
A Network-Flow Based Valve-Switching Aware Binding Algorithm
for Flow-Based Microfluidic Biochips

Kai-Han Tseng1 Sheng-Chi You1 Wajid Hassan Minhass2 Tsung-Yi Ho1 Paul Pop2

1National Cheng Kung University, Taiwan
2Technical University of Denmark, Denmark

Abstract— Designs of flow-based microfluidic biochips are re-
ceiving much attention recently because they replace conventional
biological automation paradigm and are able to integrate differ-
ent biochemical analysis functions on a chip. However, as the de-
sign complexity increases, a flow-based microfluidic biochip needs
more chip-integrated micro-valves, i.e., the basic unit of fluid-
handling functionality, to manipulate the fluid flow for biochem-
ical applications. Moreover, frequent switching of micro-valves
results in decreased reliability. To minimize the valve-switching
activities, we develop a network-flow based resource binding al-
gorithm based on breadth-first search (BFS) and minimum cost
maximum flow (MCMF) in architectural-level synthesis. The ex-
perimental results show that our methodology not only makes sig-
nificant reduction of valve-switching activities but also diminishes
the application completion time for both real-life applications and
a set of synthetic benchmarks.

I. INTRODUCTION

Recently, microfluidics-based biochips have emerged as a
popular alternative for laboratory experiments. Unlike conven-
tional biochemical analyzers, which consist of fluid-handling
robots, microfluidic biochips integrate necessary biochemical
functionalities (e.g., mixers, filter, dispensers, detectors) on a
chip [5], offering a number of advantages such as high portabil-
ity, high throughput, high sensitivity, less human intervention,
and low sample volume consumption [2]. These composite mi-
crosystems are also known as lab-on-a-chip, replacing cumber-
some equipments to miniaturized and integrated systems [9].

Nowadays, the mainstream for microfluidic system is flow-
based microfluidic biochip due to its easy implementation and
less sensitive to fouling problems [4]. The fluid flow on flow-
based microfluidic biochips were manipulated continuously
through the pre-defined micro-channels using micro-valves and
micro-pumps [10]. Since the valves are the basic unit of fluid-
handling functionalities, by combining several chip-integrated
valves, more functional components such as mixer, reactor,
separator, detector, filter can be built and the flow of liquid
can be successfully controlled to accomplish the biochemical
applications [3].

However, as the requirements and the design complexity
rapidly increase, the manufacture and the biochemical analysis
of flow-based microfluidic biochip become more complicated.
According to recent study [8], the biochips can now use more
than 25,000 valves and about a million features to run 9,216
parallel polymerase chain reactions. Moreover, the number of

mechanical valves per square inch for flow-based microfluidic
biochips has grown exponentially and four times faster than the
reflection of Moore’s Law [1].

In addition, to the best of our knowledge, recent works for
flow-based microfluidic biochips ignore the issue of valve-
switching. Because the valves play the most fundamental role
of flow-based microfluidic biochip, a biochemical application
running on an inappropriately synthesized biochip would result
in dispensable switching of the valves. It should be averted to
have the redundant activities because a valve operates reliably
only for a few thousands of actuations [7]. The valve switch-
ing also consumes energy, which may be an issue for future
portable, battery powered, systems. Therefore, a well-designed
resource binding algorithm should be developed while synthe-
sizing the biochip to avoid this problem.

In this paper, we propose a network-flow based valve-
switching aware binding algorithm for flow-based microfluidic
biochips. Our contribution can be summarized as follows:

• We model the valve-switching procedures for functional
components such as mixer, and identify how to reduce the
valve-switching amounts by binding the continuous oper-
ations to the same component.

• We develop a set-based minimum cost maximum flow
(SMCMF) resource binding algorithm by using breadth-
first search (BFS) technique to group continuous oper-
ations together to diminish dispensable valve-switching
and applying minimum cost maximum flow (MCMF) to
minimize the application complete time and enhance the
component utilization.

