

Final Thesis

Towards an Extensible Visual Editor for
Embedded Systems Representation Models

by

Jirong Zhu

LITH.IDA-Ex--03/061--SE

2003-10-23

ABSTRACT

Nowadays, embedded systems are widely used everywhere, and their complexity
is constantly growing. A very important aspect in embedded systems design is
their modeling, which describes the system functionality and structure at several
levels of abstraction and stages of design.

There are many types of representation models used for the modeling of
embedded systems, such as flow charts, entity relationship diagrams, call trees,
etc. This thesis is concerned with process graphs, statecharts and petri nets, the
representation models that are commonly utilized in embedded systems design.

Research has shown that productivity is enhanced by the use of domain-specific
tools that allow the visual manipulation of models. Instead of working with a
text-based representation of the model, using such tools, the users can design and
edit the models visually. However, the development of such tools is very
time-consuming. Moreover, new models are continuously introduced by the
industry and the research community. Many are completely new, but most are the
variations of existing models.

In order to speed up the development of domain-specific visual model editors,
generic-modeling environments, which can be extended, have to be developed. In
this thesis we propose a generic modeling environment, called Extensible Visual
Editor (EVE), which can be extended to handle the class of graph-based
embedded systems representation models.

The thesis surveys several domain-specific visual editors for embedded systems
representation models. We compare two graph libraries, the Graph Editing
Framework (GEF) and the JGraph library. The feasibility of a generic
graph-based modeling environment is accessed by implementing a
domain-specific editor for conditional process graphs, the CPGEditor. Using
experience gained in the design and implementation of the CPGEditor, we give
an approach to the design of EVE, including its software structure and
functionality. We show how EVE can be extended by the use of model
specification files, and we develop specification files for the conditional process
graph, the UML statecharts and petri nets.

Acknowledgement

I am thankful to Petru Eles and all my colleagues at Embedded Systems Lab for
providing me a pleasant working environment. My special thanks to Paul Pop
whose keen supervision and invaluable guidance at every stage helped me a lot in
carrying out this thesis work.

Contents

ABSTRACT...2
Acknowledgement ..4
Contents ...1
1 Introduction...1
2 Embedded Systems Design ...5
2.1 Tasks of Embedded Systems Design ..5
2.2 Design Flow ...5
3 Representation Models...7
3.1 Introduction ..7
3.2 Representation Models Based on Graph Structures..................................7
3.3 Finite State Machine (FSM) and UML Statechart.......................................9
3.4 Conditional Process Graph (CPG) ...11
3.5 Petri nets..14
3.6 Summary of Representation Models ..15
4 Related Work..17
4.1 Diagram Drawing/Editing Tools..17
4.2 Graph Libraries: GEF and JGraph ...24
5 A Prototype Implementation of a CPG Editor35
5.1 Features of a CPG editor ...35
5.2 The Design of the CPG Editor..37
5.3 Implementation ..40
6 Towards an Extensible Visual Editor (EVE)43
6.1 Introduction ..43
6.2 Specifications...45
6.3 Proposed Software Architecture and Design ...49
6.4 Specifying the Representation Models...52
7 Conclusion and Future Work ..57
References ...59

Towards an Extensible Visual Editor for Embedded Systems Representation Models

2

1

1 Introduction

1.1 Overview

An embedded system is a specialized computer system, which is a part of another
system, called the host system. It is designed for a particular kind of application,
and its functionality is fixed, it cannot be extended by an end-user through
programming.

Embedded systems are now everywhere, from microwave ovens to
aircraft-control systems. Because they can be used in such a wide range of
products, embedded system may need to meet widely divergent criteria [24]:

��Complex functionality: embedded systems often have to run complicated
algorithms and provide complicated user interface.

��Real-time operation: embedded systems often have hard or soft deadlines

in completing the operations. A system can fail to meet a soft deadline
sometimes, leading to performance degradation. Hard deadlines must be
fulfilled always. If any hard deadline is missed, this can lead to
catastrophic situations.

��Low manufacturing cost: embedded systems must have low manufacturing

costs to increase the market usage.

��Low power: as embedded systems become more autonomous and mobile,
battery life becomes very important, which leads to the need of low power
architectures.

Nowadays, embedded systems are been widely used everywhere, and their
complexity is constantly growing. A very important aspect in embedded systems
design is their modeling, which describes the system functionality and structure
at several levels of abstraction and stages of design.

There are many types of representations used for the modeling of embedded
systems, such as flow charts, entity relationship diagrams, call trees, process
graphs, statecharts, petri nets, etc. An important part of such representation
models deal with the behavioral description a system, which specifies what
functions a system should implement.

Among the representation models, graph-based representations are the most

Towards an Extensible Visual Editor for Embedded Systems Representation Models

2

popular in embedded system design. This thesis is concerned with conditional
process graphs (CPG), UML statecharts and petri nets, the representation models
that are commonly utilized in embedded systems design.

Research has shown that productivity is enhanced by the use of domain-specific
tools that allow the visual manipulation of models [4]. Instead of working with a
text-based representation of the model, using such tools, the users can design and
edit the models visually. However, the development of such tools is very time
consuming. Moreover, the industry and the research community continuously
introduce new models. Many are completely new, but most are variations of
existing models.

In order to speed up the development of domain-specific visual model editors,
generic-modeling environments, which can be extended, have to be developed. In
this thesis we propose a generic modeling environment, called Extensible Visual
Editor (EVE), which can be extended to handle the class of graph-based
embedded systems representation models.

Several editors for different types of graphs have already been developed. For
example, Predator editor [19] and PIPE [18] are designed for petri nets. But if the
users need to edit variant types of the graphs at one time, they have to load other
visual editors with possibly completely different features. So it is very practical
and facilitating to build the graph editor into an extensible one, �cluster� the
similar graphs in embedded systems and operate on them in one extensible editor.

The thesis first introduces the background knowledge about the embedded
systems design and important representation models. We present a brief survey of
currently popular graph edit tools and libraries, and provide the analysis of their
features.

We compare two graph libraries, the Graph Editing Framework (GEF) and the
JGraph library. The feasibility of a generic graph-based modeling environment is
accessed by implementing a domain-specific editor for conditional process
graphs, the CPGEditor. Using experience gained in the design and
implementation of the CPGEditor, we give an approach to the design of EVE,
including its software structure and functionality. We show how EVE can be
extended by the use of model specification files, and we develop specification
files for conditional process graph, UML statecharts and petri nets.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

3

1.2 Contributions

The goal of this thesis is to design a generic modeling environment for
graph-based representation models, called Extensible Visual Editor (EVE). EVE
is extensible by the use of model specification files. By reading these
specifications, the EVE understands how to present the models graphically, and
then particularize itself for different representation models, such as CPGs, FSMs
(Finite State Machine), petri nets and other types of models.

The contributions of the thesis are:

��Brief survey of the important representation models. There are a variety of

models being developed and used to represent the embedded systems, in this
thesis we select three typical models: CPG, UML statechart and petri net and
briefly describe them given an example for each.

��Survey of related work on graph/diagram editors. According to a variety of

representing models there are respectively a variety of editors. In this thesis
we mainly introduce two commonly utilized editors that have relatively
complete function, one is Microsoft Visio, the other one is Dia.

��Evaluate two graph libraries, GEF and JGraph, including their main features,

and functions, their advantages and disadvantages.

��Implementation of a prototype editor for conditional process graphs based on

JGraph library.

��The experience gained from the prototype implementation is used to propose

the EVE design. EVE is extended using representation-model specification
files. We give concrete examples of such files for several representation
models.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

4

Towards an Extensible Visual Editor for Embedded Systems Representation Models

5

2 Embedded Systems Design

An embedded computer system uses software running on a hardware
platform to implement the system functions. Creating an embedded
system, which meets its performance, cost, and design time goals, is a
hardware-software co-design problem, that is, the design of the hardware
and software components influence each other.

Embedded systems need to fulfill widely different criteria. We have
different important design requirements: time constraints, manufacturing
cost, modifiability, reliability and so on.

2.1 Tasks of Embedded Systems Design

Embedded system design can be divided into four major tasks:

��Specifying the system functionality using representation models.

��Partitioning the function to be implemented into smaller, interacting

pieces.

��Allocating those partitions to microprocessors or other hardware

units, where the function may be implemented directly in hardware
or in software running on a microprocessor.

��Scheduling the times at which functions are executed, which is

important when several functional partitions share one hardware
unit [22].

2.2 Design Flow

As shown in Figure 1 (presented in [25]), the design consists of two flows:
one is the mapping of the computational parts of the specification onto
processing elements of system architecture, and the other is the mapping
of the communication in the specification onto system busses. Each flow
requires allocation of components, partitioning of the specification onto
components, and scheduling of execution on the inherently sequential
components. The result is the system architecture of process components
connected via busses. Then each component is further implemented
through software and hardware synthesis [1].

Towards an Extensible Visual Editor for Embedded Systems Representation Models

6

Component implementation (HW/SW synthesis)

System specification

System architecture

Allocation

Partitioning

Scheduling

Processors
Busses

Behaviors Channels

RTOS Arbitration

Requirements/Constraints/MOCs

Figure 1.Embedded system design tasks

M
ap

 c
om

pu
ta

tio
n

M
ap

 c
om

m
un

ic
at

io
n

Towards an Extensible Visual Editor for Embedded Systems Representation Models

7

3 Representation Models

3.1 Introduction

In methodical design of embedded systems, one key aspect is the creation
of the models. The models are the concrete representation of knowledge
and ideas about a system being developed, and help deal with the
complexity of the system.

