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Abstract

Embedded systems have countless application areas - household electronics,
computer networks, medical equipment, aircraft controllers, etc. Their respon-
sibility varies depending on the system they are integrated in. Hard-real time
systems are the ones where computing the correct result by a task and it meet-
ing its deadline is of great importance. The correctness of these results depends
also on the time when these are produced. By extending the list of constrains
to the application with high reliability and fault tolerance, the outline of the
safety-critical systems characteristics is given. Nowadays complex embedded
real-time systems are implemented using distributed architectures, composed
of heterogeneous processing elements interconnected using communication net-
works.

The master thesis objective is to model and simulate the TTEthernet - targeted
to distributed safety-critical real-time systems. A TTEthernet network is com-
posed of a set of clusters. Each cluster consists of a set of End Systems (ESes)
interconnected by links and Network Switches (NSes). The links are full duplex,
allowing thus communication in both directions. The protocol has three tra�c
classes of di�erent timing criticality: Time-Triggered (TT), Rate-Constrained
(RC) and Best E�ort (BE). Time-Triggered(TT) messages are the ones with
highest priority and take precedence over other messaging types in the network.
TT communication is done through o�ine scheduling of static scheduling tables
i.e. messages are sent at prede�ned periods of time. RC transmission has less
priority than a TT one and is executed whenever no time-triggered communica-
tion is present. RC provides bounded end-to-end latency and delay limitation.
BE messages are the ones with lowest critical level - thus least priority. They do
not provide any timing constraints or guarantees that a message will be received.
This makes them less reliable for tasks with high temporal requirements.
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TTEthernet is compliant with ARINC 664p7 [afd09] which de�nes the concept of
virtual links. TTEthernet implements them as logical point-to-point connections
in the network. They create "tree" structures with an End System as the root
node and a set of End Systems each of which de�ned as a leaf node. These
structures are used to route frames from the root to the leafs. Each virtual link
carries a single message.

The result of the work done is the creation of a simulator. This tool takes as
input the network topology, set of messages in the system and multiple simula-
tion characteristics via command line. The output �les are a comma separated
value (CSV) �le containing the worst-case and average delays, a GraphViz �le
presenting the network topology from each virtual link's perspective and a Joint
Photographic Experts Group (JPEG) �le showing a Gantt chart with the sce-
nario that led to the worst-case end-to-end delay for a prede�ned frame.

In order to evaluate the working of the simulator, di�erent tests were done both
with arti�cial and real world examples. The arti�cial ones were presented as
ten test cases. The real world examples were based on NASA's Orion Crew
Exploration Vehicle, represented as a topology in two versions - a simple and
an enhanced one. The output produced by the simulator was used for di�erent
purposes. In the case of Orion it determined the appropriateness of a given
topology for the needs that the system presents. In the other test cases - the
steady-state was sought with respect to the amount of simulation performed.
Finally, the output was compared to previously performed analysis in the form
of a discussion which gave a broader understanding of the relation analysis-
simulation.
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Chapter 1

Introduction

The term "embedded systems" describes systems that repeatedly extract and
analyze information from sensors, generating output sent to actuators. They
are also known as closed-loop control systems. There are various ways one can
classify them - according to their cost, performance, safety, dependability etc.

Hard-real time systems have the highest demand on the programs they utilize
due to the nature of their domain. Applications executing on such systems
should work in a timely manner - any deadlines that are not met lead to catas-
trophic consequences loss of data, �nancial resources or potential threat to hu-
man life. Systems with such characteristics are further re�ned as safety-critical.
An example one can point out are applications such as �y- and drive-by-wire
where there are no direct connections between a pilot operating the control sys-
tem of an aircraft and its control surfaces. Such an environment poses multiple
requirements - ultra-high reliability (e.g. minimum delay of a command send
from the aircraft control to its surfaces), fault tolerance, extensive redundancy.

To address these and other demands, separation of the communication in multi-
ple types is needed. Subsequently, two of the approaches developed to deal with
this in real-time systems ([Kop11]) are event-triggered and time-triggered
([Sue12]). The former describes the action of triggering a signal upon the occur-
rence of a speci�c event. This implies a dynamic strategy of dealing with events.
The later is managed by the progression of time. Each communication that hap-
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pens is a prede�ned static periodic event. A time-triggered system interacts with
the world according to an internal schedule, whereas an event-triggered system
responds to stimuli that are outside its control.

The term mixed-criticality ([BBB+09]) applications denotes the integration of
both approaches onto the same system. It refers to those applications that
comprise non-critical and critical tra�c with di�erent Safety-Integrity Levels
(SIL). To achieve this they are divided through temporal and spatial separation.
The functionality of mixed-criticality applications is implemented on top of an
integrated structure of interconnected heterogeneous processing elements.

A setting as complex as an aircraft encompasses another class of embedded
systems - distributed systems. They were initially devised as being federated.
This de�nition implies that each applications in the system (e.g. autopilot)
comprises of a fault-tolerant embedded control system that connects to others
of its kind through minor interconnections. This is also known as partitioning
([Rus99]). The newer applications adapt the approach of integrated solutions,
where resources are shared throughout multiple applications. The trade-o�
between both approaches is as follows: in the case of federated architectures
there are higher expenses for replicating the systems a great amount of times
as well as protection against fault propagation. On the other hand, integrated
solutions lower the costs for integrating the applications but introduce risk of
cascading failures. Both architectures represent the safety-critical core of the
applications built on top of them. Deciding how to implement them and what
services to provide them with, are major key points in the construction and
certi�cation of safety-critical embedded systems.

The two systems designs approaches - time-triggered and event-triggered - �nd
application in di�erent areas. The time-triggered approach is generally pre-
ferred for integrated safety-critical systems. An integrated system brings di�er-
ent applications together - whereas a safety-critical system keeps them apart.
This is a reference to the previously denoted term partitioning. It allows single
applications to be "deconstructed" into smaller components that can be devel-
oped to di�erent safety levels. Also although the purpose of partitioning is to
exclude fault propagation, it has the added bene�t that it promotes composabil-
ity.1 Partitioning and composability concern the predictability of the resources
and services perceived by the clients (applications and their subfunctions) of
an architecture. One of predictability's two dimensions is value - logically cor-
rect behavior. The other is time - predictable rate of delivery, latency and
jitter of services. Especially in context of fault-tolerant systems temporal pre-
dictability is di�cult to achieve in event-triggered architectures. This makes

1A composable design is one in which individual applications are una�ected by the choice

of the other applications with which they are integrated.
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time-triggering the only option for safety-critical systems.

1.1 Databus

One of the primary architectural components is the bus (databus). It can be
a physical or logical entity (communication protocol) and is used for control
and transmission of communication across the network. Buses such as Ethernet
resolve contention probabilistically and therefore can provide only probabilistic
guarantees of timely access. Thus they give no assurance at all in the presence of
faults. Buses for embedded systems such as CAN, LonWorks, or Pro�bus (Pro-
cess Field Bus) use various priority, preassigned slot or token schemes to resolve
contention deterministically. Time-triggered buses provide static preallocation
of communication bandwidth in the form of a global schedule - each node knows
the schedule. It therefore knows when it is allowed to send messages and when
it should expect to receive them. This means gives the bene�t of resolving con-
tention at design time (i.e. as the schedule is constructed), rather than runtime.
This allows for thorough assessment of the impact of the schedule on the system.
Because all communication is time-triggered by the global schedule there is no
need to attach source or destination addresses to messages sent over the bus -
each node knows the sender and intended recipients of each message by virtue
of the time at which it was sent. Time-triggered operation provides e�ciency,
determinism, and partitioning.

1.2 Communication protocols

Here are the architectures of two avionics and two automobile communication
protocols in the interest of deducing principles common to all of them, the main
di�erences in their design choices, and the trade-o�s made. On one hand we
have the avionics buses the Honeywell SAFEbus ([HD93]) and the SPIDER
protocol ([MGPM04]). On the other - the automobile buses Time-Triggered
Architecture (TTA) ([KB03]) and FlexRay ([SJ08]). All four of the considered
examples are primarily time-triggered ([PSG+11]). This is a fundamental design
choice that in�uences many aspects of their architectures and mechanisms and
sets them apart from event-triggered buses such as Controller Area Network
(CAN), Byte�ight and LonWorks.

Figure 1.1 depicts a bus interconnect topology similar the one utilized by SAFEbus.
The Bus Interface Units (BIUs) are duplicated and the interconnect bus is quad-



4 Introduction

Figure 1.1: J. Rushby. "Generic Bus" Figure. [Rus01], 5p.

redundant. Features like clock synchronization, message scheduling and trans-
mission functions are implemented on SAFEbus main unit - the BIU. The access
control to the interconnect is done by the bus guardian of BIU's partner. Every
Bus Interface Unit of a pair drives a di�erent pair of interconnect buses. It is,
however, able to read all four of them. The interconnect buses, on the other
hand, are composed each of two data lines and one clock line.

Figure 1.2: J. Rushby. "Interconnect Bus" Figure. [Rus01], 6p.

There are two types of implementation of a Time-Triggered Architecture - the
currently used TTA-bus (a bus interconnect topology similar to that shown in
Figure 1.2) and the next generation TTA-star (a star interconnect topology
such as the one in Figure 1.3). Both designs have the same interfaces(also
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called controllers), which implement the TTP/C protocol - the heart of TTA. It
is responsible for clock synchronization, message sequencing and transmission
functions. In a TTA-bus each controller drives the buses through a bus guardian,
whereas in a TTA-star implentation the guardian functionality is carried out in
the central hub. TTA-star provides a setup for distributed con�gurations where
subsystems are connected by hub-to-hub links.

Figure 1.3: J. Rushby. "Star Interconnect" Figure. [Rus01], 7p.

The SPIDER interconnect is composed of active elements called Redundancy
Management Units (RMUs). Its topology can be organized either as shown in
Figure 1.4, where the RMUs and interfaces(the BIUs) form part of a centralized
hub, or as in Figure 1.3, where the RMUs form the hub, or similar to Figure 1.1,
where the RMUs provide a distributed interconnect. The lines connecting hosts
to their interfaces are optical �ber, and the 12 whole system beyond the hosts
(i.e., optical �bers and the RMUs and BIUs) is called the Reliable Optical Bus
(ROBUS). Clock synchronization and other services of SPIDER are achieved by
distributed algorithms executed among the BIUs and RMUs.

FlexRay can use either an "active" star topology similar to that shown in Fig-
ure 1.3, or a "passive" bus topology similar to that shown in Figure 1.2. In
both cases, duplication of the interconnect is optional. Each interface f (com-
munication controller) drives the lines to its interconnects through separate bus
guardians located with the interface. As with TTA-star, FlexRay can also be
deployed in distributed con�gurations in which subsystems are connected by
hub-to-hub links.

In the context of communication protocols implementing the time-triggered
architecture, the master thesis takes a closer look at TTEthernet (see chap-
ter 2). This network protocol supports safety-critical applications of mixed-
criticality character. It enables interconnection of heterogeneous processing el-
ements in hard-real time safety-critical distributed embedded systems. This is
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Figure 1.4: J. Rushby. "Spider Interconnect" Figure. [Rus01], 8p.

done through the management of three tra�c classes - Time-Triggered (TT),
Rate-Constrained (RC) and Best E�ort (BE). Time-Triggered(TT) messages
are the ones with highest priority. Because they have the highest level of crit-
icality, they take precedence over other messaging types in the network. TT
communication is done through o�ine scheduling of static scheduling tables i.e.
messages are sent at prede�ned periods of time. This type of message exchange
is most suitable for the construction of deterministic distributed systems where
the operation of each element can be speci�ed with high precision.

Event-Triggered communication presents two types of tra�c in TTEthernet -
Rate-Constrained(RC) and Best E�ort(BE). RC messaging is next in the criti-
cality scale of after TT. Thus an RC transmission has less priority than a TT
one and is executed whenever no time-triggered communication is present. RC
provides bounded end-to-end latency and delay limitation.

BE messages are the ones with lowest critical level - thus least priority. They
cannot provide any timing constraints or guarantees that the message will be
received at all because they are executed whenever no other communication is
present. This, of course, makes them less reliable and useful for tasks with high
temporal requirements.

To utilize a "mixed-criticality" application on a single system and enable the
transmission of all three classes two key components are needed - spatial and
temporal separation. Spatial separation is done through the concept of virtual
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links. As introduced in ARINC 664p7, virtual links represent logical point-to-
point connections that create "tree-like" structures in the network - a single end
system as the root node and one or more end systems as leaf nodes. Tempo-
ral separation, on the other hand, is achieved in two ways depending on the
messages being transmitted. One is the above mentioned static preallocation of
bandwidth (o�ine scheduling). It is used in case of TT communication. If the
messages are of RC type, separation is provided through bandwidth allocation.
With its fault-tolerance design, TTEthernet comprises various capabilities like
redundancy, scalability and multiple fault containment.

