
Taking Bad Pictures

Sources of blurring:

1 The lens is out of focus.

2 The camera is shaking.

3 The object is moving.

4 Defects in the lens or optical system.

5 Aberration – the optical path depends on the wavelength.

6 Statistical variations in the optical path (turbulence).

Our goal is to (try to) reconstruct the sharp image, using a mathematical
model for the blurring.

02625 SCI Chapter 3 1 / 26

An Example: the Hubble Space Telescope

For several years, the HST produced blurred images.

02625 SCI Chapter 3 2 / 26

Two Representations of Images

Our notation for images:

X = sharp image, B = blurred image

all images are m × n.

The “vec” operation stacks the columns of the images:

x = vec(X), b = vec(B)

all vectors have length N = mn.

Matlab commands to go back and forth:

x = X(:)

X = reshape(x,m,n)

02625 SCI Chapter 3 3 / 26

Linearity of the Blurring Model

All our blurring models are linear.

There exists a large N × N matrix A such that we can write

b = A x.

Note that we distinguish between

the N × N blurring matrix A and

the m × n image arrays B, X.

In Matlab they are all just arrays/matrices.

02625 SCI Chapter 3 4 / 26

The Linear Deblurring Problem

The relation b = A x is the forward model.

If we swap the “ingredients” then we obtain the inverse problem

A x = b

associated with the reconstruction of x.

The computational problem in image deblurring is to solve this system.
This is difficult, for several reasons:

1 The matrix A is large.

2 The matrix A is very ill conditioned.

3 The matrix A may be an imprecise model of the blurring.

02625 SCI Chapter 3 5 / 26

The Point Spread Function (PSF)

We need a precise description of the blurring matrix A.

Point source Point spread function
A single white pixel Image of point source

02625 SCI Chapter 3 6 / 26

Measuring the PSF

Point sources and PSFs are often generated experimentally by taking a
picture of a point source.

Astronomy: point source = single bright star.

Microscopy: point source = fluorescent microsphere.

The PSF array is the m × n image of the point source.

The vector ei (the ith unit vector) represents a point source.

The image of the point source,

A ei = ai = column i of A,

represents the corresponding PSF.

In this way we can fully assemble the blurring matrix A
(in a rather cumbersome way).

02625 SCI Chapter 3 7 / 26

The PSF is Local

Typically, the PSF is local.

This means that the extent of the region with (practically) nonzero
elements of the PSF array is small.

We can limit the storage and only save the (practically) nonzero part of
the PSF as a much smaller p × q array P.

02625 SCI Chapter 3 8 / 26

PSF Models
Sometimes we can give a specific formula for computing the PSF.

See next slide for simplified expressions for atmospheric turbulence
(Gaussian) blur and Moffatt blur without a tilted axis.

02625 SCI Chapter 3 9 / 26

Some PSF Models
Out-of-focus blur (radius = r):

pij =

{
1/(πr2), if (i − k)2 + (j − `)2 ≤ r2

0, elsewhere.

Atmospheric turbulence blur:

pij =
1

2πs1s2
exp

(
−1

2

(
i − k

s1

)2

− 1

2

(
j − `
s2

)2
)
.

Moffat function for astronomical telescope blur:

pij =

(
1 +

(
i − k

s1

)2

+

(
j − `
s2

)2
)−β

.

The PSFs are centered at element (k , `), and s1 and s2 determine the
width of the PSF. – Misprint p. 27: no “exp” in equation.

02625 SCI Chapter 3 10 / 26

Spatially Invariant Blur

Often the shape of the PSF is (almost) independent on the localization in
the image = spatially invariant blur.

Leads to structure in the blurring matrix A (→ Chapter 4).

02625 SCI Chapter 3 11 / 26

Computing the Blurred Image

From the relation b = A x we see that the ith element in the blurred
image is given by

bi = eTi b = eTi A x = A(i , :) x

where A(i , :) denotes the ith row of the matrix A.

This is not compatible with the column-wise specification of A.

