Regularization Techniques for Tomography Problems
Chapter 12.1 and 12.2

Yiqiu Dong

DTU Compute
Technical University of Denmark

16 Jan. 2023

Yigiu Dong (DTU Compute) Regularization Techniques for Tomography P 16 Jan. 2023 1/23



CT reconstruction

Object Measurements
x b = N(Ax)

o Forward Problem: Send X-rays through the object at different
angles, and measure the damping of X-rays.
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CT reconstruction

Object Measurements

X bZN(A)_()

@ Our Problem: Reconstruct x from b with given A.

@ It is a highly ill-posed inverse problem.
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Inverse problems

Measurements,
data
A forward problem
States Observables

“

Aninverse problem

Physical properties,
unknowns
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Questions need be considered

@ Why are inverse problems difficult?

» Forward models are not explicitly invertible
» Errors in the measurements (and also in the forward model) can lead to
errors in the solution
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Questions need be considered

@ Why are inverse problems difficult?
» Forward models are not explicitly invertible

* Existence: Does any state fit the measurement?
* Uniqueness: Is there a unique state vector fits the measurement?

» Errors in the measurements (and also in the forward model) can lead to
errors in the solution

* Stability: Can small changes in the measurement produce large changes
in the solution?
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Hadamard condition

A problem is called well-posed if
@ there exists a solution to the problem (existence),

@ there is at most one solution to the problem (uniqueness),

© the solution depends continuously on the measurement (stability).

Otherwise the problem is called ill-posed.
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Example: lll-posedness
@ If too many measurements and no consistence, the solution of

Ax = b does not exist.

@ If no enough measurements, the solution of Ax = b is not unique.
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Example: lll-posedness

@ If too many measurements and no consistence, the solution of
Ax = b does not exist.

@ If no enough measurements, the solution of Ax = b is not unique.

@ Even we have a unique least-squares solution, it can be not good
enough due to lack of the stability.

Ground truth Least squares
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More questions need be considered

@ Why are inverse problems difficult?
<= It's often ILL-POSED!

@ How can we solve an ill-posed inverse problem?
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More questions need be considered

@ Why are inverse problems difficult?
<= It's often ILL-POSED!

@ How can we solve an ill-posed inverse problem?
» Does the measurements actually contain the information we want?
» Which solution do we want?
» The measurement may not be enough by itself to completely determine
the unknown. What other prior information of the “unknown” do we
have?
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More questions need be considered

@ Why are inverse problems difficult?

<= It's often ILL-POSED!
@ How can we solve an ill-posed inverse problem?
» Does the measurements actually contain the information we want?
» Which solution do we want?
» The measurement may not be enough by itself to completely determine
the unknown. What other prior information of the “unknown” do we
have?

<= We can use REGULARIZATION techniques!
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Regularization techniques

Consider to solve an ill-posed inverse problem:
b = N(Ax)

Regularization: Approximate the inverse operator, A=, by a family of
stable operators R, where « is the regularization parameter.

We need: With the noise-free measurement we can find appropriate

parameters « such that x, = R,(b) is a good approximation of the true
solution X.
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lllustration of the need for regularization

Exact sol.: x®act
[ ]

R™ = span{uy, ..., Um}

. * x» (Tikhonov)
x« (TSVD)

Naive sol.: x = A~1h
o

pexact — A yexact

0 p = pexact +e
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Truncated SVD

Considering the linear inverse problem
Ax=0>b with b = Ax + e.

Based on the SVD of A, the “naive” solution is given by

/ T / T
_ u'b _ u'e
x:Albzg ——v;=Xx+ ——v;
; gj : gj
=1 i=1
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Truncated SVD

The solution of Truncated SVD is

uTh
xtsvp = VELUTh =" v,

with ZL = diag(al_l,~-- ,021,0,"' ,0).
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Truncated SVD

The solution of Truncated SVD is

k
XTSvVD = VZI(UTIJ == Z ! U4

with ZI{ = diag(al_l,”' ,021,0,"' ,0).