The purpose of a representation model is to provide a view of the system,
and capture the features of a system, describe its functionality. The good
model qualities are: it should be formal, no ambiguity (clearly defined
syntax and semantics), completed, comprehensible, executable, and easy
to use, etc.

The popular models for embedded systems are FSM, dataflow graphs,
petri nets, synchronous models, discrete-event systems and so on [12]. In
this thesis we mainly focus on CPG, UML statechart and petri net, while
the first two are important models belonging to dataflow graphs and FSM
respectively.

3.2 Representation Models Based on Graph Structures

3.2.1 Background of Graph Theory

A graph is a diagram composed of a set of points connected by line
segments, points are usually called vertices (V) or nodes, and line
segments are called edges (E). A vertex (node) is a terminal point or an
intersection point of a graph. It is the abstraction of a location. An edge e
is a link between two nodes. A link is the abstraction of a transport
infrastructure supporting movements between nodes. The link can also be
directed or undirected, commonly we represent the directed link with an
arrow.

If in a graph there is only one edge joining a pair of vertices and a vertex
cannot be adjacent to itself, this kind of graph is called �simple graph�. A
simple graph has no arrows, no loops, and cannot have multiple edges
joining vertices. In other cases, if there are multiple or parallel edges, then
it is �multiple graph�. Depending on different criteria, we have different
graph categories [20].

Towards an Extensible Visual Editor for Embedded Systems Representation Models

8

3.2.2 Example of a General Graph

We use an example as the network consisting of the major tourist cities in
China (see Figure 2), we just choose six famous ones from them which are
BeiJing, XiAn, ShangHai, ChongQing, GuiLin, XiaMen. They can be
considered as six nodes in the graph. To facilitate the tourists, we connect
these cities for each by line segments in order to show the distances by air.

The graph is represented in Figure 3.

The numbers on the lines are the direct distances between the six cities
here, and the unit is km.

Figure 2. Map of the major tourist cities in China

Towards an Extensible Visual Editor for Embedded Systems Representation Models

9

In this example, the graph we created is a very simple one, and each pair
of nodes in the graph are connected by only one edge, so it is not a
multiple graph and not a directed graph either because the airline is not
single directed.

3.3 Finite State Machine (FSM) and UML Statechart

3.3.1 Background of FSM and UML Statechart

The classical FSM is a well-known model for describing embedded
systems. FSM represents a very powerful way of describing and
implementing the control logic for systems.

A Finite State Machine is an abstract machine that defined a finite set of
condition existence called states, a set of behaviors or actions performed in
each of those states, and a set of events that cause changes in states. Each

Figure 3. Example graph of the network constitutes of
six main tourist cities in China

BeiJing

GuiLin XiaMen

XiAn

ShangHai

ChongQing

1039

1223

870

558

651

887

1309

1932 1409

2441

1524

1791

16
15

1025

1482

Towards an Extensible Visual Editor for Embedded Systems Representation Models

10

state of a FSM has transitions to zero or more states. Computation begins
in the start state with an input string. It changes to new states depending on
the transition functions. The value of the input decides what is the next
state with another behavior. The FSM can be considered as a type of
directed graph.

One of FSM�s disadvantages is that the number of the states is
exponentially growing as the system complexity rises. And FSM does not
allow the states to be in a hierarchical structure [12].

Unified Modeling Language (UML) is very reliable to support FSM in
documenting both different states that a class goes through in embedded
systems, and the events that cause changes among those states.

Generally a UML statechart has four elements, and their main functions
respectively are: The state marks a mode of the entity. The transition
marks the changing of the object state, caused by an event. The initial state
is a state of an object before any transitions and only one initial state is
allowed on a UML statechart. The final state marks the destruction of the
objects whose state we are modeling [3]. Later in the summary we could
see their respective represented figures.

3.3.2 Example of a UML Statechart

Here we give an example UML statechart in Figure 4 that models the
status of a user's account in a Bug Tracker system [27]:

Figure 4. UML statechart example

Towards an Extensible Visual Editor for Embedded Systems Representation Models

11

In the example, from the initial state we create the users and change the
state into pending. Then there are two transitions being created, and two
events--approve user and reject user--cause the changes, thus it goes to
two new states, active and deactive. Between these two states there are
mutual functions to change the modes. The final state destructs the
deactive user after the users are deleted.

3.4 Conditional Process Graph (CPG)

3.4.1 Background of Process Graph and CPG

A process graph is an abstract representation consisting of a directed,
acyclic, and polar graph. Each node is a process, which is a sequence of
instructions with worst-case execution time. The processes are either
assigned to programmable processors or assigned to hardware processors
(ASIC-Application Specific Integrated Circuit). An edge between a pair of
nodes indicates the output of one process and the input of the other process,
and the edges are communication channels assigned to buses.

Based on the concept of the process graph, a conditional process graph
(CPG) is defined in [15]. The graph is conditional because it has the
conditional relationship between some processes with an associated
condition. Transmission on the edge takes place only if the associated
condition is satisfied.

3.4.2 CPG Nodes

��Source and sink nodes

The source and sink in a CPG are dummy nodes (not allocated to any
processor, with zero execution time) representing the first and the last
processes. All the other nodes in CPG are successors of the source and
predecessors of the sink respectively.

��Communication nodes

The communication nodes are introduced for each connection which links
processes mapped to different processors. The nodes represented with
black dots in Figure 5 are communication processes. The communication
processes show inter-processor communication with the execution time,
depicted on their left, and the execution time is equal to the corresponding
communication time.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

12

��Disjunction nodes

Besides the source, sink and the communication nodes, most nodes are
�ordinary nodes� as in Figure 5 represented by solid circles. But among
them, a node with conditional edges at its output is a disjunction node, for
example, the node between strings �Speed Up� and �Speed Down� in
Figure 5, and the corresponding process is called disjunction process.

��Conjunction nodes

A disjunction process has one associated condition, and the
complementary values of the condition it computes are on the alternative
paths starting from the disjunction node, these paths are disjoint and they
meet in a conjunction node with a corresponding process being called a
conjunction process. For example, form the bottom up the second node is
a conjunction one. A conjunction process can be activated after messages
coming on one of the alternative paths have arrived while a
non-conjunction process can only be activated after all its inputs have
arrived [15].

3.4.3 CPG Edges

��Normal edge

Normal edges are edges without associated conditions. Most edges in
Figure 5 are normal edges.

��Conditional edge

An edge is a conditional edge (thick lines in Figure 5) if it has an
associated condition. Only when the associated condition is satisfied, the
edge would take the transmission between the processes. Conditional
edges are always the outputs of the disjunction nodes [16].

3.4.4 CPG Example

We present a CPG example in the area of automotive electronics. The
automotive electronics area deals with the electronically controlled
functions onboard vehicles.

On long car journeys drivers find it very tiring to keep up continuous
pressure on the accelerator pedal. To avoid it many cars now have a
system called Cruise Controller (CC). It is a widely used embedded

Towards an Extensible Visual Editor for Embedded Systems Representation Models

13

system that implements a typical safety critical application with hard
real-time constraints.

The CC system allows the driver to set a particular speed and then the
controller maintains that speed until the driver changes the speed, uses the
brake, or switches the system off. These systems are usually controlled by
a number of push buttons on the dashboard or steering wheel of the car.

In this example, we have five kinds of processes mapping to nodes
functionally interact with the CC system: the Anti Blocking System
(ABS), the Transmission Control Module (TCM), the Engine Control
Module (ECM), the Electronic Throttle Module (ETM), and the Central
Electronic Module (CEM) [23].

In Figure 5, we present the CC behaviour using a CPG. There are 32
processes in all. We have processes mapping to nodes in different

Figure 5. The cruise controller behavior

Towards an Extensible Visual Editor for Embedded Systems Representation Models

14

shadows. The thick lines represent the conditional edges. For different
nodes, we can distinguish the processes that the nodes mapped from Figure
5, and know the types of the nodes from the definition above.

A process can be activated only if all its inputs have arrived, and when its
execution finishes it transmits the information to its successors. The
numbers on the right of the nodes represent the execution time of each
process. And the solid circles on the edges represent the messages [15].

3.5 Petri nets

3.5.1 Petri nets Background

Petri net models are designed specifically for modeling systems when the
communication, resource sharing and synchronization are important.
There are four types of components: places, tokens, arcs and transitions.
Places usually represent the condition, data, and resources of the petri net.
Transitions usually represent actions, behaviours and events of the system.
Edges connect places and transitions, and only from-transition-to-place
and from-place-to-transition links exist. Tokens are used to mark the nodes.
Each place can have a finite number of tokens. If each of the input places
has at least one token, a transition is enabled. Transitions can be �fired� if
all connected places contain tokens, one token is taken from each input
place and one token is put into each output place, thus an enabled
transition can be �fired� [7].

3.5.2 Petri net Example

Here we give a small example of a petri net. See Figure 6.

In Figure 6, the circles represent places (positions). The small rectangles

Figure 6. Example of a petri net

Towards an Extensible Visual Editor for Embedded Systems Representation Models

15

represent transitions.