(If the blurring is spatially invariant, then there is a simple relation
between the rows and columns of A.)

But instead of working out the specific relationship, we use the well-known
concept of a convolution.

02625 SCI Chapter 3 12 / 26

Two-Dimensional Convolution (Preview of Ch. 4)

In a 2D convolution, the new image B is created by applying a filter P to
the original image X:

B = P ∗ X.

The convolution operation “∗” can be specified as follows:

Rotate P 180 degrees.

For all i , j in X:
1 Center the rotated P at pixel i , j in X.
2 Multiply corresponding components in X and the rotated P.
3 Sum the results in pixel i , j of B.

This is precisely the same as computing b = A x when b = vec(B),
x = vec(X) and P is the PSF array for spatially invariant blur!

02625 SCI Chapter 3 13 / 26

2D Convolution by Example

For example, if P has the form

P =

1 2 3
4 5 6
7 8 9

and if bij and xij are the elements/pixels of B and X, then

bij = 9 · xi−1,j−1 + 8 · xi−1,j + 7 · xi−1,j+1 +

6 · xi ,j−1 + 5 · xi ,j + 4 · xi ,j+1 +

3 · xi+1,j−1 + 2 · xi+1,j + 1 · xi+1,j+1.

This illustrates a fundamental principle in image deblurring:

The matrix-vector notation A x = b is useful for analysis, but
working with the images and the PSF array P is more practical!

02625 SCI Chapter 3 14 / 26

Convolution and Filtering

In the signal and image processing communities, convolutions are often
used for filtering (→ Challenge 7).

Low-pass filtering (local averaging) for noise removal:

P =
1

9

1 1 1
1 1 1
1 1 1

 or P =
1

16

1 2 1
2 4 2
1 2 1

 .
High-pass filtering (computing derivatives) finds edges:

P =

 0 −1 0
−1 4 −1

0 −1 0

 or P =

 1 −2 1
−2 4 −2

1 −2 1

 .
Edge enhancement: a weighted average of the original image and
the high-pass filtered image enhances the edges.

02625 SCI Chapter 3 15 / 26

Spatial Filters in Matlab’s Image Processing Toolbox (IPT)

P = fspecial(’type’,parameters)

02625 SCI Chapter 3 16 / 26

2D Convolution in Matlab

CONV2 Two dimensional convolution.

C = CONV2(A, B) performs the 2-D convolution of matrices

A and B. If [ma,na] = size(A) and [mb,nb] = size(B), then

size(C) = [ma+mb-1,na+nb-1].

C = CONV2(H1, H2, A) convolves A first with the vector H1

along the rows and then with the vector H2 along the columns.

C = CONV2(... ,’shape’) returns a subsection of the 2-D

convolution with size specified by ’shape’:

’full’ - (default) returns the full 2-D convolution,

’same’ - returns the central part of the convolution

that is the same size as A.

’valid’ - returns only those parts of the convolution

that are computed without the zero-padded

edges. size(C) = [ma-mb+1,na-nb+1] when

all(size(A) >= size(B)), otherwise C is empty.

Note that CONV2 assumes zero boundary conditions.

02625 SCI Chapter 3 17 / 26

Other Choices in Matlab

CONV2 is built-in; the IPT provides a more versatile function:

IMFILTER N-D filtering of multidimensional images.

B = IMFILTER(A,H) filters the multidimensional array A with the

multidimensional filter H. A can be logical or it can be a

nonsparse numeric array of any class and dimension. The result,

B, has the same size and class as A.

B = IMFILTER(A,H,OPTION1,OPTION2,...) performs multidimensional

filtering according to the specified options:

- Boundary options: number, ’symmetric’, ’replicate’, ’circular’

- Output size options: ’same’, ’full’

- Correlation and convolution: ’corr’, ’conv’

02625 SCI Chapter 3 18 / 26

Very Important Points

1 The PSF array P is the image of a single white pixel.

2 Its effective dimensions are usually much smaller than those
of B and X.

3 It can often be directly measured or specified mathematically.

4 If the blurring is local and spatially invariant, then P contains all
information about the blurring throughout the image.

