
Exercises 239

Figure 11.17. Application of the trace estimate T est
k in the FTNL stopping rule for

Landweber’s method applied to the overdetermined test problem from Example 11.11. We used
10 different random vectors w in (11.33), and the corresponding 10 intersections between � k 2

2

(thick red line) and η2 m T est
k (thin blue lines) are shown by the red circles. The black dot

shows the intersection with the exact η2 m Tk .

Example 11.13. Continuing from the previous example, Figure 11.17 illustrates the use
of the trace estimate T est

k in the FTNL stopping rule. To show the variability of the stop-
ping rule we used 10 different random vectors w, leading to 10 different realizations of
η2 m T est

k . Their intersections with � k 2
2 are shown by the red circles, correspond-

ing to stopping the iterations at

k 3100, 3112, 3421, 3512, 3722, 3875, 4117, 4133, 5553, 7000.

The black dot marks the intersection of � k 2
2 with the exact η2 m Tk , corresponding

to iteration k 3846.

Exercises
For some of the exercises below, recall that we define the relative noise level as

ρ e 2 b 2 , b Ax .

Given rho and a noise-free right-hand side bex, we can generate such a noise vector e
and the corresponding noisy data b by means of the following code:

>> e = randn(size(bex));
>> e = rho*norm(bex)*e/norm(e);
>> b = bex + e;

240 Chapter 11. Algebraic Iterative Reconstruction Methods

11.1. Return to the Very Small System
Here we return to the small test problem from Exercise 9.1 with a 2�2 image and
five parallel rays. Enter the system into MATLAB:

>> A = [1 0 0 0;1 0 1 0; 0 1 1 0; 0 1 0 1; 0 0 0 1]
>> b = [1; 3; 5; 7; 4]

Then use the function kaczmarz from AIR Tools II to perform 20 iterations with
starting vector xp0q � 0, which is the default. Note that one “iteration” in AIR
Tools always means one sweep over all the rows of the matrix; see (11.3). The
iteration vectors are stored as the columns of the 4� 20 output matrix X:

>> kmax = 20;
>> X = kaczmarz(A,b,1:kmax);

(The semicolon suppresses printing on the screen.) To see the last iteration vector,
write X(:,kmax). Is it correct, i.e., is A*X(:,kmax) = b?

11.2. Convergence Study
The exact solution to the above problem (the ground truth) is x � p1, 3, 2, 4qT .
Let us study how fast the iteration vectors of Kaczmarz’s method converge to this
solution, i.e., in each iteration we look at the largest error:

ek � }x� xpkq}2, k � 1, 2, . . . , 20 . (11.34)

In MATLAB this computation takes the following form:

>> x_exact = [1 3 2 4]’;
>> for i=1:kmax, e(i,1) = norm(x_exact - X(:,i)); end

Now let us plot the results:

>> figure(1)
>> subplot(2,1,1), plot(X’)
>> subplot(2,1,2), semilogy(e)

On the top plot you should see that the components of the iteration vector xpkq

converge to x, and on the bottom plot you should see that the largest error in
each iteration decreases very fast. How many iterations are needed to achieve a
maximum error of 10�3?

As a matter of fact, after the first iteration for this problem we have this relation
between the maximum errors:

ek�1 � C � ek, k � 1, 2, . . . , 19 , (11.35)

where C is a constant. What is the value of C?

Exercises 241

11.3. Setting Up a More Realistic Test Problem
Let us now use the function paralleltomo from AIR Tools II to generate a more
realistic test problem Ax � b. The ground truth image is N �N with N � 64,
and we use the projection angles 3�, 6�, 9�, . . . , 180�. Hence, in MATLAB we
write the following:

>> N = 64;
>> theta = 3:3:180;
>> [A,b,x] = paralleltomo(N,theta);

Note that both x and b are vectors, because that is how we formulate the problem
in linear algebra terminology. How long are the two vectors?

To display these two vectors as images (the object and the sinogram, respectively),
use the following MATLAB commands:

>> figure(1), imagesc(reshape(x,N,N)), colorbar
>> ntheta = length(theta);
>> p = length(b)/ntheta; % Number of rays.
>> figure(2), imagesc(theta,1:p,reshape(b,p,ntheta)), colorbar

Finally, let us convince ourselves that the system matrix A is indeed a very sparse
matrix, i.e., it consists mainly of zeros. To do that, use the MATLAB function
spy(A) to display the nonzeros of the matrix.