After a transition is fired, first, tokens are taken away from places, which
have arrows going from these places to the transition considered. If more
than one arrow goes from place to transition, then the number of tokens
removed from that place is equal to the number of arrows. Second, new
tokens are placed on places indicated by arrows that originate from the
transition. The number of tokens placed corresponds again to the number
of arrows (in the case of multiple arrows).

In this figure we present an example process for how resources� grow and
die. When transition t1 is fired, then 1 token is removed from place p1, 1
token is removed from place p2, and 1 token is added on place p3.
Transition t1 can be interpreted as feeding and growth, and transition t2 as
reproduction [26].

3.6 Summary of Representation Models

Above it was a survey about important representation models utilized in

 Node Type Edge Type Model Constraints

State

Initial State
UML

Statechart

Final State

Transition

�Allow self loop and
multiple connections

Normal node Normal edge
Disjunction node

CPG
Conjunction node

Conditional edge

�Conditional edges
start from only
disjunction nodes
�Alternative edges
from disjunction nodes
meet only in
conjunction nodes
�No self-loop and no
multiple connections

Places
Transitions Petri net

 Tokens

Arc
�Allow multiple
connections
�No self-loop

Table 1. Graph model summary

Towards an Extensible Visual Editor for Embedded Systems Representation Models

16

embedded systems design. We can see they share some basic similarities.
For example, the elements could always be divided into nodes and edges
although in different models they have different special names, and they
all have some certain constraints in the relationships among the elements.

3.6.1 Models Summary

In order to have an overview about the elements and properties of these
models, here in Table 1 we present the three types of models that we
discussed together with their graphical elements.

3.6.2 A General Graph Model

As a conclusion from Table 1, we can see that several kinds of the graph
models could be build based on a general graph model. The fundamental
elements for each kind of models are nodes and edges, which differ in
names, visual presentations and properties. In addition they have different
relationships and inter communications due to the variant design goals of
the graph models.

We can present this idea in Figure 7. As a conclusion, almost any type of
graphical representation model could be created based on this structure
from a general graph. This idea is used as a starting point to the design of
an extensible visual graph editor.

Any type of representation model

Constraints on the components and their relationships

Node type Edge type

Visual representation Visual representation

Based on the general graph

Properties Properties

Figure 7. Graph model based on general graph

Towards an Extensible Visual Editor for Embedded Systems Representation Models

17

4 Related Work

4.1 Diagram Drawing/Editing Tools

Here we would briefly survey the related work about graph/diagram
editors, including the editors for general graph, special editors for a
particular model such as UML statechart or petri net, and graph libraries
from which we could select one to extend and build an EVE.

4.1.1 General Graph Drawing/Editing Tools

Among these graph drawing/editing tools, some of them dedicate to work
on a number of different general graphs. For example, Microsoft Visio,
GME, Dia are some common ones.

��Microsoft Visio

Microsoft Visio could provide a series of special objects that we could use
to create a UML diagram, network diagram, dataflow diagram, form, map
and so on. When we select a drawing template for a special type of
diagram, we could have the tools and the features for this type of diagram
automatically. It is easy to find the suitable diagram that you want to
create in the graph by selecting the item from menu
Tools->Macros->Shape Explorer.

Figure 8 displays the interface when I am drawing the UML static
structure by Microsoft Visio 2000, Standard Edition. There are complete
objects including the packages, classes, interfaces and all kinds of their
relationship representing edges etc. We could simply select, drag and drop
the objects including the nodes and edges, and find the ports on the nodes
to connect them by edges, to form a structure graph. And by
double-clicking the mouse we can get the editable text field or property
dialog to add the concrete attributes and information. It is quick, easy and
powerful [14].

Visio can be extended using add-ons, which have to be programmed in,
for example, Visual Basic.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

18

Figure 8. Microsoft visio example interface

��Dia

Dia is developed basing on GTK+, and GTK+ is a multi-platform toolkit
for creating graphical user interfaces with a complete set of widgets [8]
Dia is similar with Visio and they are both programs designed to create
different types of diagrams.

Dia also contains a lot of special objects supporting the creation for many
different kinds of diagrams, such as entity relationship diagrams, UML
diagrams, flowcharts, network diagrams, and simple circuits.

From the tool windows in top left of Figure 9, we can start the application
by creating a working window to draw a diagram. Dia provides basic
functions as drawing charts, boxes and texts, and lines, and also the
advanced functions as about layer, alignment, and selection and shape
library.

Dia is open source software, and the source can be downloaded from [2].
There are also tutorials and manuals about Dia, which is quite easy to
learn.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

19

Dia can be extended using �shape libraries�. There are libraries for several
types of graph shapes, and we can easily design our own. However, C
programming is needed in order to introduce the constraints required by
the model.

Figure 9. A full screen screenshot of Dia in action

��GME (Generic Modeling Environment)

GME is a window-based tool that provides a graphical modeling
environment used primarily for model building. It supports a lot of
techniques including multiple aspects, sets, references, and explicit
constraints to build large-scale and complex domain-specific models.

GME gives a configurable toolkit on using meta-models specified by the
modeling language. It is configurable because it can be programmed to
work on a number of different domains. As for the domain, modeling
language will contain all the semantic and represented information, which
are used in the creation and displaying the models for the application
domain.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

20

Figure 10. GME 2000 main editing window

In Figure 10 we have a look at the GME main editing window. Mainly in
addition to the model-editing window, the mode bar contains buttons to
select editing modes and model browser shows the hierarchy relationships
or inheritance of a model. The part browser gives the parts to be inserted
into the model and the attribute browser shows the attributes and
preferences of an object [4].

GME is very broad, and in this thesis we were interested to develop
models based on simple graph structures. It could be interesting, however,
to investigate how GME can be extended with the representation models
considered in this thesis.

��MetaEdit+

MetaEdit+ is a meta-editor that can be used to build visual modeling
editors with their model analysis tools, code generators and document
generators.

MetaEdit+ can be extended to handle new model types using its own
meta-modeling language. For example, MetaEdit+ supports Structured
Analysis and Design, which is applied to modeling techniques of data flow

Towards an Extensible Visual Editor for Embedded Systems Representation Models

21

diagram [13]. Figure 11 displays the interface for the data flow diagram
editor. It is easy to see the function and usage clearly from the interface.

Figure 11. Data flow diagram editor

4.1.2 Tools Dedicated to a Particular Model

Among the graph drawing/editing tools, besides the editors working on
general graphs, there are also some tools dedicated to a particular
representation model. Here we introduce some editors being designed
appropriate to edit UML statecharts, petri nets and process graphs:
Statemate, PIPE, Data Flow Diagram Editor and JGraphpad.

��Statemate

Statemate is a tool dedicated to creating graphical structures and
state-based behaviors through user-case diagrams, time-continuous
diagrams, activity charts and UML statecharts. The statecharts can be
graphically simulated and be tested whether its scenarios are correct.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

22

Statemate has the function to generate the documents, prototype codes and
test vectors automatically, and the errors that the statecharts being
modeled in Statemate could be detected early in the process, this brings
the advantage to reduce the cost to fix. The key components could be
always reused in Statemate [21].

Figure 12 provides the interface of Statemate. A sequence diagram would
be created during the simulation in UML diagrams as we can see in the
interface. This sequence diagram captures the scenario that was executed,
and helps to debug the model and reduce the time it takes to ensure you
have captured the design intent.

��PIPE

PIPE is a tool designed for modeling petri nets. Using PIPE we can create
a petri net, save the petri net we created, and load the petri net we created.

PIPE also has additional functionality in animation, manually firing some
transitions, randomly firing a sequence of transitions, and stepping

Figure 12. Statechart interface

Towards an Extensible Visual Editor for Embedded Systems Representation Models

23

backwards and forwards through those transitions that were fired.

The key design feature for PIPE is its extensibility: new modules can be
written for checking properties of petri nets. Six analysis modules have
been so far written including invariant analysis module, state-space
(deadlock, etc) module, incidence-markup and enabled transitions module,
simulation module, classification module and comparison module. Figure
13 presents the PIPE interface. We can see these six modules listed in the
left panel. After selecting the certain module, a dialog would be created for
analysis [18].

PIPE is now fully open source.

Figure 13. PIPE interface

��JGraphpad

JGraphpad is a free diagram editor based on JGraph, to create flow charts,
maps, UML diagrams, and so on. JGraphpad is provided as an example for
the JGraph Swing component. JGraphpad could be a versatile product that
is used to display and edit any type of diagram in software engineering,
transport network and workflow systems.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

24

The main features of JGraphpad are that it has programmable tool bar,
GUI and points that we could creates our own tool bar buttons, and it
supports a big range of platforms including Windows, Linux, Mc and
Solaris.

If the process graph is inputted in text file, the imported form could be
GXL, JPG, PNG, HTML Image maps. JGraphpad is free software [11].

Figure 14. UML in the metal look-and-feel

Figure 14 presents a UML diagram drawn to show MVC structure in a
sysytem. We mentioned here JGrahpad is because it is based on the graph
library JGraph, which is utilized by the EVE we designed in this thesis.

JGraphpad can be extended by programming in Java.

4.2 Graph Libraries: GEF and JGraph

There are several libraries available for graph editing. For example, GEF

Towards an Extensible Visual Editor for Embedded Systems Representation Models

25

is a library of Java classes for editing diagrams and connected graphs, and
ArgoUML is successful software built on GEF as a UML editor. JGraph is
a graph library in pure Java for editing all kinds of graphs, and JGraphpad
is a complex editor dealing with flow charts, maps, UML diagrams, and so
on, which is built on JGraph.