Experimental results show that our network-flow based algo-
rithm not only makes significant reduction of valve-switching
activities but also diminishes the application completion time
for both real-life applications and a set of synthetic bench-
marks.

The remainder of this paper is organized as follows: Section
II introduces the system model of the flow-based microfluidic
biochips and the manipulations of the valves. Section III for-
mulates the biochip synthesis problem. Section IV introduces
our synthesis methodology. Section V - VI show our experi-
mental results and conclusions.

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

3A-3

213

II. PRELIMINARY

A. Biochemical Application Model

We model a biochemical application using a sequencing
graph. The graph is directed, acyclic with a source vertex
whose in-degree is zero and a sink vertex whose out-degree is
zero. Other vertexes represent operations. Each directed edge
from vertex Oi to Oj means that the sample will transport from
Oi to Oj . Fig. 1(a) shows an example of a biochemical appli-
cation containing 11 mixing operations, the execution time and
the component type of each operation is shown in its left side.

B. Micro-Valve Model

The basic unit of a flow-based microfluidic biochip is a
valve. By actuating the valves, we can successfully manipu-
late the fluid flow on the biochip. In Fig. 1(b), the control
layer (red) is connected to an external air pressure source z1.
The flow layer (blue) is connected to a fluid reservoir through
a pump that generates the fluid flow. Without the activation of
pressure source, the fluid can flow through freely. Otherwise,
high pressure through the control layer pinches the underly-
ing flow layer (i.e., a in Fig. 1(b)) and blocks the fluid flow.
A flow-based microfluidic biochip might allocate thousands of
valves. By combining these valves, more complex units, such
as switches, multiplexers, micro-pumps, mixers, can be built.
Moreover, the valves can also use to control the fluid flow on
the biochip. For example, Fig. 1(c) shows two cases that flow-
channels intersect with each other. 3 and 4 valves are required
for the intersection P1 and P2, respectively. Valves on flow
paths can control the movement of fluid by switching these
valves open or closed.

(a) Application graph (b) Biochip: schematic view

(c) Flow control with valves (d) Simple architecture

Fig. 1. Elements of microfluidic biochip

C. Biochip Architecture Model

The flow-based microfluidic biochip is manufactured using
multilayer soft lithography [5]. Basically, the biochip can con-
tain multiple layers. These layers can be logically divided into
two types: the flow layer and the control layer. In this paper,
we will focus on the discussion of flow layer.

The biochip architecture can be seen as a set of vertex, edge
and flow path. Note that there are tow types of vertex: inter-
section (e.g., P1 in Fig. 1(d)), component or an input/output
node (e.g., Mixer1 and In1, respectively, in Fig. 1(d)). The
flow path is the set of permissible flow routes on the biochip. A
directed edge represents a directed transportation from a vertex
to another vertex. The transportation function can be defined
as c(x) representing the transportation time for the distance x,
which is the length of a flow path. Note that a flow path is ei-
ther a single directed edge or a subset of two or more directed
edges. For example, in Fig. 1(d), a flow path can represent a
directed link from vertex Mixer2 to vertex Storage1.

D. Component Model

The general purpose microfluidic processor contains prim-
itive elements, including storage chambers, input and output
ports (I/O), a mixer, and an interconnection network that en-
ables to build a path for samples [12]. In this section, we will
model the switching step of a mixer.

In Fig. 2, considering the pneumatic mixer, it contains nine
valves. Each valve has its control line connecting with the con-
trol layer (the red line in Fig. 2(a)). The valve set v1, v2, v3 is
the input port S1 and the valve set v7, v8, v9 is the output port
S2. The valve set v4, v5, v6 acts as an on-chip pump. The two
ports facilitate the inputs and outputs. The mixing output can
either be sent to the waste reservoir or to the other components
for further processing.

Fig. 2. Illustration for a mixer operation

E. Valve-Switching Minimization

According to recent studies, a valve can only be actuated in
thousands of times [7]. Because the flow-based microfluidic
biochip are manipulated by the valves, more valve-switching
means reduced reliability.

