Structured Matrix Computations

@ Basic Structures for One-Dimensional Problems
— the role of boundary conditions
@ BCCB Matrices
— periodic boundary conditions
© Symmetric Toeplitz-plus-Hankel Matrices
— reflexive boundary conditions
© Kronecker Product Matrices
— when the variables separate in the PSF
© Summary of Fast Algorithms

@ Creating Realistic Test Data
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The Linear Deblurring Model

b=Ax+e

o Given:
a blurred and noisy image
b = vec(B)
and a BIG blurring matrix A.

o Goal:
Compute an approximation
of the true image x = vec(X).
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Useful Matrix Factorizations

Singular Value Decomposition (SVD)

A=UxV’
where all matrices are real
o ¥ =diag(o1,02,...,0n), or>0p>--->0on>0
oU:[ul,uz,...,uN], V:[Vl,VQ,...,VN]
eU’U=I, VV=I
Spectral Decomposition L
A=UAU"
where the matrices are usually complex
o A =diag(A1,A2,...,An) — no ordering
o U=1iig, iip, ..., 0in]
o U*U =1, where U* = complex conjugate of u’
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Chapter Goal

The SVD and Spectral Decomposition can be used to:

@ Investigate sensitivity of image deblurring problem
— Chapter 5.

@ Construct image deblurring algorithms
— Chapter 6.

To compute these decompositions efficiently for large matrices,
we must exploit structure — this chapter.

Question: What is the matrix A and how do we get it?
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Basic Structures: One-Dimensional Problems

Recall:

Each blurred pixel is a weighted sum of the corresponding pixel and
its neighbors in the true image.

For example, if

X1 b
X2 bo
x=1| x3 and b= | b3
X4 b4
X5 b5

then
b3 =0x1+0x+0UOx3+0x4 +Uxs

The weights come from the PSF.
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An example, p = PSF array, b = Ax = sum of weighted PSF's:

X1
X2
X = X3
X4
X5
P3| X1
P4
b= ps +
0
0
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P4 p3 | X5
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1. “Rotate” the PSF p 180 degrees about center:

2. Match coefficients of rotated PSF and x:
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3. Multiply corresponding components and sum them:

X1 Ps by
X2 Pa b>
X3 p3 and b= b3
X4 p2 by
X5 p1 bs

to obtain
bz = psx1 + pax2 + p3x3 + pax4 + p1xs

This is one-dimensional convolution.
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Same idea when x is longer than p:

X1
X2
X3
X4
X5
X6
X7
Xg
X9

P5
P4
P3
P2
P1

where we obtain from the convolution
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If the weights fall outside the true image scene:

7 p5 by
X1 P4 by
X2 P3 b= | b
X3 p2 by
X4 P1 b
X5

then
by = ps ? + paxi + p3xa2 + p2x3 + pi1xa
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Impose boundary conditions:

w Ps by
X1 P4 by
X2 P3 b= | b
X3 p2 by
X4 P1 b
X5

then
by = ps W + pax1 + p3xa + pax3 + p1xs
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Impose boundary conditions, such as zero

then
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0
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Impose boundary conditions, such as periodic

X5 P5

by
X1 P4 by
X2 P3 b= | b
X3 p2 by
X4 p1 b
X5

then
by = psxs + pax1 + p3x2 + p2x3 + p1xa
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Impose boundary conditions, such as reflexive

X1 Ps

by
X1 P4 by
X2 P3 b= | b
X3 p2 by
X4 p1 b
X5

then
by = psx1 + pax1 + p3x2 + pax3 + p1xa
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In General, We Can Write

b pPs pa p3
b Ps  pa
by | = 23
by
bs

“empty element” denotes 0
zeroBC= w; =y; =0

P2 p1
pP3 P2
pPa p3
P5 P4

Ps

b1

P3
Pa

pP1
P2 p1
p3 P2

p1

periodic BC = wy = x4, wo = X5, y1 = X1, Y2 = X2

reflexive BC = wy = x0, wo = X1, y1 = X5, Yo = Xa

02625 SCI
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Therefore, for zero boundary conditions we get:

b1 p3 P2 p1

by pa P3 P2 p1

bs | = | ps pa p3 P2 p1
by pPs pa p3 p2
bs pPs pa p3

Here A is a Toeplitz matrix.

