Structured Matrix Computations

- Basic Structures for One-Dimensional Problems
 - the role of boundary conditions
- BCCB Matrices
 - periodic boundary conditions
- Symmetric Toeplitz-plus-Hankel Matrices
 - reflexive boundary conditions
- 4 Kronecker Product Matrices
 - when the variables separate in the PSF
- Summary of Fast Algorithms
- Oreating Realistic Test Data

The Linear Deblurring Model

$$\mathbf{b} = \mathbf{A} \, \mathbf{x} + \mathbf{e}$$

- Given:

 a blurred and noisy image
 b = vec(B)

 and a BIG blurring matrix A.
- Goal: Compute an approximation of the true image x = vec(X).

Useful Matrix Factorizations

Singular Value Decomposition (SVD)

$$A = U \Sigma V^T$$

where all matrices are real

•
$$\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_N)$$
, $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_N \ge 0$

•
$$U = [u_1, u_2, ..., u_N], V = [v_1, v_2, ..., v_N]$$

$$\bullet U^TU = I, V^TV = I$$

Spectral Decomposition

$$\mathbf{A} = \widetilde{\mathbf{U}} \, \mathbf{\Lambda} \, \widetilde{\mathbf{U}}^*$$

where the matrices are usually complex

- $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_N)$ no ordering
- $\bullet \ \widetilde{\mathbf{U}} = [\,\widetilde{\mathbf{u}}_1\,,\,\widetilde{\mathbf{u}}_2\,,\,\ldots\,,\,\widetilde{\mathbf{u}}_N\,]$
- $oldsymbol{\widetilde{U}}^*\,\widetilde{f U}={f I},$ where $\widetilde{f U}^*=$ complex conjugate of $\widetilde{f U}^{\mathcal T}$

Chapter Goal

The SVD and Spectral Decomposition can be used to:

- Investigate sensitivity of image deblurring problem
 → Chapter 5.
- Construct image deblurring algorithms
 → Chapter 6.

To compute these decompositions efficiently for large matrices, we must $exploit\ structure \rightarrow$ this chapter.

Question: What is the matrix **A** and how do we get it?

Basic Structures: One-Dimensional Problems

Recall:

Each blurred pixel is a weighted sum of the corresponding pixel and its neighbors in the true image.

For example, if

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

then

$$b_3 = \square x_1 + \square x_2 + \square x_3 + \square x_4 + \square x_5$$

The weights come from the PSF.

An example, $\mathbf{p} = \mathsf{PSF}$ array, $\mathbf{b} = \mathbf{A} \mathbf{x} = \mathsf{sum}$ of weighted PSF 's:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} p_3 \\ p_4 \\ p_5 \\ 0 \\ 0 \end{bmatrix} \times 1 + \begin{bmatrix} p_2 \\ p_3 \\ p_4 \\ p_5 \\ 0 \end{bmatrix} \times 2 + \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} \times 3 + \begin{bmatrix} 0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} \times 4 + \begin{bmatrix} 0 \\ 0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} \times 5$$

1. "Rotate" the PSF **p** 180 degrees about center:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \qquad \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

2. Match coefficients of rotated PSF and x:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \qquad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

3. Multiply corresponding components and sum them:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \qquad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

to obtain

$$b_3 = p_5 x_1 + p_4 x_2 + p_3 x_3 + p_2 x_4 + p_1 x_5$$

This is one-dimensional convolution.

Same idea when \mathbf{x} is longer than \mathbf{p} :

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_9 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_6 \\ b_8 \\ b_9 \end{bmatrix}$$

where we obtain from the convolution

$$b_5 = p_5 x_3 + p_4 x_4 + p_3 x_5 + p_2 x_6 + p_1 x_7$$

If the weights fall outside the true image scene:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

$$b_2 = p_5 ? + p_4 x_1 + p_3 x_2 + p_2 x_3 + p_1 x_4$$

Impose boundary conditions:

$$\begin{bmatrix} w \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

$$b_2 = p_5 \underline{w} + p_4 x_1 + p_3 x_2 + p_2 x_3 + p_1 x_4$$

Impose boundary conditions, such as zero

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

$$b_2 = p_4 x_1 + p_3 x_2 + p_2 x_3 + p_1 x_4$$

Impose boundary conditions, such as periodic

$$\begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

$$b_2 = p_5 x_5 + p_4 x_1 + p_3 x_2 + p_2 x_3 + p_1 x_4$$

Impose boundary conditions, such as reflexive

$$\begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_2 \\ p_1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

$$b_2 = p_5 x_1 + p_4 x_1 + p_3 x_2 + p_2 x_3 + p_1 x_4$$

In General, We Can Write

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} = \begin{bmatrix} p_5 & p_4 & p_3 & p_2 & p_1 \\ & p_5 & p_4 & p_3 & p_2 & p_1 \\ & & p_5 & p_4 & p_3 & p_2 & p_1 \\ & & & p_5 & p_4 & p_3 & p_2 & p_1 \\ & & & & p_5 & p_4 & p_3 & p_2 & p_1 \end{bmatrix} \begin{bmatrix} u_2 \\ \hline x_1 \\ x_2 \\ x_3 \\ x_4 \\ \hline x_5 \\ \hline y_1 \\ y_2 \end{bmatrix}$$

- "empty element" denotes 0
- zero BC $\Rightarrow w_i = y_i = 0$
- periodic BC $\Rightarrow w_1 = x_4, w_2 = x_5, y_1 = x_1, y_2 = x_2$
- reflexive BC $\Rightarrow w_1 = x_2, w_2 = x_1, y_1 = x_5, y_2 = x_4$

Therefore, for zero boundary conditions we get:

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} = \begin{bmatrix} p_3 & p_2 & p_1 \\ p_4 & p_3 & p_2 & p_1 \\ p_5 & p_4 & p_3 & p_2 & p_1 \\ p_5 & p_4 & p_3 & p_2 \\ p_5 & p_4 & p_3 & p_2 \\ p_5 & p_4 & p_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

Here A is a Toeplitz matrix.

Note that

- the middle column is identical to p, and
- the middle row [p_5 p_4 p_3 p_2 p_1] consists of the elements of **p** in reverse order.

