steiner, Michael Paulitsch, Brenden Hall, Günthler Bauer, Srivatsan Varadara-

jan TTEthernet Dataflow Concept

[17] GE (General Electric) Fanuc TTEthernet - A Powerful Network Solution for Advanced

Integration Systems

[18] Frédéric Ridouard, Jean-Luc Scharabarg, Christian Fraboul Stochastic upper bounds for

heterogeneous flows using a Static Priority Queueing on an AFDX network

[19] Xin Chen, Xudong Xiang, Jianxiong Wan A software implementation of AFDX End

System, 2009

[20] Hussein Charara, Jean-Luc Scharbarg, Jérôme Ermont, Christian Fraboul Methods for

bounding end-to-end delays on an AFDX network

[21] M. Vojnoviće, J. Le Boudec Stochastic analysis of some expedited forwarding networks,

2002

[22] M. Vojnoviće, J. Le Boudec Bounds for independent regulated inputs multiplexed in a

service curve network element, 2003

[23] Frédéric Ridouard, Jean-Luc Scharabarg, Christian Fraboul Stochastic network calculus

for end-to-end delays distribution evaluation on an avionics switched Ethernet, 2007

[24] Frédéric Ridouard, Jean-Luc Scharabarg, Christian Fraboul A probabilistic analysis of

end-to-end delays on an AFDX avionics network, 2009

[25] F. Frances, C. Fraboul, J. Grieu Using network calculus to optimize the AFDX network,

2006

[26] Henri Bauer, Jean-Luc Scharbarg, Christian Fraboul Applying and optimizing Trajec-

tory approach for performance evaluation of AFDX avionics network, 2009

[27] Henri Bauer, Jean-Luc Scharbarg, Christian Fraboul Worst-case end-to-end delay anal-

ysis of an avionics AFDX network, 2010

[28] Steven Martin, Pascale Minet Schedulability analysis of flows scheduled with FIFO:

Application to Expedited Forwarding class, 2006

101

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Steven Martin, Pascale Minet Improving the Analysis of Distributed Non-Preemptive

FP/DP* Scheduling with the Trajectory Approach, 2005

[30] United States Patent Application Publication AFDX networking supporting plurality of

service classes, 2008

[31] Jean-Yves Le Boudec,Patric Thiran Network Calculus, 2004

[32] B.Davie, A. Charny, J. Bennett, K. Benson, J. Le Boudec, W. Courtney, S. Davari, V.

Firou, D. Stiladis An expedite frowarding PHB (per-hop behaviour), 2002

[33] Hussein Charara Evaluation des performances temps reel de reseaux embarques avion-

iques, 2007

[34] GraphML http://graphml.graphdrawing.org/

102

Appendix A

Input and Output files

A.0.1 Test 1

Figure A.1: Test 1 configuration

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”A” edgedefault=” d i r e c t e d ”>

<node type=”EndSystem” id=”n1” name=”ES1”/>

<node type=”EndSystem” id=”n2” name=”ES2”/>

103

APPENDIX A. INPUT AND OUTPUT FILES

<node type=”EndSystem” id=”n3” name=”ES3”/>

<node type=”EndSystem” id=”n4” name=”ES4”/>

<node type=”Port” id=”n5” name=”ES1−SW1” direction=” input ”/>

<node type=”Port” id=”n6” name=”ES2−SW1” direction=” input ”/>

<node type=”Port” id=”n7” name=”SW1−ES3” direction=” output ”/>

<node type=”Port” id=”n8” name=”SW1−ES4” direction=” output ”/>

<node type=” Switch ” id=”n9” name=”SW1”/>

<!−−

<edge source=”n1” target=”n9” cost=”0”/>

<edge source=”n2” target=”n9” cost=”0”/>

<edge source=”n3” target=”n9” cost=”0”/>

<edge source=”n4” target=”n9” cost=”0”/>

−−>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”M” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=”Message” name=”T1” typeM=”RC” priority=”0” size=”1”

period=”4” deadline=”4” mappedTo=”VL1”/>

<node id=”n2” type=”Message” name=”T2” typeM=”RC” priority=”0” size=”2”

period=”4” deadline=”4” mappedTo=”VL1”/>

<node id=”n3” type=”Message” name=”T3” typeM=”RC” priority=”0” size=”3”

period=”4” deadline=”4” mappedTo=”VL2”/>

<node id=”n4” type=”Message” name=”T4” typeM=”RC” priority=”0” size=”4”

period=”6” deadline=”7” mappedTo=”VLx”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