@ Regularization parameter:
k, i.e, the number of SVD components.
o Advantages:

> Intuitive
» Easy to compute, if we have the SVD

o Drawback:
» For large-scale problem, it is infeasible to compute the SVD
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Tikhonov regularization

Idea: If we control the norm of the solution, then we should be able to
suppress most of the large noise components.
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Tikhonov regularization

Idea: If we control the norm of the solution, then we should be able to
suppress most of the large noise components.

The Tikhonov solution xTii is defined as the solution to

1 1
min > Ax — blj3 + a3 |3
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Tikhonov regularization

suppress most of the large noise components.

Idea: If we control the norm of the solution, then we should be able to

The Tikhonov solution xTii is defined as the solution to

@ Regularization parameter: «

1 1

min =||Ax — b3 + a=||x]|3

in |1 Ax — b3 + a5 x|}

@ « large: strong regularity, over smoothing.

@ « small: good fitting
Ground truth

a=1 a=16.3
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Exercises

12.2 Tikhonov Solution

In this exercise, we study the property of the optimization problem:
1 1
min =||Ax — b||2 ~|Ix|13
vin S | 12+ a5 [1x12

by calculating the gradient and the Hessian of the objective function.

Yigiu Dong (DTU Compute) Regularization Techniques for Tomography P 16 Jan. 2023 13/23



The solution of Tikhonov regularization
Reformulate as a linear least squares problem

w3 ()= (7))

2

2
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The solution of Tikhonov regularization
Reformulate as a linear least squares problem

w3 ()= (7))

The normal equation is

2

2

(ATA+al)x=ATb,
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The solution of Tikhonov regularization
Reformulate as a linear least squares problem

w3 ()= (7))

The normal equation is

2

2

(ATA+al)x=ATb,

The solution is

xtik=(ATA+al)*ATb
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The solution of Tikhonov regularization
Reformulate as a linear least squares problem

w3 ()= (7))

The normal equation is

2

2

(ATA+al)x=ATb,
The solution is

xtik=(ATA+al)*ATb
=V(E2+a) XU
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Compare with TSVD

@ The solution of TSVD is

@ The solution of Tikhonov regularization is

° i UTb
XTe =Y _ MV,’

2
P or + o
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Compare with TSVD

@ The solution of TSVD is

k
u; b
XTSVD = _V = Z JSvD i — Vi
i=1
with ¢T5VD = Lo lsisk
0, k<i<n.

@ The solution of Tikhonov regularization is

oi(u b) u'b
XTik:ZG’+a ,—Z T —v;

i=1
h olk — o7 Looi> \/a ’
wit @ T o24a ~ o?
! o 0K Va .
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Non-negativity and box constraints
o Non-negativity constrained Tikhonov problem:

1 2 1 2
min >l Ax — b3+ a3 x5

@ Box constrained Tikhonov problem:

1 1
in Z||Ax —b|3+ o =|x|3
xe”[‘;f;]ng” x = bz + a7 x|
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Non-negativity and box constraints
o Non-negativity constrained Tikhonov problem:

1 2 1 2
min >l Ax — b3+ a3 x5

@ Box constrained Tikhonov problem:

Ground truth

1 1
in Z||Ax —b|3+ o =|x|3
xe”[‘;f;]nz” x = bz + a7 x|

No constraints

Non-neg.

/‘\/'\
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Exercises

12.3 Influence of Regularization Parameters on Tikhonov Solutions

We use a very small problem to study the influence of the
regularization parameter.
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Gaussian noise

b=Ax+e

where e denotes additive white Gaussian noise with zero mean and the
covariance 772Im.

@ All elements in e are independent.

@ e is independent on X.

@ Each element e; can be seen as a Gaussian random variable with
mean 0 and variance 7?.

Yigiu Dong (DTU Compute) Regularization Techniques for Tomography P 16 Jan. 2023 18/23



Maximum likelihood estimate

b=Ax+e

where e denotes additive white Gaussian noise with zero mean and the

covariance 1?1 .

@ The probability density for observing b given x is

x)=m(b— x——1 ex ——Hb_AXH%
(bl = r(b— Ax) = o (-125571).

which is called the likelihood of x.
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Maximum likelihood estimate

b=Ax+e

where e denotes additive white Gaussian noise with zero mean and the
covariance 1?1 .

