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Preface

During the last decade, reduced order modelling has been a gained a growing interest in compu-
tational science and engineering and now plays an important role in bringing (and bridging) high
performance computing in fields across industrial domains, from mechanical to electronic engineer-
ing, the basic and applied sciences, including neuro-sciences, medicine, biology, chemistry, etc. An
increasingly important role for such methods is played in emerging application domains dominated
by multi-physics, multi-scale problems as well as uncertainty quantification.

This book seeks to introduce graduate students, professional scientists and engineers to a particular
branch of the development of reduced order modeling, characterized by providing reduced models
of a guaranteed fidelity. This is a fundamental development that enables the use to trust the output
of the model and balance the needs for computational efficiency and model fidelity.
The text develops these ideas by presenting the fundamentals with a gradually increasing complex-
ity, comparing with more traditional techniques and illustrating the performance through a few
carefully chosen examples. This text does not seek to replace review articles on the topics (such
as [127, 144, 129, 142, 143]) but aims to widen the perspectives on reduced basis methods and at
providing an integration presentation. This text begins with a basic setting to introduce the general
elements of certified reduced basis methods for elliptic affine coercive problems with linear com-
pliant outputs and then gradually widens the field with extensions to non-affine, non-compliant,
non-coercive operators, geometrical parametrization and time dependent problems.

We would like to point out some original ingredients of the text. Chapter 3 guides the reader through
different sampling strategies, providing a comparison between classic techniques based on Singular
Value Decomposition (SVD), Proper Orthogonal Decomposition (POD) and greedy algorithms. In
this context it also discusses recent results on a priori convergence in the context of the concept of
the Kolmogorov N-width [10]. Chapter 4 contains a thorough discussion of the computation of lower
bounds for stability factors lower bounds and a comparative discussion of the various techniques.
Chapter 5 focuses on Empirical Interpolation Method (EIM) [7], emerging as a standard element
to address problems exhibiting non-affine parameterizations and non-linearities. It is our hope that
these two last Chapters provides a useful overview of more recent material to allow readers inter-
ested in addressing more advanced problems to pursue the development of reduced basis methods
for applications of their interest. Chapter 6 offers an overview of a number of more advanced de-
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velopments and is intended as an appetizer more than a solution manual.

Throughout the text we provide some illustrative examples of applications in computational me-
chanics to offer the readers through the several topics. All main algorithmic elements are outlined
by graphical boxes to assist the reader in efforts to implement the algorithms, emphasizing a matrix
notation. An appendix with mathematical preliminaries is also included.

This book is loosely built upon a Reduced Basis handbook available online [122] and we thank the
co-author of this handbook, our colleague, Anthony T. Patera (MIT) for his encouragement, support
and advise in writing this book. It benefits from our long-lasting collaboration with him and his
many co-workers. We would like to acknowledge all the colleagues who contributed at several levels
in the preparation of this manuscript and related research. In particular, we would like to thank
Francesco Ballarin and Alberto Sartori for preparing representative tutorials and the new open
source software library available as companion to this book at http://mathlab.sissa.it/rbnics.
An important role and feedback have been played also by our several very talented and motivated
students attending regular doctoral and master classes at EPFL and SISSA (and ICTP), tutorials in
Minneapolis and Savannah, as well as several summer/winter schools on the topic in Paris, Cortona,
Hamburg, Udine (CISM), Munich, Sevilla, Pamplona, Barcelona, Torino, Bilbao.
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1

Introduction and Motivation

Models expressed as parametrized partial differential equations are ubiquitous throughout engineer-
ing and the applied sciences as models for unsteady and steady heat and mass transfer, acoustics,
solid and fluid mechanics, electromagnetics or problems of finance. In such models a number of
input-parameters are used to characterize a particular problem and possible variations in its geo-
metric configuration, physical properties, boundary conditions or source terms. The parametrized
model implicitly connects these input parameters to outputs of interest of the model, e.g., a max-
imum system temperature, an added mass coefficient, a crack stress intensity factor, an effective
constitutive property, a waveguide transmission loss, a channel flowrate or a pressure drop, etc.