Note that

@ the middle column is identical to p, and

o the middle row [ ps ps p3 p2 p1] consists of the elements of p

in reverse order.
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For periodic boundary conditions we get:

Here A is a circulant matrix.
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For reflexive boundary conditions we get:

Here A is a Toeplitz-plus-Hankel matrix.
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Two-Dimensional Problems

As with one-dimensional problems, to compute pixel bj:
© Rotate the PSF P by 180 degrees.
@ Locate it at the desired position.
© Match coefficients of rotated PSF and X.

© Multiply corresponding components and sum them.
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For example, to compute by

X11
X21
X31

X12
X22
X32
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X23 P21 P22 P23 by1 b bo3

X33 P31 P32 P33 b31 b3 b33
P B
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Rotate, multiply, and sum:

X11 X12 X13

P33 P32 P31 bi1  bro b13

X1 X2 x23 b1 bor b

Dos P pu 21 D22 D23
bs1 b3x b33

X31 X32 X33

P13 P12 P11

by = p33x11 + p32xi2 + p3ixiz +

p23Xx21 + p2oXo2 + p21Xx23 +

P13X31 + P12X32 + P11X33

02625 SCI Chapter 4
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Consider what happens at the edges:

P33 P32
P lel2 X12  X13
’ ’ b1 b2
P13 X/2-7112 X22P11X23 by bz
b3y b3z
X31 X32 X33
b11 p33? + p32? 4+ p3? +
p23_? + p2oxi1 + po1xi2 +
p13_? + p1aXxo1 + p11Xxe2
02625 SCI Chapter 4
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Again, we need to impose boundary conditions:

P33 P32 P31

X111 X12 X13
P23 P22 P21

bi1 b2
X1 X X3
P13 P12 P11 by b
bs1 b3
X31 X3 X33
Zero:
bir = p330 +p320 +p31 0 +

P23.0 + poox11 + po1xi2 +
P13.0 + p1oxo1 + prixo
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Again, we need to impose boundary conditions:

P33 P32 P31

X111 X12 X13
P23 P22 P21

bi1 b2
Xo1  Xp2 X3 b
P13 P12 P11 21 b
bs1 b3
X31 X32 X33
Periodic:
bi1 = p33 x33 + P32 x31 + P31 x32 +

P23 X13 + p22Xx11 + p2ixi2 +

P13 X23 + p12X21 + P11X22
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Again, we need to impose boundary conditions:

P33 P32 P31

X111 X12 X13
P23 P22 P21

bi1 b2
X1 X2 X3 b
P13 P12 P11 21 b
bs1 b3
X311 X32 X33
Reflexive:
b1 = p33 X1 +p32 X1 +p3txe +

P23 X11 + p22Xx11 + p2ixi2 +

P13 Xo1 + p12X21 + P11X22
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b1z
b3
b33

25 /79



Matrix Structures

@ Zero boundary conditions = A is BTTB
@ Periodic boundary conditions = A is BCCB

o Reflexive boundary conditions = A is sum of
BTTB, BTHB, BHTB, and BHHB (notation: B/, +,,B ?)

Legend:
BTTB: Block Toeplitz with Toeplitz blocks
BCCB: Block circulant with circulant blocks
BTHB: Block Toeplitz with Hankel blocks
BHTB: Block Hankel with Toeplitz blocks
BHHB: Block Hankel with Hankel blocks
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Zero Boundary Conditions = BTTB matrix

b1 P2 P12 P21 P11 X11
b1 P32 P22 P12 | P31 P21 P11 X21
b3y P2 P2 P31 po1 X31
b1o P23 P13 P2 P12 P21 pu X12
by | = | Pz P23 P13 | P2 P2 P12 | P31 P Pi X22
b3o P33 P23 P32 P22 P31 P21 X32
b3 P23 P13 p2 P12 X13
bo3 P33 P23 P13 | P32 P22 P12 Xx23

| b3z | L P33 P23 P32 P22 X33

b = vec(B), p = vec(P), x = vec(X)