1.3 Thesis objectives

The goal of the master thesis project is to develop a simulator based TTEthernet
protocol. The simulator has to be fast and accurate. The requirements for the
simulator are:

• model the two simulation paradigms - action- and event-oriented

• model all the three integration policies (con�ict resolution mechanisms) -
timely block, shu�ing and preemption

• determine the average end-to-end delays for all BE and RC messages and
the worst-case end-to-end communication delays for the RC messages

• compare and evaluate results from simulation to an existing analysis pre-
sented in a paper

• simulator should be designed and implemented so that it can be used
inside an optimization loop

1.4 Thesis structure

The structure master thesis report is as follows:

• Chapter 1 makes an introduction to the topic of protocols for embedded
systems by brie�y comparing the characteristics of multiple protocols. It
describes the goals and the motivation behind the project.
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• Chapter 2 presents the theory used throughout the project with regards
to Time-Triggered Ethernet.

• Chapter 3 describes the process of simulation and modeling, the various
types of simulations that can be performed and the appropriateness of
each one with regards to the master thesis project. It must be noted that
the purpose of chapters 2 and 3 is not to educate the reader or repeat the
numerous textbooks written in the �eld. It is intended to support and
clarify the decisions made during the implementation process.

• Chapter 4 focuses on the development of two simulators following the ac-
tion and event-driven paradigms. It gives a detailed view of their common
features as well as the di�erences they have with respect to the implemen-
tation, performance and development issues.

• Chapter 5 re�ects on the veri�cation of the simulators correctness and
the evaluation of the output data.

• The thesis report completes with chapter 6 which provides conclusions in
the form of a general overview of the theory and the achieved results that
were presented. It also gives a description of the possible future extensions.



Chapter 2

TTEthernet

The following chapter presents TTEthernet in detail. It is a protocol that
interconnects heterogeneous processing elements in hard-real time safety-critical
distributed systems. The chapter is divided into sections that describe the
background of TTEthernet, the architecture model that it supports, its actual
operation, scheduling policies and fault-tolerance techniques that it implements.
It also provides an example of the protocol's work�ow. Finally, a short summary
presents TTEthernet's key features.

2.1 Background and De�nition

TTEthernet has multiple characteristics, which will be described step-wise in
this section. Firstly, TTEthernet is based on IEEE 802.3 Ethernet standard.
This means that is supports communication between applications over hetero-
geneous media. The problem with Ethernet is that it is implemented with
half-duplex switching, thus if a message collides with another transmission it
is resent after a certain time period depending on the back-o� strategy used.
No matter how small, the possibility that messages will collide each time still
exists. Subsequently these collisions result in unbounded transmission times.

To address these issues, TTEthernet is also made compliant with the ARINC
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Figure 2.1: "Full-Duplex, Switched Ethernet Example" Figure. [Eng05], 12p.

664p7 (see [afd09]) protocol - a full-duplex switched Ethernet with predictable
event-triggered communication (see Figure 2.1). The full-duplex mechanism
does away with frame collisions but introduces a new threat to the protocol -
congestion. In order to handle it and make the protocol congestion free, there
should be control over the message transmissions. This is directly related to the
determinism in TTEthernet. The protocol has predictable operation achieved
by a mixed asynchronous/synchronous approach (see Figure 2.2). The asyn-
chronous approach is described in ARINC 664, where bandwidth partitioning is
done through rate-constrained communication. Also maximum latency in the
system is controlled. The synchronous approach on the other hand manages
jitter and has a strict time base - implements time-triggered messaging. It is
presented in the SAE AS6802 standard which is a fault-tolerant self-stabilizing
synchronization strategy.

The ARINC 664p7 protocol also introduces the concept of virtual links ([ASBCH13]).
They represent logical point-to-point connections in the network. Virtual links
provide one of the key features needed to implement mixed-criticality applica-
tions - spatial separation. A thorough discussion on virtual links can be found
in the follow up subsection.

As a further extension to event-triggered communication of ARINC 664p7,
TTEthernet provides a static pre-scheduled time-triggered messaging. This aug-
mentation makes the protocol perfect for networks implemented in highly critical
hard real-time systems, where deadlines must always be respected. To summa-
rize, TTEthernet is de�ned as a synchronous, deterministic and congestion free.



2.2 Virtual links 11

Figure 2.2: "Determinism context in Ethernet networks depends of the appli-
cation (max. sampling rate) and the approach to system design
asynchronous (coordination and synchronization among functions
is conducted at higher layers) or synchronous (control of timing
and synchronization at network level)." Figure. [Pla09a], 4p.

2.2 Virtual links

Virtual links are used to route frames from a sender to one or multiple receivers.
In TTEthernet the Virtual Link ID (VLID) is of size 16 bits and type unsigned
integer. Tra�c is navigated through the network based on the resulting 48 bit
destination address (see Figure 2.3).

Because switches in the TTEthernet network are con�gured so that they redirect
messages to one or multiple links and because end systems can only have a single
VLID, virtual link connections create structures that resemble "trees" with an
end system as the root node and a set of end systems each of which de�ned as
a leaf node. Figure 2.3 depicts the routing of a frame from end system 1 with
VLID 100 through the network to the designated communication ports in end
systems 2 and 3.

2.2.1 Virtual link isolation

As previously described virtual links are logical connections between two end
systems which provide spatial separation among tra�c of di�erent character
i.e. critical and non-critical. Figure 2.5 shows that any given physical link can
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Figure 2.3: "Format of Ethernet Destination Address in AFDX Network." Fig-
ure. [Pla05], 12p.

Figure 2.4: "Packet Routing Example." Figure. [Pla05], 11p.

contain one or more virtual links, which in turn transport frames to a single or
multiple destination ports.

In order to isolate the tra�c being transmitted and to make sure that no inter-
ference between communication of di�erent messages is possible, TTEthernet
limits the frame rate and size that passes through the virtual links. Thus each
frame is supplied with a Bandwidth Allocation Gap (BAG) and a Lmax value.
BAG is the minimal time interval (in ms) between the transmission of two frames
in the network. Lmax is the maximum size (in bytes) one frame can have in
the given virtual link. Appropriate values for BAG and their matching trans-
mission frequencies are given in Figure 2.6. These parameters are assigned on
per-virtual link basis for in each end system.
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Figure 2.5: "Three Virtual Links Carried by a Physical Link." Figure. [Pla05],
14p.

Figure 2.6: "Allowable BAG Values." Table. [Pla05], 14p.

2.2.2 Virtual link scheduling

As shown in the previous subsection, communication ports are linked to virtual
links. Messages coming from the ports that are to be sent by the end system
must follow the scenario depicted in Figure 2.7. First they are wrapped into
a TTEthernet frame and placed in a transmission queue. Virtual Link Sched-
uler (VLS) supervises whether the BAG and Lmax limitations for the given
virtual link are respected. It regulates the amount of jitter of the communica-
tion by transmitting the tra�c passing through it. Some sources of jitter are
congestion in the virtual link queues, multiplexing the scheduled frames into the
Redundancy Management Unit (RMU) and their actual transmission through
the physical links.

The formulas given below determine a bound on the output jitter that every end
system must comply with. The �rst describes the upper bound to the amount of
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Figure 2.7: "Virtual Link Scheduling." Figure. [Pla05], 15p.

jitter on the delay that a frame can experience when other frames are scheduled
on other virtual links. The second one is limit on the overall jitter of the end
system. If these limitations are met by all end systems, the cluster will prove
to be "deterministic".

Figure 2.8: Figure. [Pla05], 15p.

When the VLS passed a frame on, it receives a sequence number and gets repli-
cated by the RMU, if that is needed. The complete frame is then transmitted
over the network through the physical link.

2.3 Architecture

The following section presents the architecture of TTEthernet through a simple
example that is situated on the "cluster level" in the TTEthernet synchro-
nization topology i.e.there is one synchronization domain and one priority (see
Figure 2.9).
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Figure 2.9: "The TTEthernet synchronization topology has four levels." Fig-
ure. [Pla09a], 15p.

Figure 2.10 shows a cluster containing four end systems (ES1 , ES2, ES3, ES4)
which communicate among themselves through the means of physical links and
network switches (NS1, NS2). The path from one ES to another is called a
communication channel and encompasses all the communication media in be-
tween. Every ES is supplied with a CPU, RAM, ROM (or some other type of
non-volatile memory) and network interface card (NIC) used to identify the ES
on the TTEthernet network. Communication in the cluster is implemented as
full-duplex and is denoted with solid black bi-directional arrows. Some other
characteristics of the cluster are that it is multi-hop i.e. messages can travel
through multiple NSes and that TT messages are synchronized per cluster.
The Figure 2.9 depicts two applications A1 and A2 that have di�erent criticality
level tasks. A1 maps its highly critical tasks τ1, τ2 and τ3 onto ES1, ES3 and
ES4 respectively. The non-critical application A2 places its tasks τ1 and τ4 on
ES1 and ES4. The spatial separation that TTEthernet provides addresses the
system's mixed-critically character. In the example below it can happen so that
messages sent from task τ1 and τ4 intersect in a physical connection or a network
switch. In this case the virtual links vl1 and vl1 are used to isolate critical from
non-critical messages. Virtual links consists of multiple data�ow paths which in
turn contain uni-directional �ow constructs called data�ow links.

Besides the example presented in Figure 2.10 there also exist other topologies
such as single cluster with redundant communication channels or cascaded multi-
clusters implementing a master-slave strategy.

2.4 Tra�c classes

As previously noted, TTEthernet implements both event-triggered and time-
triggered communication in order to satisfy applications of mixed-criticality
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Figure 2.10: "TTEthernet cluster example." Figure. [TSPS12], 3p.

character. This is re�ected in the tra�c that the protocol generates by cre-
ating three categories of messages. Time-Triggered (TT) messages are the ones
with highest priority. Because they have the highest level of criticality, they take
precedence over other messaging types in the network. TT communication is
done through o�ine scheduling of static scheduling tables i.e. messages are sent
at prede�ned periods of time. This type of message exchange is most suitable
for the construction of deterministic distributed systems where the operation of
each element can be speci�ed with high precision. Event-Triggered communica-
tion presents two types of tra�c in TTEthernet - Rate-Constrained (RC) and
Best E�ort (BE). RC messaging is next in the criticality scale of after TT. Thus
an RC transmission has less priority than a TT one and is executed whenever
no time-triggered communication is present. RC provides bounded end-to-end
latency and delay limitation.

Figure 2.11: "Relation of TTEthernet to existing communication standards."
Figure. [TSPS12], 10p.

BE messages are the ones with lowest critical level - thus least priority. They
cannot provide any timing constraints or guarantees that the message will be
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received at all because they are executed whenever no other communication is
present. This, of course, makes them less reliable and useful for tasks with high
temporal requirements.

Figure 2.12: "TTEthernet includes TT, RC and BE messages." Figure.
[Pla09a], 11p.

As already stated both temporal and spatial separation is needed to utilize a
"mixed-criticality" application on a single system. The spatial separation is
done through the concept of virtual links. Temporal separation is achieved in
two ways depending on the messages being transmitted. O�ine scheduling is
used in case of TT communication. If the transmissions are of RC type, sepa-
ration is provided through bandwidth allocation.

TTEthernet is a transparent synchronization protocol which enables it to ex-
change "foreign" types of tra�c on the same network. To provide fault-tolerance
some part of the devices in that network can be implemented so that they gen-
erate synchronization messages.

2.5 Protocol operation

Now that the elements of the TTEthernet topology have been presented, this
subsection will delve into how the actual transmission of messages takes place.
The focus of the example will be critical communication in the protocol i.e. TT
and RC messages.

Figure 2.13 presents a cluster consisting of two end systems (ES1 and ES2) and
three network switches (NS1, NS2, NS3). The communication channel that will
be the focus of this example starts at ES1, continues through NS1 and ends
in ES2. Application A1 aims to transfer a RC message m1 from task τ1 to
τ3, whereas A2 seeks to transmit the time-triggered message m1 from τ2 to τ4.
In the ESes, CPUs partition the two tasks so that the aforementioned spatial
separation is achieved. In order to visualize the transmission �ow better, the
messages' paths are labeled on each step. Each of them has a distinct color -
green for RC and blue for TT.
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Figure 2.13: "TT and RC message transmission example." Figure. [TSPS12],
4p.

2.5.1 Time-Triggered Communication

The process starts with task τ2 putting message m2 in frame f2 (a). Next, the
frame is placed in bu�er B 1,Tx

designated especially for that frame (b). Each
frame that arrives overrides the value stored in the bu�er before because of the
single cell that it has. A look up in the send schedule Ss (c) must be performed
in order to follow the prede�ned o�ine scheduling done before the start of the
transmission. Scheduling tables are stored in every end system and network
switch in the cluster (Ss and Sr). When the prede�ned moment comes, sched-
uler TTs sends f to NS1 (d) through the data link between the two (e). The
Filtering Unit (FU) is the �rst in the switch to receive the incoming frame. FU
checks its the validity and integrity (f) and separates frames based on the type
of communication they implement. The receiving schedule Sr gives information
on whether the frame arrived in a certain window interval (g). If the it did and
messaging is of type TT, the frame is forwarded to the receive scheduler TTr

(h). If the frame exceeds the prede�ned window interval or if it had already
arrived, the data is dropped. This fault-tolerance mechanism is known as fault
containment.

