
Algebraic Iterative Methods for Computed Tomography

Per Christian Hansen

DTU Compute
Department of Applied Mathematics and Computer Science

Technical University of Denmark

Per Christian Hansen Algebraic Iterative Methods 1 / 50

Plan for Today

1 A bit of motivation.

2 The algebraic formulation; matrix notation and interpretation.

3 Kaczmarz's method (also known as ART) � fully sequential.

4 Cimmino's method and variants � fully simultaneous.

5 More linear algebra: null space and least squares.

6 The optimization viewpoint.

Points to take home today:

Linear algebra provides a framework for formulating the algorithms.

Convergence analysis of iterative algebraic methods:

Kaczmarz's method = ART converges for consistent problems only.
Cimmino's method always converges.

Be careful with the null space.

Least squares problems always have a solution.

The optimization viewpoint leads to a broad class of iterative methods.

Per Christian Hansen Algebraic Iterative Methods 2 / 50

FBP: Filtered Back Projection

This is the classical method for 2D reconstructions.

There are similar methods for 3D, such as FDK.

Many year of use → lots of practical experience.

The FBP method is very fast (it uses the Fast Fourier Transform)!

The FBP method has low memory requirements.

With many data, FBP gives very good results.

Example with 3% noise:

Per Christian Hansen Algebraic Iterative Methods 3 / 50

FBP Versus Algebraic Methods

Limited data, or nonuniform distribution of projection angles or rays
→ artifacts appear in FBP reconstructions.

Di�cult to incorporate constraints (e.g., nonnegativity) in FBP.

Algebraic methods are more �exible and adaptive.

Same example with 3% noise and projection angles 15◦, 30◦, . . . , 180◦:

Algebraic Reconstruction Technique, box constraints (pixel values ∈ [0,1]).
Per Christian Hansen Algebraic Iterative Methods 4 / 50

Another Motivating Example: Missing Data

Irregularly spaced angles & �missing� angles also cause di�culties for FBP:

Per Christian Hansen Algebraic Iterative Methods 5 / 50

The Line Projection Model (Review)

The damping of the ith X-ray through the object is a line integral of the
attenuation coe�cient f along the ray (from Lambert-Beer's law):

bi =

∫
rayi

f (x1, x2) dℓ, i = 1, 2, . . . ,m.

Assume that f (x1, x2) is a constant fj in pixel j . This leads to:

bi =
∑

j∼rayi

aij fj , aij = length of rayi in pixel j ,

where the sum is over those pixels j that are intersected by rayi .

If we de�ne aij = 0 for those pixels not intersected by rayi , then we have a
simple sum

bi =
n∑

j=1

aij fj , n = number of pixels.

Per Christian Hansen Algebraic Iterative Methods 6 / 50

A Big and Sparse System

If we collect all m equations then we arrive at a system of linear equations

Ax = b , x = (f1, f2, . . . , fn)
T

with a very sparse system matrix A. Example: 5× 5 pixels and 9 rays:

A really big advantage is that we only set up equations for the data that we
actually have. In case of missing data, e.g., for certain projection angles or
certain rays in a projection, we just omit those from the linear system.

Per Christian Hansen Algebraic Iterative Methods 7 / 50

The System Matrix is Very Sparse

Another example: 256× 256 pixels and 180 projections with 362 rays each.

The system matrix A is 65, 160× 65, 536 and has ≈ 4.27 · 109 elements.
There are 15, 018, 524 nonzero elements corresponding to a �ll of 0.35%.

Per Christian Hansen Algebraic Iterative Methods 8 / 50

The Simplest Algebraic Problem

One unknown, no noise:

Now with noise in the data � compute a weighted average:

We know from statistics that solution's variance is inversely proportional to
the number of data. So more data is better.

Let us immediately continue with a 2× 2 image . . .

Per Christian Hansen Algebraic Iterative Methods 9 / 50

A �Sudoku� Problem

Four unknowns, four rays → system of linear equations Ax = b:

Unfortunately there are in�nitely many solutions, with k ∈ R:

(There is an arbitrary component in the null space of the matrix A.)

Per Christian Hansen Algebraic Iterative Methods 10 / 50

More Data Gives a Unique Solution

With enough rays the problem has a unique solution.