3A-3

214

TABLE I: Valve-Switching Phase of a Mixer
Phase V1 V2 V3 V4 V5 V6 V7 V8 V9

In1 0 0 1 0 0 0 0 0 1
In2 0 1 0 0 0 0 1 0 0
Mix 1 0 0 Mix Mix Mix 0 1 0
Out1 0 0 1 0 0 0 0 0 1
Out2 0 1 0 0 0 0 1 0 0

In order to minimize the valve-switching amounts, in this
paper, we take mixer as an example to explain how to reduce
the valve-switching activities by grouping the continuous oper-
ations together. In Fig. 2(a), there are three reagents A, B, and
C. For reagent C, it is the mixing result of reagent A and B.
As shown in Table I, a mixer will go through 5 phases to com-
plete a mixing operation. The valve activation for each phase
is also shown in Table I. Here, “0” represents an open and “1”
represents a close of the valve. The status “Mix” shown for the
valve set v4, v5, v6 represents the mixing step in which these
valves are opened and closed in a specific frequency to achieve
mixing. The first two phases, which called In1 and In2, store
reagent A and reagent B into the mixer by closing (v3, v9) and
(v2, v7) respectively (Fig. 2(b) and (c)). The third phase is to
mix two stored reagents into reagent C by closing (v1, v8) and
switching in the order of (v4, v5, v6) repeatedly that acts as an
on-chip pump (Fig. 2(d)). The last two phases, Out1 and Out2,
represent to output the mixed reagent C. Out1 phase output the
half of reagent C as the waste by closing (v3, v9), and Out2
phases output another half of reagent C as the mixing result by
closing (v2, v7) (Fig. 2(e) and (f))[6]. Finally, transport reagent
C for the further processing.

By Table I, 20 valve-switching activities (0 → 1 or 1 → 0)
are required for one mixing operation (v4, v5, v6 activation is
not considered due to the different requirements of switching
times in mixing phase).

F. Continuous Grouping

By reducing the Out2 phase for two continuous mixing op-
erations in the same component, we can diminish the valve-
switching by 6 times. Considering Fig. 2(f) again, if sample
C could stay in component for second mixing, the Out2 phase
will not be necessary at all. That is, we can transform Out1
phase as In1 phase for second mixing. Therefore, in Fig. 3,
we only need 14 valve-switching activities for these two mix-
ing operations (6 valve-switching are reduced in Out2 phase).
If we can bind more mixing operations on the same component,
only 8 valve-switching activities are needed.

G. Transportation Cost

Binding more operations on the same components not only
decreases total valve-switching amounts but also removes dis-
pensable transportations. The transportations would lead to
unnecessary valve-switching since that the fluid flow transport
from one component to another component is manipulated by
the valves. This problem might become more critical as the
increasing valve numbers of biochip architecture.

Fig. 3. Continuous valve-switching on a mixer

III. PROBLEM FORMULATION

Based on previous discussions, the problem addressed in this
paper can be formulated as follows:
Input: A biochemical application modelled as a sequencing
graph and a component library includes different types of com-
ponents.
Component Constraint: Component Constraint: The com-
ponents used for the architecture cannot exceed the maximum
allowable number in the component library.
Objective: Obtain a resource binding result under the above
constraints such that the total valve-switching amounts and the
application complete time for the biochemical application is
minimized.

IV. BIOCHIP SYNTHESIS METHODOLOGY

To accomplish a biochemical application and evaluate the to-
tal valve-switching amounts and application complete time, we
should also generate the biochip architecture in the end of our
synthesis methodology. We will first introduce our set-based
minimum cost maximum flow algorithm (SMCMF) and then
using a relation-based method to generate the biochip archi-
tecture in physical synthesis and adopt a list scheduling-based
approach to evaluate our performance.