From then on communication resembles the pattern described above. TTr places
the frame in a speci�c bu�er - in this case B1,Tx

. With correspondence to sched-
ule Ss in NS1, TTs sends the frame to its �nal destination - ES2. When it reaches
the right partition - P2,1 - it is unwrapped and message m2 is read when the
currently active task is t4.
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2.5.2 Rate Constrained Communication

Like with Time-Triggered communication, the transmission starts by packaging
message m1 in a frame (1). The �rst contrast comes with the queue, the frame
is put in (2). It is one per virtual link and can contain multiple cells. The gen-
eral di�erence, however, is that RC transmission is event-triggered. This implies
that no scheduling tables are needed to oversee the time of sending and receiving
in the end systems and network switches. Another consequence is that tempo-
ral separation is done through "bandwidth allocation". As mentioned before,
TT transfer is prede�ned so TT messages don't have to worry about a par-
ticular mechanism for temporal separation once the o�ine scheduling is done.
This is not the case with RC tra�c seeing as it is dynamic. In order to apply
"bandwidth allocation" for each channel, the protocol designer must de�ne the
minimum time interval between each consecutive pair of RC messages. That is
the de�nition of the previously mentioned Bandwidth Allocation Gap (BAG). A
key characteristic of BAG is that it must be less or equal to the reciprocal value
of the rate at which a given frame is transmitted. BAG is de�ned by the Tra�c
Regulator (TR) (3). Let there be two TR tasks with di�erent sized BAG that
have two messages. Figure 2.14 depicts how these messages are multiplexed by
the RC scheduler (4). So when both TRs try to send their message simultane-
ously, the phenomenon called jitter occurs. In this case the jitter is equal to the
sum of the transmission duration of all the other messages that were sent before
the particular message.

Figure 2.14: "Multiplexing two RC frames." Figure. [TSPS12], 5p.

Yet another key di�erence between TT and RC messages is presented when an
RC one reaches TT (5) - the priority. Having a lower priority because of the
lesser critical level, RC messages can be transmitted only when there are no TT
messages around. Thus TTEthernet must provide a way to integrate the two so
that the bandwidth is fully utilized and yet all tra�c starting from the highest
level of criticality - must reach its destination in time. The possible cases are
two: a TT message is transmitted over the data�ow link and a RC message
is sent by the scheduler for transmission, and the reverse. The former case is
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trivial - TT messages have precedence of RC, so lower critical messages have to
wait until the bandwidth is free. The latter case, however, is non-trivial - thus
of greater interest. It will be discussed in an upcoming section in depth.
As previously described, once a frame is received by the Filtering Unit, it is
then checked for validity and integrity. If the frame passes the test, it is sent
to the Tra�c Policy (TP) (7) which implements fault-containment just like TT
(8). This is done by an algorithm called leaky bucket which looks at the time at
which any given frame is received and that of the one before it. It then compares
the result to the BAG de�ned for the virtual link. If the BAG has a lower value
- the frame continues its transmission. If the BAG is greater then the frame is
dropped. After that the procedure of reaching the designated task - in our case
task 3 - resembles TT messaging.

2.5.3 Integration Policies

There are three ways in which a network switch in TTEthernet deals with the
con�ict that arises when high priority message(TT) becomes ready for trans-
mission while a low priority message(RC) is being relayed through the network:
shu�ing, timely block and preemption. All of them will be discussed in greater
detail in this section with respect to their resource utilization, quality of trans-
mission and other key aspects to the message transfer.

Figure 2.15: "Integration Methods for High-Priority (H) and Low-Priority (L)
Tra�c." Figure. [TSPS12], 192p

In case of preemption, the transfer of the RC frame is discontinued. The min-
imal "silence" period is then executed on the active channel by the network
switch, immediately followed by a TT message. Real-Time Quality is high be-
cause preemption makes sure that TT messages are transmitted with the lowest
latency - constant and known in advance in the best case. Resource utilization
is ine�cient. In every case where a RC frame is withheld from completing its
transfer, there needs to be a re-transmission. This, subsequently, results in a
loss of bandwidth. The drawback can be �xed by using additional function-
ality for message reconstruction. In general the truncated messages must be
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perceived as faulty messages, so mechanisms for dealing with that are to be
applied. One such mechanism can be the generation of a signal that breaks the
rules for correctly generated RC messages. Thus the end systems that receive
the tra�c will be able to notice the di�erence.

The second option is timely block. It is available only if a TT frame is scheduled
before the RC frame is fully sent through the data�ow link. If this happens, the
RC frame is blocked on the link for a certain time period and TT communication
is delayed. Real-Time Quality is high because delay of high critical tra�c is con-
stant, which implies deterministic behavior. Resource utilization is ine�cient.
Because of RC messages with unknown length, solutions implementing timely
block must postpone communication for the maximum size of RC message that
is de�ned. To address this low-criticality frames can contain their length as the
value of �eld. Thus only RC tra�c that can be fully transmitted is guaranteed
to be relayed.

Lastly there is shu�ing, which describes the exchange of priorities between
TT and RC messages. In the case of shu�ing a TT frame waits until the RC
frame is being fully transmitted. The worst-case scenario is examined when the
RC communication has the maximal length de�ned in the network. Real-Time
Quality is low. Having to wait for multiple RC frames will degrade the perfor-
mance substantially. As a relief comes the fact that TT messages are dispatched
according to their static pre-scheduled time tables. Having that in mind syn-
chronization based on the times known a priori reduces the jitter that is created
because of the priority exchange Resource utilization is e�cient because, unlike
preemption and timely block, frames are not interrupted - thus no truncated
tra�c is present. So, in a sense, utilization is optimal for shu�ing. A drawback
of this approach is that it has increased complexity in scalability for TT com-
munication. Also, although controlled and bounded, integration of BE tra�c
within shu�ing may pose a problem especially when its source is unknown.

2.6 Example

After describing the architecture model and communication in detail, the report
supplies an example of how scheduling is performed in TTEthernet. The cluster
presented here consists of three end systems(ES1, ES2, ES3) and a single net-
work switch NS1. There are also three virtual links that are used to transmit
three frames. Figure 2.16(a) is used to provide visualization purposes. 2.16(b)
gives the period, deadline, transmission time and virtual link for each frame.
Timely block is used to manage ambiguities in the tra�c.
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Figure 2.16: "Example system model" Figure. [TSPS12], 5p.

The problem here is to �nd the best way to schedule both TT and RC messages
so that they meet their deadlines. Because TT communication is pre-scheduled,
a look up in the scheduling table S present in all ESes and in NS will be enough
to determine if any deadlines are missed. The worst-case end-to-end delay needs
be calculated when RC frames are to be scheduled. To portray the actual sched-
ule order of communication, Gantt charts are given as Figure 2.17 for the initial
scheduling and Figure 2.18 for the optimized variation. Both schedules present
valid strategies for TT scheduling. The charts give the communication over the
three data�ow links - [ES1, NS1], [ES2, NS1] and [NS1,ES1] - over 600 µs time.

Frame f1 is event-triggered, which means that it can be scheduled in many ways
considering the static scheduling of f2 and f3. Figure 2.19 shows the situation
where all the TT frames are dispatched as soon as possible i.e. their delay is
minimal. Let frame f1 be sent from ES2 to NS1 at 105 µs. A timely block is
issued once the frame is compared to the higher priority frame f3. Because the
next instance of f2 interrupts its full transmission, f1 cannot �nish the opera-
tion. Once all f2 and f3 frames are transferred, f1 is passed. This results in
the worst-case end-to-end delay for f1 - 470 µs, which makes it not schedulable,
seeing as its deadline is 300 µs.

Figure 2.17 shows a greatly reduced worst-case delay - 270 µs - making it schedu-
lable. This is the result of 50 µs delay of frame f3 's second instance, which gives
frame f1 the needed time to get scheduled.

With these visual representations of the scheduling process, the reader is able
to identify the enormous e�ect of RC over TT tra�c.
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Figure 2.17: "Initial TT schedule" Figure. [TSPS12], 6p.

Figure 2.18: "Optimized TT schedule" Figure. [TSPS12], 6p.

2.7 Fault-tolerance

TTEthernet is designed with the intention of being fault-tolerant. This is
achieved through various capabilities that the protocol comprises. Firstly it
is characterized by its ability to implement redundancy. This can be done in
multiple elements of the network - end systems, network switches and other
segments. The degree to which redundancy is incorporated within the system
is dependent to the amount of fault-tolerance that is required in the system.

Figure 2.19: "A and B Networks." Figure. [Pla05], 13p.
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Redundancy management is a property of the whole network in general be-
cause TTEthernet comprises of two, independent of each other, networks A and
B(see Figure 2.19). This means that there is double amount of generated tra�c
that is routed through the network. Also for each created frame, the receiving
end system will obtain two identical frames.

Figure 2.20: "AFDX Frame and Sequence Number." Figure. [Pla05], 13p.

A problem that arises is how to distinguish that a replica packet has been re-
ceived. To address this problem TTEthernet frames are equipped with a �eld
of length 1 byte called sequence number. This byte is situated between the IP
header and payload and the FCS �elds. Because the frame is of �xed size the
byte used as a sequence number is taken from the IP/UDP payload(see Fig-
ure 2.20).
The functionality that checks a frame's sequence number is named "Integrity
Checking". It is applied by the end system upon receiving of the frame for each
link and network port. If the communication has already been presented to the
end system the packet is dropped, otherwise it passes through.
A visual summary of the process of redundancy management is provided within
Figure 2.21.

After that comes scalability. It increases latent failure detection probabil-
ity on a multi-platform system and decreases implementation costs for systems
that expand rapidly. Di�erent con�gurations with equality between the end
systems(multi-master synchronization) or multiple end systems being controlled
from a single one(master-slave synchronization) are possible. In systems that
have similar criticality levels TTEthernet provides "service history".

Next the protocol integrates tolerance to multiple inconsistent faults. This
means that when multiple concurrent failures occur in a network with equally
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Figure 2.21: "Receive Processing of Ethernet Frames." Figure. [Pla05], 13p.

ranked end systems, they will be dealt with in a cost-e�cient way. Faults can be
present either in the communication or in the end system(inconsistent-omission
faulty communication path or end system) or simultaneously in both.

Figure 2.22: "TTEthernet provides implicit fault tolerance mechanisms." Fig-
ure. [Pla09b], 7p.

Network switches and end systems are implemented so that they can operate
with guardian functions(see Figure 2.22). These functions aim to determine
whether the tra�c throughout the network is working according to the initial
intentions of the designers. In case an element has become faulty, the guardian
simply disconnects it from the rest of the network segments. To give a higher
level of fault-tolerance, a system may implement multiple guardians at various
places. In a system where a single network switch interconnects multiple end
systems, the guardian function may be implemented as a central bus guardian.
This allows for masking a set of end systems that have become faulty.(e.g. ex-
periencing the "babbling idiot" state where they sent repetitive messages in a
short time interval). If the architecture is distributed, the guardian function
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takes care that no faulty nodes corrupt the communication bus. Thus TTEth-
ernet provides tolerance to arbitrary end systems failures.

Lastly the protocol is designed with self-stabilization capabilities. This
means that after a case of multiple faults across a distributed system, syn-
chronization will be re-established.

2.8 Summary

TTEthernet is a protocol made to accommodate the needs of hard real-time sys-
tems. Moreover its design allows for integration on distributed systems where
transmission types vary in safety integrity levels. Each type is supplied with spe-
ci�c fault-tolerant mechanisms in order to insure that safety-critical constraints
are met. TTEthernet can extend an existing network to di�erent topologies lo-
cated on heterogeneous media without introducing major changes to its current
state. This is achieved through the protocol's main network components - end
systems and network switches. TTEthernet's scalability and fault-tolerance fa-
cilitate its suitability for a wide range of applications where problems like cost,
e�ciency, safety and predictability are of key importance.



Chapter 3

Modeling and Simulation

This chapter presents the notion of modeling and simulation in the context of
system development. It discusses key characteristics of a simulation such as
selecting input probability distributions, random number generators and how
to perform output data analysis. The two simulation paradigms - continuous-
and discrete-event - are presented and compared by their appropriateness with
respect to the master thesis project. A closer look at the existing world views
of discrete-event simulation provides theoretical background needed to support
the simulator implementation.