02625 SCI Chapter 4
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Periodic Boundary Conditions = BCCB matrix

b1 P2 P12 P32 | P21 P11 P31 | P23 P13 P33 X11
b1 P32 P22 P12 | P31 P21 P11 | P33 P23 P13 X21
b3y P12 P32 P22 | P11 P31 P21 | P13 P33 P23 X31
b1o P23 P13 P33 | P22 P12 P32 | P21 P11 P3t X12
by | = | Pz P23 P13 | P2 P2 P12 | P31 P Pi X22
b3o P13 P33 P23 | P12 P32 P22 | P11 P31 P21 X32
b3 P21 P11 P31 | P23 P13 P33 | P22 P12 P32 X13
bo3 P31 P21 P11 | P33 P23 P13 | P2 P22 P12 Xx23

L b33 i L P11 P31 P21 | P13 P33 P23 | P12 P32 P22 X33

b = vec(B), p = vec(P), x = vec(X)

02625 SCI Chapter 4
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Reflecive Boundary Conditions = ...

With reflexive boundary conditions A is much more complicated.
For example, the first row of A is:

[ p22 + p23 + p32 + p33, p12 + p13, 0, po1 + p31,p11, 0, 0, 0, 0]

It can be shown that A is a sum of four structured matrices, with BTTB,
BTHB, BHTB, and BHHB structure, respectively.
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Separable Blur

Horizontal and vertical components separate.

In this case, the PSF array has rank = 1:

P=cr’
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Separable Blur

Forming the matrix with this special PSF we obtain (zero BC):

[ cor2 car o cn
C3rp G G| Gn i an
G G G Gn
Cr3 i3 G anr &GN an
A= C3r3 Col3 C1I3 | C3rp Colp Cihp | C3I1 Conp C1nn
C3r3  Cr3 C3r G G Gn
Cr3 Cirs QR anr
C3r3 Cr3 Cir3 | 32 G an
L G3r3  Cr3 Gr2 Qn
02625 SCI [
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Separable Blur

G 0
n| g o q n|lcag o a 0
L ag o L ag o
(o o [ o o
Bl G & a rn| G G a n|aag @ a
L ag o L ag o G O
[ o o
0 r3 a3 G O r a3 ¢
L ag o G O
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Separable Blur

We see that for this special PSF we obtain (with zero BC):

r n @ G
A=A QA .= R n n X c3 ¢ C
B rn G @

Here ® denotes the Kronecker product.
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The Wonderful World of Kronecker Products

Definition:

a1 ar annAc  aAc
A = = A QA =
' [ a1 ax } e [ a21Ac  axnAc ]

Transposition and inversion:

(A, ®A)T = Al oAl
(Ar®AC)_1 = Ar_l(X’Ac_1

SVD:
(UrErVrT) ® (UcchcT) = (Ur @ Uc)(Zr @ Be)(Vr @ VC)T
Matrix-vector product:

(A, @ Ac) vec(X) = vec(A. XA

02625 SCI Chapter 4
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Separable Blur with Boundary Conditions

Similar structures occur for other boundary conditions

A=A ®A,

@ Zero boundary conditions:

e A, is Toeplitz, defined by r

o A is Toeplitz, defined by c

@ Periodic boundary conditions:

e A, is circulant, defined by r

e A, is circulant, defined by c

@ Reflexive boundary conditions:
e A, is Toeplitz-plus-Hankel, defined by r
o A is Toeplitz-plus-Hankel, defined by c

02625 SCI Chapter 4
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Summary of Matrix Structures

BC Non-separable Separable PSF
PSF

zero BTTB Kronecker product of
Toeplitz matrices

periodic BCCB Kronecker product of
circulant matrices

reflexive | BTTB+BTHB Kronecker product of

+BHTB+BHHB | Toeplitz-plus-Hankel matrices

02625 SCI
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Computations with BCCB Matrices

Recall that with periodic boundary conditions A is a BCCB matrix:

