Per Christian Hansen, DTU Compute
EXERCISES — INTRO TO DISCRETE INVERSE PROBLEMS

Preparation
Download the Regularization Tools MATLAB software from
http://www?2.imm.dtu.dk/~pch/Regutools |,

unpack the zip file, and place all the functions in a directory. Start MATLAB
and go to the directory. Have fun with the exercises!

1. SVD Analysis of the Gravity Surveying Problem

The purpose of this exercise is to illustrate how a simple inverse problem is
discretized by means of the midpoint quadrature rule. The exercise also illus-
trates that the coefficient matrix for the resulting system of linear equations
is very ill conditioned, and that the solution is highly sensitive to errors.

We use the geophysical model problem from the slides. For a problem with
n data points and also n unknowns, and using s; = (i—31)/nand ¢; = (j—3)/n
for the collocation and quadrature points, derive the following formula for the
matrix elements

d o -3/2 .
ay = (P + (G =Hm)) T dd=1.n,

and explain why the matrix A is symmetric.

This is implemented in the function gravity in Regularization Tools. Use
this function (e.g., for n = 32) to generate the matrix A, the right-hand side
b= Az and the exact solution x for two different choices — one corresponding
to a smooth solution (constant and linear functions are not allowed), and one
corresponding to a solution with a jump discontinuity. You can use examples
1 and 3 in gravity. Notice that the right-hand side is always smooth. Study
experimentally how the right-hand side varies with the depth d.

Now we consider the condition number of A (MATLAB: cond(A)). Keep n
fixed and study how the condition number varies with d. Can you intuitively
explain the observed behavior.

Try to solve the problem by computing the “naive” solution z = A~1b
(MATLAB: x = A\b) for n = 32 and d = 0.25. First solve the problem with a
noise-free right-hand side; then try again with perturbed right-hand sides b+ e
in which a very small amount of Gaussian white noise e has been added. How
large can you make the noise (as measured by ||e||2) before the inverted noise
starts to dominate the computed solution? Start with ||e]|s = 107'.



2. TSVD Solutions

Use the function shaw from Regularization Tools to generate the test problem
for n = 60, and add Gaussian white noise e computed as 0.001*randn(n,1)
— corresponding to the standard deviation n = 0.001. Then use the calls

[U,s,V] = csvd(A); [X,resnrm,solnrm] = tsvd(U,s,V,b,1:15);

to compute the TSVD solutions for truncation parameters k = 1,2,...,15,
along with the residual and solution norms. The function csvd from Regular-
ization Tools computes a “thin SVD” instead of the “full SVD” computed by
MATLAB’s svd function, and it stores the singular values in a vector. The
function tsvd needs this form of the SVD as input.

Inspect the TSVD solutions zj, stored as the columns of the matrix X;
what value of k gives the best approximate solution? What is the norm of
the corresponding residual, and can you relate this norm to the norm of the
error vector e? Why are the norms of z;, and z®%°* almost identical for the
optimal £7 Hint: think about the behavior of the SVD components.

3. Tikhonov Solutions via SVD

The purpose of this exercise is to illustrate Tikhonov regularization of the
second derivative test problem. Use the call [A,b,x] = deriv2(n,3) function
to generate the test problem with n = 32. Then use [U,s,V] = csvd(A) to
compute the SVD of A, and inspect the singular values.

Add a bit of noise to the right-hand side, e.g., 1e-3*randn(size (b)) cor-
responding to noise with standard deviation n = 0.001. This noise is certainly
not visible when plotting the right-hand side vector, but very significant with
respect to the naive solution.

Now use MATLAB'’s logspace function to generate a number of different
regularization parameters X in the range 1072 to 1, compute the corresponding
filter factors gp,w by means of £il fac, as well as the corresponding Tikhonov
solution x, by means of

[X,res_norm,sol norm] = tikhonov(U,s,V,b,lambda)

For each A, plot both the filter factors and the solution, and comment on your
results.

4. From Over-Smoothing to Under-Smoothing

The purpose of this exercise is to illustrate how the Tikhonov solution xy, its
norm ||z, ||z, and the residual norm ||Ax) — b|| change as A goes from large
values (over-smoothing) to small values (under-smoothing). Use the shaw test
problem from Regularization Tools with n = 32, and add Gaussian white noise
with standard deviation n = 1073 to the right-hand side.



Use lambda = logspace(1,-5,20) to generate 20 logarithmically distribu-
ted values of A from 107° to 10. Then use csvd to compute the SVD of A and
use

[X,res_norm,sol_norm] = tikhonov(U,s,V,b,lambda)

to compute the 20 corresponding Tikhnonov solutions x), stored as columns
of the matrix X. Inspect the columns of the matrix X (e.g., by means of mesh
or surf) in order to study the progression of the regularized solution z) as A
varies from over-smoothing to under-smoothing.

Use loglog to plot the L-curve, i.e., the solution norm |xy||s versus the
residual norm || A z) —b||2, for the chosen values of A. Explain how the behavior
of the L-curve is related to the behavior of the regularized solutions.

For the given A-values in lambda (or perhaps more values in the same in-
terval) compute the error norm ||x°*** — z, || and plot it versus A. Determine
the optimum value of X\ — the one that leads to the smallest error norm — and
locate the position of the corresponding solution on the L-curve. Is it near the
“corner”?

5. The GCV and L-curve Parameter-Choice Methods

This exercise illustrates the use of the GCV and L-curve methods for choosing
the regularization parameter, and we compare these methods experimentally.
As part of this comparison we investigate how robust — or reliable — the meth-
ods are, i.e., how often they produce a regularization parameter close to the
optimal one. We use the shaw test problem with n = 64 and the parameter-
choice functions gcv and 1_curve from Regularization Tools.

Plot the GCV function for, say, 10 different perturbations with the same
n = 0.01, and note the general behavior of the GCV function. Is the minimum
always at the transition region between the flat part and the more vertical
part?

Use the L-curve criterion to compute the regularization parameter, for the
same perturbations as above. Does the regularization parameter computed by
means of 1_curve always correspond to a solution near the corner?

If you are not completely out of energy at this time, try the experiments
again, this time with the discrepancy principle; use the function discrep from
Regularization 'Tools.



