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Choosing the Regularization Parameter

i

At our disposal: several regularization methods, based on filtering of the
SVD components.

Often fairly straightforward to “eyeball” a good TSVD truncation
parameter from the Picard plot.

Need: a reliable and automated technique for choosing the regularization
parameter, such as k (for TSVD) or A (for Tikhonov).

Specifically: an efficient, robust, and reliable method for computing the
regularization parameter from the given data, which does not require the
computation of the SVD or any human inspection of a plot.

Text book: “Discrete Inverse Problems: Insight and Algorithms”
Read sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6.
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Once Again: Tikhonov Regularization

i

’ From now on, we consider a rectangular matrix A of dimensions m x n.

Focus on Tikhonov regularization; ideas carry over to many other methods.

Recall that the Tikhonov solution xy solves the problem
min {|Ax — b[3 + A2[x[3}
and that it is formally given by
xx=(ATA+X21)71ATh = AT b,

where
Af = (ATA+ X°1)TAT = a "regularized inverse.”
Our noise model
b — bexact + e
where b3t = A x®@t 3nd e is the error.

Intro to Inverse Problems Chapter 5 Reg. Parameter Choice 2/29



An Example (Image of lo,

Exact

R, AL
1 . 7R

A too large

Intro to Inverse Problems

a Moon of Saturn)

Blurred

Chapter 5 Reg. Parameter Choice

=
—
=

i

3/29



=
—
=

Perspectives on Regularization

Problem formulation: balance the fit (residual) and the size of solution.

i

X\, = argmin {HAX — bH% + )\2HxH§} .
Cannot be used for choosing A.

Forward error: balance regularization errors and perturbation errors.

Xexact —x\ = Xexact o Aj\#(bexact + e)
= (1 - A A)x" — Ale
AXbias AXpert

Backward/prediction error: balance contributions from the exact data
and the perturbation.

pexact _ Axy, = pexact _ AAf(bexact + e)

_ # X #
= (1-Anf) bt aafe.
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More About the Forward Error
The forward error in the SVD basis:

xexact x\ = xexact q)[)\] Yy~ UTb

—  xeact _ v q)[)\] zf UTA sexact

= V(I -ol)yTxoect _vollg-1yTe

The first term is the regularization error
n
Axpias = V (I = O VTxoot =3 "(1 ¢
i=1
which introduces a bias in the solution.
The second error term is the perturbation error:
Axperr = VORI T~ yTe

which is caused by the errors in the data.
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Regularization and Perturbation Errors — TSVD

i

For TSVD solutions, the regularization and perturbation errors take the

form
n k uTe
T _exact 2 : i
AXbias = E (Vi X ) Vi, AXpert - ;' Vi
i=k-+1 i=1 !

We use the truncation parameter k to prevent the perturbation error from
blowing up (due to the division by the small singular values), at the cost of
introducing bias in the regularized solution.

A “good” choice of the truncation parameter k should balance these two
components of the forward error (see next slide).

The behavior of ||xk||2 and ||Axx — b||2 is closely related to these errors —
see the analysis in §5.1.
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The Regularization and Perturbation

Errors
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The norm of the regularization and perturbation error for TSVD as a
function of the truncation parameter k. The two different errors

approximately balance each other for kK = 11.
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The Discrepancy Principle

The discrepancy principle (DP) seeks to find a regularized solution such
that the residual is of the same size as the errors, by solving

2 2
|Axx = bll3 =7 lell2 ,
where 7 is some parameter 7 = O(1).

A statistician’s point of view. Write x) = Afb and assume that
Cov(b) = n?I; choose the ) that solves

A%, — b3 = [le]3 — n? trace(A Af) .

Note that the right-hand side now depends on .

=
—
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i

If e is white noise with variance n? then £(||e||3) = nn?, which we can use

in the DP. In the alternative approach we can use 72 (m — trace(A A7)).
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lllustration of the Discrepancy Principle

i

02 Overdetermined system, m = 5460, n = 4096 Underdetermined system, m = 3276, n=4096
— 112 — ™2
qi m - Pm
—e=ef (m-t) === (m-t)
——Reconstr. error . ——Reconstr. error
0 1000 2000 3000 4000 5000 6000 7000 o 500 1000 1500 2000 2500 3000

Parallel-beam CT example: 64 x 64 image; 91 detector pixels; projection
angles 3°,6°,9°,...,180° (left) and 8°,16°,24°,...,180° (right).