104

APPENDIX A. INPUT AND OUTPUT FILES

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”V” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” Virtua lL ink ” name=”VL1” bag=”4” smax=”3” smin=”1” path

=”ES1−SW1−ES4”/>

<node id=”n2” type=” Virtua lL ink ” name=”VL2” bag=”4” smax=”3” smin=”1”

path=”ES1−SW1−ES3”/>

<node id=”n3” type=” Virtua lL ink ” name=”VLx” bag=”4” smax=”3” smin=”1”

path=”ES2−SW1−ES3”/>

</graph>

</graphml>

A.0.2 Test 2

Figure A.2: Test 2 configuration

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

105

APPENDIX A. INPUT AND OUTPUT FILES

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”A” edgedefault=” d i r e c t e d ”>

<node type=”EndSystem” id=”n1” name=”ES1”/>

<node type=”EndSystem” id=”n2” name=”ES2”/>

<node type=”EndSystem” id=”n3” name=”ES3”/>

<node type=”EndSystem” id=”n4” name=”ES4”/>

<node type=”EndSystem” id=”n5” name=”ES5”/>

<node type=”EndSystem” id=”n6” name=”ES6”/>

<node type=”EndSystem” id=”n7” name=”ES7”/>

<node type=”EndSystem” id=”n8” name=”ES8”/>

<node type=”EndSystem” id=”n9” name=”ES9”/>

<node type=”EndSystem” id=”n10” name=”ES10”/>

<node type=”Port” id=”n11” name=”ES1−SW1” direction=” input ”/>

<node type=”Port” id=”n12” name=”ES2−SW1” direction=” input ”/>

<node type=”Port” id=”n13” name=”SW1−SW2” direction=” output ”/>

<node type=”Port” id=”n14” name=”SW1−SW4” direction=” output ”/>

<node type=”Port” id=”n15” name=”SW1−SW2” direction=” input ”/>

<node type=”Port” id=”n16” name=”SW2−ES7” direction=” output ”/>

<node type=”Port” id=”n17” name=”ES3−SW3” direction=” input ”/>

<node type=”Port” id=”n18” name=”ES4−SW3” direction=” input ”/>

<node type=”Port” id=”n19” name=”SW3−SW4” direction=” output ”/>

<node type=”Port” id=”n20” name=”SW3−SW5” direction=” output ”/>

<node type=”Port” id=”n21” name=”SW1−SW4” direction=” input ”/>

<node type=”Port” id=”n22” name=”SW3−SW4” direction=” input ”/>

<node type=”Port” id=”n23” name=”ES5−SW4” direction=” input ”/>

<node type=”Port” id=”n24” name=”SW4−ES8” direction=” output ”/>

<node type=”Port” id=”n25” name=”SW4−ES9” direction=” output ”/>

<node type=”Port” id=”n26” name=”SW3−SW5” direction=” input ”/>

<node type=”Port” id=”n27” name=”ES6−SW5” direction=” input ”/>

<node type=”Port” id=”n28” name=”SW5−ES10” direction=” output ”/>

<node type=” Switch ” id=”n29” name=”SW1”/>

<node type=” Switch ” id=”n30” name=”SW2”/>

106

APPENDIX A. INPUT AND OUTPUT FILES

<node type=” Switch ” id=”n31” name=”SW3”/>

<node type=” Switch ” id=”n32” name=”SW4”/>

<node type=” Switch ” id=”n33” name=”SW5”/>

<edge source=”n1” target=”n11” cost=”0”/>

<edge source=”n13” target=”n15” cost=”0”/>

<edge source=”n16” target=”n7” cost=”0”/>

<edge source=”n2” target=”n12” cost=”0”/>

<edge source=”n14” target=”n21” cost=”0”/>

<edge source=”n24” target=”n8” cost=”0”/>

<edge source=”n3” target=”n17” cost=”0”/>

<edge source=”n19” target=”n26” cost=”0”/>

<edge source=”n25” target=”n9” cost=”0”/>

<edge source=”n4” target=”n18” cost=”0”/>

<edge source=”n20” target=”n26” cost=”0”/>

<edge source=”n28” target=”n10” cost=”0”/>

<edge source=”n5” target=”n23” cost=”0”/>

<edge source=”n6” target=”n27” cost=”0”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”M” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=”Message” name=”T1” typeM=”RC” priority=”0” size=”1”