Here, one more ray is enough to ensure a full-rank matrix:

The �di�culties� associated with the discretized tomography problem are
closely linked with properties of the coe�cient matrix A:

The sensitivity of the solution to the data errors is characterized by the
condition number cond(A) = ∥A∥2 · ∥A−1∥2 (not discussed here).

The uniqueness of the solution is characterized by the rank of A, the
number of linearly independent row or columns.

Per Christian Hansen Algebraic Iterative Methods 11 / 50

Algebraic Reconstruction Methods

In principle, all we need to do in the algebraic formulation is to solve
the large sparse linear system Ax = b:

Math: x = A
−1
b, MATLAB: x = A\b.

How hard can that be?

Actually, this can be a formidable task if we try do use a traditional
approach such as Gaussian elimination.

Researchers in tomography have therefore focused on the use of
iterative solvers � and they have rediscovered many methods
developed by mathematicians . . .

In tomography they are called algebraic reconstruction methods.
They are much more �exible than FBP, but at a higher
computational cost!

Per Christian Hansen Algebraic Iterative Methods 12 / 50

Some Algebraic Reconstruction Methods

Fully Sequential Methods

Kaczmarz's method + variants.

These are row-action methods: they update the solution using one row
of A at a time.

Fast convergence.

Fully Simultaneous Methods

Landweber, Cimmino, CAV, DROP, SART, SIRT, . . .

These methods use all the rows of A simultaneously in one iteration
(i.e., they are based on matrix multiplications).

Slower convergence.

Krylov subspace methods (not covered in this course)

CGLS, LSQR, GMRES, . . .

These methods are also based on matrix multiplications.

Per Christian Hansen Algebraic Iterative Methods 13 / 50

Review of Matrix Notation

All vectors are column vectors. For the system matrix we have

A =

 | | |
c1 c2 · · · cn

| | |

 =

−−− rT
1

−−−
...

−−− rTm −−−

 .

The matrix A maps the discretized absorption coe�cients (the vector x) to
the data in the detector pixels (the elements of the vector b) via:

b =


b1
b2
...
bm

 = Ax = x1 c1 + x2 c2 + · · ·+ xn cn︸ ︷︷ ︸
linear combination of columns

=


rT
1
x

rT
2
x

...
rTmx

 .

Per Christian Hansen Algebraic Iterative Methods 14 / 50

Geometric Interpretation of Ax = b

r
T
1 x = a11x1 + a12x2 + · · ·+ a1nxn = b1

r
T
2 x = a21x1 + a22x2 + · · ·+ a2nxn = b2

...

r
T
mx = am1x1 + am2x2 + · · ·+ amnxn = bm.

Each equation rTi x = bi de�nes an a�ne hyperplane in Rn:

-

6

�
�

�
�
�
�
�
�
�
�

��

x1

x2

ai1x1 + ai2x2 = bi

R2

-

6

�
�
��

S
S
S
S
S
S
S

"
"

"
"

"
S
S
S
S
S
S
S

"
"

"
"

"

x1

x2

x3 R3

�
�
�

x2

ai1x1 + ai2x2 + ai3x3 = bi

Per Christian Hansen Algebraic Iterative Methods 15 / 50

Geometric Interpretation of the Solution

Assuming that the solution to Ax = b is unique, it is the point x ∈ Rn

where all the m a�ne hyperplanes intersect.

Example with m = n = 2:

-

6

�
�
�
�
�
�
�
�
�
�
��

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

x1

x2

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

R2

•

Per Christian Hansen Algebraic Iterative Methods 16 / 50

Kaczmarz's Method = Algebraic Reconstruction Technique

A simple iterative method based on the geometric interpretation.

In each iteration, and in a cyclic fashion, compute the new iteration vector
such that precisely one of the equations is satis�ed.

This is achieved by projecting the current iteration vector x on one of the
hyperplanes rTi x = bi for i = 1, 2, . . . ,m, 1, 2, . . . ,m, 1, 2, . . .

Originally proposed in 1937, and independently suggested under the name
ART by Gordon, Bender & Herman in 1970 for tomographic reconstruction.

