
Choosing the Regularization Parameter

At our disposal: several regularization methods, based on filtering of the
SVD components.

Often fairly straightforward to “eyeball” a good TSVD truncation
parameter from the Picard plot.

Need: a reliable and automated technique for choosing the regularization
parameter, such as k (for TSVD) or λ (for Tikhonov).

Specifically: an efficient, robust, and reliable method for computing the
regularization parameter from the given data, which does not require the
computation of the SVD or any human inspection of a plot.

Text book: “Discrete Inverse Problems: Insight and Algorithms”
Read sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6.
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Once Again: Tikhonov Regularization
From now on, we consider a rectangular matrix A of dimensions m × n.

Focus on Tikhonov regularization; ideas carry over to many other methods.

Recall that the Tikhonov solution xλ solves the problem

min
x

{
‖Ax − b‖22 + λ2‖x‖22

}
,

and that it is formally given by

xλ = (ATA + λ2I )−1ATb = A#
λ b,

where
A#
λ = (ATA + λ2I )−1AT = a “regularized inverse.”

Our noise model
b = bexact + e

where bexact = Axexact and e is the error.
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An Example (Image of Io, a Moon of Saturn)
Exact Blurred

λ too large λ ≈ ok λ too small
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Perspectives on Regularization
Problem formulation: balance the fit (residual) and the size of solution.

xλ = arg min
{
‖Ax − b‖22 + λ2‖x‖22

}
.

Cannot be used for choosing λ.

Forward error: balance regularization errors and perturbation errors.

xexact − xλ = xexact − A#
λ (bexact + e)

=
(
I − A#

λ A
)
xexact︸ ︷︷ ︸

∆xbias

− A#
λ e︸︷︷︸

∆xpert

.

Backward/prediction error: balance contributions from the exact data
and the perturbation.

bexact − Axλ = bexact − AA#
λ (bexact + e)

=
(
I − AA#

λ

)
bexact − AA#

λ e .
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More About the Forward Error
The forward error in the SVD basis:

xexact − xλ = xexact − V Φ[λ] Σ−1 UTb

= xexact − V Φ[λ] Σ−1 UTAxexact − V Φ[λ] Σ−1 UT e

= V
(
I − Φ[λ]

)
V T xexact − V Φ[λ] Σ−1 UT e.

The first term is the regularization error

∆xbias = V
(
I − Φ[λ]

)
V T xexact =

n∑
i=1

(
1− ϕ[λ]

i

)
(vTi xexact) vi

which introduces a bias in the solution.

The second error term is the perturbation error:

∆xpert = V Φ[λ] Σ−1 UT e

which is caused by the errors in the data.
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Regularization and Perturbation Errors – TSVD

For TSVD solutions, the regularization and perturbation errors take the
form

∆xbias =
n∑

i=k+1

(vTi xexact) vi , ∆xpert =
k∑

i=1

uTi e

σi
vi .

We use the truncation parameter k to prevent the perturbation error from
blowing up (due to the division by the small singular values), at the cost of
introducing bias in the regularized solution.

A “good” choice of the truncation parameter k should balance these two
components of the forward error (see next slide).

The behavior of ‖xk‖2 and ‖Axk − b‖2 is closely related to these errors –
see the analysis in §5.1.
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The Regularization and Perturbation Errors

The norm of the regularization and perturbation error for TSVD as a
function of the truncation parameter k . The two different errors
approximately balance each other for k = 11.
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The Discrepancy Principle

The discrepancy principle (DP) seeks to find a regularized solution such
that the residual is of the same size as the errors, by solving

‖Axλ − b‖22 = τ ‖e‖22 ,

where τ is some parameter τ = O(1).

A statistician’s point of view. Write xλ = A#
λ b and assume that

Cov(b) = η2I ; choose the λ that solves

‖Axλ − b‖22 = ‖e‖22 − η2 trace(AA#
λ ) .