3.1 System

The main concept that lays in the center of this chapter is that of a system.
It is a set of interacting or interdependent components (e.g. people, machines)
forming an integrated whole. As an example Figure 3.1 depicts a Local Area
Network (LAN) which is essentially a system consisting of computers that com-
municate with servers. To describe it we need to observe the parameters that
de�ne the system at a given point in time. This is the de�nition of state. In
the displayed computer network these state variables could be the number of
servers that are currently working, the computers that are being serviced, etc.
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Figure 3.1: "Computer Networking - LAN Networking". Digital image. Ac-
cessed 16 August 2013

When talking about types of systems we can distinguish between two types -
discrete and continuous. A discrete system is one for which the state variables
change instantaneously at separated points in time. The LAN above is a dis-
crete system - a change to its state of occurs for example in case of a server
malfunction or when a computer receives an acknowledgment from a server. A
server can either be functional or nonfunctional - it doesn't have an intermediate
state. The term continuous system is used to represent state variables changing
continuously with respect to time. A system like that is a ship traveling in
the sea. The ship's state changes with the continuous change of its speed and
position through time.

3.2 Model

There are many ways one can study the workings of a system. This is visualized
in Figure 3.2. The two main ways are - performing actual experiments with the
system and construction of a model used to represent the system. The choice
of a model over actual experiments can easily be explained with the following
example. If the LAN network from Figure 3.1 has one million computers, an
actual experiment would be a poor choice seeing as the funds needed for its
fruition are formidable. This is the case with a great number of systems in real
life and that is way building a model is often a favorable choice.

http://lizardwebs.net/wp-content/uploads/2011/10/computer_network-300x225.jpg
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Figure 3.2: "Ways to study a system". Figure. [LK99], 4p.

A model is a simpli�ed representation of a system which is created with the
purpose of studying it. It consists of a set of assumptions, concerning the
aspects of a given system, that a�ect the problem under investigation. A model
is expressed through mathematical or logic relationships of entities that give
understanding about the behavior of the system in detail.
There are various types of models each of which will brie�y be discussed here.
They are:

• static vs dynamic

• deterministic vs stochastic

• discrete vs continuous

Static simulation models depict a "snapshot" of a system - a single moment
in its evolution. It can also display a system without any notion of time. A
dynamic model, on the other hand, is a representation of system that evolves
with the progress of time.
Determinism is predictability. Thus if a model does not comprise probabilistic
(random) elements it is a deterministic. For a given set of input values such
models repeatedly produce the same output. In the case where a model contains
element introducing randomness to the system, it is a stochastic model.



30 Modeling and Simulation

The de�nitions for discrete and continuous models resemble the ones given
previously for the existing types of systems.

Taking into account the de�nitions given above, the model of TTEthernet pro-
tocol used for the simulation can be categorized as discrete, dynamic, stochastic.

Figure 3.3: "Construction of a model". Figure. [BCNN00]

3.2.1 Veri�cation and Validation

As discussed the �rst process of building a model is deciding what kind of model
best replicates the existing system. When a conceptual model is constructed
the question whether it is a valid representation of the real system arises. The
answer to this question has three parts - veri�cation, validation and credibility.
Because credibility address the project lifecycle with respect to a company or
another institution (i.e. have the model approved by a manager) this section
focuses on the former two parts.

The creation of a model is a repetitive process that is described in Figure 3.3.
It can be done through a comparison either between the model and operational
model or between the model and the real system. In the former case the process
is called veri�cation. It checks whether the conceptual model is accurately
portrayed by the operational model (computerized representation). As this is
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a computer program, this process will often result in debugging the simulation.
The complexity of this task grows with that of the modeled system. This is the
case because the amount logical paths in big systems tend to become extremely
large.

Veri�cation of a model can be done through the following methods:

• creation of �ow diagrams

• study of the reasonableness of output from the operational model

• veri�cation that input parameters have not been changed

• documentation of working process

• visualization of working process (GUI, animation)

• debugging the program (trace)

After a comparison between the conceptual and operational model has been
made a step called calibration is introduced. It is simply the process of re�ning
(readjusting) the model by removing �ows discovered during the veri�cation
and �ne-tuning it. This process continues until both models have an acceptable
degree of di�erence in the output that they produce. The calibration can be
done through either a subjective or objective test.

The comparison between a conceptual model and the real system and their
corresponding behavior is called validation. It should be noted that absolute
validity of a model cannot be achieved. This is because a simulation model is
an approximation of the real system. Thus a model can be made more valid
the more it is calibrated. It is also true that a model is developed with speci�c
requirements. It can be the case that two models of a same system have di�erent
purposes and so di�er in their operation.

Validation of simulation models in a three-step approach. The �rst step is the
creation of a high face validity model. This is a subjective measure of the
extent to which this selection appears reasonable. It is tested by having an
external view - from people knowledgeable with the real system - test the model
output for admissibility and discover �aws in the process. The following step is
validation model assumptions. It can be done though:

• structural assumptions - describe how the system operates and usually
involve simpli�cations and abstractions of reality
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• data assumptions - based on the collection of reliable data and correct
statistical analysis of the data

The last step is done by comparing the model to real system input-output
transformations. In order to perform this step, however, there should be data
recorded while observing the system. They will be used to support to calculate
the necessary system characteristics. The validation test consists of comparing
the output from the real system to that of the model for the same set of input
conditions.

3.3 Simulation

As seen previously in Figure 3.2 the generation of a mathematical model leads
to two options of studying a system - perform analytic solution or create a sim-
ulation. The goal of the master thesis is to model and simulate the TTEthernet
protocol, therefore this section de�nes the term simulation. It also gives the-
oretical support and explanation to key design decisions when constructing a
computer simulation.

Simulation is an imitation of the operation of a real-world process or system
over time. It simulates potential changes in the system by evaluating the math-
ematical model numerically. The data accumulated by the simulation allows
the study of systems in design stage - before their actual construction. It also
gives insight of the desired characteristics of the model. A simulation enables
the generation of arti�cial history of the system and helps draw conclusions for
the real system.

3.3.1 Selecting input probability distributions

A stochastic simulation uses random inputs. These could be arrival times, ar-
rival order, etc. For such simulations there needs to be a source of randomness
- a de�ned input probability distribution. There are three approaches that can
be used in order to specify a distribution - trace-driven, de�ne empirical distri-
bution, �tted "standard" distribution.
The term trace-driven simulation denotes usage of the generated random in-
puts themselves directly in the simulation as data values directly in the simula-
tion. The pros with this choice are that the simulation is done with historically
ordered stream. This is very useful when trying to compare a simulator to an
existing system. In favor of this approach is also model validation as it allows
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for easy comparison between pre-generated output with that of the simulator.
The problems with trace-driven simulation are that it just reproduces historical
results which results in insu�cient data for a multiple simulation runs.
The second way to handle random variables is to use them to de�ne an em-
pirical distribution function. Its strengths lay in generating values between
the min and max data points. This is valued in the cases where it is known in
advance that a random variable can never exceed a certain value. We also use
empirical distribution when theoretical distributions may not be an adequate
"�t" for observed data. The shortcomings of this approach lay in the fact that
values will never be larger than max (the upper bound). This means that ex-
treme events cannot be simulated. Output data and cumulative probabilities
are generated for given input data - cumbersome if input is large.
Fitted "standard" distribution describes inserting a theoretical distribu-
tion form to the random variables through standard techniques of statistical
inference. This approach helps generate values outside the observed data range
and provides a compact way of data representation. An obstacle to using this
approach can be the lack of an adequate "�t" for observed data.

The trace-driven approach was the one chosen in the master thesis project. As
previously stated, this approach allows for comparison with existing outputs.
This is the case here since in chapter 5, there is a comparison between the
results of an analysis and the simulators.

3.3.2 Random Number Generation

A stochastic simulation with a probability distribution needs to use random
numbers (random variates). A "good" arithmetic random number generator
(RNG) has the following characteristics:

• provides a independent and identical uniform distribution of random val-
ues in the interval of [0,1]. This is also known as IID U (0,1).

• no correlation between values

• good time and space complexity

• ability to reproduce given stream (subsegment of numbers produced by
the generator) of values

• ability to reproduce separate streams (independent generators) of values.
The last two bullets can be used to study the correct workings of a simu-
lator
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The TTEthernet simulators use a Prime Modulus Multiplicative Linear Con-
gruential Generator (PMMLGC) proposed by Marse and Roberts (1983). It is
utilized when the arrival times for RC and BE messages are generated.

3.3.3 Output Data Analysis

Figure 3.4: "Types of simulations with regard to Output Analysis". Figure.

Studying the output of a simulator plays a role as important as that of making
it - especially when using empirical or "�tted" standard distributions. In order
to analyze the data accumulated by the simulator, it needs to be classi�ed with
respect to its terminating conditions. Figure 3.4 shows the various possibilities.
The two basic types here are terminating and non-terminating. Terminating
simulations are those for which there is a "natural" event E that speci�es the
length of each run. Because of the limited operation that such simulators have,
designing them aims to study the operation control. It should be noted that in
terminating simulators only conditions that are speci�c to the system should be
set as initial since they a�ect the measures of performance. Non-terminating
simulators are the ones for which there is no event specifying the run. They have
no concrete duration of execution, thus their focus is on long-term problems.

For non-terminating steady-state systems the following parameters are of in-
terest:

• steady-state parameters

• steady-state cycle parameters - certain parameters change with given cy-
cles during simulation
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• dynamic parameters - certain parameters change over time, but not cyclic

• transient parameters - there are certain signi�cant "events" that interrupt
the operation of an otherwise steady-state system

The output of the simulator can be also viewed as a stochastic process. Therefore
the analysis of the data can behave as a part of either a transient or a steady-
state distribution. A transientstate is an interval of time in which our system is
either "warming up" or taking its time to respond to progress. Steady-state is
the opposite of transient. Steady-state is a condition where our system continues
with an easily predictable behavior and few values of it are changing (if any are
changing at all). Figure 3.5 gives a comparison between both distributions.

Figure 3.5: "Transient and steady-state density functions". Figure. [LK99]

3.4 Simulation paradigms

Previously the report presented separated systems in two types - continuous and
discrete. This di�erentiation can also be done with respect to the simulation
paradigms. Explanation to both types is provided in the form of two examples.
Firstly, a simulation of a given system which evolves through time is of interest.
A system like that is the weather forecast. The humidity in a city changes daily
- continuously with respect to time. The easiest way to view this would be to
make a diagram of the humidity values - most likely a continuous curve. Thus
events that are simulated are continuous hence the name continuous-event
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simulation (CES).
As a counter example is to examine the queue in a cinema. Customers arrive at
the counter, they get serviced and leave. Variables of interest could be the time
spent waiting in line, service time, number of waiting customers, etc. Plotting
this would result in multiple continuous lines with breaks in between them. This
de�nition describes a step function. The events - the change in the number
of customers - are discrete variables. The name of this type of simulation is
discrete-event (DES).

The nature of the TTEthernet protocol classi�es its simulation as a discrete-
event one. Therefore the rest of this chapter looks closer at it and the di�erent
approaches (world views) to developing such a simulation.

3.4.1 DES

To reiterate, a discrete-event simulation involves modeling a system as its state
variables change instantaneously at separate points in time. Being discrete,
however, limits the changes in the simulation to a countable number of points
in time.
As simulation needs to keep track of multiple parameters, it also needs a mech-
anism that advances time. The variable keeping track of time (in simulation
speci�c time units) is called simulation clock. Depending which of the two
approaches discrete-event simulations use, they are divided into two - using the
next-event time advance or the �xed-increment time advance approach.

Figure 3.6: "Fixed-increment time advance". Figure. [LK99], 9p.

The �xed-increment time advance approach splits time into smaller increments.
It starts o� from time 0 and continues incrementing the time units until a pre-
de�ned max. While it is a subcase of the next-event time advance approach,
the focus is shifted to the advancing time. Every time unit is simulated to facil-
itate a possible action. That is why it is also known as the activity-oriented
paradigm (see [Mat08]). Clearly, such a program is going to execute a lot of
"empty" simulation runs thus a greater extent of the time will be wasted. These
will produce no change in the state to the system - wasting CPU time. This
is a big issue in simulations nowadays since large scale simulations require a
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tremendous amount of time run. Depicted in Figure 3.6 is the operation of the
approach. ∆t is the simulation speci�c increment. It is easy to see that only
three events are actually simulated during the seven cycles.

Figure 3.7: "Next-event time-advance approach". Figure. [LK99], 93p.

With the next-event time advance (event-oriented paradigm) approach the
times of future events are explicitly coded into the model (stored into an event
set) so that they arrive at a scheduled point in the future. The simulation starts
by initializing the simulation clock to zero. As with the previous approach,
simulation clock advances to the occurrence of the most imminent increment.
The di�erence here is that the event that changes the state of the system, not
the progress of time, is of interest. Thus when the next event is executed, the
system is updated to point to next most imminent one. This process continues
until a prede�ned event occurs. This way there will always be at least one event
pending. Figure 3.7 shows the process.
On one hand this approach saves precious CPU time by skipping over periods
of inactivity. On the other hand it introduces a new obstacle - �nd the earliest
most imminent (minimum) operation within the event set. The fear of having
too many wasted cycles is replaced by that of having too complex computations
for ordering the events that are to be executed. These computations can be
simpli�ed if an appropriate data structure is used to maintain the event set.