Per Christian Hansen Algebraic Iterative Methods 17 / 50

Orthogonal Projection on A�ne Hyperplane

�
�
�
�
�
�
�

�
�

�
�

�
�
�

Hi = {x ∈ Rn | rTi x = bi}

rO

6r i

�
�
�
�
�� z

�
�
�
�
�
�
�
�
�
��

������:
Pi (z)

The orthogonal projection Pi (z) of an arbitrary point z on the a�ne
hyperplane Hi de�ned by rTi x = bi is given by:

Pi (z) = z +
bi − rTi z

∥r i∥22
r i , ∥r i∥22 = r

T
i r i .

In words, we scale the row vector r i by (bi − rTi z)/∥r i∥22 and add it to z .

Per Christian Hansen Algebraic Iterative Methods 18 / 50

Kaczmarz's Method

We thus obtain the following algebraic formulation:

Basic Kaczmarz algorithm

x0 = initial vector
for ℓ = 0, 1, 2, . . .

i = ℓ (mod m)

xℓ+1 = Pi

(
xℓ

)
= xℓ +

bi − rTi xℓ

∥r i∥22
r i

end

Each time we have performed m iterations of this algorithm, we have
performed one sweep over the rows of A. We denote these vectors by

x
(k) = xkm for k = 0, 1, 2, . . .

Per Christian Hansen Algebraic Iterative Methods 19 / 50

Convergence Issues

The convergence of Kaczmarz's method is quite obvious from the graph on
slide 17 � but can we say more?

Di�culty: the ordering of the rows of A in�uences the convergence rate:


1.0 1.0
1.0 1.1
1.0 3.0
1.0 3.7

 x =


2.0
2.1
4.0
4.7



The ordering 1�3�2�4 is preferable: almost twice as fast.

Per Christian Hansen Algebraic Iterative Methods 20 / 50

Convergence Rate of Kaczmarz's Method

For simplicity, assume that A is invertible and that all rows of A are scaled
to unit 2-norm. Moreover, assume that we use a zero starting vector
x (0) = 0. Then the error norm satis�es:

∥x (k) − x̄∥2 ≤ dk
Kac∥x̄∥2, k = 1, 2, . . . ,

where x̄ = A
−1
b; this is linear convergence.

If m > n then all the a�ne hyperplanes associated with the rows of A may
not intersect in a single point. Then we have cyclic convergence for xℓ.

m = 3, n = 2

Per Christian Hansen Algebraic Iterative Methods 21 / 50

From Sequential to Simultaneous Updates

Karzmarz's method accesses the rows sequentially. Cimmino's method
accesses the rows simultaneously and computes the next iteration vector as
the average of the all the projections of the previous iteration vector:

x
(k+1) =

1

m

m∑
i=1

Pi

(
x
(k)

)
=

1

m

m∑
i=1

(
x
(k) +

bi − rTi x
(k)

∥r i∥22
r i

)
= x

(k) +
1

m

m∑
i=1

bi − rTi x
(k)

∥r i∥22
r i .

�
�
�
�
�
��

Q
Q
Q
Q
Q
QQ

Q
Q

Q
Q

�
�

�
��

H1

H2 rx (k)J
J

P1(x
(k)) r

P2(x
(k))

r
x (k+1)

���r

Per Christian Hansen Algebraic Iterative Methods 22 / 50

Matrix Formulation of Cimmino's Method

We can write the updating in our matrix-vector formalism as follows

x
(k+1) = x

(k) +
1

m

m∑
i=1

bi − rTi x
(k)

∥r i∥22
r i

= x
(k) +

1

m

(
r1

∥r1∥22
· · · rm

∥rm∥22

)b1 − rT
1
x (k)

...

bm − rTmx
(k)



= x
(k) +

1

m

rT
1

...
rTm


T∥r1∥−2

2

. . .

∥rm∥−2

2


b −

rT
1

...
rTm

x
(k)


= x

(k) + A
T
M

(
b − Ax

(k)
)
,

where we introduced the diagonal matrix M = diag
(
1/(m∥r i∥22)

)
.

Per Christian Hansen Algebraic Iterative Methods 23 / 50

Cimmino's Method

We thus obtain the following formulation, with M = diag
(
1/(m∥r i∥22)

)
:

Basic Cimmino algorithm

x (0) = initial vector
for k = 0, 1, 2, . . .

x (k+1) = x (k) + A
T
M

(
b − Ax (k)

)
end

Note that one iteration here involves all the rows of A, while one iteration
in Kaczmarz's method involves a single row.