11.4. Using Kaczmarz’s Method to Solve the Test Problem
Now we use Kaczmarz’s method to solve the above test problem, and to get a
feeling of the convergence let us perform 20 iterations and plot these iterations as
images:

>> kmax = 20;
>> X = kaczmarz(A,b,1:kmax);
>> figure(3)
>> for i=1:kmax
>> subplot(4,5,i), imagesc(reshape(X(:,i),N,N))
>> end

You should see a very slow progression of the reconstructions toward the ground
truth image.

Now, try to run kaczmarz with 50, 100, 200, 400, 800, and 1600 iterations and
compute the corresponding maximum errors. In situations like this where we do
not want to store all the iterations, it is possible to specify which iterations will be
stored as shown below. To prepare for the computations to take a little while, we
use the waitbar option:

>> k = [50,100,200,400,800,1600];

242 Chapter 11. Algebraic Iterative Reconstruction Methods

>> options.waitbar = true;
>> X = kaczmarz(A,b,k,[],options);
>> e = zeros(length(k),1);
>> for i=1:length(k), e(i) = norm(x-X(:,i),inf); end
>> semilogy(k,e);

You should see that the convergence is quite slow. Can you estimate how many
iterations are needed to obtain an error less than 0.05?

11.5. Using Cimmino’s Method to Solve the Test Problem
Perform the same experiments as in Exercise 11.4 but using Cimmino’s method
instead of Kaczmarz’s method. All you need to do is substitute cimmino for
kaczmarz in your MATLAB code.

Compared to Kaczmarz, would you say that the convergence of Cimmino is faster,
slower, or about the same?

11.6. Convergence Analysis for Kaczmarz and Cimmino
We will now more thoroughly examine the convergence of Kaczmarz’s and Cim-
mino’s methods for the test problem from Exercise 11.3. To simplify the analysis,
we will assume that the errors ek (11.34) in each iteration satisfy the relation

ek � Ck � e0, k � 1, 2, 3, . . . , (11.36)

where e0 is the initial error and C is a constant that depends on the problem and
the method. That is, the error is reduced by the factor C in each iteration.

Now assume that we know the error for two iterations k andK withK ¡ k. Show,
using (11.36), that we can compute the constant C as

C � exp

�
logpeK{ekq
K � k

. (11.37)

Do this for Kaczmarz’s and Cimmino’s methods in the two previous exercises,
e.g., using the results that you computed for 800 and 1600 iterations. What are the
two constants for the two methods? Which one is preferable?

11.7. When the System Is Inconsistent
We return to the 3� 3 test problem from Exercise 10.8. Run enough iterations of
Kaczmarz’s and Cimmino’s methods to ensure that the methods have converged.
Do these methods converge to the exact solution in (10.31), to the minimum-norm
solution x0

LS, or perhaps to something else?
11.8. Consistent and Inconsistent Overdetermined Problems

Let us try to experimentally verify the following convergence behavior for the case
m ¡ n � r:

 For consistent systems b P RangepAq, both Kaczmarz and Cimmino con-
verge to the least-squares solution xLS, which is identical to the weighted
least-squares solution xLS,M .

Exercises 243

 For inconsistent systems b R RangepAq, Cimmino converges to xLS,M ,
which is different from xLS, while Kaczmarz exhibits cyclic convergence.

We note that in MATLAB, for a full-rank matrix we compute the least-squares
solution xLS by means of xLS = A\b.

Generate the test problem from Exercises 9.1 and 11.1 with the 5� 4 system ma-
trixA and the right-hand side b in (9.37), and solve the consistent systemAx � b
by means of Kaczmarz and Cimmino. Check that both methods converge to the
same solution and that this solution is identical to the least-squares solution xLS.

We will now change the right-hand side b by adding a component that is orthogo-
nal to the range RangepAq:

b̃ � b� 0.05 e with e �

������
1

�1
1

�1
1

�����. (11.38)

Use MATLAB to verify that e is orthogonal to RangepAq, i.e., that

cTi e � 0 for i � 1, 2, 3, 4 . (11.39)

Then create the perturbed right-hand side btilde, solve the corresponding in-
consistent system with both Kaczmarz and Cimmino, and compare with the least-
squares solution xLS as well as the weighted least-squares solution xLS,M defined
in (9.34). Do the two methods converge to xLS, xLS,M , or something else?