4.2.1 Graph Editing Framework (GEF)

The goal of GEF is to build a library of Java classes to be used to
construct many, high quality connected graph-editing applications. The
basic GEF functionality is something like Visio, which gives a core
functionality ability to drag-and-drop diagram objects onto the diagram
and then creates links between them. Right now it can read and write
PGML (Precision Graphics Mark-up Language) [17] files, but later it
might be updated to use SVG (Scalable Vector Graphics) [22] instead.
Here is the demo implementation of GEF in Figure 15.

Figure 15. Example demo of GEF

Through the interface users can edit the connected graph in a visual way.
GEF uses a node-port-edge model, and there are two types of nodes as
displayed in this example demo despites the geometric shapes in the tool

Towards an Extensible Visual Editor for Embedded Systems Representation Models

26

bar. The edges can be lines, polylines and rectilinear polylines. Ports are
fixed on the nodes in two deferent types. An edge can connect only
same-type ports. For example, in the previous figure, if the edges are
created between the ports represented as two black dots, only the polyline
could connect with a black arrow. The multiple output or input edges of a
port is not allowed.

Concretely GEF covers these features as we conclude in Table 2 [6].

Operations Functionalities
Tools Tools like selection, creation, connection and marquee
Palette A palette for displaying those tools
Size Handles for resizing objects and bending connections
Commands Multi-Undo/Redo support and multi-activation sites
Controller A controller framework for mapping the model to a view
In-Place Edit Direct text editing
View Two types of GEF viewers�Graph and Tree
Access Keyboard navigation and in future, text to speech
Drag and Drop Native drag and drop support
Align Alignment actions

Table 2. Main Features of GEF

Figure 16 presents a general view of the packages in GEF library.

We first look into package uci.gef since it is the biggest and central

uci.gef
Central package,
includes the basic

classes

uci.graph
interfaces/classes
for representing

connected graphs

uci.ui
user interface code that is used by

GEF, includes the Toolbar

uci.gef.events
classes that implement
graph selection events

uci.gef.demo
classes that demonstrate
how to use GEF to build
applications and applets

uci.util
utility classes used by GEF

uci.beans.editors
JavaBeans style property editors

and associated classes for the
property sheet

Figure 16. GEF packages

Towards an Extensible Visual Editor for Embedded Systems Representation Models

27

package of GEF including most primary classes in GEF, such as JGraph,
Editor, Fig, Selection, Layer, Guide, Mode, Cmd, and NetPrimitive.

More detailed, Class JGraph (notice this is not the JGraph library
presented in the next section!) extends javax.swing and contributes to
display a connected graph and allow interactive editing. It could be
considered as a simple front-end to class Editor. Class Editor provides an
editor for manipulating graphical documents, without the need to contain
much code because all the graphical objects, layers, editor modes, editor
commands, and supporting dialogs and frames are implemented in their
own classes. Cmd performs the actions in Editor. Modes are modes of
operation for the Editor that interpret user input and instantiate Actions.
Guide constrains user mouse coordinates to help make an organized
looking diagram. Fig contains a lot of draw-able objects including lines,
rectangles and circles. Layers contain the objects to be drawn. Selections
are objects used by the Editor when the user selects a Fig that indicates the
target of the next Action. NetPrimitive is the parent class of all Nodes,
Ports, and Arcs.

In addition, package uci.gef.event contains classes that implement graph
selection events. Package uci.gef.demo contains classes that demonstrate
how to use GEF to build applications and applets together with the HTML
files for the demos. Package uci.graph contains interfaces and default
classes for representing connected graphs. We can create our own
application-specific objects to represent connected graphs by GEF like in
Swing, as long as we implement a GraphModel to let GEF access to our
objects. Package uci.ui contains user interface code that is used by GEF
but could also be used for other purposes, like Toolbar. Package uci.util
contains utility classes that are used by GEF but could also be used for
other purposes, like a progress bar window. Package uci.beans.editors
contains JavaBeans style property editors and associated classes for the
property sheet [5].

4.2.2 JGraph

JGraph is a library of pure Java classes developed for editing different
types of graphs including UML diagrams, maps, flowcharts, network
diagrams and so on. JGraph supports to drag and drop the selection modes
and display/edit options for editing the graph as well as GEF. JGraph
could read a GXL (Graph eXchange Language) [8] graph, apply a custom
layout algorithm, and return the result as an SVG (Scalable Vector
Graphics) image.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

28

A simple example of a program implemented using JGraph library is
presented in Figure 17. This program provides a simple diagram editor,
which allows connecting nodes by means of connecting the ports. It is
similar to GEF in way of node-port-edge design. But the obvious
difference is that one node only has one port, and the port that binds to a
node, is a floating one. And there is no constraint on the number of input
or output edges connected with the port.

If we want to create a graph, we simply drag and drop diagram objects
onto the graph pane and create links between them, in JGraph example,
nodes and edges have editable text field themselves which we can enter
short information in. These are no different types of nodes or edges in this
simple example, but in JGraph it is easy to deploy from the library to
create variant nodes and edges with special shapes and graphical attributes,
as long as we provide the special rendering methods. And in toolbar there
are also commands like delete, cut, copy, paste, undo, redo and so on. In
this simple example there is no menu but of course we can create one
depending on the library.

Figure 17. An example of JGraph usage: simple diagram editor

Concretely JGraph has the following functionality:

Towards an Extensible Visual Editor for Embedded Systems Representation Models

29

Operations Functionalities
Edge Editing Add/Remove/Edit Points; Connect, Disconnect;

Labels
Moving/Sizing Transaction-Based, with Live-Preview
Selection Single-Cell and Rubber-band Selection
Zoom Arbitrary Zoom; Uses Java2D
Layering View-Dependent Inter- and Intracell Layering
Grouping Children Selectable; Uses Tree-Interface
Grid Customizable Size, Color, Appearance
In-Place Editing Direct Text Editing for all Cells
View Attributes Separate Attributes for each attached View
Graph Layout Easy Integration of Custom Algorithms
Ports Floating Connection Points for Vertices
Handles Flexible Interface for Cell-Modifications
Drag and Drop Between JGraphs, JVMs and other applications/OS
Clipboard Supports Multiple Transfer Formats
Command History Multi-View; for all available Operations
Look-and-Feel All Swing Pluggable Look-and-Feels
Routing Customizable Routing with Default Algorithms
Visibility Hide edges, vertices and groups
Clustering Folding/Unfolding of Groups into Vertices

Table 3. Main features of JGraph

JGraph is based on the Model-View-Controller (MVC) design pattern (see
section 5.2.1). The following are the main packages in JGraph library. All
classes in JGraph have their equivalents in Swing, and all features are fully
standards-compliant.

Figure 18 presents the architecture of JGraph library in UML [11].

Package com.jgraph is JGraph's topmost package. It contains the JGraph
class. Class JGraph is a control displaying related objects of a graph, and
extends JComponent. It has a reference to its GraphUI and GraphModel.
Its object doesn't hold data but simply provides a view of the data. The
graph gets data by querying its data model. Package com.jgraph.plaf.basic
contain class BasicGraphUI that extends GraphUI, which in turn extends
ComponentUI. They act as control part in MVC in JGraph. Package
com.jgraph.event contains event classes and listener interfaces. Package
com.jgraph.graph defines a number of classes and interfaces and provides
support classes that include the graph model, graph cells, controllers, and
renderers and so on.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

30

graph: JGraphJGraph
com.jgraph

graph: JGraphGraphUI
com.jgraph.plaf

graph: JGraphGraphView
com.jgraph.graph

graph: JGraphBasicGraphUI
com.jgraph.plaf.basic

graph: JGraphGraphModel
com.jgraph.graph

graph: JGraphDefaultGraphModel
com.jgraph.graph

graph: JGraphJComponent
javax.swing

graph: JGraphComponentUI
javax.swing.plaf

graph: JGraphClass
JGraph Package

graph: JGraphInterface
JGraph Package

graph: JGraphClass
Swing Package

graph: JGraphInterface
Swing Package

Extends

Implements

Aggregates

Control Flow

Figure 18. JGraph MVC in UML

In order to understand clearly node-port-edge graph model of JGraph, we
still have to look into the inter structure of package com.jgraph.graph to
know how the classes concerned with the cells work in JGraph.

GraphSelectionEvent
com.jgraph.event

Figure 19. GraphCell interface hierarchy and default implementations

Towards an Extensible Visual Editor for Embedded Systems Representation Models

31

As we see from Figure 19, the GraphCell interface hierarchy and default
implementations, DefaultPort and DefaultEdge, are respectively simple
implementations for a port and an edge. They extend DefaultGraphCell,
which gives a default implementation for the GraphCell interface. And
GraphCell is the basic interface for all graph cells and it defines the
requirements for objects that appear as cells. Port and Edge are respective
interfaces providing the definitions on the requirements for an object that
represents a port or an edge in a graph model.

4.2.3 Comparison of GEF and JGraph

Both GEF and JGraph are powerful graph libraries applied to build
graph-editing applications with a lot of functionality features, and they
each have some advantages and disadvantages. In the following we
present a comparison between them.

��Advantages

In GEF, the main objects are very concrete and familiar if we have
experience in using drawing tools. It doesn�t contain many abstract
concepts such as constraints or event handlers like some other libraries.