While the development of accurate computational tools to allow the solution of such problems
clearly is of broad interest, we focus on problems in which the solution is sought for a large num-
ber of parameters. Examples of typical applications of relevance are optimization, control, design,
uncertainty quantification, real time query and others. In such cases it is not only the accuracy of
the model that matters, but the computational efficiency of the model is likewise critical. Similar
constraints emerge when real-time or near real-time responses are needed for rapid prototyping or
computer animations relying on models of increasing physical accuracy, for instance.

In such situations, we need the ability to accurately and efficiently evaluate an output of interest
when the input parameters are being varied. However, the complexity and computational cost
associated with solving the full partial differential equation for each new parameter value rules out
a direct approach. We must therefore seek a different approach that allows us to evaluate the desired
output at minimal cost, yet without sacrificing the predictive accuracy of the complex model.

The goal of this text is develop the basic foundation for a class of methods, known as reduced
basis methods, to accomplish this. As a convenient expository vehicle for the introduction of the
methodology, we primarily consider the case of linear functional outputs of parametrized linear
elliptic coercive partial differential equations. This class of problems, while relatively simple, is
relevant to many important applications in transport (e.g., conduction and convection-diffusion,
but also reaction) and continuum mechanics (e.g., linear elasticity, fluid mechanics). Furthermore,
they serve as examples to follow when considering more complex applications.

As we shall soon see, it is not the goal of the reduced basis methods to replace the expensive
computational model but rather to build upon it. Indeed, the accuracy of the reduced model will be
measured directly against the precision of the expensive computational model. This direct compar-
ison against the expensive model that allows us to verify the accuracy of the reduced model and,
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thus, certify the validity of the predicted output. In other words, the goal is to pursue an algorithmic
collaboration rather than an algorithmic competition with the expensive direct solution method.

It should be emphasized that although the focus is on the affine linear elliptic coercive case, the
reduced basis approximation and the error estimation methodology provides a much more general
methodology which allows extensions to non-affine, non-coercive, time-dependent, and, in some
cases, even nonlinear problems. Towards the end of this text we shall discuss some of the extensions
in some detail.

Before diving into the details of these methods, their derivation and analysis, let us in the
following offer a selective historical overview of the development of certified reduced methods as
well as a brief discussion of the content of the text and its use.

1.1 Historical background and perspectives

The central idea of the reduced basis approach is the identification of a suitable problem-dependent
basis to effectively represent parametrized solutions to partial differential equations. In this simple
interpretation, this is certainly not a recent idea and initial work grew out of two related lines of
inquiry: one focusing on the need for effective, many-query design evaluation [44], and one from the
desire for efficient parameter continuation methods for nonlinear problems [4, 114, 115, 117].

These early approaches were soon extended to general finite-dimensional systems as well as
certain classes of differential equations [8, 43, 88, 116, 126, 134, 135]. Furthermore, a number of
different techniques for the identification of different reduced basis approximation spaces, exempli-
fied by Taylor and Lagrange expansions [125] and more recently also Hermite [70] expansions, have
emerged [79]. Further early work focused on different applications and specific classes of equations,
e.g., fluid dynamics and the incompressible Navier-Stokes equations [54, 69, 70, 71, 123].

In this early work, the approximation spaces were local and typically low-dimensional in the
number of parameters. Furthermore, the absence of a posteriori error estimators left open questions
of the accuracy of the reduced model. This is problematic since ad hoc predictions using a reduced
basis, based on sample points far away from the point of interest, is likely to result in an inaccu-
rate model. An a posteriori error estimator is crucial to determine the reliability of the output.
Furthermore, sophisticated sampling strategies across the parameter space are crucial to ensure
convergence and computational efficiency. This, again, relies on the availability of techniques for
effective a posteriori error estimation.

Substantial recent efforts have been devoted to the development of techniques to formulate a
posteriori error estimation procedures and rigorous error bounds for outputs of interest [127]. These
a posteriori error bounds subsequently allow for the certification of the output of the reduced basis
model for any parameter value.