[ b1y ] [ P22 P12 P32 | P21 P11 P3| P23 Pz ps3 | | xu
b1 P2 P22 P12 | P31 P21 P11 | P33 P23 P13 X21
bs1 P12 P32 P22 | P11 P31 P21 | P13 P33 P23 X31
b2 P23 P13 P33 | P22 P12 P32 | P21 P11 P31 X12
by | = | Pz P23 P13 | P2 P2 P12 | P31 P Pu X22
bso P13 P33 P23 | P12 P2 P2 | P11 P31 P2 X32
b3 P21 P11 P31 | P23 P13 P33 | P22 P12 P32 X13
bo3 P31 P21 P11 | P33 P23 P13 | P2 P22 P12 X23

L bs3 i L P11 P31 P21 | P13 P33 P23 | P12 P32 P22 | | X33

b = vec(B), p = vec(P), x = vec(X)
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The One-Dimensional Discrete Fourier Transform

If x € R” then X = DFT(x) € C" is defined by
1 n
R = ﬁ;xj exp(—2mi(j —1)(k —1)/n), 1=+v—1.

There exists a unitary matrix F, € C"™" such that
£ =+/nF,x & X =

in which F% = conj(F,)".
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The Two-Dimensional DFT

If X € C™*" then the 2-D DFT is defined by
X = (VmFm) X (v/nF,)* = VNF, XF;

with N = mn (1-D DFTs along the columns and rows of X).

From the Kronecker product relations we get

~

vec(X) = V'N (conj(F,,) ® Fm)vec(X) = v/N Fvec(X) ,

where F = conj(F,) ® Fp,.
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Important BCCB Matrix Property

@ Every BCCB matrix has the same set of eigenvectors:
A=FAF (: F*A(F*)*>

where

F is the two-dimensional discrete Fourier transform matrix
F is complex

F is unitary: F*F=FF* =

F* is the matrix of eigenvectors of A

A = diagonal complex matrix containing eigenvalues of A

@ Computations with F can be done very efficiently:
F times a vector requires O(N log N) flops
using the 2-D Fast Fourier Transform (FFT) algorithm.

02625 SCI Chapter 4
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FFT Computations

In Matlab, if A=F*AF is N x N, then:

. 1 *
o fft2 &> VNF and ifft2 ¢ o F

@ Specifically, the following operations are equivalent:

o VNFx & ££t2(X)

o ﬁ F*x & ifft2(X)

where x = vec(X), and X is m x n with N = mn.

02625 SCI Chapter 4
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Eigenvalues of BCCB Matrix

A=FAF = FA=AF = Fa=Af;

where

@ a; = first column of A
o f; = first column of F:

sl

1
@ Thus

1
Fa1 :Afl = —A
VN

where A is a vector containing the eigenvalues of A.

02625 SCI Chapter 4
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Computing the Eigenvalues of BCCB Matrix

Thus, to compute eigenvalues of A, we need to:
e Multiply the matrix v/NF by the first column of A.

@ Or, equivalently, apply £ft2 to a two-dimensional array containing
the elements of the first column of A.

@ Can get this array from the PSF:

P11 ‘ P12 P13 P22 P23 | p21
P21 | P22 P23 — P32 P33 | P31
P31 | P32 P33 p12 P13 ‘ p11

P first column of A

circshift(P, 1-[2,2])
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Efficient BCCB Computations

Thus, for zero boundary conditions, we have a BCCB matrix defined by:
o the PSF array P

@ the center of PSF = [row, col]

To compute eigenvalues (spectral values) in this case:
S = £fft2( circshift(P, 1-center) );

Note that S is an array, not a vector, and eigenvalues are not sorted.
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Additional BCCB Computations

If A is the BCCB matrix defined by the PSF array P, and
b=Ax=F"AFx

then to compute b use

S = £fft2( circshift(P, 1 - center) );
B = ifft2(S .x fft2(X));
B = real(B);

where

b=vec(B) and x=vec(X).

Small PSF Arrays. If the PSF array P is smaller than the B and X
images, then use our Matlab function padPSF to embed the p x g array P
in a larger array of size m x n.

02625 SCI Chapter 4 45 /79



Additional BCCB Computations

If A is the BCCB matrix defined by the PSF array P, and
Xnaive = A 'b=F*A"'Fb

then to compute x use

S = £fft2( circshift(P, 1 - center) );
X = ifft2(££t2(B) ./ S);
X = real(X);
where
b=vec(B) and x=vec(X).
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BTTB+BTHB+BHTB-+BHHB Matrices

With reflexive boundary conditions A is a

BTTB + BTHB + BHTB + BHHB
matrix defined by the PSF.