GEF is adaptable to a wide range of applications, and is efficient on
diagrams up to a thousand elements with large numbers of features, thus it
has good scalability and can handle very complex types of diagrams.

In JGraph, there is a simple API that is similar to standard Swing
components, so it is easy to learn and to deploy JGraph. The existing
source code in JGraph can be reused, which make the development time
shorter. With JGraph, we from highly expert to very non-expert are able to
display and edit complex graph models without the need to understand the
underlying complexity.

JGraph is dedicated to graphs instead of complex diagrams, and this is also
the focus of the thesis. JGraph has also well written documentations and
rich examples, so it is much easier and faster to learn.

Both GEF and JGraph are open source software.

��Disadvantages

In GEF library there are already 100 classes, which makes it harder to
understand the whole construction of the system. And since there are too

Towards an Extensible Visual Editor for Embedded Systems Representation Models

32

many features provided by GEF, a lot new features are not properly
explained. GEF doesn�t have enough examples and well-written
documentations either, which increases the difficulty for a fresh user to
learn.

JGraph uses non-Swing API for more advanced features such as layering,
grouping, cloning, ports, and they are not used everywhere in standard
Swing, and then it requires new classes and methods which increases the
complexity.

Both GEF and JGraph contain bugs. For example, in GEF,
FigEdgeRectilinear should move when both their end points move at the
same time, but some points on the arc stay without moved, and in category
of view of JGraph, when using groups that contain both cells and ports, the
edges attached to these ports are not properly updated.

4.2.4 JGraph Library Example

Since JGraph is easy to deploy and learn with well-written documents and
API, and with floating ports, multiple routes in connection, and editable
text fields in the nodes, JGraph is easier and more suitable to be applied to
process graph editing. Thus, in the next chapter, we would implement a
prototype of CPG Editor based on JGraph.

Before that, let�s look at a simple JGraph library example. First the
following is the code �Hello.java� to create a window displaying a very
basic simple graph with only two nodes and an edge.

import com.jgraph.*;
import com.jgraph.graph.*;
import javax.swing.*;
import java.util.*;
import java.awt.*;

public class HelloWorld {
 public static void main(String[] args) {

 // Construct Model and Graph
 GraphModel model = new DefaultGraphModel();
 JGraph graph = new JGraph(model);
 graph.setSelectNewCells(true);

 // Create Nested Map (from Cells to Attributes)
 Map attributes = new Hashtable();

Towards an Extensible Visual Editor for Embedded Systems Representation Models

33

 // Create Hello Vertex
 DefaultGraphCell hello = new DefaultGraphCell("Hello");

 // Create Hello Vertex Attributes
 Map helloAttrib = GraphConstants.createMap();
 attributes.put(hello, helloAttrib);
 // Set bounds
 Rectangle helloBounds = new Rectangle(20, 20, 40, 20);
 GraphConstants.setBounds(helloAttrib, helloBounds);
 // Set black border
 GraphConstants.setBorderColor(helloAttrib, Color.black);

 // Add a Port
 DefaultPort hp = new DefaultPort();
 hello.add(hp);

 // Create World Vertex
 DefaultGraphCell world = new DefaultGraphCell("World");

 // Create World Vertex Attributes
 Map worldAttrib = GraphConstants.createMap();
 attributes.put(world, worldAttrib);
 // Set bounds
 Rectangle worldBounds= new Rectangle(140, 140, 40, 20);
 GraphConstants.setBounds(worldAttrib , worldBounds);
 // Set fill color
 GraphConstants.setBackground(worldAttrib, Color.orange);
 GraphConstants.setOpaque(worldAttrib, true);
 // Set raised border
 GraphConstants.setBorder(worldAttrib,BorderFactory.createRaisedBevelBorder());

 // Add a Port
 DefaultPort wp = new DefaultPort();
 world.add(wp);

 // Create Edge
 DefaultEdge edge = new DefaultEdge();

 // Create Edge Attributes
 Map edgeAttrib = GraphConstants.createMap();
 attributes.put(edge, edgeAttrib);
 // Set Arrow
 int arrow = GraphConstants.ARROW_CLASSIC;
 GraphConstants.setLineEnd(edgeAttrib , arrow);
 GraphConstants.setEndFill(edgeAttrib, true);

 // Connect Edge
 ConnectionSet cs = new ConnectionSet(edge, hp, wp);
 Object[] cells = new Object[]{edge, hello, world};

Towards an Extensible Visual Editor for Embedded Systems Representation Models

34

 // Insert into Model
 model.insert(cells, attributes, cs, null, null);

 // Show in Frame
 JFrame frame = new JFrame();
 frame.getContentPane().add(new JScrollPane(graph));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
}

The previous code creates two nodes, an edge to connect the nodes and
inserts all the cells in the model, using the classes we have explained in
Figure 19.

In the main part of the code, we create the node �Hello� and define its
position and size. Then the map �helloAttrib� is created from the
GraphConstants to hold the properties. We put the node and its properties
in a general hashtable called �attributes� respectively as the key and the
value. A port is also added into the node. Through the similar way we
create the other node �world� and the edge connecting them.
ConnectionSet represent the set of connections, so we connect the two
ports with the edge by creating an object called �cs�. The array called
�cells� contains all the elements. Finally, we insert these elements into the
graph pane. Figure 20 shows the resulting graph when run the completed
application.

Figure 20. Result window of �Hello.java�

Towards an Extensible Visual Editor for Embedded Systems Representation Models

35

5 A Prototype Implementation of a CPG
Editor

5.1 Features of a CPG editor

In order to understand the issues involved in building an extensible visual
editor, we have built first an editor for conditional process graphs.

Our objective is to produce a tool that supports the creation and editing of
a CPG. With the editor, we can create a new CPG that has its own set of
nodes and edges with their separate attributes. The editor is responsible to
display a CPG model whenever we open a correctly defined CPG file
(with the suffix name .cpg), and to save a CPG to a file.

The elements of a CPG are have been presented in Table 1. There are three
node shapes--circle, triangle and inverse triangle--representing the three
types of nodes. The shapes contain labels with the nodes� name, resource
and the worst-case execution time. There are two kinds of edges: normal
edges and conditional edges, whose ends are respectively represented by
thin and thick directed arrows.

Figure 21 presents the user interface for the CPG editor. There are mainly
three parts: menu, toolbar and graph panel.

1. Menu �File� has items New, Open, Close, Save, Save as, Page
Setup, Print Preview, Print and Exit. Menu �Editor� contains items
Undo, Redo, Cut, Copy, Paste and Select All;

2. Menu �View� contains items Options Zoom in and Zoom out; Menu
�Insert� contains items Process, Conditional process and
Conjunction process;

3. �Help� contains item About.

The above commands are common almost in any graph editor, except the
three ones designed to insert CPG nodes. In the tool bar we provide
buttons as shortcuts of the commands in the menu.

After opening a certain CPG file, a CPG model is created in the graph
panel and user can move, add, delete the cell, and then save the changes in
the CPG file. We mainly implement the basic function as modifying the
cells� attributes on names, resources and worst-case execution time and so
on.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

36

Figure 21. User interface of the CPG editor

This CPG editor operates on the CPG files with the suffix name .cpg.
Currently, to simplify the application, we use a simple textual format. In
the future, CPG files could be represented using XML. The .cpg file
records the cell attributes. For nodes it includes node type, name, x
coordinate axis position, y coordinate axis position, worst-case execution
time, resource (the process that the node maps) and condition. For edges it
includes edge type, name, name of source node, name of destination node,
worst execution time, bus and condition.

Here it is an example of CPG file named example.cpg. Each item of the
attributes is separated by a blank space. We can indirectly create a new
CPG model by writing a CPG file.

example.cpg
disjunction_node N1 100 20 10 P2 C
node N2 20 120 5 P2 null
node N3 180 120 10 P2 null
node N4 180 200 2 P1 null
conjunction_node N5 100 260 3 P1 null
conditional_edge ARC1 N1 N2 2 B1 C
conditional_edge ARC2 N1 N3 1 B1 -C

Towards an Extensible Visual Editor for Embedded Systems Representation Models

37

edge ARC3 N2 N5 2 B1 null
edge ARC4 N3 N4 5 B1 null
edge ARC5 N4 N5 0 B1 null

We can create a new CPG by inserting different types of nodes and
connecting them with the edges, also we can give each cell including
nodes and edges its attributes by typing short information in their editable
text field and pressing �enter�. Because there are only two types of edges
in CPG, it is easier to create the edges by dragging and releasing the
mouse from source node to destination node. We have set the constraints
about the connection that each edge from a disjunction node is always a
conditional edge in the application. From reading the type of the source
node, different types of edges are created automatically.

A CPG can also be modified (edited). We can modify the names, execution
times, and resources of the cells by putting the mouse in the selected cell
and double-clicking the mouse, then we get the editable text field that we
can type the new attributes, then press �enter�, in this way the model saves
the modification, when we click command button �save�, all the changes
are finally saved back to the CPG file. Cells can also be moved, cut, pasted
and copied, but currently we didn�t implement other edit functions.

5.2 The Design of the CPG Editor

5.2.1 Model-View-Control (MVC) Architecture

MVC is widely used in implementing applications that designed for graph
drawing or editing with graphical user interfaces. It means that the
framework could be split into three parts: model, view and control.

The model part is the content representation of the system. It describes the
underlying graph model interface, and selection model, and the elements
that they contain, as well as the classes used to change the graph model.