11.9. The Advantage of Constraints
We know from the underlying physics of the problem that the attenuation coef-
ficients we wish to reconstruct—the elements of the vector x—are nonnegative.
And sometimes we also know an upper bound on the elements of this vector.
Hence it often makes a lot of sense to include box constraints in the reconstruction
process.

In this exercise we return to the test problem from Exercise 11.3, but here we
impose the box constraints

x P C � r0, 1sn ô 0 ¤ xi ¤ 1 for i � 1, 2, . . . , n . (11.40)

These constraints are specified in the function kaczmarz by means of the options
input as follows:

>> kmax = 20;
>> options.lbound = 0;
>> options.ubound = 1;
>> X = kaczmarz(A,b,1:kmax,[],options);

244 Chapter 11. Algebraic Iterative Reconstruction Methods

Plot the 20 reconstructions as images; you should see that they are considerably
better than those from Exercise 11.4. What is the improvement in the error for the
last iteration with and without constraints?

11.10. Convergence Analysis for the Constrained Algorithm
Do the constrained iterates converge faster? To answer this question, we will
repeat Exercise 11.4 for the constrained algorithm, still looking at iterations 50,
100, 200, 400, 800, and 1600. Does the constrained Kaczmarz method converge
slower or faster than the unconstrained method?

11.11. Comparison with FBP
In this exercise we compare the constrained Kaczmarz reconstruction for k �
1600 iterations from the previous exercise with the FBP solution computed by
means of fbp(A,b,theta)—this is a function from AIR Tools II that is similar
to the MATLAB iradon function, except that it takes the system matrix as input.

When displaying the FBP solution, note that some elements are outside the interval
[0,1], so you may want to “chop” them or set the figure color axis to this interval
by means of caxis([0,1]). Which reconstruction is better?

Optional bonus question. Repeat this comparison using a limited-angle problem
with N = 64 and theta = 3:3:120. Comment on the results.

11.12. A Simple Illustration of Semiconvergence
This exercise illustrates how the noise in the data gives rise to semiconvergence of
the iterates xpkq of Kaczmarz’s method. We use a rather small system to keep the
computing times reasonably small, namely, a parallel-beam test problem with the
Shepp–Logan phantom, generated by means of the following code:

>> N = 64;
>> theta = 4:4:180;
>> [A,bex,xex] = paralleltomo(N,theta);

Run kmax � 800 iterations of Kaczmarz’s method with these relative noise levels:

ρ � 0, 0.0015, 0.0020, 0.0025 . (11.41)

(You can try others, as well, depending on your patience.)

Plot the error history, i.e., the relative error }x�xpkq}2{}x}2, as a function of k, for
all four noise levels. You should see the characteristic semiconvergence behavior
for all ρ � 0. At what iteration number k do we reach the smallest error for
each ρ?

Note: You will get a different answer each time you run your code, because the
results depend on the actual realization of the noise.

Exercises 245

11.13. Semiconvergence Is Associated with Inverse Problems
Semiconvergence is the fundamental mechanism that makes the algebraic itera-
tive reconstruction methods suited for solving noisy tomography problems (and
inverse problems in general). As we have seen, for semiconvergence to be useful,
the Picard condition (7.17) must be satisfied, i.e., the exact solution to an inverse
problem must be dominated by the initial SVD components. We cannot expect
semiconvergence to be useful for an arbitrary ill-conditioned system.

To illustrate this, we will perform a numerical experiment to see if we experi-
ence semiconvergence for a linear system Ax � b with a synthetic random ill-
conditioned matrix generated by the following code:

>> N = 32;
>> n = N^2;
>> [U,S,V] = svd(randn(n));
>> S = diag(logspace(0,-12,n));
>> A = U*S*V’;

The condition number of this matrix is condpAq � 1012. Perform an experiment
similar to the above, this time with the “grains” test image from AIR Tools II:

>> Xex = phantomgallery(’grains’,N);
>> xex = Xex(:);
>> bex = A*xex;

Use the relative noise level ρ � 0.02 and perform kmax � 2000 iterations. Again,
you should see the characteristic semiconvergence (if you don’t, run the experi-
ment again with a different random A and a different noise vector).