In this section, we will use the application graph shown in
Fig. 1(a) under the component constraint of 3 mixers as an ex-
ample to present our SMCMF algorithm. The basic idea of our
SMCMF algorithm is to find the set in the application graph and
then use these sets to build the minimum cost maximum flow
network. In the flow network, each node represents a set which
is also referred as some continuous operations. By using this
methodology, we can not only minimize the valve-switching
activities but also maximize the component utilization.

The SMCMF algorithm can be hierarchically divided into
three steps. In the first step, we apply a breadth-first search
(BFS) technique to count the topological order and group the
continuous operations in a set, and in the second step, we will
construct the sets into a flow network and apply minimum cost
maximum flow algorithm to obtain the concatenated-sets. In

3A-3

215

the last step, we will make the components allocate to the
high-priority concatenated-sets and split the the low-priority
concatenated-sets into several operations to rearrange them into
other components. Our SMCMF algorithm will be described in
the following subsections.

(a) Topological sort (b) Depth first search

Fig. 4. Separate operation strategy

A. Separating Continuous Operation by BFS

Our SMCMF algorithm can be started by calculating the
topological order of the biochemical application. As shown
in Fig. 4(a), the topological sort begins with the last operation
O11. Because the biochip architecture is not realized yet, The
transportation cost c(x) should be estimated as a constant time
3. After doing topological sort, each operation receives two
numbers represented the starting time and ending time. The
starting time is the bigger one which means their urgency cri-
teria and the other one implies the estimated finish time of the
operations. This step is used to calculate the estimated time
period for each operation.

As describes in Section II, using the same component for
the continuous operations will reduce valve-switching activi-
ties. In order to minimize the total valve-switching amounts,
we should group the continuous operations together. Therefore,
it is very obvious that we can use breadth-first search technique
to achieve our goal. In Fig. 4(a), O11 is regarded as a source
node when applying BFS. The purpose for BFS is to make the
continuous operations into a set and make each set as big as
possible. We can use different colors to distinguish the opera-
tions into different sets. The rules for assigning the colors for
the nodes while doing BFS traversal can be listed as follows:

1. For the source node, assign an unique color for it and re-
gard it as a new set.

2. For each non-source node, if its predecessor doesn’t group
with other operations, assign a color to the node the same
as its predecessor and group them into the same set. Oth-
erwise, assign a new unique color for the node and regard
it as a new set.

3. While all the nodes are assigned to a color, the BFS traver-
sal is finished.

The results for the BFS is shown in Fig. 4(b). The operations
are separated into 6 sets including s1{O1, O7, O11}, s2{O2},
s3{O3, O8, O10}, s4{O4}, s5{O5, O9}, s6{O6}. For a set si,
it has two attributes (S , E), where si.S is inherited from the
starting time of the first operation in si and si.E is inherited
from the ending time of the last operation in si. Those opera-
tions grouping into a set are continuous operations.

B. Minimum Cost Maximum Flow Formulation

Though we already grouped operations into a set, the given
number of mixers may still be insufficient. Nevertheless, the
executing time for some sets may be disjointed. So, we need
to concatenate those sets together to maximize the component
utilization. To achieve our goal, we construct a minimum cost
maximum flow graph Gmcmf = (Vmcmf ;Emcmf) for these
sets and propose two formulation rules. The first one describes
the establishment for the node Vmcmf , and the second one de-
scribes how to build the edge Emcmf .

Fig. 5. Minimum cost maximum flow methodology

MCMF-Rule #1: Formulation of Vmcmf

1. Create a source node S, and a destination node D.
2. For each set si separating by BFS, create a node V i, and

then split V i into an in-node V i
in and an out-node V i

out.
Both V i

in and V i
out have two attributes (S , E). For V i

in.S
and V i

in.E , they have the same value inherited from si.S .
For V i

out.S and V i
out.E , they have the same value inherited

form si.E

MCMF-Rule #2: Formulation of Emcmf

1. For each in-node V i
in, create a directed edge S → V i

in

with one unit capacity and zero cost per unit flow.
2. For each out-node V i

out, create a directed edge V i
out → D

with one unit capacity and zero cost per unit flow.
3. For each node pair V i

in and V i
out, create a directed edge

V i
in → V i

out with one unit capacity and zero cost per unit
flow.