However, the development of effective sampling strategies, in particular in the case of many pa-
rameters [31, 138, 156, 103], can also be aided by the error estimators. These can play an important
role in the development of efficient and effective sampling procedures by utilizing inexpensive error
bounds to explore much larger subsets of the parameter domain in search of the most representative
snapshots, and to determine when the basis is sufficiently rich.

We note here that such sampling techniques, often of a greedy nature, are similar in objec-
tive to, but very different in approach from, the more well-known methods of proper orthogonal
decomposition (POD) [53, 78, 89, 133, 151, 157]. While the former is directly applicable in the
multi-dimensional parameter domain, the latter is most often applied only in the one-dimensional
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space. Furthermore, the POD approach, relying on the identification of the suitable reduced model
by a singular value decomposition of a large number of snapshots, is often prohibitively expensive
in the offline phase. However, POD techniques can be combined with the parametric RB approach
[16, 30, 55]. A brief comparison of greedy and POD approaches for reduced basis constructions can
be found in [122, 144].

Early developments of reduced basis methods did not fully decouple the underlying finite element
approximation of the parametrized partial differential equation from the subsequent reduced basis
projection and its evaluation. As a result, the computational savings offered by the reduced basis
approach were typically rather modest [114, 125, 126] despite the small size of the resulting reduced
basis problem.

Recent work has focused on achieving a full decoupling of the finite element scheme and the
reduced order model through an offline-online procedure. In this approach, the complexity of the
offline stage depends on the complexity of the finite element approximation of the parametrized
partial differential equation, while the complexity of the online stage depends solely on the complex-
ity of the reduced order model. When combined with the a posteriori error estimation, the online
stage guarantees the accuracy of the high-fidelity finite element approximation at the low cost of a
reduced order model.

For the case of an affine parameter dependence, in which case the spatial and the parametric
dependence in the operator is separable, this offline-online decomposition is natural and has been re-
invented repeatedly [6, 69, 123]. However, the combination of this with the rigor of the a posteriori
error estimate is more involved and more recent [67, 127]. In the case of nonaffine parameter
dependence, the development of offline-online strategies is much less transparent, and has only
recently been addressed by the development of the empirical interpolation method [7, 50, 140, 23,
18]. This last development, essential for the overall efficiency of the offline-online decomposition, has
opened up for the development of reduced basis methods and their use in real-time and many-query
contexts for complex applications, including nonlinear problems.

We note that historically reduced basis methods have been quantified relative to the underlying
finite element discretizations [43, 93, 96, 94, 95, 121]). However, there are good reasons to consider
alternatives, e.g., a systematic finite volume framework for reduced basis approximation and a
posteriori error estimation has been developed in [37].

The reduced basis approach can be extended to the more general case of non-coercive problems.
Extensions to Maxwell equations have demonstrate the potential for reduced basis techniques within
such a context [26, 27, 29]. The development of reduced basis models for problems described by
boundary and integral equations is more complicated since the operators typically are non-affine.
However, recent work has demonstrated its potential rapid evaluation of electromagnetic scattering
applications [42, 45, 58].

The special issues associated with saddle-point problems [11, 14], in particular the Stokes equa-
tions of incompressible flow, are addressed for divergence-free spaces in [54, 70, 123] and non-
divergence-free spaces in [137, 149, 48]. A reduced basis optimal control saddle-point framework is
introduced in [109, 24].

A recent development, initiated in [112], is the use of reduced basis methods for homogenization
[12] and to accelerate multi-scale methods, including heterogeneous multi-scale methods [76, 1, 2, 3]
reduced order multi-scale finite element methods [60].

The exploration of a ’parameter + time’ framework in the context of affine linear parabolic par-
tial differential equations, e.g., the heat equation and the convection-diffusion equation, is discussed
at length [49, 52].
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Reduced basis methods can be effectively applied also to nonlinear problems [51, 17, 74], although
this typically introduces both numerical and theoretical complications, and many questions remain
open. For classical problems with a quadratic nonlinearity, there has been substantial progress, e.g.,
Navier-Stokes/Boussinesq and Burgers’ equations in fluid mechanics [123, 156, 155, 31, 128, 35, 148]
and nonlinear elasticity in solid mechanics.