For periodic boundary conditions we get:

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} = \begin{bmatrix} p_3 & p_2 & p_1 & p_5 & p_4 \\ p_4 & p_3 & p_2 & p_1 & p_5 \\ p_5 & p_4 & p_3 & p_2 & p_1 \\ p_1 & p_5 & p_4 & p_3 & p_2 \\ p_2 & p_1 & p_5 & p_4 & p_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

Here **A** is a *circulant matrix*.

For reflexive boundary conditions we get:

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} p_3 & p_2 & p_1 & & & & \\ p_4 & p_3 & p_2 & p_1 & & & \\ p_5 & p_4 & p_3 & p_2 & p_1 & & & \\ p_5 & p_4 & p_3 & p_2 & p_1 & & & & \\ p_5 & p_4 & p_3 & p_2 & & & & \\ p_5 & p_4 & p_3 & p_2 & & & & \\ p_1 & p_1 & p_2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

Here A is a Toeplitz-plus-Hankel matrix.

Two-Dimensional Problems

As with one-dimensional problems, to compute pixel b_{ij} :

- Rotate the PSF P by 180 degrees.
- 2 Locate it at the desired position.
- Match coefficients of rotated PSF and X.
- Multiply corresponding components and sum them.

For example, to compute b_{22}

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$X \qquad \qquad P \qquad \qquad B$$

Rotate, multiply, and sum:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ p_{33} & p_{32} & p_{31} \\ x_{21} & x_{22} & x_{23} \\ p_{23} & p_{22} & p_{21} \\ x_{31} & x_{32} & x_{33} \\ p_{13} & p_{12} & p_{11} \end{bmatrix}$$

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$b_{22} = p_{33}x_{11} + p_{32}x_{12} + p_{31}x_{13} + p_{23}x_{21} + p_{22}x_{22} + p_{21}x_{23} + p_{13}x_{31} + p_{12}x_{32} + p_{11}x_{33}$$

Consider what happens at the edges:

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$b_{11} = p_{33} ? + p_{32} ? + p_{31} ? + p_{23} ? + p_{22} x_{11} + p_{21} x_{12} + p_{13} ? + p_{12} x_{21} + p_{11} x_{22}$$

Again, we need to impose boundary conditions:

Zero:

$$b_{11} = p_{33} \underline{0} + p_{32} \underline{0} + p_{31} \underline{0} + p_{23} \underline{0} + p_{22} x_{11} + p_{21} x_{12} + p_{13} \underline{0} + p_{12} x_{21} + p_{11} x_{22}$$

Again, we need to impose boundary conditions:

Periodic:

$$b_{11} = p_{33} \underline{x_{33}} + p_{32} \underline{x_{31}} + p_{31} \underline{x_{32}} + p_{23} \underline{x_{13}} + p_{22} \underline{x_{11}} + p_{21} \underline{x_{12}} + p_{13} \underline{x_{23}} + p_{12} \underline{x_{21}} + p_{11} \underline{x_{22}}$$

Again, we need to impose boundary conditions:

Reflexive:

$$b_{11} = p_{33} \underline{x_{11}} + p_{32} \underline{x_{11}} + p_{31} \underline{x_{12}} + p_{23} \underline{x_{11}} + p_{22} \underline{x_{11}} + p_{21} \underline{x_{12}} + p_{13} \underline{x_{21}} + p_{12} \underline{x_{21}} + p_{11} \underline{x_{22}}$$

Matrix Structures

- Zero boundary conditions $\Rightarrow A$ is BTTB
- Periodic boundary conditions ⇒ A is BCCB
- Reflexive boundary conditions \Rightarrow A is sum of BTTB, BTHB, BHTB, and BHHB (notation: $B_{HT}^{TT}_{HH}^{TH}B$?)

Legend:

BTTB: Block Toeplitz with Toeplitz blocks
BCCB: Block circulant with circulant blocks
BTHB: Block Toeplitz with Hankel blocks
BHTB: Block Hankel with Toeplitz blocks
BHHB: Block Hankel with Hankel blocks

Zero Boundary Conditions ⇒ BTTB matrix

[b ₁₁]		<i>p</i> ₂₂	p_{12}		p_{21}	p_{11}				-	$\begin{bmatrix} x_{11} \end{bmatrix}$
b_{21}		p ₃₂	p_{22}	p_{12}	p ₃₁	<i>p</i> ₂₁	p_{11}				x ₂₁
b_{31}			p_{32}	p_{22}		<i>p</i> ₃₁	p_{21}				_X ₃₁ _
b_{12}		<i>p</i> ₂₃	p_{13}		<i>p</i> ₂₂	p_{12}		p_{21}	p_{11}		<i>x</i> ₁₂
b_{22}	=	<i>p</i> ₃₃	p_{23}	p_{13}	p ₃₂	p 22	p_{12}	p ₃₁	p_{21}	p_{11}	x ₂₂
b_{32}			p_{33}	p_{23}		p ₃₂	p_{22}		p_{31}	p_{21}	X32
b_{13}					p ₂₃	<i>p</i> ₁₃		p ₂₂	p_{12}		<i>x</i> ₁₃
b_{23}					p ₃₃	<i>p</i> ₂₃	p_{13}	p ₃₂	p_{22}	p_{12}	<i>x</i> ₂₃
b_{33}		L				<i>p</i> ₃₃	p_{23}		p_{32}	p_{22}	$\begin{bmatrix} x_{33} \end{bmatrix}$

$$\mathbf{b} = \text{vec}(\mathbf{B}), \qquad \qquad \mathbf{p} = \text{vec}(\mathbf{P}), \qquad \qquad \mathbf{x} = \text{vec}(\mathbf{X})$$