Therefore, the computational work in one Cimmino iteration is equivalent
to m iterations (a sweep over all the rows) in Kaczmarz's basic algorithm.

The issue of �nding a good row ordering is, of course, absent from
Cimmino's method.

Per Christian Hansen Algebraic Iterative Methods 24 / 50

Convergence Study

Assume x (0) = 0 and let I denote the n × n identity matrix. After some
manipulations and using a result for geometric series, we obtain

x
(k+1) =

k∑
j=0

(I − A
T
MA)jAT

M b

=
(
I − (I − A

T
MA)k+1

)
(AT

MA)−1
A

T
M b .

If A is invertible then

(AT
MA)−1

A
T
M b = A

−1
M

−1
A

−T
A

T
M b = A

−1
b = x̄ .

Moreover, the largest eigenvalue of the symmetric matrix I − A
T
MA is

strictly smaller than one (not shown here), and therefore(
I − (I − A

T
MA)k+1

)
→ I for k → ∞.

Hence the iterates x (k) converge to the solution x̄ = A
−1
b.

Per Christian Hansen Algebraic Iterative Methods 25 / 50

Convergence Rate of Cimmino's Method

Assume, for simplicity, that A is invertible and that the rows of A are
scaled such that ∥A∥2

2
= m. Then

∥x (k) − x̄∥22 ≤
(
1− 2

1+ cond(A)2

)k

∥x̄∥22

where x̄ = A
−1
b; again this is linear convergence.

Per Christian Hansen Algebraic Iterative Methods 26 / 50

Rectangular and/or Rank De�cient Matrices

▷ In tomography, A ∈ Rm×n is almost always a rectangular matrix: m ̸= n.

▷ It is also very common that A does not have full rank.

We need to set the stage for treating such matrices.

The rank r of A is the number of linearly independent rows (equal to the
number of linearly independent columns), and r ≤ min(m, n).

The range Range(A) is the linear subspace spanned by the columns of A:

Range(A) ≡ {u ∈ Rm |u = α1c1 + α2c2 + · · ·+ αncn, arbitrary αj}.

The null space Null(A) is the linear subspace of all vectors mapped to
zero:

Null(A) ≡ {v ∈ Rn |Av = 0}.

The dimensions of the two subspaces are r and n−r , respectively.

Per Christian Hansen Algebraic Iterative Methods 27 / 50

A Small Example

Consider the 3× 3 matrix

A =

1 2 3
4 5 6
7 8 9

 .

This matrix has rank r = 2 since the middle row is the average of the �rst
and third rows which are linearly independent.

The range Range(A) and null space Null(A) consist of all vectors of the
forms

α1

1
4
7

+ α2

3
6
9

 =

 α1 + 3α2

4α1 + 6α2

7α1 + 9α2

 and α3

 1
−2
1

 ,

respectively, for arbitrary α1, α2, and α3.

Per Christian Hansen Algebraic Iterative Methods 28 / 50

A Small Example, Continued

Consider two linear systems with the matrix A from the previous example:1 2 3
4 5 6
7 8 9

 x =

14
20
50

 and

1 2 3
4 5 6
7 8 9

 x =

 6
15
24

 .

The left system has no solution because b /∈ Range(A); no matter which
linear combination of the columns of A we create, we can never form this b.

The right system has in�nitely many solutions; any vector of the form

x =

1
1
1

+ α

 1
−2
1

 , α arbitrary

satis�es this equation. The arbitrary component is in the null space Null(A).

Per Christian Hansen Algebraic Iterative Methods 29 / 50

Null Space Artifacts in Tomography I

Image has 16× 16 pixels and we use 16 horizontal and 16 vertical X-rays
→ very under-determined system.

Left: three di�erent vectors in the null space Null(A).

Right: the exact (�ground truth�) image x̄ and the reconstruction.

One pixel at the intersection of the vertical and horizontal �strips� has a
large and incorrect value, and the values of the horizontal and vertical
�strips� are slightly too low.

Per Christian Hansen Algebraic Iterative Methods 30 / 50

Null Space Artifacts in Tomography II

The mage has 29× 29 pixels and we use projection angles in [50◦, 130◦]
→ A is 841× 841 and rank de�cient; the dimension of Null(A) is 24.