Figures show the TSVD reconstruction error ||X — xk||2 and residual norm
|b — Axy||2 versus k, together with threshold 72 m and the function
n? (m — tx) where t; = trace term. Plain vanilla DP is not doing well.
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The L-Curve for Tikhonov Regularization

Recall that the L-curve is a log-log-plot of the solution norm versus the
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i

residual norm, with \ as the parameter. It is very useful for monitoring the

influence of \.

10

-
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-
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Solution norm || X, ||2
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Parameter-Choice and the L-Curve

i

Recall that the L-curve basically consists of two parts.
o A “flat” part where the regularization errors dominates.

o A “steep” part where the perturbation error dominates.
The component b¥3 dominates when \ is large:
|xxll2 & [|x®2<t||> (constant)
||b — Axy||2 increases with .
The error e dominates when X is small:
|xx |2 increases with A=t

IIb — Axy||2 = ||e]|2 (constant.)
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The L-Curve Criterion

i

The flat and the steep parts of the L-curve represent solutions that are
dominated by regularization errors and perturbation errors.

@ Intuitively, we expect that the balance between these two errors must
occur near the L-curve's corner.

@ The two parts — and the corner — are emphasized in log-log scale.

o Log-log scale is insensitive to scalings of A and b.

An operational definition of the corner is required.

Write the L-curve as

(log [|[Axx — bll2, log [xx[l2)

and seek the point with maximum curvature.
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The Curvature of the L-Curve

i

We want to derive an analytical expression for the L-curve's curvature ¢ in
log-log scale. Define

E=lalz.  p=Il1Ax— b3

and

~

§=log¢, p=logp .

Then the curvature is given by

AEN Al
P Apﬁ s 7
((7)2 + (€)%)3/2
where a prime denotes differentiation with respect to \.

This can be used to define the “corner” of the L-curve as the point with
maximum curvature.
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[[lustration
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An L-curve and the corresponding curvature ¢, as a function of A. The
corner, which corresponds to the point with maximum curvature, is marked
by the red circle; it occurs for A\, = 4.86 - 1073.
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The Prediction Error and (Ordinary) Cross-Validation

A different kind of goal: find the value of X\ or k such that Ax) or Axx
predicts the exact data b¥2t = A x®3t 35 well as possible.

i

(Ordinary) cross validation is based on a leave-one-out approach:
skip ith element b; and predict this element.

A = AL i—1,i4+1:m],:)
b() = p([1:i—1,i+1: m])
x/(\i) = (A("))fb(") (Tikh. sol. to reduced problem)

blprediCt = A(i,: )x)(\i) (prediction of “missing” element.)

The optimal A minimizes the quantity

m

C()\) _ Z(bi B blpredict)z .

i=1

But A is really hard to compute, and depends on the ordering of the data.
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Generalized Cross-Validation

Want a scheme for which A is independent of any orthogonal
transformation of b (incl. a permutation of the elements).

Minimize the GCV function

1A xx — blI3
G(\) = e
trace(l, — AAT)

where

trace(/pm, — AAf) =m-— Z <p[.’\]

i
i=1
Easy to compute the trace term when the SVD is available.

For TSVD the trace term is particularly simple:
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The GCV Function

i

gy = 00091999

107 F 0 20 40 60

The GCV function G(A) for Tikhonov regularization; the red circle shows
the parameter Agcy as the minimum of the GCV function, while the cross
indicates the location of the optimal parameter.
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Occasional Failure —

>

Occasional failure leading to a too small A; more pronounced for correlated
noise.

Ry = 0.00045723
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Extracting Signal in Noise

i

An observation about the residual vector.
e If \is too large, not all information in b has not been extracted.
@ If X\ is too small, only noise is left in the residual.