Periodic Boundary Conditions ⇒ BCCB matrix

$$\begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ \hline b_{12} \\ b_{22} \\ \hline b_{13} \\ \hline b_{13} \\ b_{23} \\ b_{33} \end{bmatrix} = \begin{bmatrix} p_{22} & p_{12} & p_{32} & p_{21} & p_{11} & p_{31} & p_{23} & p_{13} & p_{33} \\ p_{32} & p_{22} & p_{12} & p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{13} \\ p_{12} & p_{32} & p_{22} & p_{11} & p_{31} & p_{21} & p_{13} & p_{33} & p_{23} \\ \hline p_{23} & p_{13} & p_{33} & p_{22} & p_{12} & p_{32} & p_{21} & p_{11} & p_{31} \\ \hline p_{23} & p_{13} & p_{33} & p_{22} & p_{12} & p_{32} & p_{21} & p_{11} & p_{31} \\ \hline p_{21} & p_{13} & p_{33} & p_{23} & p_{12} & p_{32} & p_{22} & p_{11} & p_{31} & p_{21} \\ \hline p_{21} & p_{11} & p_{31} & p_{23} & p_{13} & p_{33} & p_{22} & p_{12} & p_{32} \\ \hline p_{21} & p_{11} & p_{31} & p_{23} & p_{13} & p_{33} & p_{22} & p_{12} & p_{32} \\ \hline p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{13} & p_{33} & p_{22} & p_{12} \\ \hline p_{31} & p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{12} & p_{32} & p_{22} \end{bmatrix}$$

$$\mathbf{b} = \text{vec}(\mathbf{B}), \qquad \qquad \mathbf{p} = \text{vec}(\mathbf{P}), \qquad \qquad \mathbf{x} = \text{vec}(\mathbf{X})$$

Reflecive Boundary Conditions $\Rightarrow \dots$

With **reflexive** boundary conditions **A** is much more complicated. For example, the first row of **A** is:

$$[p_{22} + p_{23} + p_{32} + p_{33}, p_{12} + p_{13}, 0, p_{21} + p_{31}, p_{11}, 0, 0, 0, 0]$$

It can be shown that **A** is a sum of four structured matrices, with BTTB, BTHB, BHTB, and BHHB structure, respectively.

Horizontal and vertical components separate.

In this case, the PSF array has rank = 1:

$$\mathbf{P} = \mathbf{c} \, \mathbf{r}^{T} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} \begin{bmatrix} r_{1} & r_{2} & r_{3} \end{bmatrix}$$
$$= \begin{bmatrix} c_{1}r_{1} & c_{1}r_{2} & c_{1}r_{3} \\ c_{2}r_{1} & c_{2}r_{2} & c_{2}r_{3} \\ c_{3}r_{1} & c_{3}r_{2} & c_{3}r_{3} \end{bmatrix}$$

Forming the matrix with this special PSF we obtain (zero BC):

$$\mathbf{A} = \begin{bmatrix} r_2 \begin{bmatrix} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{bmatrix} & r_1 \begin{bmatrix} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{bmatrix} & 0 \\ \hline r_3 \begin{bmatrix} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{bmatrix} & r_2 \begin{bmatrix} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{bmatrix} & r_1 \begin{bmatrix} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{bmatrix} \\ \hline & 0 & r_3 \begin{bmatrix} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{bmatrix} & r_2 \begin{bmatrix} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{bmatrix} \end{bmatrix}$$

We see that for this special PSF we obtain (with zero BC):

$$\mathbf{A} = \mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}} = \left[\begin{array}{ccc} r_2 & r_1 \\ r_3 & r_2 & r_1 \\ & r_3 & r_2 \end{array} \right] \otimes \left[\begin{array}{ccc} c_2 & c_1 \\ c_3 & c_2 & c_1 \\ & c_3 & c_2 \end{array} \right]$$

Here \otimes denotes the *Kronecker product*.

The Wonderful World of Kronecker Products

Definition:

$$\mathbf{A}_{\mathsf{r}} = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \quad \Rightarrow \quad \mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}} = \left[\begin{array}{cc} a_{11} \mathbf{A}_{\mathsf{c}} & a_{12} \mathbf{A}_{\mathsf{c}} \\ a_{21} \mathbf{A}_{\mathsf{c}} & a_{22} \mathbf{A}_{\mathsf{c}} \end{array} \right]$$

Transposition and inversion:

$$\begin{array}{rcl} \left(\boldsymbol{A}_r \otimes \boldsymbol{A}_c \right)^T & = & \boldsymbol{A}_r^T \otimes \boldsymbol{A}_c^T \\ \left(\boldsymbol{A}_r \otimes \boldsymbol{A}_c \right)^{-1} & = & \boldsymbol{A}_r^{-1} \otimes \boldsymbol{A}_c^{-1} \end{array}$$

SVD:

$$(\mathbf{U}_{\mathsf{r}} \mathbf{\Sigma}_{\mathsf{r}} \mathbf{V}_{\mathsf{r}}^{\mathsf{T}}) \otimes (\mathbf{U}_{\mathsf{c}} \mathbf{\Sigma}_{\mathsf{c}} \mathbf{V}_{\mathsf{c}}^{\mathsf{T}}) = (\mathbf{U}_{\mathsf{r}} \otimes \mathbf{U}_{\mathsf{c}}) (\mathbf{\Sigma}_{\mathsf{r}} \otimes \mathbf{\Sigma}_{\mathsf{c}}) (\mathbf{V}_{\mathsf{r}} \otimes \mathbf{V}_{\mathsf{c}})^{\mathsf{T}}$$

Matrix-vector product:

$$(\mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}}) \operatorname{\mathsf{vec}}(\mathbf{X}) = \operatorname{\mathsf{vec}}(\mathbf{A}_{\mathsf{c}} \, \mathbf{X} \, \mathbf{A}_{\mathsf{r}}^{\mathsf{T}})$$

Separable Blur with Boundary Conditions

Similar structures occur for other boundary conditions:

$$\mathbf{A} = \mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}}$$

- Zero boundary conditions:
 - A_r is Toeplitz, defined by r
 - Ac is Toeplitz, defined by c
- Periodic boundary conditions:
 - A_r is circulant, defined by r
 - ullet $oldsymbol{A}_c$ is circulant, defined by $oldsymbol{c}$
- Reflexive boundary conditions:
 - ullet A_r is Toeplitz-plus-Hankel, defined by ${f r}$
 - ullet $oldsymbol{A}_c$ is Toeplitz-plus-Hankel, defined by $oldsymbol{c}$

Summary of Matrix Structures

ВС	Non-separable PSF	Separable PSF
zero	BTTB	Kronecker product of
		Toeplitz matrices
periodic	BCCB	Kronecker product of
		circulant matrices
reflexive	BTTB+BTHB	Kronecker product of
	+BHTB+BHHB	Toeplitz-plus-Hankel matrices