The view part is the graphical representation of the system. It displays the
graph represented by the model. Mainly it focuses on the geometric
shapes or images of the graph elements being displayed.

The control part is a manager that mediates and communicates between
the model and the view, it explains the graph rendering process, provides
the model constraints, and shows the interaction with the graph model
through the interface [6].

Towards an Extensible Visual Editor for Embedded Systems Representation Models

38

5.2.2 The Architecture of the CPG Editor

In Figure 22 we present a UML diagram indicating the structure of the
application. We can see that the MVC design pattern is used. Most
classes in the library extend from JGraph, such as CPGModel, CPGView,
EllipseView, EllipseCell.

There�s no �model specification file� for the prototype CPG editor
currently since it provides only operations especially on CPG. We do not
need to tell the application what to do according to different model
specifications. Actually we simply transfer the information that should be
included in the specification to the programming codes given if-else
instructions, and then the editor knows what to do when meeting with
different types of nodes and edges. But in the case of the extensible visual
editor we have to define specifications for each type of graph.

The CPG editor uses the MVC design pattern, so the software structure
has to be split into three parts: model, view and control:

�� The model part provided by class CPGModel, describes the
underlying CPG model interface, and selection model, and holds the
content of three types of nodes together with two types of edges that
a cpgModel contains.

�� The view part provided by class CPGView, studies the display�s

internal representation of a CPG, and the mapping and update
between the cpgModel and the cpgView.

�� The control part provided by the CPGEditor, manages the cpg

rendering and the interaction with the cpgModel through the
interface.

CPGModel extends DefaultGraphModel. It gives the implementation of a
CPG model, which in this editor is called cpgModel, and a cpgModel has
objects respectively of EllipseCell for normal node, TriangleCell for
disjunction node and InverseTriangleCell for conjunction node. All of
them extend DefaultGraphCell and provide an implementation of
GraphCell interface, which defines the requirements for objects that
appear as graph cells.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

39

Figure 22. UML class diagram for CPG editor

CPGView extends JGraph, it displays the objects in a CPG. It doesn't
actually contain the CPG data and it simply provides a view of the CPG
data. The CPG gets data by querying its data model, cpgModel. CPGView
displays the data by drawing individual cells of CPG. Method
CreateVertexView draws the nodes, including EllipseView for normal
node, TriangleView for disjunction node and InverseTriangleView for
conjunction node with their respective renderer to draw the shapes. These
three view classes all extend VertexView. Method CreateEdgeView
creates the edges. Both VertexView and EdgeView implement interface
CellView, which defines the requirements for an object that represents a
view for a CPG model cell.

+main(String[] args)() : void

+cpgView
+cpgModel

CPGEditor

+openGraph()
+saveGraph()

+nodes
+edges

CPGModel

#createVertexView()
#createEdgeView()

+model : CPGModel
CPGView

+getRenderer()

+renderer : EllipseRenderer
+graph : JGraph
+cellMapper
+cell : Object

EllipseView

+paint()

EllipseRenderer

+getRenderer()

+renderer : TriangleRenderer
+graph : JGraph
+cellMapper
+cell : Object

TriangleView

+userObject : Object
EllipseCell

+paint()

TriangleRenderer

+userObject : Object
TriangleCell

+userObject : Object
InverseTriangleCell

+getRenderer()

+renderer : InverseTriangleRenderer
+graph : JGraph
+cellMapper
+cell : Object

InverseTriangleView+paint()

InverseTriangleRenderer

+setAttributes()
+getAttributes()
+setUserObject()

-attributes
+userObject : Object

DefaultGraphCell

+paint()

#graph : JGraph
#view : VertexView

VertexRenderer

+getRenderer()
+renderer : VertexRenderer

VertexView

DefaultGraphModel

JGraph

Towards an Extensible Visual Editor for Embedded Systems Representation Models

40

In order to connect a pair of nodes successfully, the edges are created on
the ports that bind with the nodes. In this CPG editor we simply use the
floating port in JGraph and import the classes PortView to draw the port
and DefaultPort to create the port cell.

5.3 Implementation

The code was developed in Java 2 Platform Standard Edition (J2SE) 1.4.0
[10]. The CPG editor is developed using the JGraph library. We import
these three JAR files from the project: jgraph-2.1-java 1.4/jgraph.jar (now
the new version turns to jgraph 2.2.2), jgraph-1.0.6-java1.4/jgraph.jar and
jgraphpad-2.0.0/jgraphpad.jar (now the new version is jgraphpad 2.2.2.1),
as the required libraries. And we have the basis classes to extend our own
Java files, seen from JGraph v2.2.2 API Specification [11].

In CPGModel we create two classes CPGNode and CPGEdge to hold all
the attributes for nodes and edges respectively. The information recorded
inside a CPG file are fetched out to open a new CPG from the CPG file,
Classes CPGNode and CPGEdge are used to hold the attributes data of
cpg cells. CPGNode objects are created and put into a hash table named
nodes. CPGEdge objects are created and put into a linked list named edges.
�nodes� and �edges� are associated by setting names of the source nodes
in edges as the key. So in the hashtable �nodes�, the key is the node name
and the value is the node itself.

There are the instructions in the codes to go through both the hashtable
nodes and the linkedlist edges, and get the cell information from
cpgModel. Reading certain CPG node type and edge type and other
attributes obtained from the CPG file. CPGView creates the corresponding
views of CPG cells by methods createVertexView and createEdgeView.
Method openGraph in CPGModel inserts all these cells with their
attributes and their relationships into a CPG editor pane.

Then we edit on the CPG such as to change the attributes, add a normal
node, a disjunction node or a conjunction node, and find the ports to
connect any pair of them. Here we have the constraints about the different
types of the nodes. Every conditional edge, which starts from a disjunction
node, should be presented with a classic arrow at the end.

Inversely with the open process, method saveGraph writes all the
attributes from the model into a CPG file. Meanwhile, if the cell that the
method operating on is a node, then it is updated in the hash table nodes,
otherwise, it�s updated in the linked list edges. Thus no matter when we

Towards an Extensible Visual Editor for Embedded Systems Representation Models

41

add new cells, or modify the existed cells, the two structures that store the
data will get the information synchronously with the cpgModel in order to
create and update the CPG file, and maintain the system consistency.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

42

Towards an Extensible Visual Editor for Embedded Systems Representation Models

43

6 Towards an Extensible Visual Editor
(EVE)

6.1 Introduction

This chapter presents the design of an extensible visual editor that can be
applied easily to many different types of graphs. It has powerful user
interface that supports most common operations necessary for the
convenient construction and manipulation of graphs.

EVE is extended by using graph type specification files. The specification
files describe the elements of the graph type, their properties, and the
constraints associated with them. The files are represented using XML.

An overview of EVE is presented in Figure 23.

Specification files are useful either for the user to know how to create a
new graph model though the file in text or in XML or other language, or
for the application to know how to display a certain type of graph model in
its special interface.

The specification is extensible via the formal definition so that other types
of graphs may easily have their own specifications. As a simple approach
one may attempt to deal with the numerous variations in node and edge
decorations via a number of node and edge attributes such as shape, size,
color, labels, line style etc. These are mainly what the specifications
should take into account.

Besides the specification, the editor should also be able to load graph
models from graph files. The same type of graphs shares the same
specification but each graph has its own graph file that gives the concrete
information how it will be displayed graphically.

The application reads different graph specifications, and the user interface
of the EVE will change accordingly, including the tool bars and menus.
Since variant graphs have the similarities in the basic structure that
constitutes with nodes and edges, the common operations like move, cut,
paste, copy, delete, zoom in, zoom out and so on are almost the same, but
the command items mostly differ in the operations related with graph cell
types. For example in Figure 23, there are �Add a state�, �Add a

Towards an Extensible Visual Editor for Embedded Systems Representation Models

44

transition� and so on in UML statechart editor interface and �Add a
normal node�, �Add a conditional edge� and so on in CPG editor interface,
being presented with different tool bars and menus.

UML
Statechart

Specification

CPG
Specification

Petri net
Specification

Specifications

Specifications are given by the
designer of EVE and EVE could be
extended with a new type of graph

The three models are from respective graph
files that written based on the specifications
and describe parts of an embedded system

EVE

Petri nets
Editor

UML
Statechart

Editor

CPG
 Editor

Figure 23. Goal of an EVE

No matter which type of graph being handled, the graph data is always
kept in the model and is transferred among the parts of
model-view-control, for display and editing.

The design idea is to build general classes for Model, View, and Controller
and customize them for each graph type using a graph type specification
file:

��Model part handles and stores different node properties and edge
properties, so that the viewer and controller could access these data.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

45

��View part gives different visual representations for the nodes and edges
based on the data that is required from model part.

��Control part sets the corresponding toolbar and menus for the node and

edge types depending on this type of graph specification, handles the
model constraints and keeps the communication consistency between
the model and view.

6.2 Specifications

Generally, There are mainly three parts in the editor window: menu bar,
tool bar and the graph pane. The tool bar consists of a number of command
buttons. Some of the buttons are common ones that being provided in
many graph editors. These basic buttons include: Select, New, Open (the
graphs are loaded in form of graph files), Save (in form of graph files),
Print, Cut, Copy, Paste, Delete, Undo, Redo, Text, Zoom, Help and so on.
Of course we can add new practical function to improve the toolbar.

In menu bar, we have File, Edit, Arrange, Diagram, View, Sets, Display,
Option, Window and Help as the menus for instance. The graph pane is
used to display different types of graph being edited.