Lastly comes the process approach (process-oriented paradigm) whose basis
is the process1. The approach represents simulation in terms of the process'
actions as they are created in the system. In the case of a cinema queue a
process approach would involve having three processes - one simulating arrival
of clients, one simulating the person of the counter and one thread managing
the event set.

The master thesis project comprises of two simulators of the TTEthernet pro-
tocol. One is implemented with the action-oriented and the other with the
event-oriented paradigm.

1In the process approach, the process is an idea similar to the notion of a Unix process.

Modern systems represent it by the "lightweight" version of processes - threads.
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Chapter 4

Simulator design and

implementation

Chapter 4 gives insight into the actual implementation of the TTEthernet sim-
ulation. It discusses the requirements formulated for the master thesis project
with respect to features, user interaction and performance. A section that de-
scribes the design decisions that were made, precedes the one dedicated to the
implementation details. The later explains the common features between the
activity-oriented and event-oriented version of the simulator. It also discusses
their distinct characteristics separately.

4.1 Requirements

The goal the of master thesis project is to model and simulate the TTEthernet
protocol. The primary requirements that were formulated include:

• use o�ine generated TT schedules as input �les to the simulator. This is
done in order to integrate it in an optimization loop as well as allow for
comparison between the TTEthernet analysis and simulation
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• model all three integration policies (con�ict resolution mechanisms) - timely
block, shu�ing and preemption

• model the two simulation paradigms - action- and event-oriented

• model a terminating and a non-terminating (steady-state) simulator

• model a step-wise simulator that produces results up to the given point of
the simulation

• determine the average end-to-end delays for all BE and RC messages

• determine the worst-case end-to-end communication delays for the RC
messages.

• provide output in the form of GraphViz1 �les to visualize the topology
given by the input �les

• output a �le containing the above mentioned delays

• depict the actual scenario that lead to the worst-case end-to-end delay for
a given RC message

• compare and evaluate results from simulation to an existing analysis pre-
sented in a paper

4.2 Simulator design

In order to model a simulator for the TTEthernet protocol, one needs to make
design decisions that abstract the model to a level that �ts the requirements
stated previously. These decisions, on the other hand, demand the formulation
of a set of assumptions. According to them, the simulation characteristics are:

• a single TTEthernet cluster; simulation of a single clock synchronization
domain

• a homogeneous network - no AFDX network components are present

• one message is carried by one frame; the terms "message" and "frame"
are used interchangeably throughout the section

• there are no erros, packet losses and link failures

1Graphviz is open source graph visualization software.
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• TT schedule input �les contain all necessary information for generation of
TT tra�c

• each virtual link has a frame assigned to it

• a single "moment" is equal to 1ms

• it is possible that the data�ow links have no TT tra�c scheduled on them

Based on the OMNeT++ INET framework, the simulator described in [SKKS11]
covers a much broader set of characteristics of the TTEthernet protocol.

Taking into consideration the assumptions listed above, Figure 4.1 provides a
simpli�ed abstract view of the computerized simulator that portrays it as a
"black box" which takes certain four �les and user de�ned features as inputs,
and produces a set of output �les.

Figure 4.1: Abstract representation of the TTEthernet simulator

The "simulator speci�cations" address di�erent characteristics of a simulation.
Because the program is designed to have user interaction via command line, all
of them are de�ned as a set of command line parameters. Their full list is:

• <network.graphml> - a GraphML2 �le that speci�es the layout of the

2an XML-based format for representing graphs
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network i.e. the ESs, Switches and one way edges (data�ow links) which
connect them

• <schedule> - a �le containing the TT schedules i.e. o�ine generated
tables with the sending and receiving times on the data�ow links

• <vl �le> - a �le describing each virtual link as a composition of data�ow
links

• <messages> - a �le that speci�es the parameters (id, size, deadline, VL
to transmit on, period, rate) of TT, RC and BE messages

• <steady state> - speci�es whether the simulation will run until a steady
state (<true>/<false>)

• <delta> - only in case of a steady state simulation - the value that deter-
mines whether the simulation is in a steady state or not (<value>/leave
blank)

• <steady state cycles> - only in case of a steady state simulation - number
of cycles to observe for steady state behavior

• <cycles> - speci�es the duration of the simulation (the number <cycles>
until completion)

• <stepwise> - speci�es whether this is a stepwise simulation (<true>/<false>)

• <integration policy> - shu�ing/preemption/timely block

• <transmission speed> - speed in Mbps (Megabits per second)

• <record history> - records history of a given frame (<frame ID>/leave
blank)

The input �les allow for any combination of end systems, network switches,
virtual links and messages to be simulated making the simulator a very generic
tool.
The output from the simulator consists of three �les:

• a comma separated value (CSV) �le containing the worst-case and average
delays

• a GraphViz �le presenting the network topology from each virtual link's
perspective

• a Joint Photographic Experts Group (JPEG) �le showing a Gantt chart
with the scenario that led to the worst-case end-to-end delay for a frame
speci�ed in the inputs
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Based on the produced csv �le we can determine the schedulability of the RC
and BE messages given as input. Because of the nature of a simulation, cer-
tainty for scheduling a given set of messages cannot be given. In case of a missed
deadline, however, messages can safely be de�ned as non-schedulable.

As shown in [TSPS12], the calculation of end-to-end delays comprises:

• queueing delays from higher priority messages

• network delays - the duration of the message's transmission on the data�ow
links

These calculations are based to great extent on the object of interest - RC or
BE messages - and the integration policy used for the simulation. The compu-
tation of RC worst-case end-to-end delay for timely block and preemption can
be expressed in a more formal way by the following equations:

Rfi =
∑

vj ,vk∈V,[vj ,vk]∈vli
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[vj ,vk]
fi
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[vj ,vk]
fi
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In Equation 4.1 Rfi denotes the RC worst-case end-to-end delay for frame fi

transmitted on virtual link vli. Q
[vj ,vk]
fi

is the queuing delay and C
[vj ,vk]
fi

- the
network delay. Equation 4.2 examines the queuing delay's components. The
delay generated by the TT tra�c starting from the time frame instance fi arrives
at network node vj until the instance is sent to the next node is vk denoted as
QTT

fi,[vj ,vk]
. The delay that fi experiences from instances arrived before it in the

FIFO RC queue is QRC
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. The technical latency is denoted as QTL
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.

In the case of shu�ing the second equation looks like this:
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fi,[vj ,vk]

(4.3)

Equation 4.3 adds BE tra�c as a source of delay because of the precedence low
priority has over higher priority tra�c.
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Analogically equations can be derived for BE tra�c as well.

Bfi =
∑

vj ,vk∈V,[vj ,vk]∈vli

(Q
[vj ,vk]
fi
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[vj ,vk]
fi

) (4.4)

For timely block and preemption 4.3 is fully valid. The case with shu�ing is
di�erent for the above mentioned reasons. The resulting equation is 4.5.

Q
[vj ,vk]
fi

= QBE
fi,[vj ,vk]

+QTL
fi,[vj ,vk]

(4.5)

The simulation is modeled such that a TCycle is equal to the Least Common
Multiple (LCM) of all TT frame periods. If an RC and BE frame is scheduled
to run after the TCycle, it will not be able to execute. It is also the case that
if a lower priority frame doesn't manage to �nish its transmission in time (i.e.
before the end of the TCycle), it will not be able to execute and its worst-case
end-to-end delay will stay unknown. After a series of tests, the simulation was
modeled so that for each cycle given as input by the user, the simulator executes
4 TCycles, each having less and less RC and BE frames. The frames that are
delayed simply execute on the subsequent TCycles with the accumulated LCM
added to their delay. The ones that do not manage to �nish even with the extra
TCycles, experience the "snowball e�ect". This is the continuous inability to
run (e.g. because of too big arrival times).

4.3 Implementation

The simulator was implemented using the Java programming language and the
IntelliJ IDEA 12.0.4. It is designed as a standalone application with command
line interaction.

The simulation starts by reading the command line parameters described in
4.2. The class Program is the access point to the simulation which provides
feedback to the user in case of wrong number of command line arguments. The
arguments themselves are relayed to the SimulatorWrapper class. It takes
the input �les, the simulation features de�ned by the user and processes them.
This class also navigates the simulation and counts the time between the simu-
lation runs (i.e. every 4 TCycles). Finally, SimulationWrapper replenishes the
BE and RC messages that need to be transmitted.
The Simulator class initializes the simulation. As seen in Figure 4.2 this class
is the heart of the whole program. It generates the network components (ESs,
Switches, data�ow links), virtual links, tra�c for the simulation, schedules for
the data�ow links. It must be noted that the correspondence between the data
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structures used and network components was kept straightforward. The class
also keeps track of the simulation time, advances the simulation and does the
actual transmission of the messages.

Figure 4.2: Simulator. UML diagram.

The �rst data structures created by the Simulator class are the ones holding the
network components. Each of the components extends the NetworkElement
class. A Network class aggregates NetworkNode (either EndSystem or
Switch) and Data�owLink objects. Figure 4.3 gives an overview on the
hierarchy on the network elements with their respective abstract classes and
interfaces.

To keep the graph representation of network components from the GraphML
input �le, the simulator uses the Java Universal Network/Graph (JUNG)3 and
the Network class extends the DirectedSparseMultigraph coming from JUNG.
By extending NetworkNode, the EndSystem and Switch classes get their main
methods - addTra�c() and simulateMoment(). They are de�ned in the
INetworkNode interface. addTra�c() adds arriving frame instance to an ES
or Switch queues and marks their time of arrival. simulateTime() is called

3a Java open-source library of graph modeling and visualization
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Figure 4.3: Network. UML diagram.

every time a moment has to be simulated by a given network node. It takes into
account the integration policy used and compares the priority of the incoming
tra�c and to the one on given data�ow link.

Figure 4.4: Data�ow links use StaticSchedule. UML diagram.

The Data�owLink class assigns the schedules for the TT messages, read from the
input �le, to the data�ow links. It helps to implement the integration policies by
comparing the simulated moment to the upcoming moment for TT transmission.
The schedules themselves are abstracted by the StaticSchedule class.

The generation of network components is followed by reading the virtual links
input �les by the VirtualLinkAssembler. It generates all virtual links and
stores them in hash maps. The VirtualLink class is the actual model class
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Figure 4.5: Virtual links. UML diagram.

designed as a tree structure with a VirtualNetworkNode at one end and a
Set of nodes at the other. It should be noted that the class extends the JUNG
DirectedSparseMultigraph as well. Because its edges and vertices are IDs of the
network elements on the its data�ow paths, a virtual link can be represented as
a subgraph of the network. The supplementary classes VirtualData�owLink
and VirtualNetworkNode are model classes used to abstract the DataFlowLink
and NetworkNode classes respectively.

The extraction of message info from the designated �le is done from the Frame-
Assembler class. This class orchestrates the process of frame generation by
calling the FrameGenerator (the class that does the actual work), storing the
created frames and generating corresponding FrameInstance objects for each
frame. As stated in the assumptions, one message is represented by a single
frame. Thus when a line from the message input �le is read, one of the three
implementations of the Frame abstract class are used - TTFrame, RCFrame
and BEFrame. The factory design pattern was found best suited for the task.
The Frame class is a container for all common parameters of the tra�c classes.
These are frameID, size, deadline, type and virtual link ID. The abstract class
LessCriticalFrame further re�nes RC and BE messages and gives them a cou-
ple of extra features. These are transmission rate, frameInstances belonging to
the frame and maxDelay - the worst-case end-to-end delay of the messages.
Hierarchy of the messages is shown in Figure 4.6.

FrameInstance objects are those who are actually transmitted in the network
during the simulation. They keep a linked list of data�ow links which shows
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Figure 4.6: Messages. UML diagram.

them their way on the virtual link. They also calculate the time the have left
until being transmitted to the next link. All the �elds of the FrameInstance
class is given in Figure 4.7.

After the initialization phase of the simulation comes the �rst branching mo-
ment. Depending on the user's input the simulator runs either a regular or
a stepwise simulation (Figure 4.9). When this step is done, the Simulation-
Wrapper starts the �rst run from the cycles as a command line parameter.
As previously described, the simulation runs 4 TCycles for every such cycle.
Step 1 in Figure 4.10 refers to the stepwise or regular simulation shown later
in this section. In Step 2 all the queues containing information about the pre-
vious TCycles are cleared and all RC and BE messages are regenerated. Step
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Figure 4.7: Frame instance

3 also clears the queues of all network nodes in the simulation. The di�erence
with step 2 is that it regenerates only those messages that were not able to get
transmitted during the previous TCycle. The output �les are produced, once
the all simulation cycles are over (step 4).