Computations with BCCB Matrices

Recall that with periodic boundary conditions **A** is a BCCB matrix:

$$\begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ \hline b_{12} \\ b_{22} \\ \hline b_{13} \\ b_{23} \\ b_{33} \end{bmatrix} = \begin{bmatrix} p_{22} & p_{12} & p_{32} & p_{21} & p_{11} & p_{31} & p_{23} & p_{13} & p_{33} \\ p_{32} & p_{22} & p_{12} & p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{13} \\ p_{12} & p_{32} & p_{22} & p_{11} & p_{31} & p_{21} & p_{13} & p_{33} & p_{23} \\ \hline p_{23} & p_{13} & p_{33} & p_{22} & p_{12} & p_{32} & p_{21} & p_{11} & p_{31} \\ \hline p_{23} & p_{13} & p_{33} & p_{23} & p_{12} & p_{32} & p_{22} & p_{11} & p_{31} & p_{21} \\ \hline p_{13} & p_{33} & p_{23} & p_{12} & p_{32} & p_{22} & p_{11} & p_{31} & p_{21} \\ \hline p_{21} & p_{11} & p_{31} & p_{23} & p_{13} & p_{33} & p_{22} & p_{12} & p_{32} \\ \hline p_{21} & p_{11} & p_{31} & p_{23} & p_{13} & p_{33} & p_{22} & p_{12} & p_{32} \\ \hline p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{13} & p_{32} & p_{22} & p_{12} \\ \hline p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{13} & p_{32} & p_{22} & p_{12} \\ \hline p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{13} & p_{32} & p_{22} & p_{12} \\ \hline p_{11} & p_{31} & p_{21} & p_{11} & p_{33} & p_{23} & p_{12} & p_{32} & p_{22} \end{bmatrix}$$

$$\mathbf{b} = \text{vec}(\mathbf{B}), \qquad \qquad \mathbf{p} = \text{vec}(\mathbf{P}), \qquad \qquad \mathbf{x} = \text{vec}(\mathbf{X})$$

The One-Dimensional Discrete Fourier Transform

If $\mathbf{x} \in \mathbb{R}^n$ then $\hat{\mathbf{x}} = DFT(\mathbf{x}) \in \mathbb{C}^n$ is defined by

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=1}^n x_j \exp(-2\pi \hat{i}(j-1)(k-1)/n) , \quad \hat{i} = \sqrt{-1} .$$

There exists a unitary matrix $\mathbf{F}_n \in \mathbb{C}^{n \times n}$ such that

$$\hat{\mathbf{x}} = \sqrt{n} \, \mathbf{F}_n \, \mathbf{x} \qquad \Leftrightarrow \qquad \mathbf{x} = \frac{1}{\sqrt{n}} \, \mathbf{F}_n^* \hat{\mathbf{x}}$$

in which $\mathbf{F}_n^* = \operatorname{conj}(\mathbf{F}_n)^T$.

The Two-Dimensional DFT

If $\mathbf{X} \in \mathbb{C}^{m \times n}$ then the 2-D DFT is defined by

$$\widehat{\mathbf{X}} = (\sqrt{m}\,\mathbf{F}_m)\,\mathbf{X}\,(\sqrt{n}\,\mathbf{F}_n)^* = \sqrt{N}\,\mathbf{F}_m\,\mathbf{X}\,\mathbf{F}_n^*$$

with N = m n (1-D DFTs along the columns and rows of **X**).

From the Kronecker product relations we get

$$\operatorname{vec}(\widehat{\mathbf{X}}) = \sqrt{N} \left(\operatorname{conj}(\mathbf{F}_n) \otimes \mathbf{F}_m \right) \operatorname{vec}(\mathbf{X}) = \sqrt{N} \operatorname{F} \operatorname{vec}(\mathbf{X}) ,$$

where $\mathbf{F} = \operatorname{conj}(\mathbf{F}_n) \otimes \mathbf{F}_m$.

Important BCCB Matrix Property

Every BCCB matrix has the same set of eigenvectors:

$$\mathbf{A} = \mathbf{F}^* \mathbf{\Lambda} \, \mathbf{F} \quad \left(= \mathbf{F}^* \mathbf{\Lambda} \, (\mathbf{F}^*)^* \right)$$

where

- **F** is the two-dimensional discrete Fourier transform matrix
- F is complex
- \mathbf{F} is unitary: $\mathbf{F}^* \mathbf{F} = \mathbf{F} \mathbf{F}^* = \mathbf{I}$
- F* is the matrix of eigenvectors of A
- $oldsymbol{\Lambda} = \mathsf{diagonal}$ complex matrix containing eigenvalues of $oldsymbol{\mathsf{A}}$
- Computations with F can be done very efficiently:

F times a vector requires $O(N \log N)$ flops using the 2-D Fast Fourier Transform (FFT) algorithm.

FFT Computations

In Matlab, if $\mathbf{A} = \mathbf{F}^* \mathbf{\Lambda} \mathbf{F}$ is $N \times N$, then:

- fft2 $\leftrightarrow \sqrt{N}\, \mathbf{F}$ and ifft2 $\leftrightarrow \frac{1}{\sqrt{N}}\, \mathbf{F}^*$
- Specifically, the following operations are equivalent:
 - $\circ \ \sqrt{\textit{N}}\,\textbf{F}\,\textbf{x} \Leftrightarrow \texttt{fft2}(\textbf{X})$
 - $\circ \ \frac{1}{\sqrt{N}} \mathbf{F}^* \mathbf{x} \Leftrightarrow ifft2(\mathbf{X})$

where $\mathbf{x} = \text{vec}(\mathbf{X})$, and \mathbf{X} is $m \times n$ with N = mn.

