
Algebraic iterative reconstruction in the

CCPi Core Imaging Library (CIL)

Jakob Sauer Jørgensen – DTU

Gemma Fardell – STFC

Laura Murgatroyd – STFC

Evangelos Papoutsellis – STFC

Edoardo Pasca – STFC

Before we start: Week 1 feedback

https://tinyurl.com/SC4CT1

• “During the work with the micro projects, a lot of students wanted to
discuss ideas with Jakob. It could be nice to make help waitlist on the
blackboard.”  Will do today!

• “I didn't learn much from the CIL exercises, as the servers were not very
stable, and they weren't able to load the data.”  New servers today!

• “Please allow the people who have attended this course to use the jupyter
notebook even after the course ends..... currently the acess is only untill
the course end date.”  Will see what I can do!

https://tinyurl.com/SC4CT1

What is the Core Imaging Library?

• A Python library for processing and reconstruction of tomography data.

• Special emphasis on ”challenging data sets”: noisy, non-standard,
incomplete, multi-channel, ...

• Optimised standard methods: FBP, FDK

• Highly modular to allow creation of bespoke pipelines.

• Range of iterative reconstruction methods and building blocks allowing
users to create new ones.

• Fully open source under permissive Apache 2 license.

• Actively developed on GitHub:
https://github.com/TomographicImaging/CIL

https://github.com/TomographicImaging/CIL

data = ZEISSDataReader(filename).read()

data = TransmissionAbsorptionConverter()(data)

show_geometry(data.geometry)

recon = FDK(data).run()

show2D(recon)

• Data readers/writers

• Pre-processing tools

• TIGRE and ASTRA backend

• 2D, 3D and 4D data

• Near math optimisation syntax

• Visualisation

ccpi.ac.uk/CIL

Example CIL code: Cone-beam FBP

https://ccpi.ac.uk/CIL

10/01/2023 edoardo.pasca@stfc.ac.uk 5

Jørgensen et al. 2021: Core Imaging Library - Part I: a versatile Python framework for tomographic

imaging, Phil. Trans. R. Soc. A, 379, 20200192: https://doi.org/10.1098/rsta.2020.0192

recon

FBP/FDK

iterative

PDHG+

TV

v21.3

Module organization and contents

https://doi.org/10.1098/rsta.2020.0192

Imaging model for iterative reconstruction

Operator A:

• Direct Ax: Projection

• Adjoint ATb: Backprojection
6

CIL ImageGeometry

>>> n_pixels = 256

>>> ig = ImageGeometry(voxel_num_x=n_pixels,

voxel_num_y=n_pixels,

voxel_size_x=1/n_pixels,

voxel_size_y=1/n_pixels)

>>> print(ig)

Number of channels: 1

channel_spacing: 1.0

voxel_num : x256,y256

voxel_size : x0.00390625,y0.00390625

center : x0,y0

CIL ImageGeometry

phantom = TomoPhantom.get_ImageData(num_model=1,

geometry=ig)

show2D(phantom, origin='upper-left')

x0 = ig.allocate(0.0)

show2D(x0)

CIL AcquisitionGeometry

angles = np.linspace(0, 180, 256, endpoint=False)

ag = AcquisitionGeometry.create_Parallel2D(

detector_position=[0,1])\

.set_angles(angles)\

.set_panel(n_pixels,

pixel_size=1/n_pixels)

show_geometry(ag)

CIL AcquisitionGeometry
>>> print(ag)

2D Parallel-beam tomography

System configuration:

Ray direction: [0., 1.]

Rotation axis position: [0., 0.]

Detector position: [0., 1.]

Detector direction x: [1., 0.]

Panel configuration:

Number of pixels: [256 1]

Pixel size: [0.00390625 0.00390625]

Pixel origin: bottom-left

Channel configuration:

Number of channels: 1

Acquisition description:

Number of positions: 256

Angles 0-20 in degrees:

[0. , 0.703125, 1.40625 , 2.109375, 2.8125 , 3.515625,

4.21875 , 4.921875, 5.625 , 6.328125, 7.03125 , 7.734375,

8.4375 , 9.140625, 9.84375 , 10.546875, 11.25 , 11.953125,

12.65625 , 13.359375]

CIL AcquisitionGeometry

>>> ag.dimension_labels

('angle', 'horizontal')

>>> ig = ag.get_ImageGeometry()

>>> print(ig)

Number of channels: 1

channel_spacing: 1.0

voxel_num : x256,y256

voxel_size : x0.00390625,y0.00390625

center : x0,y0

>>> ag2D = ag3D.get_centre_slice()

Parallel2D, Cone2D, Parallel3D, Cone3D supported, more to come.

