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May 2014 6/33 P. C. Hanaen: Regularization in Tomography 

The Radon Transform 

The principle in parallel- 
beam tomography: send 
parallel rays through the 
object at different angles, 
measure the damping. 
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=⇒ Measurements

b = N (Ax̄)

Forward Problem: Send X-rays through the object at different
angles, and measure the damping of X-rays.
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⇐=
Measurements

b = N (Ax̄)

Our Problem: Reconstruct x̄ from b with given A.

It is a highly ill-posed inverse problem.
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Inverse problems
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Questions need be considered

Why are inverse problems difficult?
I Forward models are not explicitly invertible
I Errors in the measurements (and also in the forward model) can lead to

errors in the solution
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Questions need be considered

Why are inverse problems difficult?
I Forward models are not explicitly invertible

F Existence: Does any state fit the measurement?
F Uniqueness: Is there a unique state vector fits the measurement?

I Errors in the measurements (and also in the forward model) can lead to
errors in the solution

F Stability: Can small changes in the measurement produce large changes
in the solution?
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Hadamard condition

A problem is called well-posed if

1 there exists a solution to the problem (existence),

2 there is at most one solution to the problem (uniqueness),

3 the solution depends continuously on the measurement (stability).

Otherwise the problem is called ill-posed.
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Example: Ill-posedness

If too many measurements and no consistence, the solution of
Ax = b does not exist.

If no enough measurements, the solution of Ax = b is not unique.

Even we have a unique least-squares solution, it can be not good
enough due to lack of the stability.

Ground truth Least squares Tikhonov
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More questions need be considered

Why are inverse problems difficult?
⇐= It’s often ILL-POSED!

How can we solve an ill-posed inverse problem?

I Does the measurements actually contain the information we want?
I Which solution do we want?
I The measurement may not be enough by itself to completely determine

the unknown. What other prior information of the “unknown” do we
have?

⇐= We can use REGULARIZATION techniques!
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Regularization techniques

Consider to solve an ill-posed inverse problem:

b = N (Ax̄)

Regularization: Approximate the inverse operator, A−1, by a family of
stable operators Rα, where α is the regularization parameter.

We need: With the noise-free measurement we can find appropriate
parameters α such that xα = Rα(b) is a good approximation of the true
solution x̄ .
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Illustration of the need for regularization

THIRD PROOFS “hansen” 2009/12/14 page 54✐
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54 Chapter 4. Computational Aspects: Regularization Methods

Rn = span{v1, . . . , vn} Rm = span{u1, . . . , um}

•
Exact sol.: xexact

•
bexact = Axexact

✲

◦ b = bexact + e
❅❅❘
✑

✑
✑

✑
✑

✑
✑

✑
✑
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Naive sol.: x = A−1b

⋆
xk (TSVD)

∗ xλ (Tikhonov)

Figure 4.1. Illustration of the need for regularization.

4.1 The Need for Regularization
As we have already seen in the previous chapter, discrete ill-posed problems are charac-
terized by having coefficient matrices with a very large condition number. This implies
that the naive solution is very sensitive to any perturbation of the right-hand side,
representing the errors in the data. Specifically, assume that the exact and perturbed
solutions xexact and x satisfy

Axexact = bexact, A x = b = bexact + e,

where e denotes the perturbation. Then classical perturbation theory leads to the
bound

∥xexact − x∥2
∥xexact∥2

≤ cond(A)
∥e∥2
∥bexact∥2

.

Since cond(A) is large, this implies that x can be very far from xexact. Moreover,
although the above expression is an upper bound only, every experience shows that
perturbations close to the upper bound always arise in applications of discrete inverse
problems. Hence we need regularization methods that can compute less sensitive
approximations to xexact.

Figure 4.1 illustrates the need for regularization. Here, the exact solution xexact

gives rise to an exact right-hand side bexact, while the perturbed right-hand side is
b = bexact + e. Due to the ill conditioning of A, the naive solution x = A−1b can
be expected to be far from the exact solution xexact, even when the perturbation is
small, i.e., when ∥e∥2 ≪ ∥bexact∥2. Regularized solutions, such as the truncated SVD
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Truncated SVD
Considering the linear inverse problem

Ax = b with b = Ax̄ + e.