Eigenvalues of BCCB Matrix

$$\textbf{A} = \textbf{F}^* \boldsymbol{\Lambda} \, \textbf{F} \quad \Rightarrow \quad \textbf{F} \, \textbf{A} = \boldsymbol{\Lambda} \, \textbf{F} \quad \Rightarrow \quad \textbf{F} \, \textbf{a}_1 = \boldsymbol{\Lambda} \, \textbf{f}_1$$

where

- $\mathbf{a}_1 = \text{first column of } \mathbf{A}$
- $\mathbf{f}_1 = \text{first column of } \mathbf{F}$:

$$\mathbf{f_1} = rac{1}{\sqrt{N}} \left[egin{array}{c} 1 \ 1 \ dots \ 1 \end{array}
ight]$$

Thus

$$\textbf{F}\,\textbf{a}_1 = \boldsymbol{\Lambda}\,\textbf{f}_1 = \frac{1}{\sqrt{\textit{N}}}\,\boldsymbol{\lambda}$$

where λ is a vector containing the eigenvalues of **A**.

Computing the Eigenvalues of BCCB Matrix

Thus, to compute eigenvalues of **A**, we need to:

- Multiply the matrix $\sqrt{N}\mathbf{F}$ by the first column of \mathbf{A} .
- Or, equivalently, apply fft2 to a two-dimensional array containing the elements of the first column of A.
- Can get this array from the PSF:

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \longleftrightarrow \begin{bmatrix} p_{22} & p_{23} & p_{21} \\ p_{32} & p_{33} & p_{31} \\ p_{12} & p_{13} & p_{11} \end{bmatrix}$$

P

first column of **A** circshift(**P**, 1-[2,2])

Efficient BCCB Computations

Thus, for zero boundary conditions, we have a BCCB matrix defined by:

- the PSF array **P**
- the center of PSF = [row, col]

To compute eigenvalues (spectral values) in this case:

```
S = fft2( circshift(P, 1-center) );
```

Note that S is an array, not a vector, and eigenvalues are not sorted.

Additional BCCB Computations

If **A** is the BCCB matrix defined by the PSF array **P**, and

$$\mathbf{b} = \mathbf{A} \mathbf{x} = \mathbf{F}^* \mathbf{\Lambda} \mathbf{F} \mathbf{x}$$

then to compute **b** use

```
S = fft2( circshift(P, 1 - center) );
B = ifft2(S .* fft2(X));
B = real(B);
```

where

$$\mathbf{b} = \mathsf{vec}(\mathbf{B})$$
 and $\mathbf{x} = \mathsf{vec}(\mathbf{X})$.

Small PSF Arrays. If the PSF array $\bf P$ is *smaller* than the $\bf B$ and $\bf X$ images, then use our Matlab function padPSF to embed the $p \times q$ array $\bf P$ in a larger array of size $m \times n$.

Additional BCCB Computations

If A is the BCCB matrix defined by the PSF array P, and

$$\mathbf{x}_{\mathsf{naive}} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{F}^*\mathbf{\Lambda}^{-1}\mathbf{F}\,\mathbf{b}$$

then to compute x use

```
S = fft2( circshift(P, 1 - center) );
X = ifft2(fft2(B) ./ S);
X = real(X);
```

where

$$\mathbf{b} = \mathsf{vec}(\mathbf{B})$$
 and $\mathbf{x} = \mathsf{vec}(\mathbf{X})$.

BTTB+BTHB+BHTB+BHHB Matrices

With reflexive boundary conditions **A** is a

$$BTTB + BTHB + BHTB + BHHB$$

matrix defined by the PSF.

Double symmetry condition: if

$$\textbf{P} = \left[\begin{array}{ccc} \textbf{0} & \textbf{0} & \textbf{0} \\ \textbf{0} & \widetilde{\textbf{P}} & \textbf{0} \\ \textbf{0} & \textbf{0} & \textbf{0} \end{array} \right]$$

where

- **P** is $(2k-1) \times (2k-1)$ with center located at (k,k)
- ullet $\widetilde{f P} = { t fliplr}(\widetilde{f P}) = { t flipud}(\widetilde{f P})$

BTTB+BTHB+BHTB+BHHB Matrix Properties

If the PSF satisfies the double symmetry condition, then:

- A is symmetric
- A is block symmetric
- Each block in A is symmetric
- A has the spectral decomposition

$$\mathbf{A} = \mathbf{C}^T \mathbf{\Lambda} \mathbf{C}$$

where \mathbf{C} is the two-dimensional discrete cosine transform (DCT) matrix.

- \bullet **C** is real, and **C**^T contains the eigenvectors.
- As with FFTs, computations with **C** cost $O(N \log N)$ flops.

DCT Computations

With Matlab's the image processing toolbox, if $\mathbf{A} = \mathbf{C}^T \mathbf{\Lambda} \mathbf{C}$ is $N \times N$, then:

- $dct2 \leftrightarrow \mathbf{C}$ and $idct2 \leftrightarrow \mathbf{C}^T$
- Specifically, the following operations are equivalent:
 - C x ⇔ dct2(X)
 - $\mathbf{C}^T \mathbf{x} \Leftrightarrow \text{idct2}(\mathbf{X})$

where $\mathbf{x} = \text{vec}(\mathbf{X})$, and \mathbf{X} is $m \times n$ with N = mn.

Without the image processing toolbox, use our codes:

• dct2 \rightarrow dcts2 and idct2 \rightarrow idcts2.

DCT Relations and Eigenvalues

$$\mathbf{A} = \mathbf{C}^T \mathbf{\Lambda} \, \mathbf{C} \quad \Rightarrow \quad \mathbf{C} \, \mathbf{A} = \mathbf{\Lambda} \, \mathbf{C} \quad \Rightarrow \quad \mathbf{C} \, \mathbf{a}_1 = \mathbf{\Lambda} \, \mathbf{c}_1$$

where

- $a_1 = first column of A$
- $\mathbf{c}_1 = \text{first column of } \mathbf{C}$,
- Thus, the eigenvalues of C are given by

$$\mathsf{C}\,\mathsf{a}_1 = \mathbf{\Lambda}\,\mathsf{c}_1 \quad \Rightarrow \quad \lambda_i = rac{[\mathsf{C}\,\mathsf{a}_1]_i}{[\mathsf{c}_1]_i}$$

More DCT Relations

Thus, to compute eigenvalues of \mathbf{A} , we need to:

- Multiply the matrix C to the first column of A.
- Or, equivalently, apply dct2 to a two-dimensional array containing the elements of the first column of **A**.
- Can get this array by adding four shifted PSFs, which we have implemented as:

```
dctshift(P, center)
```

- We also need the first column of C, i.e., $c_1 = C e_1$.
- Note that e₁ = vec(e1) with e1 = zeros(m,n); e1(1,1) = 1;
- Thus we get the desired column via dct2(e1).