Note that the right-hand side now depends on λ.

If e is white noise with variance η2 then E(‖e‖22) = n η2, which we can use
in the DP. In the alternative approach we can use η2(m − trace(AA#

λ )
)
.
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Illustration of the Discrepancy Principle

Parallel-beam CT example: 64× 64 image; 91 detector pixels; projection
angles 3◦, 6◦, 9◦, . . . , 180◦ (left) and 8◦, 16◦, 24◦, . . . , 180◦ (right).

Figures show the TSVD reconstruction error ‖x̄ − xk‖2 and residual norm
‖b − Axk‖2 versus k , together with threshold η2 m and the function
η2 (m − tk) where tk = trace term. Plain vanilla DP is not doing well.
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The L-Curve for Tikhonov Regularization
Recall that the L-curve is a log-log-plot of the solution norm versus the
residual norm, with λ as the parameter. It is very useful for monitoring the
influence of λ.
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Parameter-Choice and the L-Curve

Recall that the L-curve basically consists of two parts.
A “flat” part where the regularization errors dominates.
A “steep” part where the perturbation error dominates.

The component bexact dominates when λ is large:

‖xλ‖2 ≈ ‖xexact‖2 (constant)

‖b − Axλ‖2 increases with λ.

The error e dominates when λ is small:

‖xλ‖2 increases with λ−1

‖b − Axλ‖2 ≈ ‖e‖2 (constant.)
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The L-Curve Criterion

The flat and the steep parts of the L-curve represent solutions that are
dominated by regularization errors and perturbation errors.

Intuitively, we expect that the balance between these two errors must
occur near the L-curve’s corner.
The two parts – and the corner – are emphasized in log-log scale.
Log-log scale is insensitive to scalings of A and b.

An operational definition of the corner is required.

Write the L-curve as

(log ‖Axλ − b‖2 , log ‖xλ‖2)

and seek the point with maximum curvature.
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The Curvature of the L-Curve

We want to derive an analytical expression for the L-curve’s curvature ζ in
log-log scale. Define

ξ = ‖xλ‖22 , ρ = ‖Axλ − b‖22

and
ξ̂ = log ξ , ρ̂ = log ρ .

Then the curvature is given by

ĉλ = 2
ρ̂′ξ̂′′ − ρ̂′′ξ̂′

((ρ̂′)2 + (ξ̂′)2)3/2
,

where a prime denotes differentiation with respect to λ.

This can be used to define the “corner” of the L-curve as the point with
maximum curvature.
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Illustration

An L-curve and the corresponding curvature ĉλ as a function of λ. The
corner, which corresponds to the point with maximum curvature, is marked
by the red circle; it occurs for λL = 4.86 · 10−3.

Intro to Inverse Problems Chapter 5 Reg. Parameter Choice 14 / 29



The Prediction Error and (Ordinary) Cross-Validation
A different kind of goal: find the value of λ or k such that Axλ or Axk
predicts the exact data bexact = Axexact as well as possible.

(Ordinary) cross validation is based on a leave-one-out approach:
skip ith element bi and predict this element.

A(i) = A([1 : i − 1, i + 1 : m], : )

b(i) = b([1 : i − 1, i + 1 : m])

x
(i)
λ =

(
A(i)
)#
λ
b(i) (Tikh. sol. to reduced problem)

bpredict
i = A(i , : ) x

(i)
λ (prediction of “missing” element.)

The optimal λ minimizes the quantity

C(λ) =
m∑
i=1

(
bi − bpredict

i

)2
.

But λ is really hard to compute, and depends on the ordering of the data.
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Generalized Cross-Validation
Want a scheme for which λ is independent of any orthogonal
transformation of b (incl. a permutation of the elements).

Minimize the GCV function

G (λ) =
‖Axλ − b‖22

trace(Im − AA#
λ )2

where

trace(Im − AA#
λ ) = m −

n∑
i=1

ϕ
[λ]
i .