period=”4” deadline=”4” mappedTo=”VL1”/>

<node id=”n2” type=”Message” name=”T2” typeM=”RC” priority=”0” size=”2”

period=”4” deadline=”4” mappedTo=”VL1”/>

<node id=”n3” type=”Message” name=”T3” typeM=”RC” priority=”0” size=”3”

period=”4” deadline=”4” mappedTo=”VL2”/>

<node id=”n4” type=”Message” name=”T4” typeM=”RC” priority=”0” size=”4”

period=”6” deadline=”7” mappedTo=”VLx”/>

</graph>

</graphml>

107

APPENDIX A. INPUT AND OUTPUT FILES

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”V” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” Virtua lL ink ” name=”VL6” bag=”4” smax=”3” smin=”1” path

=”ES1−SW1−SW2−ES7#ES1−SW1−SW4−ES8”/>

<node id=”n2” type=” Virtua lL ink ” name=”VL8” bag=”4” smax=”3” smin=”1”

path=”ES1−SW1−SW2−ES7”/>

<node id=”n3” type=” Virtua lL ink ” name=”VL7” bag=”4” smax=”3” smin=”1”

path=”ES2−SW1−SW4−ES8”/>

<node id=”n4” type=” Virtua lL ink ” name=”VL9” bag=”4” smax=”3” smin=”1”

path=”ES2−SW1−SW2−ES7”/>

<node id=”n5” type=” Virtua lL ink ” name=”VLx” bag=”4” smax=”3” smin=”1”

path=”ES3−SW3−SW4−ES8”/>

<node id=”n6” type=” Virtua lL ink ” name=”VL1” bag=”4” smax=”3” smin=”1”

path=”ES3−SW3−SW5−ES10”/>

<node id=”n7” type=” Virtua lL ink ” name=”VL2” bag=”4” smax=”3” smin=”1”

path=”ES4−SW3−SW4−ES9”/>

<node id=”n8” type=” Virtua lL ink ” name=”VL3” bag=”4” smax=”3” smin=”1”

path=”ES4−SW3−SW5−ES10”/>

<node id=”n9” type=” Virtua lL ink ” name=”VL5” bag=”4” smax=”3” smin=”1”

path=”ES5−SW4−ES9”/>

<node id=”n10” type=” Virtua lL ink ” name=”VL4” bag=”4” smax=”3” smin=”1”