Efficient Computations with DCT

Thus, for reflexive boundary conditions, with

- doubly symmetric PSF P
- center of PSF = [row, col]

To compute eigenvalues (spectral values) in this case:

```
e1 = zeros(size(P)); e1(1,1) = 1;
S = dct2( dctshift(P, center) ) ./ dct2(e1);
```

Additional DCT Computations

If **A** is defined by a doubly symmetric PSF with reflexive boundary conditions, and

$$\mathbf{b} = \mathbf{A} \mathbf{x} = \mathbf{C}^T \mathbf{\Lambda} \mathbf{C} \mathbf{x}$$

then to compute **b** use

```
e1 = zeros(size(P)); e1(1,1) = 1;
S = dct2( dctshift(P, center) ) ./ dct2(e1);
B = idct2(S .* dct2(X));
```

where

$$\mathbf{b} = \mathsf{vec}(\mathbf{B})$$
 and $\mathbf{x} = \mathsf{vec}(\mathbf{X})$

Additional DCT Computations

If **A** is defined by a doubly symmetric PSF with reflexive boundary conditions, and

$$\mathbf{x}_{\text{naive}} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{C}^T \mathbf{\Lambda}^{-1} \mathbf{C} \, \mathbf{b}$$

then to compute x use

where

$$\mathbf{b} = \mathsf{vec}(\mathbf{B})$$
 and $\mathbf{x} = \mathsf{vec}(\mathbf{X})$

Separable PSFs and Kronecker Products

Recall: If the PSF has rank = 1,

$$\mathbf{P} = \mathbf{c} \, \mathbf{r}^T = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix} \begin{bmatrix} r_1 & r_2 & \cdots & r_n \end{bmatrix}$$

then the blurring matrix has the form

$$\boldsymbol{A}=\boldsymbol{A}_r\otimes\boldsymbol{A}_c$$

where \mathbf{A}_r is defined by \mathbf{r} and \mathbf{A}_c is defined by \mathbf{c} .

Assume for now \mathbf{A}_r and \mathbf{A}_c are known.

Exploiting Kronecker Product Properties

Using the property:

$$\mathbf{b} = (\mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}}) \mathbf{x} \quad \Leftrightarrow \quad \mathbf{B} = \mathbf{A}_{\mathsf{c}} \mathbf{X} \mathbf{A}_{\mathsf{r}}^{\mathsf{T}}$$

in Matlab we can compute

$$B = Ac*X*Ar';$$

Using the property:

$$\mathbf{b} = (\mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}}) \mathbf{x} \quad \Leftrightarrow \quad \mathbf{B} = \mathbf{A}_{\mathsf{c}} \mathbf{X} \mathbf{A}_{\mathsf{r}}^{\mathsf{T}}$$

and if A_r and A_c are nonsingular,

$$(\mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}})^{-1} = \mathbf{A}_{\mathsf{r}}^{-1} \otimes \mathbf{A}_{\mathsf{c}}^{-1}$$

we obtain

$$\mathbf{X} = \mathbf{A}_{\mathsf{c}}^{-1} \, \mathbf{B} \, \mathbf{A}_{\mathsf{r}}^{-T}$$

In Matlab we can compute

$$X = Ac \setminus B / Ar';$$

We can compute SVD of small matrices:

$$\mathbf{A}_{\mathsf{r}} = \mathbf{U}_{\mathsf{r}} \mathbf{\Sigma}_{\mathsf{r}} \mathbf{V}_{\mathsf{r}}^{\mathsf{T}}$$
 and $\mathbf{A}_{\mathsf{c}} = \mathbf{U}_{\mathsf{c}} \mathbf{\Sigma}_{\mathsf{c}} \mathbf{V}_{\mathsf{c}}^{\mathsf{T}}$

Then

$$\begin{array}{lll} \textbf{A} & = & \textbf{A}_{r} \otimes \textbf{A}_{c} \\ & = & (\textbf{U}_{r}\boldsymbol{\Sigma}_{r}\textbf{V}_{r}^{T}) \otimes (\textbf{U}_{c}\boldsymbol{\Sigma}_{c}\textbf{V}_{c}^{T}) \\ & = & (\textbf{U}_{r} \otimes \textbf{U}_{c})(\boldsymbol{\Sigma}_{r} \otimes \boldsymbol{\Sigma}_{c})(\textbf{V}_{r} \otimes \textbf{V}_{c})^{T} \\ & = & \text{SVD of big matrix } \textbf{A} \end{array}$$

Note: Do not need to explicitly form the big matrices

$$oldsymbol{\mathsf{U}}_\mathsf{r} \otimes oldsymbol{\mathsf{U}}_\mathsf{c}, \quad oldsymbol{\Sigma}_\mathsf{r} \otimes oldsymbol{\Sigma}_\mathsf{c}, \quad oldsymbol{\mathsf{V}}_\mathsf{r} \otimes oldsymbol{\mathsf{V}}_\mathsf{c}$$

To compute inverse solution from SVD of small matrices:

$$\mathbf{x}_{\mathsf{naive}} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{U}^{T}\mathbf{b}$$

is equivalent to

$$\mathbf{X}_{\mathsf{naive}} = \mathbf{A}_{\mathsf{c}}^{-1} \mathbf{B} \mathbf{A}_{\mathsf{r}}^{-T} = \mathbf{V}_{\mathsf{c}} \mathbf{\Sigma}_{\mathsf{c}}^{-1} \mathbf{U}_{\mathsf{c}}^T \mathbf{B} \mathbf{U}_{\mathsf{r}} \mathbf{\Sigma}_{\mathsf{r}}^{-1} \mathbf{V}_{\mathsf{r}}^T$$

A Matlab implementation could be:

```
[Ur, Sr, Vr] = svd(Ar);
[Uc, Sc, Vc] = svd(Ac);
S = diag(Sc) * diag(Sr)';
X = Vc * ( (Uc' * B * Ur)./S ) * Vr';
```