Based on the SVD of A, the “naive” solution is given by

x = A−1b =
l∑

i=1

u>i b
σi

v i = x̄ +
l∑

i=1

u>i e
σi

v i

THIRD PROOFS “hansen” 2009/12/14 page 37✐
✐

✐
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✐
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3.4. Convergence and Nonconvergence of SVE Approximation∗ 37
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Figure 3.7. The Picard plots for the discretized gravity surveying problem
with a noisy right-hand side. The two figures correspond to two different noise levels.
The larger the noise level, the fewer SVD coefficients uT

i b remain above the noise
level.

problem (originally proposed and studied in [27]).

The Discrete Picard Condition. Let τ denote the level at which the
computed singular values σi level off due to rounding errors. The discrete
Picard condition is satisfied if, for all singular values larger than τ , the
corresponding coefficients |uT

i b|, on average, decay faster than the σi .

(3.16)

We emphasize that it is the decay of the σi and |uT
i b| that matters here—not

the size of these quantities. For example, in Figure 3.7 we see that |uT
i b| > σi for

i = 1, 2, 3, 4, but the discrete Picard condition is still satisfied for i = 1, . . . , 10.
A visual inspection of the Picard plot is often enough to verify if the discrete

Picard condition is satisfied. One should always ignore the part of the Picard plot
that corresponds to tiny singular values at the machine precision level, and when noise
is present in the right-hand side then one should also ignore all those coefficients for
which |uT

i b| level off at some noise plateau.
To further illustrate the power of the analysis that can be carried out by means

of the Picard plot, we return to Ursell’s test problem (2.10). Figure 3.8 shows the
Picard plot for a discretization of this problem (computed with n = 16). Clearly,
the discrete Picard condition is not satisfied; the coefficients |uT

i b| decay more slowly
than the singular values σi for all singular values larger than the machine precision
level. This is a very strong indication that the underlying continuous problem does
not satisfy the Picard condition. And this is, indeed, the case for this problem.

3.4 Convergence and Nonconvergence of SVE
Approximation∗

We mentioned in Section 2.3 that for the singular value expansion (SVE) to exist, the
kernel K must be square integrable, that is, for our generic integral equation (2.2) we
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Truncated SVD

The solution of Truncated SVD is

xTSVD = VΣ†kU
>b =

k∑
i=1

u>i b
σi

v i

with Σ†k = diag(σ−11 , · · · , σ−1k , 0, · · · , 0).

Regularization parameter:
k , i.e, the number of SVD components.

Advantages:
I Intuitive
I Easy to compute, if we have the SVD

Drawback:
I For large-scale problem, it is infeasible to compute the SVD
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Tikhonov regularization
Idea: If we control the norm of the solution, then we should be able to
suppress most of the large noise components.

The Tikhonov solution xTik is defined as the solution to

min
x

1

2
‖Ax − b‖22 + α

1

2
‖x‖22

Regularization parameter: α
α large: strong regularity, over smoothing.

α small: good fitting
Ground truth α=1 α=16.3 α=50
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Exercises

12.2 Tikhonov Solution

In this exercise, we study the property of the optimization problem:

min
x

1

2
‖Ax − b‖22 + α

1

2
‖x‖22

by calculating the gradient and the Hessian of the objective function.
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The solution of Tikhonov regularization
Reformulate as a linear least squares problem

min
x

1

2

∥∥∥∥( A√
αI

)
x −

(
b
0

)∥∥∥∥2
2

The normal equation is

(ATA + αI ) x = ATb,

The solution is

xTik = (ATA + αI )−1ATb

= V (Σ2 + αI )−1Σ>U>b

=
n∑

i=1

σi (u>i b)

σ2i + α
v i
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Compare with TSVD

The solution of TSVD is

xTSVD =
k∑

i=1

u>i b
σi

v i

=
n∑

i=1

ϕTSVD
i

u>i b
σi

v i

with ϕTSVD
i =

{
1, 1 ≤ i ≤ k ,
0, k < i ≤ n.