3A-3

216

4. For an out-node V i
out and an in-node V j

in if V i
out.E ≥

V j
in.S + c(x), create a directed edge V i

out → V j
in with one

unit capacity and f(x) cost per unit flow, where c(x) is the
transportation time and f(x) is defined as the difference
between V i

out.E and V j
in.S .

Fig. 5(a) and Fig. 5(b) show the example for constructing
the MCMF graph. In Fig. 5(a), the nodes are represented by
the sets si containing operations, while in Fig. 5(b), each node
in Fig. 5(a) is split into one in-node V i

in and one out-node V i
out.

For example, the node pair (V 1
in, V 1

out) in Fig. 5(b) can be map-
ping to the set s1{O1, O7, O11} in Fig. 5(a). The following
paragraph will explicitly explain the procedures for construct-
ing the MCMF graph.

To construct the nodes for the MCMF graph, we first cre-
ate a source node S and a destination node D by MCMF-Rule
1.1, and then using MCMF-Rule 1.2 to create the other nodes
for each set si separating by BFS. For example, there is a set
s5{O5, O9} as shown in Fig. 5(a), so we initially construct a
node V 5 and then split V 5 into a node pair (V 5

in, V 5
out) as shown

in Fig. 5(b).
After creating the nodes, we need to construct the edges for

the MCMF graph, so we apply MCMF-Rule 2. The first two
rules mean that we need to create the edges from the source to
all the in-nodes V i

in and from all the out-nodes V i
out to D. The

third rule represents that there is an internal edge between each
node pair V i

in and V i
out, as shown in Fig. 5(b). The last rule in-

dicates that we have to build the edge between two nodes if the
estimated time difference is more than the transportation func-
tion c(x). For example, V 4

out.E is 24, V 1
in.S is 19 and the trans-

portation function c(x) is estimated to be 3. Because V 4
out.E ≥

V 1
in.S + c(x), we should build the edge from V 4

out to V 1
in., as

shown in Fig. 5(b), there are 3 edges V 4
out → V 1

in, V 4
out → V 2

in

and V 6
out → V 2

in should be built by this rule.
In the end, we construct the flow network shown in Fig.

5(b) and apply MCMF algorithm to obtain flow paths. Each
flow path contains node pair (V i

in, V i
out), by mapping the node

pair back to its corresponding set, we can obtain the new
concatenated-set as shown in Fig. 5(c).

C. Component Allocation

Nevertheless, the given number of mixers is still insufficient,
since we have only three mixers but four concatenated-sets.
The goal in this step is to allocate the finite components to
the high-priority concatenated-sets and split the low-priority
concatenated-sets into a single operations to rearrange it into
the component before its successor. The priority for the con-
catenated set is defined by the continuous operation number
as well as the total operation number. We will first compare
the continuous operation number and adopt the total operation
numbers as the tight breaker. In Fig. 5(c), Set1 is the concate-
nated sets with the highest priority because it has three contin-
uous operations and totally four operations. Though Set2 also
has the same number of continuous operations, it has only three
operations totally which indicates lower priority than Set1. Af-
ter determining their priorities, we can allocate the 3 mixers
to the top-3 priority sets. For the lowest priority set, which is
Set4, we split it into O2 and O6 and rearrange them to Mixer1

and Mixer3 because the next operations for O2 is O7 and O6

is O9 which are in Mixer1 and Mixer3, respectively.
After applying these steps, the resource binding and schedul-

ing results can be obtained as shown in Fig. 5(d), and we
can also use the information to construct a relational graph for
physical synthesis. A relational graph is a undirected graph
that represents the transportation for the components. In the
relational graph, each node is regarded as a component, and an
edge means that there are transportations between two compo-
nents and the edge cost is the transportation time. For example,
according to the binding result and the application graph as
shown in Fig. 5(d) and Fig. 1(a), we know that O10 is bound
to Mixer2 and O11 is bound to Mixer1. Because the succes-
sor for O10 is O11, it means that there is a transportation from
Mixer2 to Mixer1. By applying this rule for each edge on the
application graph, we can construct a relational graph for the
components.