Getting \mathbf{A}_r and \mathbf{A}_c from the PSF Array

To construct \mathbf{A}_r and \mathbf{A}_c we must find \mathbf{r} and \mathbf{c} such that

$$\mathbf{P} = \mathbf{cr}^{T}$$

- Compute the SVD: $\mathbf{P} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \mathbf{u}_i \sigma_i \mathbf{v}_i^T$
- If **P** has rank = 1, then $\sigma_2 = \sigma_3 = \cdots = 0$, and

$$\mathbf{c} = \sqrt{\sigma_1} \mathbf{u}_1 \quad \mathbf{r} = \sqrt{\sigma_1} \mathbf{v}_1$$

• If **P** has rank $\neq 1$, then

$$\mathbf{c} = \sqrt{\sigma_1} \mathbf{u}_1 \quad \mathbf{r} = \sqrt{\sigma_1} \mathbf{v}_1$$

give the approximations

$$\mathbf{P} \approx \mathbf{cr}^T$$
 and $\mathbf{A} \approx \mathbf{A_r} \otimes \mathbf{A_c}$

Some Comments to the Matlab Code

- The singular vectors r and c can be computed using the svd or svds functions.
- Since we need at most two singular values, svds is convenient:
 [U, S, V] = svds(P, 2);
 If P is m × n then U is m × 2, V is n × 2 and S is 2 × 2.
- Check to see if P is separable. For example, if S(2,2)/S(1,1) > small_tol then P is not separable.

A Matlab Example

```
• P = psfGauss(32);
mesh(P)
• plot(P(:,16)
• [U, S, V] =
 svds(P,2);
 sqrt(S(1,1))*U(:,1);
p =
 sqrt(S(1,1))*V(:,1);
mesh(c*r')
plot(c)
```

Check sign of singular vectors and change if necessary.

Construct \mathbf{A}_r and \mathbf{A}_c

Given **r** and **c**:

- ullet zero BC: build Toeplitz $oldsymbol{A}_r$, $oldsymbol{A}_c$
- periodic BC: build circulant **A**_r, **A**_c
- reflexive BC: build Toeplitz-plus-Hankel A_r, A_c

Construct \mathbf{A}_r and \mathbf{A}_c for Zero BC

Suppose

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix}, \quad \text{center} = [2, 3]$$

Then, with zero BC

$$\mathbf{A} = \mathbf{A}_{r} \otimes \mathbf{A}_{c} = \begin{bmatrix} r_{3} & r_{2} & r_{1} \\ r_{4} & r_{3} & r_{2} & r_{1} \\ & r_{4} & r_{3} & r_{2} \\ & & r_{4} & r_{3} \end{bmatrix} \otimes \begin{bmatrix} c_{2} & c_{1} \\ c_{3} & c_{2} & c_{1} \\ & c_{3} & c_{2} \end{bmatrix}$$

If k = 3 = center(2), then $\mathbf{A}_r = \text{toeplitz}(\text{col,row})$, where

$$col = \begin{bmatrix} r_k & r_{k+1} & \cdots & r_n & 0 & \cdots & 0 \end{bmatrix}
row = \begin{bmatrix} r_k & r_{k-1} & \cdots & r_1 & 0 & \cdots & 0 \end{bmatrix}$$

If k = 2 = center(1), then $\mathbf{A}_c = \text{toeplitz}(\text{col,row})$, where

$$\mathbf{A}_{r} = \begin{bmatrix} r_{3} & r_{2} & r_{1} \\ r_{4} & r_{3} & r_{2} & r_{1} \\ & r_{4} & r_{3} & r_{2} \\ & & r_{4} & r_{3} \end{bmatrix} \qquad \mathbf{A}_{c} = \begin{bmatrix} c_{2} & c_{1} \\ c_{3} & c_{2} & c_{1} \\ & c_{3} & c_{2} \end{bmatrix}$$

$$\mathbf{A}_{c} = \begin{bmatrix} c_{2} & c_{1} \\ c_{3} & c_{2} & c_{1} \\ & c_{3} & c_{2} \end{bmatrix}$$

Construct A_r and A_c for Zero BC in Matlab

Matlab function to build Toeplitz A_r , A_c , given

- middle column defining entries of matrix: c = r or c
- loc. of center (diagonal) entry: k = center(1) or center(2)

```
function T = buildToep(c, k)
  n = length(c);
  col = zeros(n,1); row = col;
  col(1:n-k+1) = c(k:n);
  row(1:k) = c(k:-1:1);
  T = toeplitz(col, row);
end
```

```
Then, given P = c*r' and center of P,
Ac = buildToep(c, center(1));
Ar = buildToep(r, center(2));
```

Construct \mathbf{A}_r and \mathbf{A}_c for Periodic BC

$$\mathbf{P} = \left[egin{array}{cccc} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{array}
ight], \quad \mathtt{center} = [2, 3]$$

Then, with periodic BC

$$\mathbf{A} = \mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}} = \begin{bmatrix} r_3 & r_2 & r_1 & r_4 \\ r_4 & r_3 & r_2 & r_1 \\ r_1 & r_4 & r_3 & r_2 \\ r_2 & r_1 & r_4 & r_3 \end{bmatrix} \otimes \begin{bmatrix} c_2 & c_1 & c_3 \\ c_3 & c_2 & c_1 \\ c_1 & c_3 & c_2 \end{bmatrix}$$

If k = 3 = center(2), then $\mathbf{A}_r = \text{toeplitz}(\text{col,row})$, where

If k = 2 = center(1), then $\mathbf{A}_{c} = \text{toeplitz(col,row)}$, where

$$col = \begin{bmatrix} c_k & c_{k+1} & \cdots & c_n & c_1 & \cdots & c_{k-1} \end{bmatrix}$$

$$row = \begin{bmatrix} c_k & c_{k-1} & \cdots & c_1 & c_n & \cdots & c_{k+1} \end{bmatrix}$$

$$\mathbf{A}_{r} = \begin{bmatrix} r_{3} & r_{2} & r_{1} & r_{4} \\ r_{4} & r_{3} & r_{2} & r_{1} \\ r_{1} & r_{4} & r_{3} & r_{2} \\ r_{2} & r_{1} & r_{4} & r_{3} \end{bmatrix} \qquad \mathbf{A}_{c} = \begin{bmatrix} c_{2} & c_{1} & c_{3} \\ c_{3} & c_{2} & c_{1} \\ c_{1} & c_{3} & c_{2} \end{bmatrix}$$

$$\mathbf{A}_{c} = \begin{bmatrix} c_{2} & c_{1} & c_{3} \\ c_{3} & c_{2} & c_{1} \\ c_{1} & c_{3} & c_{2} \end{bmatrix}$$