A posteriori error bounds introduced for linear problems can be effectively extended to steady
nonlinear problems (see e.g. [154] for steady incompressible Navier-Stokes equations). However, the
most important challenge deals with the reliability and/or the certification of the methodology in
the unsteady parabolic problems [113, 77, 81]. In such cases, the exponential growth of the estimate
seriously compromises a priori and a posteriori error estimates, yielding bounds which are limited
to modest (final) times and modest Reynolds numbers [73].

Efforts dealing with (homogeneous or even heterogeneous) couplings in a multiphysics setting,
based on domain decomposition techniques, is an area of recent activity. A domain decomposition
approach [131, 132], combined with a reduced basis method, has been successfully applied in [94,
97, 92] and further extensions discussed in [68, 72, 65]. A coupled multiphysics setting has been
proposed for simple fluid-structure interaction problems in [85, 84, 80] and [106] for Stokes-Darcy.

Optimal control [130, 152, 34, 153, 139, 136, 110, 75] as many-query applications continues to
be a subject of extensive research and is often of interest also in an industrial context. A main
area is the study of efficient techniques to deal with geometric parameters in order to keep the
number of parameters manageable while guaranteeing versatility in the parametrization to enable
representation of complex shapes. Recent works [86, 146, 105, 147] deal with free-form deformation
techniques combined with empirical interpolation in bio-medical and aerodynamic problems.

Another active field relates to the development and application of the reduced basis methodology
in the context of the quantification of uncertainty, offing another example of application where
many-query problems arise naturally [13, 111, 62]. Such problems are often characterized by having
a high-dimensional parameter space and recent work has focused on the development of efficient
ways to explore the parameters space, e.g., modified greedy algorithms and combined adaptive
techniques [56, 21, 22], and hp-reduced basis method [40, 39]. At the same time, improvements in a
posteriori error bounds for non-affine problems [38], the reduction of the computational complexity
for high-dimensional problems and more efficient estimation of lower bounds of stability factors for
complex non-affine problems [87, 82] are under investigation.

In parallel with many of these more fundamental and algorithmic developments, there are sub-
stantial activities seeking to improve the computational performance for complex problems by
performing the offline work on large scale computational platforms and allow the use of the reduced
models on deployed platforms [63].

This brief overview does not pretend to be complete and there are numerous other activities in
this fast growing research area in which many advances can be expected in the coming years.

1.2 Brief overview of the text and its use

The main target audience of this brief introduction to certified reduced basis methods are researchers
with an interest and a need to understand the foundation of such techniques. While it is not intended
to be a textbook, it can certainly be used as part of an advanced class and is intended to provide
enough material to enable self study and further exploration of more advanced reference material.

To fully benefit from the text, a solid background in finite elements methods for solving linear
partial differential equations is needed and an elementary understanding of linear partial differential
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equations is clearly beneficial. Many ideas and concepts will be introduced throughout the text but
rather than providing a complete treatment, we strive to offer references that allows the reader to
dive deeper into these as needed.

What remains of the text is organized into 5 additional chapters. In Chapter 2 we describe the
basic setting for the affine linear elliptic coercive setting and introduce two illustrative examples
that we shall revisit throughout the text to illustrate the performance of the reduced basis methods
on successively more complex aspects of the two problems.

Chapter 3 is a key chapter which is strictly devoted to a discussion of the reduced basis methodol-
ogy. In particular we discuss the reduced basis Galerkin projection and optimality, greedy sampling
procedures for the construction of the basis in an optimal manner and recall central elements of the
convergence theory.

In Chapter 4 we present the central ideas that allow for the development of rigorous and relatively
sharp a posteriori output error bounds for reduced basis approximations. This also includes a
discussion of methods for the accurate and efficient estimation of the lower bound of the coercivity-
constant, required as part of the a posteriori error estimation procedure.