Easy to compute the trace term when the SVD is available.

For TSVD the trace term is particularly simple:

m −
n∑

i=1

ϕ
[λ]
i = m − k .
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The GCV Function

The GCV function G (λ) for Tikhonov regularization; the red circle shows
the parameter λGCV as the minimum of the GCV function, while the cross
indicates the location of the optimal parameter.
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Occasional Failure

Occasional failure leading to a too small λ; more pronounced for correlated
noise.
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Extracting Signal in Noise

An observation about the residual vector.
If λ is too large, not all information in b has not been extracted.
If λ is too small, only noise is left in the residual.

Choose the λ for which the residual vector changes character from “signal”
to “noise.”

Our tool: the normalized cumulative periodogram (NCP).
Let pλ ∈ Rn/2 be the residual’s power spectrum, with elements

(pλ)k = |dft(Axλ − b)k |2, k = 1, 2, . . . , n/2 .

Then the vector c(rλ) ∈ Rn/2−1 with elements

c(rλ) =
‖pλ(2 : k+1)‖1
‖pλ(2 : n/2)‖1

, k = 1, . . . , n/2− 1

is the NCP for the residual vector.
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NCP Analysis

Left to right: 10 instances of white-noise residuals, 10 instances of residuals
dominated by low-frequency components, and 10 instances of residuals
dominated by high-frequency components.

The dashed lines show the Kolmogorov-Smirnoff limits
±1.35 q−1/2 ≈ ±0.12 for a 5% significance level, with q = n/2− 1.
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The Transition of the NCPs

Plots of NCPs for various regularization parameters λ, for the test problem
deriv2(128,2) with rel. noise level ‖e‖2/‖bexact‖2 = 10−5.
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Implementation of NCP Criterion

Two ways to implement a pragmatic NCP criterion.
Adjust the regularization parameter until the NCP lies solely within
the K-S limits.
Choose the regularization parameter for which the NCP is closest to a
straight line cwhite = (1/q, 2/q, . . . , 1)T .

The latter is implemented in Regularization Tools.
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Summary of Methods (Tikhonov)
Discrepancy principle (discrep):

Choose λ = λDP such that ‖Axλ − b‖2 = νdp‖e‖2.

L-curve criterion (l_curve):

Choose λ = λL such that the curvature ĉλ is maximum.

GCV criterion (gcv):

Choose λ = λGCV as the minimizer of G (λ) =
‖Axλ − b‖22(

m −
∑n

i=1 ϕ
[λ]
i

)2 .

NCP criterion (ncp):

Choose λ = λNCP as the minimizer of d(λ) = ‖c(rλ)− cwhite‖2.
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Comparison of Methods

To evaluate the performance of the four methods, we need the optimal
regularization parameter λopt:

λopt = argminλ‖xexact − xλ‖2.

This allows us to compute the four ratios

RDP =
λDP

λopt
, RL =

λL

λopt
, RGCV =

λGCV

λopt
, RNCP =

λNCP

λopt
,

one for each parameter-choice method, and study their distributions via
plots of their histograms (in log scale).

The closer these ratios are to one, the better, so a spiked histogram
located at one is preferable.
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First Example: gravity
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Second Example: shaw
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Summary

The discrepancy principle is a simple method that seeks to reveal
when the residual vector is noise-only. It relies on a good estimate of
‖e‖2 which may be difficult to obtain in practise.
The L-curve criterion is based on an intuitive heuristic and seeks to
balance the two error components via inspection (manually or
automated) of the L-curve. This method fails when the solution is
very smooth.
The GCV criterion seeks to minimize the prediction error, and it is
often a very robust method – with occasional failure, often leading to
ridiculous under-smoothing that reveals itself.
The NCP criterion is a statistically-based method for revealing when
the residual vector is noise-only, based on the power spectrum. It can
mistake LF noise for signal and thus lead to under-smoothing.
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