The stepwise simulation can be called an "interactive" mode of simulation. It
enables the user to issue commands to the simulator via command line in order
to get the latest information about the schedulability of the RC and BE frames.
The available commands are:

• begin (press b) - start the stepwise simulation

• pause (press p) - pause the stepwise simulation

• continue (press c) - resume the stepwise simulation

• stats (press s) - produce statistics(worst case end-to-end delay for a frame
instance and delay for all RC and BE frames)

• exit (press e) - permanently stop the simulation

Figure 4.8 depicts the activity diagram for the stepwise simulation. After time
is initialized in step 1, the program enters a while loop that listens for the user's
input. If he/she presses p, the simulation is paused (step 2). Step 3 shows the
situation where the simulator produces data after the key s is pressed. Step 4
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Figure 4.8: Stepwise simulation. Activity diagram.

follows the pressing of key c, which resumes the simulation. The press of e ends
the simulation prematurely (step 5). If there is no input from the user a mo-
ment is simulated (step 6). This step represents the activity and event-oriented
implementation of the regular simulator. If this is the last moment before the
TCycle is reached, the simulation �nishes. If not - the moment is incremented
to the next ms and the loop is repeated until one of the terminating conditions
is met. They are discussed in the paragraph below.
From Figure 4.8 it is visible that a press of a key cannot interrupt the actual
simulation of a cycle. Depending on whether the program is currently in the
process of simulating or not, the simulator acknowledges the input of a key right
away or does that once the simulation cycle is over.
The Java Threads package was used for the implementation of the stepwise sim-
ulatin. Figure 4.11 shows the classes implementing the stepwise simulator logic.
Managing the whole process of simulation is the StepwiseSimulator class. It
reads the input from the keyboard and navigates the simulation. The actual
passing of time is registered in the ConsoleThread class. It increments the
number of ticks (i.e. moments) and for each one calls the regularSimulator()
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Figure 4.9: Simulation initialization. Activity diagram.

function of the Simulator class. The thread listens for activity from the user
and if receives any, it stops its working process and returns control to the Step-
wiseSimulator for an appropriate action. If not - the ConsoleThread looks at
the terminating conditions and determines when to stop the simulation. This
can happen in the following cases:

• the TCycle is reached

• steady-state is reached by all RC frames

• the exit key has been pressed

The steady-state is a property of a system described in Section 3.3.3. The
following expression 4.6 describes the properties that the RC frames have to
satisfy in order for the simulation to reach a steady-state:

(f i−1mj
− f imj

) ≤ 4where∀j ∈ RC (4.6)

The expression states that when examining a currently transmitted RC frame
instance, the di�erence between the delay of the last transmitted frame instance
and that of the current one, must be less or equal to the DELTA given by the
user. If all the frame instances preserve the expression for a user de�ned amount
of cycles, it can be said that the simulation has reached a steady-state.
Implementing this task required the use of a hash map that keeps track of each
RC frame ID and its latest end-to-end delay. When all frames respect the upper
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Figure 4.10: Main simulation loop. Activity diagram.

bound set by the DELTA value for the de�ned number of cycles, the simulation is
stopped and a message stating that a steady-state has been reached is generated.

No matter if the user decides to run a regular or a stepwise simulation, the
simulator always uses the regularSimulator() function of the Simulator class.
The di�erences in the implementation of this function for the two simulator
paradigms will be described in the corresponding subsections. The common
thing about both versions, is that a moment is always being simulated in the
end systems or switches.

The method simulateMoment() is common to both end systems and switches.
The pseudo code in Algorithm 1 describes its path of execution.
The �rst two lines show that the silence period after a frame instance was trans-
mitted and a TT instance occupying the data�ow link have highest priority.
Lines 3-6 deals with the transmission of a TT instance. First the entry is taken
from the schedule made for the data�ow link. It is used to generate a frame
instance "on the �y", which is later on transmitted. The frame checks the in-
tegration policy if another frame is occupying the data�ow link and makes a
decision based on that.
Lines 7-31 explain how ES handle RC tra�c. If there are frame instances wait-
ing to be transmitted, their arrival time is checked. If they have passed the
technical latency - they advance to the next step. In it, the algorithm checks
whether the frame instances respects the BAG. The last step is to take the �rst
frame instances from all the once that made it so far. It is checked against the
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Figure 4.11: Stepwise simulator. UML diagram.

integration policy.
From line 32 and on, the algorithm examines the BE tra�c. It behaves exactly
the same as in the case with the RCs with the exception of the BAG check.
This same algorithm is used in the Switch implementation as well, with the
di�erence that it has to be run for all the data�ow links (egress links) that the
switch is connected to.

The algorithms 2, 3 and 4 explain the implementation of the three integration
policies. They are modeled as described in [SBH+09].
The Timely Block algorithm is self-explanatory. All it does is makes sure that
no RC or BE frame instance gets to transmit unless there is absolute certainty
that it will be �nish before a TT instance arrives. In the case of an RC in-
stance after being sent for transmission on the data�ow link, the start time of
the transmission is recorded. The BAG uses this time for each virtual link to
enforce temporal separation. Time is not of interest and is thus not recorded
when a BE instances is about to transmit.
With the algorithm for Preemption, a TT instance always preempts the other
to tra�c classes and marks itself as delayed. Preemption is done by removing
the transmitting instance from the data�ow link and triggering silence in its
place. This procedure is also utilized in the case where an RC instance �nds
that a BE is transmitting. If this is not the case - the RC transmits and saves its
transmission moment. BE instances do not preempt other classes and transmit
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Algorithm 1 Simulate time in an End System

1: if egressLink is silenced or egressLink is TTBusy then
2: skip moment
3: else if egressLink should transmit TT then
4: scheduleEntry = getReleasedEntry(moment)
5: frameInstance = generateTTInstance(scheduleEntry)
6: if egressLink occupied then
7: checkIntegraionPolicy(frameInstance, egressLink, endsystem, mo-

ment)
8: else
9: transmit(frameInstance, egressLink, moment)
10: end if
11: else if egressLink should transmit RC then
12: for all vli ∈ V lRCQueue do
13: frameInstancesList = readyRCInstances(vl)
14: for all fi ∈ frameInstancesList do
15: if moment ≥ fi.arrival + technicalLatency then
16: readyInstancesList.add(fi)
17: end if
18: end for
19: end for
20: if readyInstancesList is not empty then
21: for all fi ∈ readyInstancesList do
22: lastTransmForVl = transmissionMap(fi.virtualLink)
23: if moment ≥ lastTransmForVl + BAG then
24: readyInstancesList2.add(fi)
25: end if
26: end for
27: end if
28: if readyInstancesList2 is not empty then
29: frameInstance = readyInstancesList2.item(0)
30: checkIntegraionPolicy(frameInstance, egressLink, endsystem, mo-

ment)
31: end if
32: else
33: for all vli ∈ V lBEQueue do
34: frameInstancesList = readyRCInstances(vl)
35: for all fi ∈ frameInstancesList do
36: if moment ≥ fi.arrival + technicalLatency then
37: readyInstancesList.add(fi)
38: end if
39: end for
40: end for
41: if readyInstancesList is not empty then
42: frameInstance = readyInstancesList2.item(0)
43: checkIntegraionPolicy(frameInstance, egressLink, endsystem, mo-

ment)
44: end if
45: end if
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directly.
Lastly, the algorithm for Shu�ing is discussed. In it a TT frame can be pre-
empted by any other tra�c class. Thus in the implementation the TT instance
directly marks itself as delayed. RC instances can preempt all classes but BE,
so the algorithm checks whether a BE is being currently transmitted. If so -
the moment is skipped. If not, in the case a TT is transmitting - it marked as
delayed. In the other cases an RC transmission commences. BE frame instances
behave exactly as in Preemption.

The strategy design pattern was utilized in the implementation of the Integration
policy. Figure 4.12 shows UML representation.

Algorithm 2 Timely Block

1: freeTime = egressLink.getUninterruptedTimeUntilNextTT()
2: if frameInstance.type is RC then
3: if freeTime ≥ frameInstance.transmissionT imeLeft() then
4: transmit(frameInstance, egressLink, moment)
5: save transmission moment for virtual link
6: remove frame instance from waiting queue
7: else
8: skip moment
9: end if
10: else
11: if freeTime ≥ frameInstance.transmissionT imeLeft() then
12: transmit(frameInstance, egressLink, moment)
13: remove frame instance from waiting queue
14: end if
15: end if
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Algorithm 3 Preemption

1: if frameInstance.type is TT then
2: remove instance from egressLink
3: transmit silence on egressLink
4: mark self as delayed
5: else if frameInstance.type is RC then
6: if egressLink has BE transmitting then
7: remove instance from egressLink
8: transmit silence on egressLink
9: else
10: transmit(frameInstance, egressLink, moment)
11: save transmission moment for virtual link
12: remove frame instance from waiting queue
13: end if
14: else
15: transmit(frameInstance, egressLink, moment)
16: remove frame instance from waiting queue
17: end if

Algorithm 4 Shu�ing

1: if frameInstance.type is TT then
2: mark self as delayed
3: else if frameInstance.type is RC then
4: if egressLink does not have BE transmitting then
5: if frameInstance.type is TT then
6: mark self as delayed
7: end if
8: transmit(frameInstance, egressLink, moment)
9: save transmission moment for virtual link
10: remove frame instance from waiting queue
11: else
12: skip moment
13: end if
14: else
15: transmit(frameInstance, egressLink, moment)
16: remove frame instance from waiting queue
17: end if
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Figure 4.12: Strategy design pattern for Integration policy. UML diagram.
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4.3.1 Activity-oriented simulator

The simulator about to be described implements the activity-oriented paradigm
(see 3.4.1. This paradigm splits time into equal units (in this case ms) that are
continuously incremented until the total amount of units is simulated. Thus the
focus is shifted to the advancing time.

Figure 4.13 depicts the be algorithm �ow. The paradigm is implemented in the
Simulator class as a simple for loop with a counter initially equal to 0 (step
1). The simulation process for each moment encompasses a series of events.
First, the algorithm checks whether there are any frame instances scheduled
to arrive at this point in time. If there are - they are added to the waiting
queues of the designated ESs (step 2). If not - the simulation continues with
step 3. In it the simulateMoment() (see 1) of every ES and Switch is invoked
in order to transmit any waiting frame instances. The �nal step of the loop is
to decrement all the counters keeping track of the frame instances transmission
by one (step 5). If there are no instances that have �nished their transmission
on the data�ow links, the simulation of this moment is �nished. The for loop
then checks if the previously simulated moment was the last one. If not - the
moment is incremented by one and steps 2 to 5 are repeated. When after the
last cycle the simulation returns control SimulatorWrapper class which issues
the generation of the output �les.

Figure 4.14 takes a closer look at the situation where a frame instance �nishes its
transmission on a given data�ow link. If the simulation is run with the command
line parameter specifying a RC frame whose worst-case scenario is sought, the
simulator gathers data if a has been transmitted RC instance. There are two
cases, depending on whether the frame instance has reached its destination on
the virtual link or not. In the later, the frame instance is simply added to the
waiting queue of the next network node in its path (step 8).
In the former the simulator calculates the end-to-end delay for the instances.
It checks whether this value is greater than the current maximum delay for the
frame and replaces it if that is the case (step 9).
If a steady-state simulation (see expression 4.6) is being run and a RC instance
was transmitted, the algorithm compares the delay previously recorded for the
frame and the one that the current value experiences. When the DELTA was
not respected the counter keeping track of instances reached a steady-state is
set to zero and the process is restarted. If the di�erence between the instance
delays is smaller or equal to DELTA, the counter is increment by one. If all
frames have reached a steady-state, the simulation exits.
In step 10 silence is sent on the data�ow links. This process does not depend
on the type of tra�c that �nished transmitting.
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Figure 4.13: Simulate moment. Activity-oriented implementation. Activity
diagram.

Figure 4.14: A frame instance �nished transmitting. Activity-oriented imple-
mentation. Activity diagram.



60 Simulator design and implementation

4.3.2 Event-oriented simulator

The second simulator is implemented using the event-oriented paradigm. In it
the times of future events are stored into an event queue and arrive at prede�ned
points in the future. When an event is executed, the system is updated to point
to next most imminent one. Thus the event, not the progress of time, changes
the state of the system.

Figure 4.15 shows classes that are speci�c to the event-driven simulator. The
Event class is the core of the simulation as it bears the main characteristics of
an event - time and type. There are six types of events:

• ARRIVAL_RC_BE

• RELEASE_RC_BE

• RELEASE_TT

• FINISH_TT

• FINISH_RC_BE

• SILENCE

The simulation is represented by an event queue. All TT frame release and
�nish times are initially loaded into the event queue which is sorted by time.
This distinguishes them from the RC and BE frames which are taken from a
separate queue whenever a frame instance is not running. Because of this fact,
there is a need for separation between the release and �nish events of TT and
the other two tra�c classes. As with the action-oriented paradigm, arrival of
RC and BE frames needs to be modeled - henceforth the ARRIVAL_RC_BE type.