path=”ES6−SW5−ES10”/>

</graph>

</graphml>

A.0.3 Test 3

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

108

APPENDIX A. INPUT AND OUTPUT FILES

Figure A.3: Test 3 configuration

<graph id=”A” edgedefault=” d i r e c t e d ”>

<node type=”EndSystem” id=”n1” name=”ES1”/>

<node type=”EndSystem” id=”n2” name=”ES2”/>

<node type=”EndSystem” id=”n3” name=”ES3”/>

<node type=”EndSystem” id=”n4” name=”ES4”/>

<node type=”EndSystem” id=”n5” name=”ES5”/>

<node type=”EndSystem” id=”n6” name=”ES6”/>

<node type=”EndSystem” id=”n7” name=”ES7”/>

<node type=”Port” id=”n8” name=”ES1−SW1” direction=” input ”/>

<node type=”Port” id=”n9” name=”ES2−SW1” direction=” input ”/>

<node type=”Port” id=”n10” name=”SW1−SW3” direction=” output ”/>

<node type=”Port” id=”n11” name=”ES3−SW2” direction=” input ”/>

<node type=”Port” id=”n12” name=”ES4−SW2” direction=” input ”/>

<node type=”Port” id=”n13” name=”SW2−SW3” direction=” output ”/>

<node type=”Port” id=”n14” name=”SW1−SW3” direction=” input ”/>

<node type=”Port” id=”n15” name=”SW2−SW3” direction=” input ”/>

<node type=”Port” id=”n16” name=”SW3−ES6” direction=” output ”/>

<node type=”Port” id=”n17” name=”SW3−ES7” direction=” output ”/>

109

APPENDIX A. INPUT AND OUTPUT FILES

<node type=”Port” id=”n18” name=”ES5−SW3” direction=” input ”/>

<node type=” Switch ” id=”n19” name=”SW1”/>

<node type=” Switch ” id=”n20” name=”SW2”/>

<node type=” Switch ” id=”n21” name=”SW3”/>

<edge source=”n1” target=”n8” cost=”0”/>

<edge source=”n2” target=”n9” cost=”0”/>

<edge source=”n10” target=”n14” cost=”0”/>

<edge source=”n16” target=”n6” cost=”0”/>

<edge source=”n17” target=”n7” cost=”0”/>

<edge source=”n3” target=”n11” cost=”0”/>

<edge source=”n4” target=”n12” cost=”0”/>

<edge source=”n13” target=”n15” cost=”0”/>

<edge source=”n5” target=”n18” cost=”0”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”M” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=”Message” name=”1” typeM=”RC” priority=”0” size=”4000”

period=”4000” deadline=”4000” mappedTo=”VL1”/>

<node id=”n2” type=”Message” name=”2” typeM=”RC” priority=”0” size=”4000”

period=”4000” deadline=”4000” mappedTo=”VL2”/>

<node id=”n3” type=”Message” name=”3” typeM=”RC” priority=”0” size=”4000”

period=”4000” deadline=”4000” mappedTo=”VL3”/>

<node id=”n4” type=”Message” name=”4” typeM=”RC” priority=”0” size=”4000

” period=”4000” deadline=”4000” mappedTo=”VL4”/>

<node id=”n5” type=”Message” name=”5” typeM=”RC” priority=”0” size=”4000

” period=”4000” deadline=”4000” mappedTo=”VL5”/>

</graph>

</graphml>

110

APPENDIX A. INPUT AND OUTPUT FILES

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”V” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” Virtua lL ink ” name=”VL1” bag=”4000” smax=”4000” smin=”1

” path=”ES1−SW1−SW3−ES6”/>

<node id=”n2” type=” Virtua lL ink ” name=”VL2” bag=”4000” smax=”4000” smin=

”1” path=”ES2−SW1−SW3−ES7”/>

<node id=”n3” type=” Virtua lL ink ” name=”VL3” bag=”4000” smax=”4000” smin=

”1” path=”ES3−SW2−SW3−ES6”/>

<node id=”n4” type=” Virtua lL ink ” name=”VL4” bag=”4000” smax=”4000” smin=

”1” path=”ES4−SW2−SW3−ES6”/>

<node id=”n5” type=” Virtua lL ink ” name=”VL5” bag=”4000” smax=”4000” smin=

”1” path=”ES5−SW3−ES6”/>

</graph>

</graphml>

A.0.4 Test 4

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”A” edgedefault=” d i r e c t e d ”>