6.2.1 EVE for CPG

In CPG editor, we simply define three kinds of nodes: normal nodes,
conjunction nodes and disjunction nodes, and two kinds of edges: normal
edge and conditional edge, and we give three respective command buttons
to insert the node, and two buttons to insert the edge, besides the common
commands we mentioned above.

Both nodes and edges have text fields which we could enter the short
information such as names and resources. We have given more details in
the implementation prototype of CPG editor.

Figure 24 gives an example interface of EVE for CPG after we load or
create a CPG model.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

46

Figure 24. Editor with the CPG

6.2.2 EVE for the Petri net

EVE for petri net may include the features about the selection and
manipulation of petri net elements, a toolbar for frequently used
operations and the ability to import and export the model as a formal petri
net file--which can be user implemented XML file.

The EVE for petri net is similar with the above EVE part for CPG in user
interface and main function. We add special operations for petri net such
as:

Add a Place

This command is used to add a new place into the panel. Since the place
may have the attributes like name, tokens number, value, and description,
we could create a small editor dialog instead of a simple text field when
double-clicking in the place, which gives more fields to enter and modify
these properties.

Add a Transition

Use this command to add a new transition into the petri net. The way to

Towards an Extensible Visual Editor for Embedded Systems Representation Models

47

add is similar with a node.

Add an Arc

This command is used to add a new arc into the petri net connecting the
places and the transitions. The way to add is similar with an edge, but the
route is from a place to a transition or a transition to a place only.

Add a Token

This command is used to add a new token into a place. The way to add is
similar with a node. But it is overlapped on the place.

In Figure 25 we give an example interface after the EVE loads a petri net
being edited.

Figure 25. Editor with the petri net

6.2.3 EVE for the UML Statechart

EVE for UML Statechart may include the features about the selection and
manipulation of UML Statechart elements, a toolbar for frequently used
operations and the ability to import and export the model as a formal
statechart file.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

48

The main function and interface of EVE for UML Statechart is still similar
with that for petri net. We add special operations for UML Statechart such
as:

Add an Initial State

This command is used to add a new initial state into the panel, by clicking
in the desired position..

Add a State

This command is used to add a new state into the Statechart. We could get
a text field when double-clicking the state, which we could enter and
modify the corresponding behaviors.

Add a Final State

This command is used to add a final state into the panel. However, a final
state is not always needed in a statechart.

Add a Transition

This command is used to add a new transition into a place. A text field is
also needed in order that we could indicate and edit the name of the event
trigger. For most statecharts, the transitions are not limited as straight lines,
and we could make different designs on it.

In Figure 26 we give an example interface after the EVE loads a UML
Statechart being edited.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

49

Figure 26. Editor with the UML statechart

6.3 Proposed Software Architecture and Design

In Figure 27, we present the proposed software architecture of the EVE
using a UML diagram.

+setGraphView() : GraphView
+setGraphModel() : GraphModel
+editCommands()
+editEvents()

+graphView : GraphView
+graphModel : GraphModel

GraphEditor

+openGraph()
+saveGraph()

+nodes
+edges

GraphModel

Graph files

+model*

+graph data*

+createView()
+graphModel : GraphModel

JGraph

+view

*

+control

*+model

*

+control

*

Specifications

+specify*

+control*

#createVertexView()
#createEdgeView()

+graphModel : GraphModel
GraphView

Figure 27. Software architecture of EVE

Towards an Extensible Visual Editor for Embedded Systems Representation Models

50

In this architecture, there are essentially three functional blocks (general
classes) that constitute the core of the EVE: GraphModel, GraphView,
GraphEditor. They correspond to the model, view, and control,
respectively. In the back there are stored graph specifications and graph
files that hold the graph definition and data.

GraphModel

GraphModel defines an implementation for suitable data model of the
graph and gives the widget access to EVE data. It stores the data and
allows the use of any EVE object as a node, port, or edge. This makes it
much easier to add visualization to EVE.

The methods defined inside the GraphModel such as openGraph(),
provides the access to the graph structure, also the communication
between the specifications and the graph models. There might be a lot of
boolean expressions like if-else statements inside GraphModel to
distinguish the graph type and handle the visualization of different types of
graph elements.

Using the design idea from the implementation prototype of CPG editor,
we can create several kinds of structures to hold separately nodes and
edges objects with respective their properties. And all these properties
have a correspondent in the definitions of the graph type specification. The
graph files give the concrete data. When we either open from or save into
the graph file, the corresponding updates of graph data should always keep
coherent with the two structures for each type of graph.

For instance once a CPG graph file is selected, the corresponding CPG is
displayed in EVE based on its cells positions and other related attributes
that are recorded in the CPG file. After we edit the CPG, the changes that
currently hold by the models would be written into the CPG file again,
thus GraphModel finishes its transformation between CPG model and the
documents including the specification definitions and CPG file examples.
For other types of graph, the way that GraphModel works is similar based
on the specification.

GraphView

If GraphModel provides the content representation of the graph,
GraphView then provides the graphical representation of the graph. It
displays the related graph objects using the defined shapes or images in
the specification. It allows interactive editing and serves as a simple

Towards an Extensible Visual Editor for Embedded Systems Representation Models

51

front-end to class GraphEditor. The graph gets data by querying its
GraphModel object.

GraphView displays its data by drawing individual graph cells. The real
drawing is done by each paint method in every cell renderer class. The
specification tells the GraphView to create a certain shape or access a
certain image for the graph cell. For example, to edit a CPG, when reading
a disjunction node from the CPG file being opened, GraphView knows to
access a triangle image and draw it on the edit panel because the CPG
specification has defined a disjunction node image.

When the application deals with the concrete graph object fetched from
the data structures in GraphModel, it creates the corresponding view, and
includes its attributes such as names, resources, which are drawn together
on the image or shape in the EVE.

GraphEditor

GraphEditor is a general class to create the user interfaces in EVE for
different types of graph, and the editor interfaces especially differ in the
menu bars and tool bars. The class will define the methods to customize
the items in menu bar or toolbar for each different graph type.

The GraphEditor reads the specification first to know the elements
definitions for each graph type, for example about the CPG, and then
decides to present the tool bar with commands to insert disjunction node,
conjunction node, normal node, normal edge and condition edge in the
user interface. For other graph types, Then whenever the data that the
GraphModel uses or the GraphView draws changes from one graph type
to another, the EVE interface would change in the tool bar and menu bar
automatically. As an example, Figure 23, Figure 24 and Figure 25
indicates the changes.

GraphEditor could be considered as a controller to mediate and
communicate between the GraphView and the GraphModel. GraphEditor
is the central class of the EVE. The methods concerning to display or edit
the graph, are implemented mainly in GraphView and GraphModel. But
both the functions of the GraphModel and GraphView are controlled using
the GraphEditor.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

52

6.4 Specifying the Representation Models

EVE is extended using representation model specification files. They have
to be written by the designer. The difference between the graph
specification and graph file with the same graph type is that although they
are both defined in a formal language, a certain graph specification is not
allowed to be changed after it�s determined until the application needed to
be developed, it is a model, a definition for all the graph files with the
same graph type, a graph file is just an instance created for a graph model
based on the principles set in the specification. Whenever the graph model
is modified in the EVE, data in the graph file is certainly updated always.

But within the scope of a certain graph type, the graph specification is
primarily used by the application and to present this type of graph visually
in a pre-defined uniform way, and to load different edit interfaces.

6.4.1 Specifying Graph Types

The XML specification of the representation model, starts with the graph
type:

<GraphType>
�
</GraphType>

Next, the specification defines the certain respective elements and lists
their properties and values for each graph type. Comparison among variant
specifications indicates that they might have similar structures but
different elements and their attributes. In details, we have nodes, edges
needed to specify.

6.4.2 Specifying Graph Elements

Node part in graph specification could be defined like this:

<Node type="node_type1" image xlink:href =�directory of the node image�>

<Property name = �property1� type = property1_type �(other attributes for
property1)>

<Property name = �property2� type =property2_type �>
�
<Property name = �propertyN� type =propertyN_type � >

</Node>

Different graph has different type of nodes, and �node_type1� gives the
type name, and the link to the image that is stored in the disk or web

Towards an Extensible Visual Editor for Embedded Systems Representation Models

53

representing for this type of node.

A certain type of graph might have its special and distinct properties for
node, and generally, there might be node�s name with its data type string,
and other attributes--position in center and color in black for example.
There might be also node�s resource that is a process, with its data type
string, the position on the right and color in blue, etc.

The specification should contain all node types for each graph type, and
list all their attributes.

Edge part in graph specification could be defined as:

<Edge type="edge_type" image xlink:href =�directory of the edge image�
sourceNode = �node_type1� destinationNode = �node_type2�>

<Property name = �property1� type =property1_type �(other attributes for
property1)>

<Property name = �property2� type =property2_type �>
�
<Property name = �propertyN� type =propertyN_type � >

</Edge>

It is similar with the definition for node, but one important attribute for
edge is to specify the source node and the destination node, in order to
create the correct connection.

A certain type of graph has its special properties for edge. Generally, there
would be edge�s name with its data type string, and maybe position also in
center, and edge�s resource that is a bus with also string as its data type,
etc.

In the next section we give more details about the specifications of each
type of graph used in EVE.