Both reconstructions are imperfect, and the vertical structure of the second
test image is almost completely lost in the reconstruction.

Per Christian Hansen Algebraic Iterative Methods 31 / 50

Null Space Artifacts in Tomography III

Same example � the 24 images that span the null space Null(A) represent
information about missing vertical structures in the reconstruction:

This illustrates that intuition and mathematics go hand-in-hand.

Per Christian Hansen Algebraic Iterative Methods 32 / 50

Consistent and Inconsistent Systems

A system is consistent if there exists at least one x such that Ax = b, i.e.,
such that b is a linear combination of the columns c i of A.

This is equivalent to the requirement b ∈ Range(A).

Otherwise the system is inconsistent, b /∈ Range(A), as shown below.

�
�
�
�
�
�
�

�
�
�
�
�

�
�

-�
���

���
��*

����������:

�
�
�
�
�
�
�
�
�
�
�
��>

�������������

Range(A)

c1

c2

c3

b

This is actually the normal situation in problems with measurement noise.

Per Christian Hansen Algebraic Iterative Methods 33 / 50

Overview of Systems: m ≤ n

Full rank Rank de�cient

m < n
Underdetermined

=

r = m
Always consistent.
Always in�nitely
many solutions.

r < m
Can be inconsistent.
No solution or
in�nitely many
solutions.

m = n
Square

=

r = m = n
Always consistent.
Always a
unique solution.

r < m = n
Can be inconsistent.
No solution or
in�nitely many
solutions.

The system is inconsistent when b /∈ Range(A).
There is a unique solution only if r = m = n.

Per Christian Hansen Algebraic Iterative Methods 34 / 50

Overview of Systems: m > n

Full rank Rank de�cient

m > n
Overdetermined

=

r = n
Can be inconsistent.
No solution or
a unique
solution.

r < n
Can be inconsistent.
No solution or
ininitely many
solutions

The system is inconsistent when b /∈ Range(A).

There is a unique solution only if r = n and the system is consistent.

Per Christian Hansen Algebraic Iterative Methods 35 / 50

The Least Squares Solution

We must de�ne a unique solution for inconsistent systems!

Assume that b = A x̄ + e and e is zero-mean Gaussian noise. The best
linear unbiased estimate of x̄ is the solution to the least squares problem:

xLS = argmin
x

1/2 ∥b − Ax∥22,

and xLS is unique when r = n. Geometrically, this corresponds to �nding
xLS such that AxLS is orthogonal to the residual vector b − AxLS.

�
�
�
�
�
�
�

�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
��>

�������������1

6

Range(A)

b

AxLS

Per Christian Hansen Algebraic Iterative Methods 36 / 50

Computing the Least Squares Solution

The requirement that AxLS ⊥ (b − AxLS) leads to:(
AxLS

)T (
b − AxLS

)
= 0 ⇔ x

T
LS

(
A

T
b − A

T
AxLS

)
= 0

which means that xLS is the solution to the normal equations:

A
T
Ax = A

T
b ⇒ xLS = (AT

A)−1
A

T
b.

xLS exists and is unique when A
T
A is invertible, which is the case when

r = n (i.e., the system is over-determined and A has full rank).

Bonus info: the matrix A† = (AT
A)−1A

T is called the pseudoinverse

(or Moore-Penrose inverse) of A.

Per Christian Hansen Algebraic Iterative Methods 37 / 50

The Minimum-Norm Least Squares Solution

If r < n we can de�ne a unique minimum-norm least squares solution by:

x
0
LS = argmin

x
∥x∥2 subject to A

T
Ax = A

T
b.

Example. Consider again the problem1 2 3
4 5 6
7 8 9

 x =

14
20
50

 with r = 2 < n = 3,

xLS is not unique, and all least squares solutions have the form

xLS =

3
2
1

+ α

 1
−2
1

 , α arbitrary.

The minimum-norm least squares solution x0
LS

is obtained by setting α = 0.

Per Christian Hansen Algebraic Iterative Methods 38 / 50

Weighted Least Squares Solutions and Cimmino

Recall our de�nition of the diagonal matrix M = diag
(
1/(m∥r i∥22)

)
.

