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In conclusion, inspection of the right singular vectors gives a lot of information about
the reconstruction. The singular vectors in the null space represent structures that we
cannot reconstruct, and the singular vectors outside the null space represent the structures
that we can reconstruct.

Exercises
If you use the MATLAB svd function in these exercises, then please be careful not to cre-
ate matrices that are too large, since the SVD computations may be very time-consuming.
Start with small image dimensions, say, 32�32, and determine the computing time; then
scale the problem, if desired, keeping in mind that the svd computing time is Opmn2q
for an m�n system matrixA. You will need to use svd in Exercises 10.5 to 10.7.

Alternatively, you may use the MATLAB svds function, which can be used to com-
pute a partial SVD, i.e., a smaller number of singular values and vectors. This is often
sufficient to get an understanding of the behavior of the SVD. You will use svds in the
remaining exercises.

Please keep in mind that for small image dimensions the computed singular vectors—
especially the right singular vectors vi—will not appear as nice and smooth as the ones
in the figures of this chapter. This is not due to errors in the discretization (or rounding
errors on the computer); it is due to the unavoidable approximation errors associated with
creating a discretized problem.

10.1. SVD Analysis of the Radon Transform
The goal of this exercise is to demonstrate how we can use the SVD to numerically
compute approximations to the singular values and singular functions of the Radon
transform. As explained in Section 10.4, we need to work with a disk domain
instead of the square image domain that is typical in CT. To aid this, we provide
three MATLAB functions:

 MatrixToDiskDomain removes columns of the matrix A corresponding to
pixels outside the disk.

 VectorToDiskDomain removes elements of the “long” vector x correspond-
ing to pixels outside the disk.

 VectorToRectDomain transforms a “short” vector x (in the disk domain)
to a square image that can be displayed; elements outside the disk are set
to NaN.

We suggest the following code, where the function paralleltomo is from AIR
Tools II:

N = 100; % Image dimension.
theta = 4:4:360; % Projection angles.
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A = paralleltomo(N,theta,N); % N detector pixels cover
% the disk domain.

A = MatrixToDiskDomain(A); % Remove columns.
[U,S,V] = svds(A,100); % Compute partial SVD.

We suggest that you use svds(A,100) to compute the first 100 SVD components.
Then plot the first 100 singular values σi by means of semilogy(diag(S)).
These singular values should behave like the analytic singular values for the Radon
transform.

Show some of the singular vectors as images, e.g., by means of the following code:

imagesc( VectorToRectDomain(V(:,i),N) )
imagesc( reshape(U(:,i),p,ntheta) )

You should see a resemblance with the analytic singular functions from Chapter 7.

Depending on your curiosity and patience, you may want to try larger image sizes,
more projection angles, and more detector elements.

10.2. SVD Analysis with a Square Domain
Repeat the above experiments, but this time use a square domain—i.e., skip the
transformation to the disk domain using the MatrixToDiskDomain function. Do
you see any significant change in the singular values and vectors?

10.3. SVD Analysis of a Fan-Beam CT Problem
You should also compute the partial SVD of the system matrix for a CT prob-
lem with fan-beam geometry and a linear detector. For example, you can use the
following code:

N = 100;
theta = 4:4:360;
A = fanlineartomo(N,theta);
A = MatrixToDiskDomain(A);

Here the function fanlineartomo is from AIR Tools II. You should see that the
singular values and vectors of this matrix are not so different from those for the
parallel-beam problem.

10.4. SVD Analysis of Limited-Angle Problems
As explained in Chapter 8, there are certain applications where we cannot mea-
sure projections for all angles; in this case we face a limited-angle problem. An
SVD analysis of such problems gives important insight into the properties of the
reconstructions that we can expect, thus complementing the analytic results.

Repeat the experiment from Exercise 10.1, but this time with a limited angular
range θ P r0�, 90�s Y r180�, 270�s generated as follows:

theta = 2:2:90;
theta = [theta,theta+180];
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You should see a striking difference in the right singular vectors for this problem.
Describe what you see, and also describe how this will influence the reconstruc-
tions for this problem.

What will happen to the singular vectors if you shift the angular range, e.g., by set-
ting theta = theta + 45? Try to predict the change before actually computing
the corresponding singular vectors.