CIL ProjectionOperator

>>> A = ProjectionOperator(ig, ag, “gpu”)

>>> sino = A.direct(phantom)

>>> bp_image = A.adjoint(sino)

CIL ProjectionOperator

>>> A.domain_geometry()

cil.framework.framework.ImageGeometry

>>> A.range_geometry()

cil.framework.framework.AcquisitionGeometry

>>> A.norm()

0.97807384

Under the hood ProjectionOperator uses either

• ASTRA https://www.astra-toolbox.com/

• TIGRE https://github.com/CERN/TIGRE

https://www.astra-toolbox.com/
https://github.com/CERN/TIGRE

14

Demonstration data set

• 3D parallel-beam data set from Diamond Light Source, UK

• 0.5mm aluminium cylinder with piece of steel wire

• Droplet salt water causing corrosion + hydrogen bubbles

• Part of a fast time-lapse experiment

• 90 projections over 180 degrees, and 15 projections

• Downsampled to 160-by-135 pixels for quick demonstration

Raw projection Negative log, cropped, centered Sinogram

J. et al. 2021: Core Imaging Library - Part I: a versatile Python framework for tomographic imaging, Phil

Trans A. https://doi.org/10.1098/rsta.2020.0192

https://doi.org/10.1098/rsta.2020.0192

15

Filtered backprojection

90

projections

15

projections

Horizontal slice Vertical slice

16

Algebraic iterative methods

(regularizing by number of iterations)

CGLS

Typically 10s of

iterations

SIRT

As above and allowing

lower and upper bounds

on pixel values, here

Non-negative and <= 0.9

Typically 100s of

iterations

How to set up and run an instance of the CGLS algorithm

initial = ig.allocate(0)

cgls = CGLS(initial=initial,

operator=A,

data=sino,

max_iteration = 1000)

cgls.run(100)

More options and inputs available, see help.

CGLS algorithm

How to get solution, objective

Pause, do something, resume

cgls.run(3)

show2D(cgls.solution)

cgls.objective

[1302.6678, 124.551254, 46.48474]

cgls.get_last_objective()

46.48474

cgls.run(1)

cgls.objective

[1302.6678, 124.551254, 46.48474, 25.61253]

SIRT algorithm

Similar to CGLS with additional lower/upper input for constraints:

sirt = SIRT(initial=x0,

operator=A,

data=sino,

max_iteration=1000,

lower=0.0,

upper=17.0)

sirt.run(100)

More options and inputs available, see help.

20

Useful links for Core Imaging Library

• Website: https://www.ccpi.ac.uk/CIL

• Documentation: https://tomographicimaging.github.io/CIL

• Discord community discord.gg/9NTWu9MEGq

Software papers

• J. et al. 2021, Phil. Trans. R. Soc. A, 379, 20200192:

Core Imaging Library - Part I: a versatile Python framework for

tomographic imaging

https://doi.org/10.1098/rsta.2020.0192

• Papoutsellis et al. 2021, Phil. Trans. R. Soc. A, 379, 20200193:

Core Imaging Library - Part II: multichannel reconstruction for

dynamic and spectral tomography

https://doi.org/10.1098/rsta.2020.0193

https://www.ccpi.ac.uk/CIL
https://tomographicimaging.github.io/CIL
https://discord.gg/9NTWu9MEGq
https://doi.org/10.1098/rsta.2020.0192
https://doi.org/10.1098/rsta.2020.0193

Exercises

Exercise notebooks

• 04_FBP_CGLS_SIRT Simulated data

• 05_usb_limited_angle_fbp_sirt Real Zeiss cone-beam data

Exercises with own data

• Set up SIRT and CGLS for the central 2D slice of one of the data sets we acquired

• Explore the best number of iterations to run

• In SIRT, explore the use of upper and lower constraints

• Try 3D (extract 50-100 slices and/or crop data from the sides to reduce runtime)

Reference notebooks that may be useful to revisit

• 00_CIL_geometry Overview of setting/modifying geometry

• 03_preprocessing Prepreprocesing steps

• additional_exercises_data_resources Ideas for further exploration

Option 1: Learnmore server

• Hands-on exercises at DTU Jupyter notebook server:

https://learnmore1.compute.dtu.dk

https://learnmore2.compute.dtu.dk

• To distribute load between servers:

If your birth date is an odd (even) number, use learnmore1 (2)

• Use your DTU or guest login and password

• Assignments -> CINEMAXV_Reconstruction -> 2023_SC_for_CT_week_2

-> Fetch -> Files -> Refresh (hit F5) -> Enter folder 2023_SC_for_CT_week_2

https://learnmore1.compute.dtu.dk/
https://learnmore2.compute.dtu.dk/

Option 2: STFC Cloud

• Hands-on exercises at the STFC Cloud:

https://training.jupyter.stfc.ac.uk/

• 14 accounts with dedicated higher-spec GPU available – 2 accounts per group

• Group1: sc4ct23_1 sc4ct23_2

• Group2: sc4ct23_4 sc4ct23_5

• Group3: sc4ct23_6 sc4ct23_7

• Group4: sc4ct23_8 sc4ct23_9

• Group5: sc4ct23_11 sc4ct23_12

• Group6: sc4ct23_13 sc4ct23_14

• Group7: sc4ct23_15 sc4ct23_16

Please note: accounts sc4ct23_3 & sc4ct23_10 are broken hence skipped above.

https://training.jupyter.stfc.ac.uk/

Option 2: STFC Cloud

1. Visit https://jupyter.stfc.ac.uk and click on sign up.

2. Enter your username (e.g. sc4ct23_1) and a password

[note there is no password reset option – please remember it!]

3. Click login to return to the login page and again, enter the username and

password.

4. Either you will be taken straight to the jupyter hub (if so, ignore this and the

later steps) or you will be presented with server options.

5. Select “OpenGL GPU environment” and start

6. Starting the server may take some time.

• The exercise notebooks are in the folder

CIL-Demos/demos/1-Introduction

https://jupyter.stfc.ac.uk/