We also de�ne the weighted least squares problem

min
x

1/2 ∥M1/2(Ax − b)∥22 ⇔ (AT
MA) x = A

T
M b

and the corresponding solution xLS,M = (AT
MA)−1A

T
M b.

Similarly we de�ne the minimum-norm weighted least squares solution

x
0
LS,M = argmin

x
∥x∥2 subject to A

T
M

−1
Ax = A

T
M

−1
b.

The full picture of Cimmino's method:

r = n = m: convergence to A−1
b.

r = n < m and b ∈ Range(A): convergence to xLS.

r = n < m and b /∈ Range(A): convergence to xLS,M .

r < min(m, n): convergence to x0
LS,M .

Per Christian Hansen Algebraic Iterative Methods 39 / 50

The Optimization Viewpoint (→ Module 3)

Karczmarz, Cimmino and similar algebraic iterative methods are usually
considered as solvers for systems of linear equations.

But it is more convenient to consider them as optimization methods.

Within this framework we can easily handle common extensions:

We can introduce other norms than the 2-norm ∥ · ∥2, which can
improve the robustness of the method.

We can also, in each updating step, incorporate a projection PC on a
suitably chosen convex set C that re�ects prior knowledge, such as

the positive orthant Rn
+ → nonnegative solutions,

the n-dimensional box [0, 1]n → solution elements in [0,1].

We can introduce a relaxation parameter � or step length parameter �
in the algorithm which controls the �size� of the updating and, as a
consequence, the convergence of the method:

a constant ω, or
a parameter ωk that changes with the iterations.

Per Christian Hansen Algebraic Iterative Methods 40 / 50

Example: Robust Solutions with the 1-norm

The 1-norm is well suited for handling �outliers� in the data:

min
x

∥Ax − b∥1, ∥Ax − b∥1 =
m∑
i=1

|rTi x − bi |.

Consider two over-determined noisy problems with the same matrix:

A =


1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36

 , A x̄ =


6
17
34
57
86
121

 , b =


6.0001
17.0285
33.9971
57.0061
85.9965
120.9958

 , b
o =


6.0001
17.2850
33.9971
57.0061
85.9965
120.9958

 .

Least squares solutions: xLS and xo
LS
; 1-norm solutions: x1 and xo

1
:

xLS =

1.0041
2.0051
2.9989

 , x
o

LS =

1.0811
2.0151
2.9943

 , x1 =

0.9932
2.0087
2.9986

 , x
o

1 =

0.9932
2.0088
2.9986

 .

Per Christian Hansen Algebraic Iterative Methods 41 / 50

Incorporating Simple Constraints

We can include constraints on the elements of the reconstructed image.

Assume that we can write the constraint as x ∈ C, where C is a convex set;
this includes two very common special cases:

Non-negativity constraints. The set C = Rn
+ corresponds to

xi ≥ 0, i = 1, 2, . . . , n.

Box constraints. The set C = [0, 1]n (n-dimensional box) corresponds to

0 ≤ xi ≤ 1, i = 1, 2, . . . , n.

Per Christian Hansen Algebraic Iterative Methods 42 / 50

Orthogonal Projections

Given a set C, the orthogonal projection PC(x) of an arbitrary vector
x ∈ Rn on C is the unique vector that satis�es: PC(x) ⊥ (x − PC(x)).

�
�
�
�
�
�
�

�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
��>

�������������1

6

C

x

PC(x)

If C = Rn
+ (non-negativity constraints) then, in MATLAB, we compute the

corresponding projection of x as max(x,0) .

Per Christian Hansen Algebraic Iterative Methods 43 / 50

The Projected Algorithms

Both algorithms below solve min ∥M1/2(b − Ax)∥2 s.t. x ∈ C.