10.5. SVD Coefficients and TSVD Solutions
Although we do not encourage the use of the SVD for practical solution of CT
problems, due to their large size, it is still instructive to perform an SVD analysis
of small systems Ax � b in order to get a feeling for the problem. We return
to the test problems from Exercise 10.1 and/or 10.2 (it’s your choice), and we
will now use the SVD to analyze the reconstruction problem for two different
phantoms:

 the Shepp–Logan phantom (see Section 5.4.2), which can be generated by
phantom(N) or phantomgallery(’shepplogan’,N), the former from
MATLAB and the latter from AIR Tools II, and

 a smooth phantom, generated by phantomgallery(’smooth’,N).

In both cases you must use VectorToDiskDomain to convert the square phantom
images to the disk domain, if you decide to work on that domain. Then compute
the corresponding data (the sinogram) b = A*x.

First, use the function svd(full(A)) to compute the complete SVD of the system
matrix—this will take several minutes, but we need many SVD coefficients in this
exercise. Since you need to compute the complete SVD, we suggest you use a
small image size, say, 32� 32.

For both phantoms, compute the SVD coefficients of the image x and the data b.
You can compute the vector of all SVD coefficients of the right-hand side by
means of beta = U’*b. Plot their absolute values by means of semilogy; we
do not need to see all the coefficients—the first 1000 are enough (if the SVD
computing time is too large, then just compute fewer components). Note that the
coefficients level off due to discretization effects. It is possible (but beyond the
scope of this book) to show that the coefficients for the smooth phantom decay
faster, initially, than those for the Shepp–Logan phantom; can you confirm this
with your experiment?

Now try to compute some TSVD reconstructions xk for different truncation pa-
rameters k. We expect that we will need fewer SVD components for the smooth
phantom than for the Shepp–Logan phantom. For each phantom, how many SVD
components are needed to compute a reasonable reconstruction?



208 Chapter 10. SVD Analysis of Tomography Problems

Figure 10.18. Left: The FBP reconstruction for a problem with only 24 projection angles
15�, 30�, 45�, . . . , 360� showing distinct line artifacts. Right: Four selected singular vectors vi in
which we see the same line structures.

10.6. TSVD Solutions to the Limited-Angle Problem
To continue the previous exercise, here we compute TSVD solutions for the lim-
ited-angle problem in Exercise 10.4, using the same two phantoms as before.
Again you need to compute the complete SVD here by means of svd(full(A)).
Try with both

theta = 2:2:90; theta = [theta,theta+180];

and

theta = 92:2:180; theta = [theta,theta+180]; ,

and comment on the appearance of the reconstructions.
10.7. SVD Analysis of a Problem with Very Few Projections

In this exercise we consider a problem where the projection angles cover the full
range from 0� to 360�, but there are very few projection angles. For example, you
can use these parameters:

N = 140; theta = 15:15:360; ,

and once again you should use svd(full(A)) to compute the complete SVD.
Reconstructions from so few projection data points have very distinct line arti-
facts, as shown in Figure 10.18. Your goal is to confirm that similar line structures
are present in some of the right singular vectors vi; see the four examples in Fig-
ure 10.18. Not all vectors have this structure, so you must carefully and patiently
monitor a number of these vectors.

10.8. The Significance of the Null Space
Figure 10.19 shows a very small problem with a 3�3 image and eight rays that are
pairwise parallel (you can think of this situation as being recorded by two detector
pixels and the object being rotated 0�, 45�, 90�, and 135�). The corresponding
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Figure 10.19. A very small problem with a 3 � 3 image and eight rays.
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2. (10.30)

Consider an example where the ground truth image, represented as a vector, is

x � p1 2 3 2 3 4 3 4 5qT . (10.31)

Then compute the corresponding projection data b � Ax.

Now compute the minimum-norm solution x0
LS. For such a small problem, the

easiest way to do this in MATLAB is to write pinv(A)*b, but don’t do that for
large problems. Can you reconstruct x in (10.31)?

To explain the difficulty with reconstructing this x, consider the following ques-
tions: what is the rank of A and what is the null space NullpAq? You can use the
MATLAB functions rank and null. Can you propose a different x that can be
perfectly reconstructed?