D. Physical Synthesis

The biochip architecture can be generated in physical syn-
thesis. It is similar to traditional VLSI design automation, the
physical synthesis can be addressed as the issue of placement
and routing. In this paper, we use a relation-based method to
synthesize the biochip architecture. As describes in the previ-
ous subsection, we will obtain a relational graph after apply-
ing SMCMF to get the binding information. In the relational
graph, the edges means the number of transportations between
two components. The concept of the relation-based method is
to place the components much closer if the transportation num-
ber between them are bigger. It can also be referred as plac-
ing the more related components together. Using this concept
we can diminish the transportation time of the components af-
ter the routing step because the components are close to each
other, which reduces the total length of the flow-channels.

E. Explicit Scheduling

After the binding information and the architecture are com-
pleted, the next step is to dispatch every operation and trans-
portation to their corresponding components. This problem is
related to resource constrained scheduling problem with non-
uniform weights, which is NP-complete [11]. We adopt list
scheduling-based approach to solve the problem in a computa-
tionally efficient manner [6]. It takes the biochemical applica-
tion model, the flow layer models of the biochip architecture,
the biochip components and binding information as input. As
output, it generates a schedule for all components and trans-
portations. This information contains the details for each com-
ponent on every moment, such as flow transportation or oper-
ation. So, it can be used to generate the control sequence for
executing the operation on the specified biochip. Also, we can
calculate the valve-switching amounts after the list scheduling-
based approach.

Besides, this approach should also consider the issue of rout-
ing latency. While doing scheduling, the transportations can’t
pass through one flow-channel at the same time. Once the col-
lision of the transportations occur, they should be deferred until
the flow-channel is idle. Moreover, due to the routing latency,
it might need to wait for the inputs since there are two inputs

3A-3

217

TABLE II: PCR Real-Life Applications with SMCMF Algorithm
Arc. Allocated Total Valve-Switching Total
No. Units Valves On Flow / Op. Idle / Time
1 (3,3,3,0,0,1) 54 40 / 104 5.4 / 20.1
2 (4,4,4,0,0,1) 72 14 / 125 3.1 / 17.0

TABLE III: PCR Real-Life Applications with Baseline Method
Arc. Allocated Total Valve-Switching Total
No. Units Valves On Flow / Op. Idle / Time
1 (3,3,3,0,0,1) 54 40 / 116 15.6 / 20.9
2 (4,4,4,0,0,1) 72 18 / 137 9.0 / 18.3

for some kinds of components. The components might receive
only one input and waiting for the other one as a result of rout-
ing latency. We define this time period as component idle time
which indicates the waiting time between the first input and the
second input.

V. EXPERIMENTAL RESULTS

We evaluate both real-life case and a set of synthetic bench-
marks by using our SMCMF algorithm for binding to deter-
mine the application complete time, component idle time and
valve-switching amounts for this application and the corre-
sponding architecture. These algorithms are implemented in
C++, running on a PC with Core2 Quad processors at 2.66GHz
and 3.25GB of RAM.

Table II and III show our experimental results on PCR real-
life case. We implement both SMCMF algorithm and baseline
method to construct the binding information for different ar-
chitectures. The baseline method here simply binds according
to the operations’ topological orders, which are referred to the
urgency criteria as describes in Section A. The bigger of the
urgency criteria means the operation has the higher priority to
bind the given components. Column 1 presents the number of
each architecture and column 2 shows the list of allocated com-
ponents, in the following format: (Input ports, Output ports,
Mixers, Heaters, Filters, Storage). Columns 3 shows the total
number of valves on the chip. Columns 4 presents the valve-
switching amounts on flow paths and components respectively.
Columns 5 shows the total component idle time and the ap-
plication complete time respectively. The real-life case, poly-
merase chain reaction (PCR), has 7 mixing operations and is
used in DNA amplification. We synthesize the assay on two
different biochip architectures varying the number of I/O ports
and mixer units (3 and 4) with one storage. These two table
shows that our SMCMF algorithm makes better binding infor-
mation and obtains less valve-switching amounts and shorter
total component idle time/application complete time than the
baseline method does.