Projected gradient algorithm

x (0) = initial vector
for k = 0, 1, 2, . . .

x (k+1) = PC
(
x (k) + A

T
M(b − Ax (k))

)
end

Projected incremental gradient (Kaczmarz) algorithm

x0 = initial vector
for ℓ = 0, 1, 2, . . .

i = ℓ (mod m)

xℓ+1 = PC

(
xℓ +

bi − rTi xℓ

∥r i∥22
r i

)
end

Per Christian Hansen Algebraic Iterative Methods 44 / 50

Introduction of a Relaxation Parameter

We can sometimes accelerate the iterations by introducing a carefully
chosen relaxation parameter ω:

Projected gradient algorithm (ω < 2/∥AT
MA∥2)

x (0) = initial vector
for k = 0, 1, 2, . . .

x (k+1) = PC
(
x (k) + ωAT

M(b − Ax (k))
)

end

Projected incremental gradient (Kaczmarz) algorithm (ω < 2)

x0 = initial vector
for ℓ = 0, 1, 2, . . .

i = ℓ (mod m)

xℓ+1 = PC

(
xℓ + ω

bi − rTi xℓ

∥r i∥22
r i

)
end

Per Christian Hansen Algebraic Iterative Methods 45 / 50

Iteration-Dependent Relaxation Parameter ωk

The basic Kaczmarz algorithm gives a cyclic behavior.

Consider the example from slide 21 with:

ωℓ = 0.8 (independent of ℓ) and ωℓ = 1/
√
ℓ, k = 0, 1, 2, . . .

The rightmost plot is a �zoom� of the middle plot.

With a �xed ωℓ < 1 we still have a cyclic behavior.

With the diminishing relaxation parameter ωℓ = 1/
√
ℓ → 0 as ℓ → ∞

the iterates converge to the weighted least squares solution xLS,M .

Per Christian Hansen Algebraic Iterative Methods 46 / 50

Overview of Convergence (see also slides 34�35)

What the unconstr. methods converge to, with starting vector x (0) = 0.

Kac: Kaczmarz's method with a �xed relaxation parameter.

K�d: Kaczmarz's method with a diminishing parameter.

Cim: Cimmino's method with a �xed relaxation parameter.

r < min(m, n) [rank def.] r = min(m, n) [full rank]

b ∈ Range(A) b /∈ Range(A) b ∈ Range(A) b /∈ Range(A)

m < n

x0
LS

= x0
LS,M

x0
LS

= x0
LS,M

m = n Kac: cyclic A
−1
b

K�d: x0
LS,M Kac: cyclic

m > n Cim: x0
LS,M xLS = xLS,M K�d: xLS,M

Cim: xLS,M

Consistent systems, b ∈ Range(A), do not �feel� the weight M .
When b /∈ Range(A) then we have x0

LS,M ̸= x0
LS

and xLS,M ̸= xLS.

Per Christian Hansen Algebraic Iterative Methods 47 / 50

Other Projected Gradient Algorithms

Many algorithm proposed in the literature (Landweber, CAV, DROP,
SART, SIRT, . . .) are special cases of the following general formulation.

General projected gradient algorithm (ωk < 2)

x (0) = initial vector
for k = 0, 1, 2, . . .

x (k+1) = PC
(
x (k) + ωk D1A

T
M1(b − Ax (k))

)
end

Of particular interest is the method SIRT in which:

D1 = diag
(
1/∥c j∥1

)
, ∥c j∥1 =

∑m
i=1

aij ,

M1 = diag
(
1/∥r i∥1

)
, ∥r i∥1 =

∑n
j=1

aij .

Per Christian Hansen Algebraic Iterative Methods 48 / 50

CGSL � Conjugate Gradients for Least Squares Problems

Are there numerical optimization methods that are faster than the
�classical� algebraic iterative methods? Yes � and CGLS is one of them.

We can prove that CGLS converges in at most n iterations (above, n = 2).
Per Christian Hansen Algebraic Iterative Methods 49 / 50

The CGSL Method

The CGLS algorithm for solving minx ∥Ax − b∥2 takes the following form:

x (0) = starting vector (e.g., zero)

ρ(0) = b − Ax (0)

d
(0) = A

Tρ(0)

for k = 1, 2, . . .

ᾱk = ∥ATρ(k−1)∥2
2
/∥Ad

(k−1)∥2
2

x (k) = x (k−1) + ᾱk d
(k−1)

ρ(k) = ρ(k−1) − ᾱk Ad
(k−1)

β̄k = ∥ATρ(k)∥2
2
/∥ATρ(k−1)∥2

2

d
(k) = A

Tρ(k) + β̄k d
(k−1)

end

It is not possible to incorporate constraints, such as nonnegativity, in this
method. Some methods with constraints are covered in module 3.

Per Christian Hansen Algebraic Iterative Methods 50 / 50