Double symmetry condition: if

0
P=1]0
0
where

o Pis (2k — 1) x (2k — 1) with center located at (k, k)
o P = fliplr(P) = flipud(P)

o T o
o o o
[

02625 SCI Chapter 4
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BTTB+BTHB+BHTB+BHHB Matrix Properties

If the PSF satisfies the double symmetry condition, then:
@ A is symmetric
@ A is block symmetric
@ Each block in A is symmetric

@ A has the spectral decomposition
A=C'AC

where C is the two-dimensional discrete cosine transform (DCT)
matrix.

e Cis real, and CT contains the eigenvectors.
e As with FFTs, computations with C cost O(N log N) flops.
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DCT Computations

With Matlab’s the image processing toolbox, if A= CTACis N x N,
then:

@ dct2 « C and idct2 < CT

@ Specifically, the following operations are equivalent:
e Cx & det2(X)
o C'x & idct2(X)

where x = vec(X), and X is m x n with N = mn.

Without the image processing toolbox, use our codes:
@ dct2 — dcts2 and idct2 — idcts2.
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DCT Relations and Eigenvalues

A=C'AC = CA=AC = Ca=Ac
where
@ a; — first column of A
@ c; = first column of C,

@ Thus, the eigenvalues of C are given by

[Cai],

[c1];

Cai=Aci = M=
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More DCT Relations

Thus, to compute eigenvalues of A, we need to:
@ Multiply the matrix C to the first column of A.
@ Or, equivalently, apply dct2 to a two-dimensional array containing
the elements of the first column of A.

@ Can get this array by adding four shifted PSFs, which we have
implemented as:

dctshift (P, center)

@ We also need the first column of C, i.e., ¢ = Cey.
o Note that e; = vec(el) with
el = zeros(m,n); el1(1,1) = 1;

@ Thus we get the desired column via dct2(el).

02625 SCI Chapter 4
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Efficient Computations with DCT

Thus, for reflexive boundary conditions, with
@ doubly symmetric PSF P
@ center of PSF = [row, coll]
To compute eigenvalues (spectral values) in this case:

el = zeros(size(P)); el(1,1) = 1;
S = dct2( dctshift(P, center) ) ./ dct2(el);
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Additional DCT Computations

If A is defined by a doubly symmetric PSF with reflexive boundary
conditions, and
b=Ax=CTACx
then to compute b use
el = zeros(size(P)); el(1,1) = 1;
S = dct2( dctshift(P, center) ) ./ dct2(el);
B = idct2(S .* dct2(X));

where
b=vec(B) and x=vec(X)
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Additional DCT Computations

If A is defined by a doubly symmetric PSF with reflexive boundary
conditions, and
Xnaive = A-'lb=CT"A"ICb
then to compute x use
el = zeros(size(P)); el(1,1) = 1;
S = dct2( dctshift(P, center) ) ./ dct2(el);
X = idct2(dct2(B) ./ 8);

where
b=vec(B) and x=vec(X)
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Separable PSFs and Kronecker Products

Recall: If the PSF has rank = 1,

then the blurring matrix has the form
A=A ®A.

where A, is defined by r and A. is defined by c.

Assume for now A, and A, are known.
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Exploiting Kronecker Product Properties

Using the property:
b=(A®A)x < B=AXAT

in Matlab we can compute
B = Ac*X*Ar’;

02625 SCI Chapter 4
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Using the property:
b=(A®A)x < B=AXAT
and if A, and A. are nonsingular,
(Ar@A) =A@ A

we obtain
X=AlBA T

In Matlab we can compute
X =Ac \ B/ Ar’;

02625 SCI Chapter 4
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We can compute SVD of small matrices:
A =UXV' and A =UZV/
Then