<node type=”EndSystem” id=”n1” name=”ES1”/>

<node type=”EndSystem” id=”n2” name=”ES2”/>

<node type=”EndSystem” id=”n3” name=”ES3”/>

<node type=”EndSystem” id=”n4” name=”ES4”/>

<node type=”EndSystem” id=”n5” name=”ES5”/>

<node type=”EndSystem” id=”n6” name=”ES11”/>

<node type=”EndSystem” id=”n7” name=”ES22”/>

111

APPENDIX A. INPUT AND OUTPUT FILES

Figure A.4: Test 4 configuration
112

APPENDIX A. INPUT AND OUTPUT FILES

<node type=”EndSystem” id=”n8” name=”ES33”/>

<node type=”EndSystem” id=”n9” name=”ES44”/>

<node type=”EndSystem” id=”n10” name=”ES55”/>

<node type=”Port” id=”n11” name=”ES1−SW1” direction=” input ”/>

<node type=”Port” id=”n12” name=”SW1−SW3” direction=” output ”/>

<node type=”Port” id=”n13” name=”ES4−SW2” direction=” input ”/>

<node type=”Port” id=”n14” name=”ES3−SW2” direction=” input ”/>

<node type=”Port” id=”n15” name=”ES5−SW2” direction=” input ”/>

<node type=”Port” id=”n16” name=”SW2−SW3” direction=” output ”/>

<node type=”Port” id=”n17” name=”SW1−SW3” direction=” input ”/>

<node type=”Port” id=”n18” name=”SW2−SW3” direction=” input ”/>

<node type=”Port” id=”n19” name=”SW3−SW4” direction=” output ”/>

<node type=”Port” id=”n20” name=”SW3−SW4” direction=” input ”/>

<node type=”Port” id=”n21” name=”SW4−SW5” direction=” output ”/>

<node type=”Port” id=”n22” name=”SW4−SW7” direction=” output ”/>

<node type=”Port” id=”n23” name=”SW4−SW5” direction=” input ”/>

<node type=”Port” id=”n24” name=”SW5−ES11” direction=” output ”/>

<node type=”Port” id=”n25” name=”SW7−SW6” direction=” input ”/>

<node type=”Port” id=”n26” name=”SW6−ES22” direction=” output ”/>

<node type=”Port” id=”n27” name=”SW4−SW7” direction=” input ”/>

<node type=”Port” id=”n28” name=”SW10−SW7” direction=” input ”/>

<node type=”Port” id=”n29” name=”SW7−SW6” direction=” output ”/>

<node type=”Port” id=”n30” name=”SW7−SW8” direction=” output ”/>

<node type=”Port” id=”n31” name=”SW7−SW10” direction=” output ”/>

<node type=”Port” id=”n32” name=”SW7−SW8” direction=” input ”/>

<node type=”Port” id=”n33” name=”SW8−ES55” direction=” output ”/>

<node type=”Port” id=”n34” name=”ES2−SW9” direction=” input ”/>

<node type=”Port” id=”n35” name=”SW9−SW10” direction=” output ”/>

<node type=”Port” id=”n36” name=”SW7−SW10” direction=” input ”/>

<node type=”Port” id=”n37” name=”SW9−SW10” direction=” input ”/>

<node type=”Port” id=”n38” name=”SW10−SW7” direction=” output ”/>

113

APPENDIX A. INPUT AND OUTPUT FILES

<node type=”Port” id=”n39” name=”SW10−SW11” direction=” output ”/>

<node type=”Port” id=”n40” name=”SW10−SW11” direction=” input ”/>

<node type=”Port” id=”n41” name=”SW11−ES33” direction=” output ”/>

<node type=”Port” id=”n42” name=”SW11−ES44” direction=” output ”/>

<node type=” Switch ” id=”n43” name=”SW1”/>

<node type=” Switch ” id=”n44” name=”SW2”/>

<node type=” Switch ” id=”n45” name=”SW3”/>

<node type=” Switch ” id=”n46” name=”SW4”/>

<node type=” Switch ” id=”n47” name=”SW5”/>

<node type=” Switch ” id=”n48” name=”SW6”/>

<node type=” Switch ” id=”n49” name=”SW7”/>

<node type=” Switch ” id=”n50” name=”SW8”/>

<node type=” Switch ” id=”n51” name=”SW9”/>

<node type=” Switch ” id=”n52” name=”SW10”/>

<node type=” Switch ” id=”n53” name=”SW11”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”M” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=”Message” name=”1” typeM=”RC” priority=”0” size=”400”

period=”36” deadline=”3600” mappedTo=”VL1”/>

<node id=”n2” type=”Message” name=”2” typeM=”RC” priority=”0” size=”400”

period=”36” deadline=”3600” mappedTo=”VL2”/>

<node id=”n3” type=”Message” name=”3” typeM=”RC” priority=”0” size=”400”

period=”36” deadline=”3600” mappedTo=”VL3”/>

<node id=”n4” type=”Message” name=”4” typeM=”RC” priority=”0” size=”400”

period=”36” deadline=”3600” mappedTo=”VL4”/>

<node id=”n5” type=”Message” name=”5” typeM=”RC” priority=”0” size=”400”

period=”36” deadline=”3600” mappedTo=”VL5”/>

</graph>

114

APPENDIX A. INPUT AND OUTPUT FILES

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”V” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” Virtua lL ink ” name=”VL1” bag=”36” smax=”400” smin=”1”

path=”ES1−SW1−SW3−SW4−SW5−ES11”/>

<node id=”n2” type=” Virtua lL ink ” name=”VL2” bag=”36” smax=”400” smin=”1”

path=”ES2−SW9−SW10−SW7−SW6−ES22”/>

<node id=”n3” type=” Virtua lL ink ” name=”VL3” bag=”36” smax=”400” smin=”1”

path=”ES3−SW2−SW3−SW4−SW7−SW10−SW11−ES33”/>

<node id=”n4” type=” Virtua lL ink ” name=”VL4” bag=”36” smax=”400” smin=”1”

path=”ES4−SW2−SW3−SW4−SW7−SW10−SW11−ES44”/>

<node id=”n5” type=” Virtua lL ink ” name=”VL5” bag=”36” smax=”400” smin=”1”

path=”ES5−SW2−SW3−SW4−SW7−SW8−ES55”/>

</graph>

</graphml>

A.0.5 Test 5

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”A” edgedefault=” d i r e c t e d ”>