@ The probability density for observing b given x is

b AL oo ( b= Ax]B
w13 = (b= Ax) = e (25ME) )

which is called the likelihood of x.
e Maximum likelihood (ML) estimate can be obtained by solving:

max m(b|x) <«— mxin—Iog(Tr(b|x)).
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Maximum likelihood estimate

b=Ax+e

where e denotes additive white Gaussian noise with zero mean and the
covariance 1?1 .

@ The probability density for observing b given x is

b AL oo ( b= Ax]B
w13 = (b= Ax) = e (25ME) )

which is called the likelihood of x.
e Maximum likelihood (ML) estimate can be obtained by solving:

max m(b|x) <«— mxin—Iog(Tr(b\x)).

e With the likelihood of x given in (1), we obtain the ML estimation
problem

1
min =||b— Ax||3 .
x 2
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MAP esitmate

To obtain a stable solution, we can incorporate prior information on x by
applying Bayes formula:

(b | x) Tprior(x)

wlx|b) = 22

7(x | b) is the posterior.
(b | x) is the likelihood.
Tprior(X) is the prior probability density of x.

m(b) is the prior probability density of b.
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MAP esitmate

To obtain a stable solution, we can incorporate prior information on x by

applying Bayes formula:

(b | x) Tprior(X)
m(b)

m(x|b) =

7(x | b) is the posterior.
(b | x) is the likelihood.
Tprior(X) is the prior probability density of x.

7(b) is the prior probability density of b.

Maximum a posteriori (MAP) estimate can be obtained by solving:

(b | x) Tprior(X)
7(b) ’
— mxin —log(m(b|x)) — log(mprior(x)),

max 7(x | b) <= max
X X
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Example

If we have
o the likelihood: m(b|x) =

_lIAx—b|3
(W) exp( T ) and
o the prior: Tprior(Xx) = Wﬁ)" exp(—» ||x|]%) (Gaussian distribution),

then the MAP estimate can be obtained by solving
.1 1
min S 16— Ax|3 + a5 x|}

with o = n?/3? .
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Example

If we have
BT Ax—b|2
o the likelihood: m(b|x) = (=L exp (_Ilﬁzn&) and

@ the prior: Tprior(X) = exp(—%J(x)) (Gibbs prior) with 5 > 0,

then the MAP estimate can be obtained by solving
in 2 1B~ Ax3+ o J(x)
min > x||5+ aJ(x

with o =n?/3.
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Example

If we have
‘Lelihood: __ 1 _llax=b|3
o the likelihood: 7(b|x) = VI EXP( pI ) and

@ the prior: Tprior(X) = exp(—%J(x)) (Gibbs prior) with 5 > 0,

then the MAP estimate can be obtained by solving
in 3 l1b— Ax|3 +a J(x)
min > x||5+ aJ(x
with o =n?/p.

o The term %||b — Ax||3 is called the data-fidelity term.
@ The term J(x) is called the regularization term.

@ « > 0 is the regularization parameter.
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Poisson Measurements in X-ray

The measured transmission /; in a single detector element follows a
Poisson distribution P(lp exp(—r] x)):

loexp(—rT x))"
w(li| x) = ( 0 p(/.l ! )) exp (—lo exp(—r,-Tx)> ,
fil

where r,T with i = 1,--- , m denotes the row of the system matrix A.
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Poisson Measurements in X-ray

The measured transmission /; in a single detector element follows a
Poisson distribution P(lp exp(—r] x)):

loexp(—r7 x))"
w(li| x) = (0 exp(l'lr, x)) exp (—lo exp(—r,-Tx)> ,

where r,T with i = 1,--- , m denotes the row of the system matrix A.

@ The likelihood: w(I|x) = [T, 7(/i | x).
@ The ML estimate (b = —log(//l)):

argmin —log (m(b|x)) <= argmin exp(—b) " Ax + 17 exp(—Ax).
X X

o The MAP estimate: argminy exp(—b)TAx + 17 exp(—A x) + aJ(x).
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Exercise

o 12.1 Quadratic Approximation for Poisson Noise.
Use the second-order Taylor expansion of

Di(7) = exp(—bi) T + exp(—T), i=1,...,m,

to verify that the ML estimation problem can be approximated by the
weighted quadratic problem

X

min %(Ax —b)"W (Ax — b)

with W = diag(exp(—b)).
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