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Tikhonov Regularization in General Form §8.1

i

To introduce a more general formulation, let us return to the continuous
formulation of the first-kind Fredholm integral equation.

In this setting, the residual norm for the generic problem is

1
R(f)—‘/o K(s,t) £(£) dt — g(s)

2

In the same setting, we can introduce a smoothing norm S(f) that

measures the regularity of the solution f. Common choices of S(f) belong
to the family given by

1 1/2
S(f) = |f 9|, = (/ (f(d)(t))zdt> . d=0,1,2,...,
0
where £(9) denotes the dth derivative of f.
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General Form Contd.

i

Then we can write the Tikhonov regularization problem for f in the form
min { R(f)* + A2 S()? }, (1)

where X plays the same role as in the discrete setting.

The previous discrete Tikhonov formulation is merely a special version of
this general Tikhonov problem with S(f) = ||f||2.

We obtain a general version by replacing the norm ||x||2 with a
discretization of the smoothing norm S(f), of the form ||L x||2, where L is
a discrete approximation of a derivative operator.

The Tikhonov regularization problem in general form is thus
: 2 2 2
min {[|Ax — B[+ A% [Lx|3) .
The matrix L is p x n with no restrictions on the dimension p.

02906 Intro to Inverse Problems Chapter 8 — Beyond the 2-Norm Module 7?7 2/18



o
—
=

A Transformation to Standard Form

i

If L is invertible, such that L~! exists, then the solution can be written as
XA = Lil)_o\
where X, solves the standard-form Tikhonov problem

min{[[(AL™") % — b3 + X[|x]3}-

The multiplication with L~ in the back-transformation x, = L™1xy
represents integration, which yields additional smoothness in the Tikhonov
solution, compared to L = /.

The same is also true for more general rectangular and non-invertible
smoothing matrices L.
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More About L

i

Similar to the standard-form problem obtained for L = /, the general-form
Tikhonov solution x; y is the solution to a linear least-squares problem:

() ()

The solution x; y is unique when the coefficient matrix has full rank, i.e.,
when the null spaces of A and L intersect trivially:

min
X

2

N(A)NN(L) = 0.
Since multiplication with A represents a smoothing operation, it is unlikely
that a smooth null vector of L (if L is rank deficient) is also a null vector

of A.

Various choices of the matrix L are discussed in §8.2.
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Common L's

i

Two common choices of L are the rectangular matrices

L = | ert-vxn

L, = ER(n_Z)Xn
1 -21
which represent the first and second derivative operators.
In Reg. Tools use get_1(n,1) and get_1(n,2) to compute these matrices.

Thus, the discrete smoothing norm ||L x||2, with L given by either /, L; or
Ly, represents the continuous smoothing norms S(f) = ||f||2, ||f||2, and
|| £"||2, respectively.
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[[lustration

i

To illustrate the improved performance of the general-form formulation,
consider a simple ill-posed problem with missing data.

Let x be given as samples of a function, and let the right-hand side be
given by a subset of these samples, e.g.,

_ _(hee O O
b=Ax, A_<0 0 /right> ’

where fiege and ligh are two identity matrices.

The figure next page shows the solution x (consisting of samples of the
sine function), as well as three reconstructions obtained with the three
discrete smoothing norms ||x||2, ||L1 x||2 and ||L2 x]|2.

The first choice is bad: the missing data are set to zero, in order to
minimize the 2-norm of the solution. The choice ||L; x||2 produces a linear
interpolation in the interval with missing data, while the choice || L2 x||2
produces a quadratic interpolation here.
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[[lustration
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Moving Away From the 2-Norm §8.6

i

Tikhonov is based on penalizing the 2-norm of the solution:
min {[|Ax — bl|3 + o*|Ix|I3} .

The same is true for TSVD, which can also be formulated as
k
min ||x|l2 subject to ||Axx — b|2 = min, Ax = Z uioj v
i=1

It is the 2-norm penalization, together with the spectral properties of the
SVD basis vectors, that cause a bad reconstruction of the edges =
discontinuities.

It turns our that it is a better idea to involve the derivative of the solution
and another norm!

So what is a good smoothing norm S(f)?
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An Example Using a Continuous Function

i

y=f(x)

0 1

Consider the piecewise linear function

0, 0<t<3(1-h)

f(t) = t_1-h la-mn<t<ia+n
h 2h 7 2 - 2
1, 1+h<t<1
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Norms of the First Derivative

i

It is easy to show that the 1- and 2-norms of f’(t) satisfy

/ _ ! ! _ hl _
'L = |f'(t)] dt = dt =1,
0 o h

1113 = /lf’(t)zdt:/hldtzl.
0 0 h? h

Note that ||f'||1 is independent of the slope of the middle part of f(t),
while ||f'||2 penalizes steep gradients (when h is small).

@ The 2-norm of f(t) will not allow any steep gradients and therefore it
produces a smooth solution .

@ The 1-norm, on the other hand, allows some steep gradients — but not
too many — and it is therefore able to produce a less smooth solution,
and even a discontinuous solution.
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Total Variation (TV) Regularization

i

The example motivates us to replace Tikhonov's 2-norm with the 1-norm
of the first derivative, which is known as the total variation.

In the discrete setting:
min {[|Ax — b3+ a[Lx]1}
where

| — ER(n_l)Xn
-1 1
such that ||L x||; approximates the total variation ||f’||;.

The figure on the next page shows a good TV reconstruction to the
barcode problem.
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[llustration
The barcode intensity f(t) (blue) and the point spread function (red)
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TV in 2D

i

In two dimensions, given a function f(t) with t = (¢1, t2), we use the
gradient magnitude define as

1
AN CARE
V=15 —
V7] ((3H> +_<5f2> > ’
to obtain the 2D version of the total variation H|Vf]||1 The relevant
norms of f(t) are now

[ oo () () oo
//|Vf| dtldtz—/ / (atj (g;)zdtldb.
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An Example in 2D

To illustrate the difference between these two norms, consider a function
f(t) with the polar representation

1, 0<r<R
f(rnd)=q 1+8 -2 R<r<R+h
0, R4+h<r.
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2D Example Continued -

>
>

The function f is 1 inside the disk with radius r = R, zero outside the disk
with radius r = R + h, and it has a linear radial slope between 0 and 1. In
the area between these two disks the gradient magnitude is |[Vf| =1/h,

and elsewhere it is zero.
2 rR+h g
/ / —rdrdf =27R+ mh
o Jr A

27 R+h 1 2R
/ / Srdrdo=="+m.

Similar to the one-dimensional example, we see that the total variation
smoothing norm is almost independent of the size of the gradient, while
the 2-norm penalizes steep gradients.

vl

11| 2

In fact, as h — 0 we see that H |V ] Hl converges to the circumference 27R.
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Total Variation Image Deblurring Example

i

This example is from the paper:

J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, Algorithms
and software for total variation image reconstruction via
first-order methods, Numerical Algorithms, 53 (2010), pp. 67-92.
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Total Variation Image Inpainting

Noisy and corrupted image

The computational problem:

minimize Z Z <Xi+1’j —Xj

== Xij+1 — Xij
subject to || (X — B)zll2 <6,

where Z denotes the index set of corrupted pixels.
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Total Variation Image Denoising (A = 1)

i

Original clean image Noisy image

TV denoised image, t=1.2
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