<node type=”EndSystem” id=”n1” name=”ES1”/>

<node type=”EndSystem” id=”n2” name=”ES2”/>

<node type=”EndSystem” id=”n3” name=”ES3”/>

<node type=”EndSystem” id=”n4” name=”ES4”/>

<node type=”EndSystem” id=”n5” name=”ES5”/>

<node type=”Port” id=”n6” name=”ES1−SW1” direction=” input ”/>

115

APPENDIX A. INPUT AND OUTPUT FILES

Figure A.5: Test 5 configuration

<node type=”Port” id=”n7” name=”ES2−SW1” direction=” input ”/>

<node type=”Port” id=”n8” name=”SW1−SW2” direction=” output ”/>

<node type=”Port” id=”n9” name=”ES3−SW2” direction=” input ”/>

<node type=”Port” id=”n10” name=”SW1−SW2” direction=” input ”/>

<node type=”Port” id=”n11” name=”SW2−ES4” direction=” output ”/>

<node type=”Port” id=”n12” name=”SW2−ES5” direction=” output ”/>

<node type=” Switch ” id=”n13” name=”SW1”/>

<node type=” Switch ” id=”n14” name=”SW2”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”M” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=”Message” name=”1” typeM=”RC” priority=”0” size=”5000”

period=”3000” deadline=”300” mappedTo=”VL1”/>

116

APPENDIX A. INPUT AND OUTPUT FILES

<node id=”n2” type=”Message” name=”2” typeM=”RC” priority=”0” size=”5000”

period=”3000” deadline=”300” mappedTo=”VL2”/>

<node id=”n3” type=”Message” name=”3” typeM=”RC” priority=”0” size=”5000”

period=”3000” deadline=”300” mappedTo=”VL3”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”V” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” Virtua lL ink ” name=”VL1” bag=”3000” smax=”5000” smin=”

5000” path=”ES1−SW1−SW2−ES4”/>

<node id=”n2” type=” Virtua lL ink ” name=”VL2” bag=”300” smax=”5000” smin=”

5000” path=”ES2−SW1−SW2−ES5”/>

<node id=”n3” type=” Virtua lL ink ” name=”VL3” bag=”3000” smax=”5000” smin=

”5000” path=”ES3−SW2−ES4”/>

</graph>

</graphml>

A.0.6 Test 6

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”A” edgedefault=” d i r e c t e d ”>

<node type=”EndSystem” id=”n1” name=”ES1”/>

<node type=”EndSystem” id=”n2” name=”ES2”/>

<node type=”EndSystem” id=”n3” name=”ES3”/>

<node type=”EndSystem” id=”n4” name=”ES11”/>

<node type=”EndSystem” id=”n5” name=”ES22”/>

117

APPENDIX A. INPUT AND OUTPUT FILES

Figure A.6: Test 6 configuration

Figure A.7: Test 6 configuration (with Time-Triggered messages)

118

APPENDIX A. INPUT AND OUTPUT FILES

<node type=”EndSystem” id=”n6” name=”ES33”/>

<node type=”Port” id=”n7” name=”ES1−SW1” direction=” input ”/>

<node type=”Port” id=”n8” name=”ES2−SW1” direction=” input ”/>

<node type=”Port” id=”n9” name=”SW1−SW2” direction=” output ”/>

<node type=”Port” id=”n10” name=”SW1−SW2” direction=” input ”/>

<node type=”Port” id=”n11” name=”ES3−SW2” direction=” input ”/>

<node type=”Port” id=”n12” name=”SW2−SW3” direction=” output ”/>

<node type=”Port” id=”n13” name=”SW2−SW3” direction=” input ”/>

<node type=”Port” id=”n14” name=”SW3−ES33” direction=” output ”/>

<node type=”Port” id=”n15” name=”SW3−ES11” direction=” output ”/>

<node type=”Port” id=”n16” name=”SW3−ES22” direction=” output ”/>

<node type=” Switch ” id=”n17” name=”SW1”/>

<node type=” Switch ” id=”n18” name=”SW2”/>

<node type=” Switch ” id=”n19” name=”SW3”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”M” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=”Message” name=”1” typeM=”RC” priority=”0” size=”3000”

period=”500” deadline=”500” mappedTo=”VL1”/>

<node id=”n2” type=”Message” name=”2” typeM=”RC” priority=”0” size=”2000”

period=”500” deadline=”500” mappedTo=”VL2”/>

<node id=”n3” type=”Message” name=”3” typeM=”RC” priority=”0” size=”1000”

period=”500” deadline=”500” mappedTo=”VL3”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