Choose the X for which the residual vector changes character from “signal’
to “noise.”

Our tool: the normalized cumulative periodogram (NCP).
Let py € R"2 be the residual’s power spectrum, with elements

(Pa)k = [dft(Axy — b)il?>,  k=1,2,...,n/2.
Then the vector c(ry) € R"/?~1 with elements

lpA(2: k+1)|I1
c(ry) = A Kl o
() =@ /)l /

is the NCP for the residual vector.
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NCP Analysis =
>
White noise LF noise HF noise
1 7
Ve Z 4

0.5 7

0 Pd r.

0 64 128 0 64 128 0 64 128

Left to right: 10 instances of white-noise residuals, 10 instances of residuals
dominated by low-frequency components, and 10 instances of residuals
dominated by high-frequency components.

The dashed lines show the Kolmogorov-Smirnoff limits
+1.35¢ /2 ~ +0.12 for a 5% significance level, with g = n/2 — 1.
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The Transition of the NCPs

i

Plots of NCPs for various regularization parameters X, for the test problem
deriv2(128,2) with rel. noise level |le[|2/||6®3||2 = 107°.
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Implementation of NCP Criterion

i

Two ways to implement a pragmatic NCP criterion.

@ Adjust the regularization parameter until the NCP lies solely within
the K-S limits.

@ Choose the regularization parameter for which the NCP is closest to a
straight line cuhite = (1/9,2/q,...,1)7.
The latter is implemented in Regularization Tools.
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Summary of Methods (Tikhonov)
Discrepancy principle (discrep):
Choose A\ = A\pp such that |Axy — b|]2 = vgpl|e]|2.
L-curve criterion (1_curve):
Choose A = AL such that the curvature &, is maximum.
GCV criterion (gcv):
[Ax,y — b3
(m -2 WE/\])T

Choose A = Agcv as the minimizer of G(\) =

NCP criterion (ncp):

Choose A\ = Ancp as the minimizer of d(A\) = ||c(r\) — cwhitel|2-
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Comparison of Methods

i

To evaluate the performance of the four methods, we need the optimal
regularization parameter Agpt:

Aopt = argmin, || x®2t — x, .
This allows us to compute the four ratios
A A A A
RDP = ﬂ, RL = 7L7 RGCV = GCVa RNCP = NCPv
)\opt )\opt >\opt )\opt

one for each parameter-choice method, and study their distributions via
plots of their histograms (in log scale).

The closer these ratios are to one, the better, so a spiked histogram
located at one is preferable.
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First Example: gravity

>
>
>
Discrep. Pr. L-curve
250 250
20012 200
100
150 150
0
100 001 1 100 100
50 50
0 i = 0 1
0.001 0.01 01 1 10 100 0.001 0.01 0.1 1 10 100
-4 2
|- 10* - 10? |
GCV NCP
250 250
200 200
150 150
100 100
50 50
0 0
0.001 001 01 1 10 100 0.001 0.01 0.1 1 10 100
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Second Example: shaw

Discrep. Pr. L-curve
150 150
150
100
1001 50 100
0
0.01 1 100
50 50
0 0
0.001 0.01 041 1 10 100 0.001 0.01 041 1 10 100
-4 2
|- 10* - 10? |
GCV NCP
150 150
100 100
50 50
0 0
0.001 0.01 041 1 10 100 0.001 0.01 041 1 10 100
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Summary

i

@ The discrepancy principle is a simple method that seeks to reveal
when the residual vector is noise-only. It relies on a good estimate of
|lel|2 which may be difficult to obtain in practise.

@ The L-curve criterion is based on an intuitive heuristic and seeks to
balance the two error components via inspection (manually or
automated) of the L-curve. This method fails when the solution is
very smooth.

@ The GCV criterion seeks to minimize the prediction error, and it is
often a very robust method — with occasional failure, often leading to
ridiculous under-smoothing that reveals itself.

@ The NCP criterion is a statistically-based method for revealing when
the residual vector is noise-only, based on the power spectrum. It can
mistake LF noise for signal and thus lead to under-smoothing.
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