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Exercises
13.1. Step Size Rules for Least-Squares Problems

Consider the gradient method applied to the least-squares objective function gpxq �
1
2}b�Ax}22, i.e.,

xpk�1q � xpkq � tkA
T pAxpkq � bq, k � 0, 1, 2 . . . ,

where xp0q is an initial guess. For each of the following step size rules, show that
the gradient iteration can be implemented such that each iteration only requires a
single matrix-vector multiplication withA and one withAT .

1. The step size tk is constant, i.e., tk � t ¡ 0 for all k.

2. The step size tk is found by means of the exact line search (13.4).

3. The step size tk is found by means of a backtracking line search.

13.2. Lipschitz Continuous Gradients
Suppose g1 : Rn Ñ R and g2 : Rn Ñ R are continuously differentiable func-
tions. Show that if ∇g1 and ∇g2 are Lipschitz continuous with constants L1 and
L2, respectively, then ∇gpxq � ∇g1pxq � ∇g2pxq is Lipschitz continuous with
constant L � L1 � L2.

13.3. SIRT-Like Methods
Recall that the SIRT iteration (13.15) solves a weighted least-squares problem of
the form

minimize
1

2
}b�Ax}2M ,

where the matrixM is symmetric and positive definite.

1. Show that }M1{2AD1{2}2 ¤ 1 if M and D are diagonal matrices that
satisfy (13.19), i.e.,

Djj �
�

m̧

i�1

|Aij |α
��1

, Mii �
�

ņ

j�1

|Aij |2�α
��1

, α P r0, 2s .

Hint: Show that }M1{2AD1{2x}22 ¤ }x}22 when α P r0, 2s.
2. Implement the SIRT iteration (13.15) in MATLAB with α as an input pa-

rameter.

3. Use your implementation to compute reconstructions for different values of
α (say, 0, 1{2, 1, 3{2, and 2). Use the following code to generate a test
problem:
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>> I0 = 1e4;
>> n = 128;
>> A = paralleltomo(n)*(2/n);
>> x = reshape(phantomgallery(’grains’,n),[],1);
>> I = poissrnd(I0*exp(-A*x));
>> b = -log(I/I0);

Compare the reconstructions.

13.4. Strong Convexity
Suppose g is a twice continuously differentiable and strongly convex function with
strong convexity parameter µ.

1. Show that the smallest eigenvalue of ∇2gpxq is bounded by µ.

2. Consider the regularized least-squares objective function for Tikhonov regu-
larization

gpxq � 1

2
}b�Ax}22 �

δ

2
}x}22, δ ¡ 0.

Derive the Lipschitz constant L associated with the gradient of g and a lower
bound on the strong convexity parameter µ.

13.5. Poisson Measurement Model
Recall that the negative log-likelihood function associated with the Poisson mea-
surement model may be expressed as

gpxq � 1T expp�Axq � expp�bqTAx� const.,

where 1 is the vector of all ones, b � � logpI{I0q, and the vector I is assumed to
be positive.

1. Show that gpxq is a convex function of x.

2. Derive the first-order optimality condition associated with the ML estimation
problem

x̂ml � argmin
x

tgpxqu .

3. Show that the gradient of gpxq is Lipschitz continuous on Rn�, i.e., there
exists a constant L such that

}∇gpyq � gpxq}2 ¤ L}y � x}2 for all x,y P Rn� .

4. Show that if the system of equations Ax � b is consistent, then x satisfies
the first-order optimality condition ∇gpxq � 0 if and only ifAx � b.

13.6. Step Sizes
In this exercise, we will apply the gradient method to the problem of minimizing

gpxq � 1

2
}b�Ax}22 ,
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whereA and b are generated as follows:

>> I0 = 1e6;
>> n = 128;
>> A = paralleltomo(n)*(2/n);
>> x = reshape(phantomgallery(’grains’,n),[],1);
>> I = poissrnd(I0*exp(-A*x));
>> b = -log(I/I0);

Plot the objective value for the first 200 iterations of the gradient method for each
of the following step size rules:

1. exact line search (13.7),

2. backtracking line search (Section 13.2.2),

3. BB1 step size (13.39), and

4. BB2 step size (13.40).

Use a semilogarithmic y-axis.
13.7. Smooth Approximation of the TV Penalty

Show that the smooth approximations (13.59), (13.61), and (13.63) of the absolute
value function all have a Lipschitz continuous derivative with Lipschitz constant
L � 1{δ.

13.8. Regularized Weighted Least-Squares Problems
Consider the following weighted least-squares problems with two different regu-
larization terms: (i) generalized Tikhonov regularization,

xGTik � argmin
x

"
1

2
}b�Ax}2W � α

1

2
}Dx}22

*
, (13.65)

and (ii) TV regularization,

xTV � argmin
x

"
1

2
}b�Ax}2W � α}Dx}1

*
, (13.66)

whereD is defined as in (13.57). The variable x P Rn represents an image of size
N �N (i.e., n � N2).

1. Generate a test problem as follows:

>> I0 = 1e3;
>> n = 128;
>> A = paralleltomo(n)*(2/n);
>> x = reshape(phantomgallery(’grains’,n),[],1);
>> I = poissrnd(I0*exp(-A*x));
>> b = -log(I/I0);
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2. Use power iteration to estimate a Lipschitz constant for the gradient of gpxq
in the generalized Tikhonov problem (13.65). Plot the estimated Lipschitz
constant for different values of γ.

3. Implement and test the PG for solving the minimization problem in (13.65).

4. Implement and test the APG method for solving the minimization problem
in (13.65).

5. Implement the APG method for minimizing a smooth approximation of the
TV-regularized least-squares problem (13.66), i.e.,

xTV � argmin
x

#
1

2
}b�Ax}2W � γ

2ņ

i�1

φδpdTi xq
+
,

where φδpτq is one of the three smooth approximations from Section 13.4.2.
Show that the gradient is Lipschitz continuous, and derive a Lipschitz con-
stant.

6. Use your implementations to compute the reconstructions xGTik and xTV

for different regularization parameters γ. Plot the error norms }x � xTV}2
and }x � xGTik}2 versus γ. Compare the “best” reconstructions from both
models.