119

APPENDIX A. INPUT AND OUTPUT FILES

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”V” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” Virtua lL ink ” name=”VL1” bag=”500” smax=”3000” smin=”

3000” path=”ES1−SW1−SW2−SW3−ES11”/>

<node id=”n2” type=” Virtua lL ink ” name=”VL2” bag=”500” smax=”2000” smin=”

2000” path=”ES2−SW1−SW2−SW3−ES22”/>

<node id=”n3” type=” Virtua lL ink ” name=”VL3” bag=”500” smax=”1000” smin=”

1000” path=”ES3−SW2−SW3−ES33”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”A” edgedefault=” d i r e c t e d ”>

<node type=”EndSystem” id=”n1” name=”ES1”/>

<node type=”EndSystem” id=”n2” name=”ES2”/>

<node type=”EndSystem” id=”n3” name=”ES3”/>

<node type=”EndSystem” id=”n4” name=”ES11”/>

<node type=”EndSystem” id=”n5” name=”ES22”/>

<node type=”EndSystem” id=”n6” name=”ES33”/>

<node type=”Port” id=”n7” name=”ES1−SW1” direction=” input ”/>

<node type=”Port” id=”n8” name=”ES2−SW1” direction=” input ”/>

<node type=”Port” id=”n9” name=”SW1−SW2” direction=” output ”/>

<node type=”Port” id=”n10” name=”SW1−SW2” direction=” input ”/>

<node type=”Port” id=”n11” name=”ES3−SW2” direction=” input ”/>

<node type=”Port” id=”n12” name=”SW2−SW3” direction=” output ”/>

<node type=”Port” id=”n13” name=”SW2−SW3” direction=” input ”/>

<node type=”Port” id=”n14” name=”SW3−ES33” direction=” output ”/>

120

APPENDIX A. INPUT AND OUTPUT FILES

<node type=”Port” id=”n15” name=”SW3−ES11” direction=” output ”/>

<node type=”Port” id=”n16” name=”SW3−ES22” direction=” output ”/>

<node type=” Switch ” id=”n17” name=”SW1”/>

<node type=” Switch ” id=”n18” name=”SW2”/>

<node type=” Switch ” id=”n19” name=”SW3”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”M” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=”Message” name=”1” typeM=”RC” priority=”0” size=”3000”

period=”500” deadline=”500” mappedTo=”VL1”/>

<node id=”n2” type=”Message” name=”2” typeM=”RC” priority=”0” size=”2000”

period=”500” deadline=”500” mappedTo=”VL2”/>

<node id=”n3” type=”Message” name=”3” typeM=”TT” priority=”0” size=”1000”

period=”500” deadline=”500” mappedTo=”VL3”/>

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”V” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” Virtua lL ink ” name=”VL1” bag=”500” smax=”3000” smin=”

3000” path=”ES1−SW1−SW2−SW3−ES11”/>

<node id=”n2” type=” Virtua lL ink ” name=”VL2” bag=”500” smax=”2000” smin=”

2000” path=”ES2−SW1−SW2−SW3−ES22”/>

<node id=”n3” type=” Virtua lL ink ” name=”VL3” bag=”500” smax=”1000” smin=”

1000” path=”ES3−SW2−SW3−ES33”/>

121

APPENDIX A. INPUT AND OUTPUT FILES

</graph>

</graphml>

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<graphml xmlns=” http :// graphml . graphdrawing . org /xmlns”

xmlns : xsi=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xsi : schemaLocation=” http :// graphml . graphdrawing . org /xmlns

http :// graphml . graphdrawing . org /xmlns /1 .0/ graphml . xsd”>

<graph id=”T” edgedefault=” d i r e c t e d ”>

<node id=”n1” type=” MessageScheduele ” name=”3” slotsPerPort=”SW2−SW3

:26−36”/>

</graph>

</graphml>

122