The solution of Tikhonov regularization is

xTik =
n∑

i=1

σi (u>i b)

σ2i + α
v i

=
n∑

i=1

ϕTik
i

u>i b
σi

v i

with ϕTik
i =

σ2
i

σ2
i +α
≈

{
1, σi �

√
α ,

σ2
i
α , σi �

√
α .
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Non-negativity and box constraints
Non-negativity constrained Tikhonov problem:

min
x≥0

1

2
‖Ax − b‖22 + α

1

2
‖x‖22

Box constrained Tikhonov problem:

min
x∈[a,b]n

1

2
‖Ax − b‖22 + α

1

2
‖x‖22
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Exercises

12.3 Influence of Regularization Parameters on Tikhonov Solutions

We use a very small problem to study the influence of the
regularization parameter.
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Gaussian noise

b = Ax̄ + e

where e denotes additive white Gaussian noise with zero mean and the
covariance η2Im.

All elements in e are independent.

e is independent on x̄ .

Each element e i can be seen as a Gaussian random variable with
mean 0 and variance η2.
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Maximum likelihood estimate

b = Ax̄ + e

where e denotes additive white Gaussian noise with zero mean and the
covariance η2Im.

The probability density for observing b given x is

π(b | x) = π(b − Ax) =
1

(
√

2πη)m
exp

(
−‖b − Ax‖22

2η2

)
, (1)

which is called the likelihood of x .

Maximum likelihood (ML) estimate can be obtained by solving:

max
x

π(b | x) ⇐⇒ min
x
− log

(
π(b | x)

)
.

With the likelihood of x given in (1), we obtain the ML estimation
problem

min
x

1

2
‖b − Ax‖22 .
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MAP esitmate
To obtain a stable solution, we can incorporate prior information on x̄ by
applying Bayes formula:

π(x |b) =
π(b | x)πprior(x)

π(b)
.

π(x |b) is the posterior.

π(b | x) is the likelihood.

πprior(x) is the prior probability density of x .

π(b) is the prior probability density of b.

Maximum a posteriori (MAP) estimate can be obtained by solving:

max
x

π(x |b) ⇐⇒ max
x

π(b | x)πprior(x)

π(b)
,

⇐⇒ min
x
− log(π(b | x))− log(πprior(x)),
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Example

If we have

the likelihood: π(b | x) = 1
(
√
2πη)m

exp
(
−‖Ax−b‖22

2η2

)
and

the prior: πprior(x) = 1
(
√
2πβ)n

exp(− 1
2β2 ‖x‖22) (Gaussian distribution),

then the MAP estimate can be obtained by solving

min
x

1

2
‖b − Ax‖22 + α

1

2
‖x‖22

with α = η2/β2 .

The term 1
2‖b − Ax‖22 is called the data-fidelity term.

The term J(x) is called the regularization term.

α > 0 is the regularization parameter.
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Poisson Measurements in X-ray

The measured transmission Ii in a single detector element follows a
Poisson distribution P(I0 exp(−rTi x)):

π(Ii | x) =

(
I0 exp(−rTi x)

)Ii
Ii !

exp
(
−I0 exp(−rTi x)

)
,

where rTi with i = 1, · · · ,m denotes the row of the system matrix A.

The likelihood: π(l | x) =
∏m

i=1 π(li | x).

The ML estimate (b = − log(l/l0)):

arg min
x
− log

(
π(b | x)

)
⇐⇒ arg min

x
exp(−b)TAx + 1T exp(−Ax).

The MAP estimate: arg minx exp(−b)TAx + 1T exp(−Ax) + αJ(x).
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π(Ii | x) =

(
I0 exp(−rTi x)

)Ii
Ii !

exp
(
−I0 exp(−rTi x)

)
,

where rTi with i = 1, · · · ,m denotes the row of the system matrix A.

The likelihood: π(l | x) =
∏m

i=1 π(li | x).

The ML estimate (b = − log(l/l0)):

arg min
x
− log

(
π(b | x)

)
⇐⇒ arg min

x
exp(−b)TAx + 1T exp(−Ax).

The MAP estimate: arg minx exp(−b)TAx + 1T exp(−Ax) + αJ(x).
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Exercise

12.1 Quadratic Approximation for Poisson Noise.
Use the second-order Taylor expansion of

Di (τ) = exp(−bi ) τ + exp(−τ), i = 1, . . . ,m ,

to verify that the ML estimation problem can be approximated by the
weighted quadratic problem

min
x

1

2
(Ax − b)TW (Ax − b)

with W = diag(exp(−b)).
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