Now show the best reconstruction; you will see that—in spite of the semiconver-
gence—it is really bad. Check whether the Picard condition is satisfied by plotting
the singular values of the SVD coefficients of the right-hand side:

>> semilogy([diag(S),abs(U’*bex)])

Do the right-hand coefficients decay faster than the singular values?

This illustrates the fact that algebraic iterative reconstruction methods do not work
when applied to an arbitrary ill-conditioned system; these methods only produce
good results when applied to tomographic reconstruction problems and similar
inverse problems that satisfy the Picard condition.

11.14. Semiconvergence for Constrained Problems
The theory says that we should also observe semiconvergence when we apply
the algebraic iterative reconstruction methods to constrained problems. We will
investigate this for Kaczmarz’s method with box constraints, which we impose by
setting options.lbound = 0 and options.ubound = 1.

246 Chapter 11. Algebraic Iterative Reconstruction Methods

Repeat Exercise 11.12, still with kmax � 800 and now with the box constraints.
Discuss the error histories, and compare the results with those from Exercise 11.12.

11.15. Surprising Semiconvergence?
In this exercise we also use box constraints. We use a parallel-beam test prob-
lem with a special phantom with binary pixel values, generated by means of the
following code:

>> N = 64;
>> theta = 4:4:180;
>> A = paralleltomo(N,theta);
>> Xex = phantomgallery(’binary’,N);
>> xex = Xex(:);
>> bex = A*xex;

Use the relative noise level ρ � 0.002; you only need to perform kmax � 100
Kaczmarz iterations. Do you see any substantial growth in the noise error? Can
you explain this behavior?

11.16. SVD Analysis of Cimmino’s Method
The goals of this exercise are twofold: to illustrate how to perform SVD analysis
of an iterative method, and to demonstrate how to do so for the basic Cimmino
method with a relaxation parameter λ:

xpk�1q � xpkq � λATMpb�Axpkqq (11.42)

� xpkq � λ pM1{2AqT �pM1{2bq � pM1{2Aqxpkq� (11.43)

� xpkq � λ pAT ppb� pAxpkqq, (11.44)

withM � diagpm}ri}22q�1, and where we define

pA �M1{2A and pb �M1{2b. (11.45)

Note that we compute the square root of the diagonal matrix M simply by com-
puting the square roots of its diagonal elements. Then it follows that the SVD
analysis of Cimmino’s method follows that of Landweber’s method, but with A
and b replaced by pA and pb. In particular, we should use the SVD of pA for the
analysis.

Theory question: Assuming a zero starting vector xp0q � 0, write down the ex-
pression for the kth iterate of Cimmino’s method in terms of pb and the SVD ofpA: pA � pU pΣ pV T . (11.46)

Repeat for the iteration error and the noise error.

Now generate a parallel-beam test problem, and the corresponding Z =M1{2:

Exercises 247

>> N = 64;
>> theta = 2:2:180;
>> [A,bex] = paralleltomo(N,theta);
>> [A,bex] = purge_rows(A,bex,3);
>> m = size(A,1);
>> d = sqrt(m*sum(A.^2,2));
>> Z = spdiags(1./d(:),0,sparse(m,m)); % Sparse diagonal matrix.

The statement [A,bex] = purge_rows(A,bex,3) removes all zero rows, as
well as rows with fewer than four nonzero elements; this is to ensure a numer-
ically stable computation of M and M1{2. To compute the SVD of the sparse
matrix Z*A use the statement

>> [U,S,V] = svd(full(Z*A),0);

The second input argument 0 tells the MATLAB svd function to compute the
economy-size version of the SVD in which

U P Rm�n , S P Rn�n , V P Rn�n .

Save the SVD for later use in Exercise 11.18: save SavedSVD U S V.

Now add noise with relative noise level ρ � 0.02, and run Cimmino’s method on
the noisy problem with relaxation parameter λ � 1{�� pA��2

2
� 1{Sp1, 1q2 and with

kmax � 5000 iterations. The relaxation parameter is specified via the options
input. For the iterations

k � 10, 50, 100, 500, 1000, 5000 ,

use the SVD of pA to compute and display

 the filter factors ϕpkqi , i � 1, 2, . . . , n;

 the kth iterate xpkq, comparing your result with the output from cimmino;

 the iteration error x� xpkq and its norm; and

 the noise error xpkq � xpkq and its norm.