The following two line charts are experimental results on
synthetic benchmarks under different considerations. Fig. 6
shows the distribution of different number of mixers and one
storage among valve-switching amounts and application com-
plete time. We use a synthetic application containing 1023
mixing operations as a benchmark and two binding informa-
tion made by SMCMF algorithm and baseline method. By
tuning the number of mixer, we can obtain the trend for each
algorithm. It shows 43% and 54% improvements on valve-
switching amounts and application complete time on average.

When an architecture contains more mixers, the complete time
and valve-switching amounts will increase because only one
storage in this architecture. However, the increasing rate of the
blue line using SMCMF algorithm is smaller and more stable
than the pink one using baseline method.

(a) Valve-switching (b) Application complete time

Fig. 6. The results on different number of mixer

VI. CONCLUSIONS

In this paper, we proposed a network-flow based valve-
switching aware binding algorithm for flow-based microfluidic
biochips. Given a biochip application graph, we use SMCMF
to get the resource binding information and using a relation-
based method to get the biochip architecture. And using list-
scheduling based approach to evaluate the results, which shows
that our synthesis algorithm not only minimizes the total valve-
switching amounts but also diminishes the application com-
plete when comparing with a baseline method for both real-
life case PCR and a set of synthetic benchmarks. It means that
our SMCMF algorithm is good enough to get a proper resource
binding information while synthesizing a biochip.

REFERENCES

[1] J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nature Biotechnol-
ogy, 21:1179–1183, 2003.

[2] T.-W. Huang, T.-Y. Ho, and K. Chakrabarty, “Reliability-oriented broad-
cast electrode-addressing for pin-constrained digital microfluidic biochips,”
IEEE/ACM ICCAD, pp. 448–455, 2011.

[3] Y. C. Lim, A. Z. Kouzani, and W. Duan, “Lab-on-a-chip: a component view,”
Journal of microsystems technology, 16(12), December 2010.

[4] K.-K. Liu, R.-G. Wu, Y.-J. Chuang, H. S. Khoo, S.-H. Huang and F.-G. Tseng,
“Microfluidic Systems for Biosensing,” Sensors, 10 (7): pp. 6623–6661, 2010;.

[5] J. Melin and S. Quake, “Microfluidic large-scale integration: The evolution
of design rules for biological automation,” Annual Reviews in Biophysics and
Biomolecular Structure, 36:213–231, 2007.

[6] W. H. Minhass, P. Pop, and J. Madsen, “System-level modeling and synthesis of
flow-based microfluidic biochips,” in IEEE/ACM CASES, 2011.

[7] W. H. Minhass, P. Pop, J. Madsen, M. Hemmingsen and M. Dufva, “System-
Level Modeling and Simulation of the Cell Culture Microfluidic Biochip Pro-
Cell,” IEEE DTIP, pp 91–98, 2010.

[8] J. M. Perkel, “Microfluidics - bringing new things to life science,” Science, 322,
975–977, 2008.

[9] F. Su, K. Chakrabarty, and R. B. Fair, “Microfluidics based biochips: Technol-
ogy issues, implementation platforms, and design-automation challenges,” IEEE
TCAD, pp. 211–223, 2006.

[10] T. Thorsen, S. Maerki, and S. Quake, “Microfluidic largescale integration,” Sci-
ence, 298, 580–584, 2002.

[11] D. Ullman, “NP-complete scheduling problems,” Journal of Computing System
Science, no. 10, pp. 384–393, 1975.

[12] J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe and T. Thorsen, “Digital
microfluidics using soft lithography,” Lab on Chip, 96–104, 2006.

3A-3

218