The classes that extend the Event class are three -ReleaseEvent, SilenceEvent
and TransmitEvent. They are modeled based on the di�erent resources they
need - network node, data�ow link and frame instance respectively.

The simulation process is de�ned as a while loop that continuously picks the
�rst event in a sorted queue. After an event has �nished its job the process is
repeated until on of the aforementioned terminating conditions is met.

Figure 4.16 shows the case where a TransmitEvent with ARRIVAL_RC_BE is re-
ceived. The process is similar to the one described in the previous subsection.
First, the arrival of an instance is simulated (step 1). It is important to note
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Figure 4.15: Event. Class diagram.

that a TransmitEvent carries a single frame instance. That instance is added
to the waiting queues of the designated ES (step 2). The last part of the pro-
cess involves calculating the proper time to release the instance (step 3). If the
data�ow link that it needs to transmit on is currently free or will be occupied
until less than the length of the technical latency, the algorithm sets the sum
of the current moment and the technical latency as the release time. If it is
occupied for a longer period, the release time set is equal to the moment when
the data�ow link becomes free.

Figure 4.16: Arrival event in event-oriented implementation. Activity dia-
gram.
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Figure 4.17: Release of TT event and RC or BE event in event-oriented im-
plementation. Activity diagram.

The release event types RELEASE_RC_BE and RELEASE_TT have similar mechan-
ics. That is way the have been grouped in Figure 4.17. Step 4 examines the
event of the release of a TT instance. If the data�ow link of interest is currently
free the frame instance transmits directly. If not - it acts according to the inte-
gration policy chosen.
When a RC or BE ReleaseEvent is received, the algorithm simply calls the sim-
ulateMoment() method of the network node that the instance currently resides
in (step 5).
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Figure 4.18: Finish event in event-oriented implementation. Activity diagram.

The two event types FINISH_RC_BE and FINISH_TT are depicted as one in Fig-
ure 4.18. The activity diagram shows that the two event types have the same
purpose. The di�erence is that a �nishing TT instance is used to trigger the
transmission of delayed TT instances (in the case of Preemption or Shu�ing).
Besides that the procedure that follows has already been described to great ex-
tent in the action-oriented section above.
What should be noted is how step 7 is executed. When a frame instance needs
to be added to the next node on its path, its release time should be calculated
appropriately. In order to do that the algorithm continuously check the spaces
in the schedule on the future data�ow link to see whether they are enough for
transmission. When such a space is found, its �rst moment is set as the release
time of the frame instance.
In step 9 an event that SilenceEvent for the previously occupied data�ow link
is issued.

When a SilenceEvent arrives, the data�ow link that is silenced is speci�ed within
the event. The code simply frees it. Figure 4.19
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Figure 4.19: Silence event and end of simulation. Activity diagram.



Chapter 5

Testing and Evaluation

This chapter describes the techniques used to verify the actual working of the
two simulators. It also provides a comparison made between the results of the
analysis given in [TSPS12] and output of the simulators.

5.1 Testing

The process of building the model of the TTEthernet protocol and verifying it
required continuous testing via various techniques. The implementation began
by small trial-error tests of the basic functionality (e.g. the reading of the in-
put �les). The next step was to incorporate unit test for the generation of the
network components (e.g. creation of virtual links, ESs, Switches, etc.). Their
goal was to proof the correctness of the program and lay a solid foundation for
the simulators.

After all data structures behaved accordingly, the stage of continuous "development-
test" of the simulator was entered. Various small pen and paper examples were
tested after the simulator had generated its output in order to determine this its
accuracy. Output of log �les to the console as well as standard debugging tech-
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niques proved very useful. A milestone, achieved during the process of testing,
is the output gained from the �les described in the [TSPS12].

Figure 5.1: Network with vl1

Figure 5.2: Network with vl2

Figure 5.3: Network with vl3

Figures 5.1, 5.2, 5.3 are a visual representation of the network provided in the
�le containing the virtual links' description. A comparison between the three
�gures and 2.16 shows the same exact topology, viewed from each virtual link's
perspective.

Figure 5.1 presents the route of the frame instance with the worst-case end-
to-end delay. The route is depicted with the data�ow links that the instance
passes through on Y-Axis (es1sw1, es2sw1, sw1es3) and time progression on the
X-Axis. In this scenario the slowest instance is rc1.0_0. A direct comparison
between this �gure and 2.17 will reveal some di�erences. The absence of some



5.1 Testing 67

Frame Worst-case Delay Average Delay
rc1.0 471.0 235.5

Table 5.1: Worst-case results

Figure 5.4: Progression of time on the data�ow links

instances and is due to the fact that �gure 5.1 displays only the route of frame
instances that in�uenced its delay.
The results from Table 5.1 could also seem strange at �rst. The worst-case
delay time of rc1.0_0 from the table and 2.17 di�er by one time unit. This
is due to the fact that the granularity used in the simulator is �ner (i.e. uses
higher �oating point precision). The average delay time, on the other hand, is
half of worst-case because the simulation �nishes before rc1.0_1 gets a chance
to �nish. Thus rc1.0_1 keeps its initial time when summing up the delay values.

After the results from this comparison, work on the simulators was continued in
the previous manner of development for the rest of the implementation period.
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5.2 Evaluation

In order to evaluate the results output from the simulator, this section provides
three comparisons between:

1. the delay di�erence for all three tra�c classes for all integration policies
run for 10 simulation cycles of the action-oriented simulator

2. the two simulators run for 10, 100 and 1000 simulation cycles with the
Timely Block integration policy

3. the 10, 100, 500, 800, 900 and 1000 simulation cycles of the action-oriented
simulator with the Timely Block integration policy

4. two real world test cases based on the NASA's Orion Crew Exploration
Vehicle

5. the results with the biggest worst-case end-to-end delay from point 3 and
the TTEthernet analysis

The simulations where run on two environments. The event-oriented simulations
where done on a laptop DELL Inspiron N5510 with Intel Core i7-2630 CPU and
6 GB RAM. The smaller action-oriented simulations where executed onto the
laptop and the larger ones on the DTU Computing Clusters.

First a comparison between the delay di�erence of TT, RC and BE frames for all
three integration policies is observed. The action-oriented simulator was run for
10 cycles using a single test case. Its characteristics are described in Table 5.6
under number 3.

TT Frame Timely Block [s] Shu�ing [s] Preemption [s]
tt1.0 118 300 150
tt7.0 113 261 160
tt35.0 118 192 140

Table 5.2: Comparison between the TT frame WCD for all three integration
policies

Table 5.2 depicts three TT frames that give an overall view of the results for
time-triggered communication. Due to the fact that TT frames have highest
criticality and highest priority, the di�erence between the delay times is in the
order of seconds. As expected the smallest delay times are experienced in the
�rst column - the one with the values for Timely Block. The implementation of
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this policy provides that no RC or BE message can interfere with the transmis-
sion of a TT message. With shu�ing the values increase because a TT frame
can be preempted by any other tra�c class. The fact that a delayed frame has
precedence over all other frames accounts for the greater delays. With preemp-
tion TT frames experience a small but visible increase in delay as well. The
reason for that is the silence period added after the preemption by a tra�c with
lesser priority.

RC Frame Timely Block [s] Shu�ing [s] Preemption [s]
rc7.0 1126 547 252481
rc22.0 149 252149 214
rc28.0 200 252137 261

Table 5.3: Comparison between the RC frame WCD for all three integration
policies

Figure 5.3 presents a comparison between the worst-case end-to-end delays of
three RC frames. With Timely Block, a RC frame instance attempts a transmis-
sion over the data�ow link only if the time needed for that is available. Given
that the right moment doesn't appear in the �rst tries, this leads to additional
delay for the instance. In case of shu�ing RC messages are able to execute when
they �nd a TT instance transmitting. Delayed TT instances and BE instances,
however, cause a great increase in the WCD of a RC message. Preemption has
almost the consequences for RC frames as Timely Block. The di�erence is here
is that RC frames can attempt transmission in any time. In the case of an
incoming TT instances, however, they get a delay of a silence period plus the
duration of the TT instance.

BE Frame Timely Block [s] Shu�ing [s] Preemption [s]
be11 769 289 300
be13 885 446 467
be20 965 292 252321

Table 5.4: Comparison between the BE frame WCD for all three integration
policies

Lastly, the delays for BE frames are given in Table 5.4. It is easy to observe
that the Timely Block policy has the greatest e�ect over delay times of this
tra�c class. This is due to the fact that it has the least priority and executes
only when no TT and RC frames are present. Shu�ing is the integration policy
that BE frames bene�t from the most. They are able to "shu�e" their priority
with the two other tra�c classes, preempt them and execute on the data�ow
link. As previously stated, a delayed TT instance impacts the transmission of
all tra�c that comes after it. With preemption a BE instance can experience a



70 Testing and Evaluation

great delay since the other tra�c classes can stop its transmission on a data�ow
link and execute prior to its next attempt.

Section 3.4.1 discussed the advantages of the event-oriented paradigm over the
activity-oriented one. The simulation of unnecessary events leads to useless
computation load that results in greater running times. The test case from the
�rst comparison was used here as well.
The results can be seen in Table 5.5. Column 1 gives the number of cycles
given as command line parameter. Column 2 gives the total running time for
the activity-oriented implementation of the simulator in seconds. Column 3
gives the corresponding values for the event-oriented simulator.

Simulator runs Activity-oriented [s] Event-oriented [s]
10 232 2
100 1887 18
1000 24189 180

Table 5.5: Comparison between the two simulators

The di�erence between the running times is two orders of a magnitude. The
main reason is that in the event-oriented implementation the TT frame's sending
and receiving times are initially inserted sorted into the queue. This saves a
great amount of time that could otherwise be wasted on inserting and sorting
the queue for each TT instance.
Another factor for the huge di�erence in execution times is the sorting itself. It
is done locally. Even though the queue holding the events is sorted on several
occasions (e.g. release RC and BE, transmit events, etc.), the sorting process
includes only the events that come before the event causing the sorting and the
event itself.

Test case ES SW Frames Frame instances
1 11 4 155 18824
2 13 3 110 14033
3 25 6 106 1540
4 25 6 118 1949
5 25 6 155 2703
6 25 6 249 2893
7 25 6 215 3259
8 35 8 85 2068
9 35 8 246 4160
10 35 8 212 3615

Table 5.6: Test cases used for in the Evaluation section



5.2 Evaluation 71

Next the report presents a comparison between 10, 100, 500, 800, 900 and 1000
simulation cycles executed by the action-oriented simulator. For this compari-
son ten di�erent test cases (including the aforementioned one) were used. They
are described in Table 5.6. In order to group all data that was gathered and rep-
resent it in a easy and understandable way, the following approach was adopted.
First a percentile di�erence between the results from the di�erent simulation cat-
egories and 1000 cycles was made. This means the percentile di�erence between
10 and 1000, 100 and 1000, 500 and 1000, etc. This process was repeated for
every test case. The �gures in Appendix A demonstrate a comparison between
the resulting values. It is visible that the values for the WCD obtained from the
1000 cycle simulation are greater than those for all other simulations. Also the
tendency that longer simulations generate greater delay times can be observed.
All the test cases sooner or later converge to the worst-case end-to-end delays
experienced in the 1000-cycle simulations. Table 5.7 gives the average running
time in seconds for the 1000-cycle simulations.

Test case Average running time[s]
1 221
2 166
3 24
4 24
5 28
6 32
7 32
8 29
9 51
10 47

Table 5.7: Average running times of 1000-cycle simulations

In order to get a deeper insight into whether and when the simulation reaches
a "steady-state", further tests were conducted with one particular test case.
Test case number 3 was used for this purpose mainly because of its running
short running time. Percentile di�erence between the 1000, 1500, 2000, 2500,
3000, 3500 with respect to 4000 Simulation cycles were chosen to provide more
information.

Figure5.5 depicts how the RC delays converge towards the values gained from
4000 simulation cycles, as the number of simulation cycles increases. Given
that a "steady-state" of the system is de�ned as DELTA of 2%, the percentile
di�erence observed after 2000 simulation cycles shows such behavior. Table 5.8
supports this observation. One may argue that a an even deeper understanding
may be achieved if the granularity of the simulations cycle intervals is increased
in an order of a magnitude. Because of the current running time of the imple-
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Figure 5.5: Percentile di�erence between the 1000, 1500, 2000, 2500, 3000,
3500 with respect to 4000 Simulation runs

Percentile di�erence Test case 3
1000/4000 8.55
1000/4000 8.55
1500/4000 5.61
2000/4000 3.49
2500/4000 1.75
3000/4000 1.44
3500/4000 0.96

Table 5.8: Average percentile di�erence between 1000, 1500, 2000, 2500, 3000,
3500 and 4000 simulation cycles

mentation, the resources available and the results acquired, it is unfeasible to
perform longer observations.

One of the outputs that the simulator generates is the average WCD for the BE
frames. Table5.9 shows an average over all average delays acquired from all test
cases for 1000 Simulation cycles.