6.4.3 XML Specification Files for the Graph Types

Following the principles introduced in the previous sections, we present
three XML specification examples for UML statechart, CPG and petri net.
Thus to build an EVE, these three specifications could be the models to
construct the corresponding graphs. And if there�s new type of graph being
introduced, the specification could just follow the design rules and be
created in a similar way.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

54

UML Statechart

We give a simple example about the representation model created for
UML statechart.

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <!-- Specification for UML statechart -->
< UML statechart >

<Node type="initial state" image xlink:href =�directory of the initial state image�>
</Node>

<Node type="final state" image xlink:href =�directory of the final state image�>
</Node>

<Node type="state" image xlink:href =�directory of the state image�>

<Property name = �name� type = �string� position = �center� color = �black�>
</Node>

<Edge type = "transition" image xlink:href =�directory of the transition� sourceNode =

�state� destinationNode = �state�>
<Property name = �event� type = �string� position = �center� color = �black�>

</Edge>

<Edge type = "s_transition" image xlink:href =�directory of the transition�

sourceNode = �initial state� destinationNode = �state�>
<Property name = �event� type = �string� position = �center� color = �black�>

</Edge>

<Edge type = "d_transition" image xlink:href =�directory of the transition�

sourceNode = �state� destinationNode = �final state�>
<Property name = �event� type = �string� position = �center� color = �black�>

</Edge>

</UML statechart>

In the specification, we specify three types of node and three types of
edges based on the definition of a UML statechart. We might have other
properties due to the concrete design requirements for a UML statechart
editor, and then everything should be put in a similar way.

CPG

Here is a simple example about the representation model created for CPG.

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <!-- Specification for CPG-->
<CPG>

Towards an Extensible Visual Editor for Embedded Systems Representation Models

55

<Node type="simple node" image xlink:href =�directory of the node image�>

<Property name = �name� type = �string� position = �center� color = �black�>
<Property name = �process� type =�string� position = �right� color = �black�>
<Property name = �wect� type = �int� position = �right� color = �black�>
<Property name = �condition� type = �string� value = �null�>

</Node>

<Node type="disjunction node" image xlink:href =�directory of the node image�>

<Property name = �name� type = �string� position = �center� color = �black�>
<Property name = �process� type =�string� position = �right� color = �black�>
<Property name = �wect� type = �int� position = �right� color = �black�>
<Property name = �condition� type = �string� value = �C�>

</Node>

<Node type="conjunction node" image xlink:href =�directory of the node image�>

<Property name = �name� type = �string� position = �center� color = �black�>
<Property name = �process� type =�string� position = �right� color = �black�>
<Property name = �wect� type = �int� position = �right� color = �black�>
<Property name = �condition� type = �string� value = �null�>

</Node>

<Edge type = "simple edge" image xlink:href =�directory of the image� sourceNode =

�simple node, conjunction node� destinationNode = �simple node, disjunction
node, conjunction node�>
<Property name = �name� type = �string� position = �center� color = �black�>
<Property name = �resource� type =�string� position = �right� color = �black�>
<Property name = �wect� type = �int� position = �right� color = �black�>
<Property name = �condition� type =�string� value = �null�>

</Edge>

<Edge type = "conditional edge" image xlink:href =�directory of the image�

sourceNode = �disjunction node� destinationNode = �simple node, cunjunction
node, disjunction node�>
<Property name = �name� type = �string� position = �center� color = �black�>
<Property name = �resource� type =�string� position = �right� color = �black�>
<Property name = �wect� type = �int� position = �right� color = �black�>
<Property name = �condition� type =�string� type = �integer�>

</Edge>

</CPG>

In the specification, we specify three types of nodes and two types of
edges based on the CPG definition. Each type of node and edge both has
more properties than that in general graph: wcet means the worst
execution time of the process the node mapped. For disjunction node,
there is a condition and valued it as C, otherwise we give it null value. The
resource in node�s property means the process being mapped and in edge�s
property means the bus. An edge also has the execution time and condition.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

56

Conditional edges also have a condition associated.

For CPG, a disjunction node only has conditional edges as its output, so
we include this constraint inside the specification by listing the allowed
source node and destination node for the correct connection when
specifying the conditional edge.

Petri net

We give a simple example about the representation model created for
petri net.

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <!-- Specification for Petri net-->
<Petri net>

<Place type = �place� image xlink:href =�directory of the node image�>

<Property name = �name� type = �string� position = �center� color = �black�>
<Property name = �process� type =�string� position = �right� color = �black�>
<Property name = �ect� type = �int� position = �right� color = �black�>

</Place>

<Transition type = �transition� image xlink:href =�directory of the node image� >
<Property name = �name� type = �string� position = �center� color = �black�>
</Transition>

<Arc type="ptotArc" image xlink:href =�directory of the node image�

source = �place� destination = �transition�>
<Property name = �name� type = �string� position = �center� color = �black�>

</Arc>

<Arc type="ttopArc" image xlink:href =�directory of the node image�

source = �transition� destination = �place�>
<Property name = �name� type = �string� position = �center� color = �black�>

</Arc>

<Token type="token" image xlink:href =�directory of the node image� source =
�place� destination = �place�>
<Property name = �name� type = �string� position = �center� color = �blue�>
</Token>
</Petri net>

In the specification for petri net, we specify the basic elements: place,
transition, arc and token and their relations. The place has the process and
execution time as the properties. The arc starts either from a place to a
transition or from a transition to a place so we set two types of it. The
token is moved between places and this is also specified.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

57

7 Conclusion and Future Work

Embedded systems have are widely used everywhere. Their modeling is
performed using several types of representation models. Among
representation models, graph-based representations are most commonly
used in embedded systems design.

In order to speed up the development of domain-specific visual model
editors, generic-modeling environments, which can be extended, have to
be developed. In this thesis we propose a generic modeling environment,
called Extensible Visual Editor (EVE), which can be extended to handle
the class of graph-based embedded systems representation models.

We have done a survey of the representation models including CPG, petri
net and UML statechart, and their associated tools, such as JGraphpad for
process graph, PIPE for petri net and Statemate for UML statechart.

We have also compared two graph libraries: GEF and JGraph, and
concluded that JGraph should be used for the EVE implementation. We
have also designed and implemented an editor for CPGs. Using the
experience gained from this implementation, we have proposed several
design ideas for EVE.

The main idea was to extend EVE using representation model
specification files written using XML. We have developed three such
specification files, for each representation model considered.

As the future work, we need to finalize the design of EVE, and provide a
prototype implementation.

We should also complete and improve the specifications for different types
of graph depending on the improved design for the extensible editor.

Towards an Extensible Visual Editor for Embedded Systems Representation Models

58

Towards an Extensible Visual Editor for Embedded Systems Representation Models

59

References

1. Andreas Gerstlauer, Daniel D. Gajski �System-Level Abstraction
Semantics�. 2002.

2. Dia, http://www.lysator.liu.se/~alla/dia/

3. Douglass, Bruce Power �UML Statecharts�,

 http://www-md.e-technik.uni-rostock.de/ma/gol/ilogix/umlsct.pdf

4. GME 2000, the generic modelling environment,
http://www.isis.vanderbilt.edu/Projects/gme/default.html

5. GEF, http://gef.tigris.org/

6. GEF,IBM,

www.cs.technion.ac.il/~cs234307/2002-2003/GEF_YPP.pdf

7. K. Jensen �Coloured Petri nets. Basic Concepts, Analysis Methods�
(Vol. 1). Ed. Springer-Verlag.

8. GXL, http://www.gupro.de/GXL/

9. GTK+, http://www.gtk.org/

10. J2SE, http://java.sun.com/j2se/

11. JGraph, http://jgraph.sourceforge.net/

12. Luis Alejandro Cortés, Petru Eles, Zebo Peng �A Survey on

Hardware/Software Codesign Representation Models�. 1999.6.

13. Meta Edit+, http://www.metacase.com/methods/

14. Microsoft Visio 2003,
 http://www.microsoft.com/office/preview/visio/overview.asp

15. Paul Pop �Scheduling and Communication Synthesis for

Distributed Real-Time Systems� .2000.

16. Petru Eles, Krzysztof Kuchcinski, Zebo Peng, �Scheduling of

Towards an Extensible Visual Editor for Embedded Systems Representation Models

60

Condtional Process Graphs for the Synthesis of Embedded
Systems�.

17. PGML, http://www.w3.org/TR/1998/NOTE-PGML-19980410

18. PIPE (Platform Independent Petri net Editor),

 http://petri-net.sourceforge.net/

19. Predator Editor,
 http://cadgraphicswest.com/html/predator_editor.html

20. Robin.J.Wilson �Introduction to Graph Theory�. Ed. Academic

Press. INC.

21. Statemate, http://www.ilogix.com/products/magnum/index.cfm

22. SVG, http://www.w3.org/TR/SVG/

23. Syed Zia Akbar Zaidi �Portable Automotive Electronic Models

Using Standard XML Technologies�. 2002.

24. Wayne Wolf. �Computers as Components, Principles of Embedded
Computing System Design�. 2001.

 http://www.ee.princeton.edu/~wolf/embedded-book/overheads/

25. Wayne H. Wolf �Hardware-Software Co-Design of Embedded
Systems�. 1994.

26. W. Reisig �A Primer in Petri net Design�. Ed. Springer-Verlag.

27. UML Statechart,

http://www.dotnetcoders.com/web/learning/uml/diagrams/statechar
t.aspx