Construct A_r and A_c for Periodic BC in Matlab

Matlab function to build circulant A_r , A_c , given

- middle column defining entries of matrix: c = r or c
- loc. of center (diagonal) entry: k = center(1) or center(2)

```
function T = buildCirc(c, k)
  n = length(c);
  col = [c(k:n); c(1:k-1)];
  row = [c(k:-1:1); c(n:-1:k+1)];
  T = toeplitz(col, row);
end
```

```
Then, given P = c*r' and center of P
   Ac = buildCirc(c, center(1));
   Ar = buildCirc(r, center(2));
```

Construct \mathbf{A}_r and \mathbf{A}_c for Reflexive BC

In this case

$$\mathbf{A} = \mathbf{A}_{\mathsf{r}} \otimes \mathbf{A}_{\mathsf{c}}$$

where

- ullet ${f A}_{r} = {\sf Toeplitz} + {\sf Hankel}$
- ullet $oldsymbol{A}_c = \mathsf{Toeplitz} + \mathsf{Hankel}$
- Use buildToep for Toeplitz parts.
- How to get Hankel parts?

Recall Reflexive BC for 1-D Problems

$$\begin{bmatrix} c_5 & c_4 & c_3 & c_2 & c_1 & & & & & \\ & c_5 & c_4 & c_3 & c_2 & c_1 & & & & \\ & & c_5 & c_4 & c_3 & c_2 & c_1 & & & \\ & & & c_5 & c_4 & c_3 & c_2 & c_1 & & \\ & & & & c_5 & c_4 & c_3 & c_2 & c_1 & \\ & & & & c_5 & c_4 & c_3 & c_2 & c_1 \end{bmatrix} = \begin{bmatrix} c_4 & c_5 & & & \\ c_5 & c_4 & c_3 & c_2 & c_1 & & \\ & c_5 & c_4 & c_3 & c_2 & c_1 & & \\ & & c_5 & c_4 & c_3 & c_2 & c_1 & & \\ & & & & c_5 & c_4 & c_3 & c_2 & c_1 \\ & & & & & c_1 & c_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \\ x_4 & x_5 & x_4 & x_5 & & \\ & & & & & c_1 & c_1 & c_2 \end{bmatrix}$$

Construct \mathbf{A}_r and \mathbf{A}_c for Reflexive BC in Matlab

Matlab function to build Hankel part for \mathbf{A}_r , \mathbf{A}_c , given

- middle column defining entries of matrix: c = r or c
- loc. of center (diagonal) entry: k = center(1) or center(2)

```
function T = buildHank(c, k)
  n = length(c);
  col = zeros(n,1); row = col;
  col(1:n-k) = c(k+1:n);
  row(n-k+2:n) = c(1:k-1);
  T = hankel(col, row);
end
```

```
Then, given P = c*r' and center of P
Ac = buildToep(c, center(1)) + buildHank(c, center(1));
Ar = buildToep(r, center(2)) + buildHank(r, center(2));
```

Construct \mathbf{A}_r and \mathbf{A}_c for All Three BC

```
[U, S, V] = svds(P, 2);
c = sqrt(S(1,1))*U(:,1);
r = sqrt(S(1,1))*V(:,1);
switch BC
 case 'zero'
  Ac = buildToep(c, center(1));
  Ar = buildToep(r, center(2));
 case 'reflexive'
  Ac = buildToep(c, center(1)) + buildHank(c, center(1));
  Ar = buildToep(r, center(2)) + buildHank(r, center(2));
 case 'periodic'
  Ac = buildCirc(c, center(1));
  Ar = buildCirc(r, center(2));
end
```

Summary of Fast Algorithms

For spatially invariant PSFs, we have the following fast algorithms.

PSF	Boundary condition	Matrix structure	Fast algorithm
Arbitrary	Periodic	ВССВ	2-dim FFT
Doubly sym.	Reflexive	BTTB+BTHB +BHTB+BHHB	2-dim DCT
Separable	Arbitrary	Kronecker product	2 small SVDs

Creating Realistic Test Data

Issues that must be considered:

- Small PSF.
- Creating blurred image without imposing artificial boundary conditions.
- Additive noise.

PSF Sizes

It is often the case that

```
size(P) < size(B) and size(X)</pre>
```

- In this case we should "pad" P with zeros to increase size.
- Since we do this a lot, it is useful to have a function:

```
function Ppad = padPSF(P, size)
  Ppad = zeros(size);
  Ppad(1:size(P,1), 1:size(P,2)) = P;
end
```

With this padding, center of Ppad = center of P

Creating Blurred Image

If we are given blurred image data:

- We try to make a best guess at what boundary condition is most realistic.
- Construct A using this boundary condition.

If we are *creating* blurred image data:

- We should simulate actual boundaries of an infinite scene.
- This can be done by blurring a large "true" image scene.
- Then extract the central part of the image.

Creating Blurred Image: Matlab example

```
Xbig = double(imread('iograyBorder.tif'));
   [P, center] = psfGauss([512,512], s);
   Pbig = padPSF(P, size(Xbig));
   Sbig = fft2(circshift(Pbig, 1-center));
   Bbig = real(ifft2(Sbig .* fft2(Xbig)));
   X = Xbig(51:562,51:562);
   B = Bbig(51:562,51:562);
Use P, center, B, X as realistic (noise free) test data.
```

Additive Noise

Additive noise \Rightarrow add random perturbations to blurred image.

- Use Matlab randn function.
- Scale perturbations to data.
- Add to blurred image.

For example,

```
E = randn(size(B));
E = E / norm(E(:));
B = B + 0.01*norm(B(:))*E;
```

generates "1% noise."