Next the simulator was tested with a real world example - NASA's Orion Crew
Exploration Vehicle. Potential Orion mission objectives include delivering a
crew to the International Space Station, transporting a crew to a near-Earth
objects, and providing emergency return capability from the International Space
Station.
The following are some of the Orion's vehicle subsystems:
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Test case Average delay [s]
1 13169.05
2 1657.6
3 236.48
4 218.33
5 238.07
6 644.71
7 1126.51
8 300.16
9 349.6
10 539.11

Table 5.9: Average delays for BE frames

• Propulsion

• Vehicle power

• Life support

• Communications

• Docking adapter

• Structures

• Pyrotechnics

The Orion Avionics subsystem provides an infrastructure to command, control,
and monitor all of these subsystems and more.

Orion uses an IMA-based high integrity architecture with the following elements:

• Vehicle Management Computers (VMCs) - provides a central computing
platform to host software applications for a variety of vehicle subsystems

• TTEthernet Onboard Data Network - provides priority-based network
communications via time triggered, rate constrained, and best e�ort tra�c
classes

• Power and Data Units (PDUs) - provides sensor data gathering, actuator
control, and power distribution for critical vehicle subsystems
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Figure 5.6: Orion topology

Figure 5.6 depicts the topology used for the two test cases in the simulation.
The cases themselves are described in Table 5.10. Orion 1 considers a scenario
without the switches NS7 and NS8, and their respective data�ow links. Orioin
2 enhances this topology by adding NS7 with its supplementary connections.

Test case ES SW Frames
Frame

instances
Average

run-time[s]
Total

run-time[s]
Orion 1 31 13 180 5438 501 250572
Orion 2 31 14 180 5438 602 301008

Table 5.10: Orion test cases

The two test cases were run for 500 simulation cycles. The goal was to test
the two network topologies and decide which one is better suited for timing
constraints that the Orion poses. Figure 5.7 shows the results in the form of
percentile di�erence between the two test cases for all RC frames. One can
observe that the majority of RC frames of Orion 2 experience a far lesser delay
in comparison with those Orion 1. This leads to the conclusion that enhanced
network of Orion 2 performs quite better in comparison to Orion 2. The concrete
values for the RC WCD as well as the percentile di�erence between the two test
cases are shown in Appendix B.

Lastly a comparison between the greatest WCD and the TTEthernet analysis
is presented. [Ste11] presents di�erent ways how to con�gure static slots (e.g.
"blank intervals") for time-triggered messages and then use the free bandwidth
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Figure 5.7: Percentage di�erence between the two Orion test cases

in between two time-triggered messages for RC and BE frames. The analysis
presented in that paper and in [TSPS12] compares all the slots available on the
data�ow link and chooses the smallest one. This slot then substitutes all others.
This leads to a very pessimistic performance (i.e. great worst-case end-to-end
delays) caused by the lack of execution time for the RC frames.

As already observed the greatest values are from the 1000 cycle simulation. Ta-
ble 5.11 gives more info about the test case with regards to the number of their
End Systems (column 2), Switches (column 3), total amount of frames (column
4) and frames instances (column 5) that were transmitted during the simulation.
The last column uses the approach presented for the comparison between the
di�erent simulation cycles. The percentile di�erence in column 6 shows that the
analysis has a far more pessimistic view that the actual results gained from the
analysis.
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Test case 4e−t−e delay [%]
1 21388.23
2 22101.10
3 40357.05
4 66831.41
5 50209.40
6 109484.76
7 156453.61
8 24770.09
9 167413.91
10 116517.49

Table 5.11: Comparison between the WCD of the 1000 Simulation runs and
the TTEthernet analysis



Chapter 6

Conclusion

Nowadays embedded systems are found everywhere - consumer electronics, telecom-
munications systems, medical equipment, etc. A subclass of these systems op-
erates in an area with higher demand on time, e�ciency and quality - hard-real
time systems. When a system is further categorized as safety-critical, it needs to
assure that multiple failure mechanisms execute to prohibit failure propagation.

The master thesis examined, modeled and simulated the TTEthernet - a net-
work protocol made to accommodate the needs of hard real-time systems. Its
design allows for integration on distributed systems where tra�c classes of mes-
sages vary in safety integrity levels. The three classes are Time-Triggered (TT),
Rate-Constrained (RC) and Best E�ort (BE). To enable their transmission and
utilization on a "mixed-criticality" system, two key components are needed -
spatial and temporal separation. The former is done, depending on the tra�c
class, either through o�ine scheduling of TT messages or through allocation of
bandwidth. The later - through virtual links, which are logical point-to-point
"tree-like" structures. TTEthernet can extend an existing network to di�erent
topologies located on heterogeneous media without introducing major changes to
its state. This is done with the addition of End Systems and Network Switches.
It comprises various capabilities like redundancy, scalability and multiple fault
containment.

Many of the systems that operate today are extremely large and expensive.
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TTEthernet itself is a vast and complex system that has multiple features which
require thorough examination before being put to use. In order to simulate such
environments, one needs to have a fundamental understanding of the main con-
cepts within a simulation. When the characteristics of a system have been de-
�ned, the continuous process veri�cation, validation and calibration commences.
An precise mathematical model provides for a solid foundation needed to create
a simulation. Some of the key points in building a simulator comprise select-
ing input probability distributions and random number generators as well as
performing proper output data analysis.

Meeting the requirements for the master thesis project proved to be a major
task. The level of abstraction of data that the project required, called for
precise and e�cient design decisions that would facilitate all the key concepts
of the protocol. When done in this manner the coding process, while long and
tiring, proved to be rewarding. The result is the creation of two simulators -
one implementing the action-oriented and another the event-oriented paradigm.
These tools take as input various network topologies, di�erent message �les,
allow for to access multiple simulation characteristics and calculate results with
supplementary visualizations.

The tests performed on the tool give proof of its correctness on various levels
- programming logic and model veri�cation. The output obtained from the
simulators was compared in various ways that prove the existing theory and
also show a trend for the ratio between simulation runs and worst-case ent-to-
end delay. The comparison between the analysis and the simulation gave a more
thorough understanding of the relation between the two.

6.1 Future work

The TTEthernet network protocol is constantly being improved. Its applica-
tion is proven to be of great value, not only to the aircraft industry, but for
broader use as well. An area such as optimization of mixed-criticality appli-
cations on distributed systems such as backbone infrastructures of vehicles is
just a single branch among the many. For example, [OFF13] includes heteroge-
neous, distributed control for managing unpredictable behavior in distributed
and networked systems.

The list of future work suggestions, made on the basis of the work done for the
master thesis project as well as the knowledge gained from articles, books and
publications, contains:
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• packet losses and/or line failures. It would be interesting to model a more
dynamic simulator that considers scenarios where the packets experience
errors on the data�ow links.

• multiple clusters. A topic that has a lot to o�er since communication
between di�erent clusters requires clock synchronization mechanisms and
message transformation techniques. For example, because the notion of
time is di�erent for each cluster, transmitting a TT message from one to
another requires that the message undergoes multiple transformations (to
RC and then back to TT) before it reaches its destination.

• implementation of heterogeneous networks - a combination between a
TTEthernet network and an AFDX network would de�nitely be inter-
esting to model and observe

• corner-cased simulations - implement features that allow for faster simu-
lation based on previous simulation runs

• model a process-oriented simulator
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Figure A.1: Results for test case 1
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Figure A.2: Results for test case 2

Figure A.3: Results for test case 3

Test case 10/1000 [%] 100/1000[%] 500/1000[%] 800/1000[%] 900/1000[%]
1 -262.94 -307.78 2.77 0.12 1.25
2 8.17 1.46 0.27 0.04 0.01
3 47.28 21.11 5.75 0.84 -0.08
4 57.95 25.26 10.28 2.80 0.18
5 55.58 23.66 6.19 2.00 0.27
6 51.17 20.05 4.45 1.72 0.68
7 49.27 19.29 1.00 0.71 0.36
8 51.35 18.53 3.43 0.33 -0.32
9 53.22 28.54 8.28 2.14 0.56
10 56.56 28.53 8.91 2.67 0.97

Table A.1: Average percentile di�erence between 10, 100, 500, 800, 900 and
1000 simulation cycles
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Figure A.4: Results for test case 4

Figure A.5: Results for test case 5

Figure A.6: Results for test case 6
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Figure A.7: Results for test case 7

Figure A.8: Results for test case 8

Figure A.9: Results for test case 9
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Figure A.10: Results for test case 10
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Frame Orion1 Orion2 Orion1/Orion2[%]
rc1.0 251394 113953 120.61
rc10.0 12310 11208 9.83
rc13.0 121321 23123 424.67
rc14.0 62201 63051 -1.34
rc15.0 31205 31058 0.47
rc16.0 7767 251435 -96.91
rc17.0 18013 7371 144.37
rc182 558924 42012 1230.39
rc19.0 31312 8003 291.25
rc190 511245 527356 -3.05
rc192 352680 252680 39.57
rc195 55123 23131 138.30
rc2.0 15737 10534 49.39
rc20.0 7873 250923 -96.86
rc207 252871 250538 0.93
rc208 254521 15461 1546.21
rc21.0 7432 251196 -97.04
rc210 253635 250565 1.22
rc218 573153 521471 9.91
rc219 12313 9012 36.62
rc22.0 258145 61234 321.57
rc221 253654 163922 54.74
rc225 254716 15241 1571.25
rc227 3490 3016 15.71
rc228 250739 251536 -0.31
rc23.0 123500 250188 -50.63
rc235 61457 252320 -75.64
rc25.0 291349 123165 136.55
rc27.0 319294 251152 27.13
rc28.0 26192 19248 36.07
rc29.0 29592 7469 296.19
rc3.0 251261 51929 383.85
rc30.0 12949 3566 263.12
rc31.0 7517 4124 82.27
rc32.0 254648 252758 0.74
rc33.0 30586 257833 -88.13
rc34.0 3396 257433 -98.68
rc35.0 122389 524268 -76.65
rc36.0 253490 131421 92.88
rc37.0 311512 257966 20.75
rc38.0 131122 33145 295.60
rc39.0 558314 557440 0.15

Table B.1: Percentile di�erence between Orion 1 and Orion 2 in 500 simulation
cycles
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Frame Orion1 Orion2 Orion1/Orion2[%]
rc4.0 7782 251961 -96.91
rc40.0 15336 7380 107.80
rc41.0 561994 300185 87.21
rc42.0 31740 31411 1.04
rc425 123951 22219 457.86
rc43.0 62165 41299 50.52
rc44.0 253184 7410 3316.78
rc45.0 16054 13919 15.33
rc46.0 251149 151299 65.99
rc47.0 290441 250884 15.76
rc48.0 61779 30808 100.52
rc49.0 155519 7693 1921.565
rc5.0 7377 15846 -53.44
rc50.0 41294 30891 33.67
rc51.0 252213 131273 92.12
rc53.0 254005 120167 111.37
rc54.0 7940 251406 -96.84
rc55.0 254826 213149 19.55
rc56.0 313479 256254 22.33
rc57.0 123919 87893 40.98
rc58.0 12059 7783 54.94
rc59.0 39691 15249 160.28
rc6.0 15879 561701 -97.17
rc60.0 525000 30453 1623.96
rc61.0 61867 61957 -0.14
rc62.0 62582 7410 744.56
rc63.0 31274 15660 99.70
rc64.0 273162 252000 8.39
rc65.0 528448 315455 67.51
rc66.0 15375 13521 13.71
rc663 256400 250241 2.46
rc665 62121 253130 -75.45
rc67.0 39139 8106 382.83
rc671 30755 7994 284.72
rc673 252241 141939 77.71
rc675 3451 3199 7.87
rc678 131491 99813 31.73
rc68.0 8051 4913 63.87
rc680 525978 391929 34.20
rc686 39193 21945 78.59

Table B.2: Percentile di�erence between Orion 1 and Orion 2 in 500 simulation
cycles
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Frame Orion1 Orion2 Orion1/Orion2[%]
rc687 251506 61835 306.73
rc69.0 31207 19392 60.92
rc692 525774 527103 -0.25
rc695 132939 62661 112.15
rc697 251683 239194 5.22
rc699 7402 255397 -97.10
rc70.0 31227 19319 61.63
rc701 301991 252004 19.83
rc702 256899 31587 713.30
rc706 252301 13238 1805.88
rc709 253351 267746 -5.37
rc71.0 7500 7013 6.94
rc712 562339 131380 328.02
rc72.0 31573 15678 101.38
rc73.0 253021 250371 1.05
rc75.0 142348 23882 496.04
rc76.0 560837 62485 797.55
rc77.0 253909 253421 0.19
rc78.0 62563 62770 -0.32
rc79.0 3936 4104 -4.09
rc8.0 251531 7356 3319.39
rc9.0 31267 23165 34.97

Table B.3: Percentile di�erence between Orion 1 and Orion 2 in 500 simulation
cycles
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