Your results should behave qualitatively like those for Landweber’s method. At
which iteration k do the iteration error and the noise error have approximately the
same norm?

11.17. Deriving the Trace Term for Cimmino’s Method
This is a theoretical exercise which you may skip if you prefer to do numerical
experiments only.

In Section 11.2.3 we derived the stopping rules DP and FTNL specifically for
Landweber’s method. The latter needs the trace Tk of the influence matrixAA#

k ,

248 Chapter 11. Algebraic Iterative Reconstruction Methods

but it is not obvious how to compute this trace for more general unconstrained
methods. Here we specifically consider Cimmino’s method, and our task is to
derive an expression for the trace Tk for this method.

The key point is to find an expression for the matrix A#
k corresponding to Cim-

mino’s method, such that the Cimmino iterates can be written as xpkq � A#
k b.

According to Eqs. (11.44) and (11.45) in the previous exercise, Cimmino’s method
is identical to Landweber’s method applied to the matrix pA and the right-hand side
b̂ from (11.45). Thus, we can write the Cimmino iterates xpkq as

xpkq � pA#
k
pb � pA#

kM
�1{2 b , (11.47)

where, similar to the Landweber algorithm, we define

pA#
k � pV pΦ pkq pΣ�1 pUT , pΦ pkq � diag

�pϕ pkq
i

	
, pΣ � diag

�pσi� (11.48)

with pϕ pkq
i � 1� p1� λ pσi2qk , i � 1, 2, . . . , n . (11.49)

Our goal is to derive an expression for the trace of the influence matrixAA#
k , but

expressed in terms of the singular values pσi of the matrix pA. First, show that

A#
k � pV pΦ pkq pΣ�1 pUTM1{2 . (11.50)

Then use this result to show that

AA#
k �M�1{2 pU pΦ pkq pUTM1{2 � pM�1{2 pUq pΦ pkqpM�1{2 pUq�1.

(11.51)
The multiplication from the left and from the right by M�1{2 pV and its inverse
is a similarity transform which leaves the eigenvalues unchanged. Using the fact
that the trace of a matrix is the sum of its eigenvalues, show that

Tk � tracepAA#
k q �

ņ

i�1

pϕ pkq
i . (11.52)

This result allows us to compute the function η2 pm � Tkq needed in the FTNL
stopping rule for Cimmino’s method—provided that we know the singular values
of pA. (There is no expression for Tk in terms of the singular values ofA.)

11.18. Using the Stopping Rules
We shall now test the two stopping rules DP and FTNL applied to Landweber’s
and Cimmino’s methods, using the test problem from Exercise 11.16. To use the
FTNL stopping rule, you need to compute the trace term Tk using the expressions
in (11.22) and (11.32) for Landweber as well as (11.49) and (11.52) for Cimmino.

Exercises 249

If you saved the SVD of the matrix pA in Exercise 11.16, you can load it again by
means of load SavedSVD.

We suggest that you use kmax � 2000 iterations and a safety factor τ � 1.02.
Then test the DP and FTNL stopping rules, e.g., by finding a sign change in the
two functions }%pkq}22�τ η2m and }%pkq}22�τ η2 pm�Tkq. Compare the number
of iterations found by the stopping rules with the optimal k, i.e., the one that
minimizes the reconstruction error }x� xpkq}2.

To get an idea of the robustness of these methods, you can try to repeat the exper-
iments with different realizations of the noise.

11.19. The Trace Term Estimator
This exercise is a continuation of the previous one. Here we replace the trace term
Tk—which requires singular values—with the Monte Carlo trace estimate T est

k

from (11.32). The simplest way to compute a vector tkest with values of the
trace estimate is to run the iterative method twice, first with b as the right-hand
side and with a zero starting vector, and then with a zero right-hand side and a
random starting vector. For Landweber’s method, using the following code:

>> [m,n] = size(A);
>> X = landweber(A,b,1:kmax);
>> w = randn(n,1);
>> Xi = landweber(A,zeros(m,n),1:kmax,w);
>> for k=1:kmax, tkest(k) = n - w’*Xi(:,k); end

Obviously the same approach can be used to easily compute the trace estimates
for Cimmino’s method with landweber replaced by cimmino.

Repeat the experiments from the previous exercise with Tk replace by T est
k , and

compare the two approaches. You can try different random starting vectors to get
a feeling for the robustness of the stopping rules based on T est

k .