A = A RA
= (UrErVrT) ® (UcEcVZ)
= (U, 2U)(Z @)V, @ V)T
= SVD of big matrix A

Note: Do not need to explicitly form the big matrices

U ®U:, 3% ®X, ViV
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To compute inverse solution from SVD of small matrices:

is equivalent to

Xnave = AZ1BA; T = V.3 tU/BU, =]

Xnaive = A"Ib = VE1UTb

A Matlab implementation could be:
[Ur, Sr, Vrl
[Uc, Sc, Vcl

S
X

diag(Sc)

02625 SCI

*

svd (Ar) ;
svd(Ac) ;
diag(Sr)’;

Ve * ( (Uc> * B * Ur)./S ) * Vr’;
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Getting A, and A, from the PSF Array

To construct A, and A. we must find r and ¢ such that

P—cr’

e Compute the SVD: P = ULV’ = F u,-a,-v,-T
@ If Phasrank =1, then oy =03 =--- =0, and

C=+/01U1 = \/0>1V1
o If P has rank # 1, then

C =, /01U1 ¥ =,/01V1
give the approximations
P~cr' and A=A ®A

02625 SCI Chapter 4
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Some Comments to the Matlab Code

@ The singular vectors r and ¢ can be computed using the
svd or svds functions.
@ Since we need at most two singular values, svds is convenient:
[U, S, V] = svds(P, 2);
IfPismxnthenUismx 2, Visnx2andSis2x 2.

@ Check to see if P is separable. For example, if
S(2,2)/8(1,1) > small_tol

then P is not separable.
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A Matlab Example

@ P = psfGauss(32);

° meshiP) - |

@ plot(P(:,16) o= x

° [U, s, V] = - R
svds(P,2); o

@ C = 2 \}‘

sqrt (S(1,1))*U(:,1);
er =
sqrt (S(1,1))*V(:,1);
@ mesh(c*r’)
@ plot(c) T
Check sign of singular vectors and change if necessary.
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Construct A, and A.

Given r and c:
@ zero BC: build Toeplitz A,, A
@ periodic BC: build circulant A,, A
o reflexive BC: build Toeplitz-plus-Hankel A,, A
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Construct A, and A. for Zero BC

Suppose

P11 P12 P13 pia
P=| p1 px p23 pau |, center=|[23]
P31 P32 P33 P3a

Then, with zero BC

3 rn n N
ra r3 rn or
A=AxA.=|* 3 2 Tlglg o a
rpa 3 n G o
rp 3
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If Kk =3 = center(2), then A, = toeplitz(col,row), where

col = [ regr -+ rm O - 0]
row = [rk k1 -+ n 0o --- 0]

If Kk =2 = center(1), then A =toeplitz(col,row), where

col = [Ck Ckt1 -+ € 0 --- O]
row = [ -1 -+ a 0 - 0]
& r: r
3 2 rl . o o
r. I 1
L Ac=|ca o a
ra I3
3 O
rg I3
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Construct A, and A. for Zero BC in Matlab

Matlab function to build Toeplitz A,, A, given
@ middle column defining entries of matrix: ¢ =rorc

@ loc. of center (diagonal) entry: k = center (1) or center(2)

function T = buildToep(c, k)
n = length(c);
col = zeros(n,1); row = col;
col(1:n-k+1) = c(k:n);
row(l:k) = c(k:-1:1);
T = toeplitz(col, row);

end

Then, given P = c*r’ and center of P,

Ac = buildToep(c, center(1));
Ar = buildToep(r, center(2));
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Construct A, and A. for Periodic BC

P11
P= px
P31

Then, with periodic BC

A=A QA .=

02625 SCI

P12
P22
P32

3

n
r

P13
P23
P33

r
r3
ra
r
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P14
P24
P34

n
r
r3
ra

ra
n
r
r3

9

center = [2, 3]

(%)

X | c3

a

a1
%}
a3

(&}
a
(0)
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If Kk =3 = center(2), then A, = toeplitz(col,row), where

col = [rk fk+1 =+ th o rk—l]

row = [rk rek—1 -+ N rp --- rk+1]
If Kk =2 = center(1), then A, = toeplitz(col,row), where

col = [Ck Ckt1 -+ Cpn C - Ckfl}

row = [Ck Ck—1 -+ € Cp - Ck+1]

