
SVD and The Naive Solution

Recall that we define the SVD of the N × N matrix A to be

A = UΣVT ,

where UTU = VTV = IN , and Σ = diag(σ1, . . . , σN) with

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0.

All the singular values decay gradually to zero, and the condition number
cond(A) = σ1/σN is very large (practically infinite).

Given b = bexact + e (pure data plus noise), the naive solution

xnaive = A−1b = A−1bexact + A−1e = x +
N∑
i=1

uTi e

σi
vi

is completely dominated by the inverted noise component A−1e.
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Truncated SVD (TSVD)

A simple approach to noise reduction in the reconstruction:

Discard all SVD components that are dominated by noise.

As we shall soon see, these components are typically the ones for indices i
above a certain truncation parameter k.

This leads to the TSVD solution

xk =
k∑

i=1

uTi b

σi
vi , k < N.

Works well – in spite of its simplicity (the explanation follows).

The next overhead shows an example (Io image) with

atmospheric turbulence blur and

5% Gaussian white noise.
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Examples of TSVD Solutions: k = 568, 2813, 7243
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Spectral Filtering – General Formulation

TSVD is an example of the general class of methods that are called
spectral filtering methods, and which have the form

xfilt =
N∑
i=1

φi
uTi b

σi
vi ,

the quantities φi are the filter factors;

they are chosen such that φi ≈ 1 for large singular values, and φi ≈ 0
for small singular values;

different regularization algorithms involve different choices of these
filter factors (→ Chapter 6).

The SVD formulation is primarily used for defining the spectral filtering
methods. Computational algorithms should only use the SVD – or the
spectral decomposition – if it can be computed fast!
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Incorporating Boundary Conditions

Recall (from Chapter 4) that to incorporate boundary conditions, we
should really work with the deblurring model

Ax = b, with A = A0 + ABC,

where

A0 is the structured BTTB matrix resulting from zero boundary
conditions, and

ABC is a correction term that incorporates specific boundary
conditions into the model.

The matrix ABC is also structured, and its form depends on the type
of boundary condition.

Use the SVD of the corrected matrix A (not the SVD of A0).
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TSVD and Reflexive Boundary Conditions
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Very Important Points, So Far

1 Our fundamental decomposition is either the singular value
decomposition or the spectral decomposition.

2 Spectral filtering amounts to filtering each of the components of the
solution in the spectral basis, in such a way that the influence from
the noise in the blurred image is damped.

3 In order to obtain a high quality deblurred image, we must choose the
boundary conditions appropriately.

4 Reconstructions based on A = A0 correspond to zero boundary
conditions.
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SVD Analysis

Recall that spectral filtering amounts to computing

xfilt =
N∑
i=1

φi
uTi b

σi
vi .

Hence we want to understand the behavior of the ingredients in this
expression:

How do the singular values σi depend on the PSF?

How do the SVD coefficients uTi b behave?

What do the spectral basis vectors vi look like?
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The Singular Values: Gaussian PSF
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The Singular Values: Out-of-Focus Blur
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The Singular Values: Facts

1 As the blurring gets worse – i.e., the PSF gets “wider” – the singular
values decay faster.

2 Even for narrow PSFs with a slow decay in singular values,
the condition number cond(A) = σ1/σN becomes large for large
images.

3 The decay also depends on the “smoothness” of the PSF – the
smoother, the faster the decay.

4 At one extreme, when the PSF consists of a single nonzero pixel, the
matrix A is the identity and all singular values are identical (and the
condition number of the matrix is one).

5 In the other extreme, when the PSF is so wide that A becomes the
constant image, all but one of the singular values are zero.
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The SVD Coefficients = Black Dots

The Gaussian PSF again: behavior of the coefficients uTi b.

Noise levels: ‖E‖F = 3 · 10−3 (top) and ‖E‖F = 3 · 10−1 (bottom).
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The SVD Coefficients: Facts

1 Initially, the coefficients |uTi b| decay – at a rate that is slightly faster
than that of the singular values.

2 Later the coefficients level off at a plateau determined by the level of
the noise in the image.

3 Coefficient that are larger in absolute value than the noise level carry
information about the data.

4 Coefficients at the noise level are dominated by the noise, hiding the
true information.

5 In other words,

uTi b ≈
{

uTi bexact for small i
uTi e for large i .
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When Spectral Filtering Works

For any spectral filtering method

xfilt =
N∑
i=1

φi
uTi b

σi
vi .

we must choose the filters φi so that the information in the initial
coefficients dominates the filtered solution.

The index where the transition between the two types of behavior in
uTi b occurs, depends on the noise level and the decay of the
unperturbed coefficients.

Over-smoothing: If we include too few terms, then we miss available
information in the data.

Under-smoothing: If we include too many terms, then we include
noisy components.

02625 SCI Chapter 5 14 / 26



Illustration of TSVD

Top: singular values σi (green solid curve), right-hand side coef- ficients
|uTi b| (black dots) and TSVD solution coefficients |uTi b/σi | (blue dots)
for k = 200, 300 and 400 using the medium blur.

Bottom: the corresponding TSVD reconstructions.
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The Decline and Fall . . .

We illustrate the change in the decay of the singular values σi and the
coefficients uTi b as the size of the image increases.

The exact test image Xexact and the blurred image B:

We also use four smaller sub-images from the central part of Xexact.

The four images are blurred with a Gaussian PSF with the same
parameters s1 and s2.
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The Importance of the Discrete Picard Condition

The decay of the singular values σi becomes slower as the image size
increases, for a fixed PSF.

For all four test problems the coefficients uTi b decay – on average –
faster than the corresponding singular values.

This behavior is an intrinsic property of inverse problems, known as
the discrete Picard condition.

Hence we also see – on average – a decay (perhaps a slight decay
only) of the absolute values of the SVD coefficients uTi b/σi for the
naive solution.

Consequently, it is the initial SVD coefficients that are dominated by
the exact data.
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Very Important Points from SVD Analysis

1 All singular values decay gradually to zero, and the typical behavior is
that the wider the PSF and the larger the size of the image, the
slower the decay.

2 The SVD coefficients |uTi b| satisfy the discrete Picard condition, i.e.,
they decay (on average) faster than the singular values.

3 The spectral components which are large in absolute value primarily
contain pure data, while those with smaller absolute value are
dominated by noise.

4 The former components typically correspond to the larger singular
values.

One remaining thing to study: the basis vectors vi . . .
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Basis Vectors and Basis Images

We go back and forth between an image array and its vector
representation via the “vec” notation:

xfilt = vec(Xfilt) and vi = vec
(
V[i ]
)
, i = 1, . . . ,N.

Xfilt is the 2D representation of the filtered solution xfilt, and the matrices
V[i ] are the 2D representations of the singular vectors vi .

Using these quantities, we can write the filtered solution image as

Xfilt =
N∑
i=1

φi
uTi b

σi
V[i ].

So what do the basis matrices V[i ] look like?
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SVD Basis Images, Gaussian PSF, Zero BC
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SVD Basis Images, Gaussian PSF, Periodic BC
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SVD Basis Images, Gaussian PSF, Reflexive BC
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FFT Basis Images (Independent of the PSF)
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DCT Basis Images (Independent of the PSF)
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Summary of Basis Image Properties

1 The basis images (or spectral basis components) V[i ] become more
oscillatory as the index i increases.

2 The basis images satisfy the boundary conditions.

3 The SVD basis images depend on the PSF, while the FFT and DCT
basis images are independent of the PSF.

4 Each FFT basis image is characterized by one spatial frequency and
one “angle.”

5 Each DCT basis image is characterized by two spatial frequencies.
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