5 In this case, the blurring is most conveniently computed by means of
two-dimensional convolution.

02625 SCI Chapter 3 19 / 26

Close To The Edge

The yellow line shows the boundary of
the blurred image B.

The PSF “spills over the edge” at the
image boundary, so that information
from the exact image X is lost in the
blurred image B that we record.

Also, we see that values of the exact scene outside the border of B affect
what is actually recorded.

Hence we would be able to compute a better reconstruction if we knew
what was outside the recorded image (but we don’t).

A good image deblurring model must take account of these effects!

02625 SCI Chapter 3 20 / 26

Boundary Conditions

Most common approach: impose a mathematical expression for the
behavior at the image boundary.

Easy to formulate a “catalogue” of boundary conditions in our
language of matrix computations.

Conceptually, we can formulate this as embedding the image X in a
larger image Xext.

Zero boundary conditions. Assume that the exact image is black outside
the boundary:

Xext =

 0 0 0
0 X 0
0 0 0

 , 0 = zero matrix.

02625 SCI Chapter 3 21 / 26

More Boundary Conditions

Periodic. The image repeats itself (endlessly) in both directions:

Xext =

 X X X
X X X
X X X

 .
Reflexive. The scene outside the image boundary is a mirror image of the
scene inside the boundary:

Xext =

 X× Xud X×
Xlr X Xlr

X× Xud X×

 , Xlr = fliplr(X)
Xud = flipud(X)
X× = fliplr(Xud).

How to incorporate these boundary conditions into the deblurring problem
is explained in Chapters 4 and 5.

02625 SCI Chapter 3 22 / 26

Noise!

We consider two types of additive noise.

Image noise originates from the photons entering the CCD, and is
modelled as Poisson noise.

Readout noise originates from the CCD and the analog-to- digital
conversion, and is modelled as Gaussian white noise.

Readout noise and background image noise is additive, and the noisy
blurred image is therefore given by

B = P ∗ X + E,

where E is an m × n array whose elements are from a Gaussian or Poisson
distribution (or the sum of both).

02625 SCI Chapter 3 23 / 26

Image Photon Noise

The recorded light intensity is due to photons hitting the CCD, and
therefore the intensity follows a Poisson distribution. How to introduce the
corresponding photon noise?
The following two formulations for Gaussian noise are equivalent:

bi = (bexact)i + ei , ei ∼ N
(
0, η2

)
bi ∼ N

(
(bexact)i , η

2
)
.

The latter is more suited for introducing Poisson photon noise:

bi ∼ P
(
(bexact)i

)
.

In both cases, the expected values are E(bi) = (bexact)i . The variances are
given by:

V (bi) = η2 (Gaussian), V (bi) = (bexact)i (Poisson).

02625 SCI Chapter 3 24 / 26

Adding Noise in Matlab

Adding Gaussian noise is easy:

B = Bexact + eta*randn(m,n);

Adding Poission noise with the Statistics Toolbox;

for i=1:m, for j=1:n

B(i,j) = poissrnd(Bexact(i,j));

end, end

Things are easier with the Image Processing Toolbox:

B = imnoise(Bexact,’gaussian’,0,eta^2);

B = imnoise(Bexact,’poisson’);

Other types of noise are also available.

02625 SCI Chapter 3 25 / 26

More Very Important Points

1 The matrix in the deblurring model A x = b is determined from two
ingredients:

1 the point spread function (PSF), which defines how each pixel is
blurred, and

2 the boundary conditions, which specify our assumptions on the scene
just outside our image.

2 Ignoring boundary conditions is equivalent to assuming zero boundary
conditions.

3 Noise is always present in a recorded image, and is modelled by
Poisson or Gaussian noise (or a sum of both).

Challenge 8 misprint: Bext = conv2(Xext, P, ’same’).

02625 SCI Chapter 3 26 / 26