3 rn n n o o o
rg r N n

A = > Ac=| g o a
n rg r3 nm a & o

rpn rg r3
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Construct A, and A. for Periodic BC in Matlab

Matlab function to build circulant A,, A, given
@ middle column defining entries of matrix: ¢ =ror c

@ loc. of center (diagonal) entry: k = center (1) or center(2)

function T = buildCirc(c, k)
n = length(c);
col = [c(k:n); c(1:k-1)];
row = [c(k:-1:1); c(n:-1:k+1)];
T = toeplitz(col, row);
end

Then, given P = c*r’ and center of P
Ac buildCirc(c, center(l));
Ar = buildCirc(r, center(2));
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Construct A, and A. for Reflexive BC

In this case
A=A ®A.
where
o A, = Toeplitz + Hankel
o A. = Toeplitz + Hankel
@ Use buildToep for Toeplitz parts.
@ How to get Hankel parts?
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Construct A, and A. for Reflexive BC in Matlab

Matlab function to build Hankel part for A,, A, given
@ middle column defining entries of matrix: ¢ =rorc

@ loc. of center (diagonal) entry: k = center(1) or center(2)

function T = buildHank(c, k)
n = length(c);
col = zeros(n,1); row = col;
col(1:n-k) = c(k+1l:n);
row(n-k+2:n) = c(1:k-1);
T = hankel(col, row);

end

Then, given P = c*r’ and center of P

Ac
Ar

buildToep(c, center(1)) + buildHank(c, center(1));
buildToep(r, center(2)) + buildHank(r, center(2));
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Construct A, and A. for All Three BC

[U, S, V] = svds(P, 2);
c = sqrt(S(1,1))*U(:,1);
r sqrt (S(1,1))*V(:,1);
switch BC
case ’zero’
Ac = buildToep(c, center(1));
Ar = buildToep(r, center(2));
case ’reflexive’
Ac = buildToep(c, center(1)) + buildHank(c, center(1));
Ar = buildToep(r, center(2)) + buildHank(r, center(2));
case ’periodic’
Ac = buildCirc(c, center(1));
Ar = buildCirc(r, center(2));
end
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Summary of Fast Algorithms

For spatially invariant PSFs, we have the following fast algorithms.

Boundary Matrix Fast
PSF condition structure algorithm
BCCB 2-dim FFT

Arbitrary Periodic

Doubly sym. | Reflexive | BTTB4+BTHB
+BHTB+BHHB

2-dim DCT

2 small SVDs

Kronecker product

Separable Arbitrary
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Creating Realistic Test Data

Issues that must be considered:
o Small PSF.

@ Creating blurred image without imposing artificial boundary
conditions.

o Additive noise.
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PSF Sizes

@ It is often the case that
size(P) < size(B) and size(X)
@ In this case we should “pad” P with zeros to increase size.
@ Since we do this a lot, it is useful to have a function:
function Ppad = padPSF(P, size)
Ppad = zeros(size);
Ppad(1l:size(P,1), 1l:size(P,2)) = P;
end

o With this padding, center of Ppad = center of P
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Creating Blurred Image

If we are given blurred image data:

@ We try to make a best guess at what boundary condition is most
realistic.

@ Construct A using this boundary condition.

If we are creating blurred image data:
@ We should simulate actual boundaries of an infinite scene.
@ This can be done by blurring a large “true” image scene.

@ Then extract the central part of the image.
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Creating Blurred Image: Matlab example

Xbig = double(imread(’iograyBorder.tif’));
[P, center] = psfGauss([512,512], s);

Pbig = padPSF(P, size(Xbig));

Sbig = fft2(circshift(Pbig, 1-center));
Bbig = real(ifft2(Sbig .* fft2(Xbig)));
X = Xbig(51:562,51:562);

B = Bbig(51:562,51:562);

Use P, center, B, X as realistic (noise free) test data.
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Additive Noise

Additive noise = add random perturbations to blurred image.
@ Use Matlab randn function.
@ Scale perturbations to data.

@ Add to blurred image.

For example,

E = randn(size(B));
E =E / norm(E(:));
B =B + 0.01*norm(B(:))*E;

generates “1% noise.”
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