This sets the stage for Chapter 5 where we pursue the first extension of the basic methodology
and discuss the formulation of reduced basis methods for non-affine problems. As we shall realize,
the assumption of an affine operator is critically related to the efficiency of the reduced basis method
and we discuss a strategy that reduces non-affine operators and data to an approximate affine form.
This reduction must, however, be done efficiently to avoid a proliferation of parametric functions
and a corresponding degradation of the online response time. This extension, presented in detail in
Chapter 5 is based on the Empirical Interpolation Method which we discuss in detail. We shall also
demonstrate how this approach allows for the treatment on nonlinear problems.

With the central elements of the reduced basis techniques having been developed in Chapters 3-
5, the final Chapter 6 is devoted to a discussion of a few more advanced developments. In particular,
we discuss the development of reduced basis methods for time-dependent problems, problems with
a non-compliant output function, non-coercive problems and problems with a parametrization of
the geometry.

Throughout the text we emphasize the algorithmic aspects of the reduced basis methods. In
particular, for all central elements of the approach we provide an algorithmic breakdown as well
as an illustration of the algorithm in a matrix-centric approach. It is the hope that this will assist
readers in the implementation of the ideas and easy adoption to problems of their own interest.

1.3 Software libraries with support for reduced basis algorithms and
applications

During recent years, software libraries have been developed or extended to include reduced basis
algorithms and their application. We provide here a list that, to the best of our knowledge, accounts
for available resources at this time. Note that this is provided as a resource only and no guarantees
are offered. Questions should be addressed to the authors of the individual software.

• rbMIT:
http://augustine.mit.edu/methodology/methodology rbMIT System.htm.
This is a MATLAB based library, provided as a companion to the book [122], available at the same
link. This library emphasizes geometric affine parametrization of domains and includes primal-
dual formulation, offline-online computational steps, error bounds, parametrized stability factor
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approximation by the Successive Constraint Method, as well as greedy and POD-greedy sam-
pling procedures for basis assembly. Numerous examples are available in heat and mass transfer,
linear elasticity and potential flows. Truth solutions are provided by the finite element method.

• RBMATLAB:
http://www.ians.uni-stuttgart.de/MoRePaS/software/rbmatlab/1.13.10/doc/index.html.
This is a MATLAB library containing reduced simulation methods for linear and nonlinear, affine
or arbitrarily, parameter dependent evolution problems with finite element, finite volume or
local discontinuous Galerkin discretizations.

• rb00mit:
http://augustine.mit.edu/methodology/methodology rbAPPmit Client Software.htm.
This is a package for libMesh (http://libmesh.github.io/), a C++ library for parallel adap-
tive mesh refinement/coarsening simulations, containing an open source implementation of the
certified Reduced Basis method for Android smartphones.

• pyMOR:
http://www.pymor.org/.
This is a software library for building model order reduction applications using Python.

• Feel++:
http://www.feelpp.org/.
A C++ library for partial differential equation, solved using generalized Galerkin methods, such
as the finite element method, the h/p finite element method, the spectral element method or
reduced basis methods.

• DUNE-RB:
http://users.dune-project.org/projects/dune-rb/wiki.
This is a module for the Dune library (www.dune-project.org) with C++ template classes for
use in snapshot generation and the reduced basis offline phases for various discretizations. The
focus is on efficient parallel snapshot generation.

• FreeFem++:
http://www.freefem.org/ff++/.
This is a partial differential equation solver based on its own language. FreeFem scripts can be
used to solve multiphysics non linear systems in 2D and 3D, including some support for reduced
methods. Tutorials on POD and reduced basis methods are available.

• RBniCS:
http://mathlab.sissa.it/rbnics.
This software is developed for the construction of the Examples in this book and has been used
throughout. The package is based on Python. The high order finite element solver, providing
the truth approximation, is based on the FEniCS project (http://fenicsproject.org/).
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Parametrized Differential Equations

2.1 Parametrized variational problems

Let us first introduce a (suitably regular) physical domain Ω ∈ Rd with boundary ∂Ω, where
d = 1, 2, or 3 is the spatial dimension. We shall consider only real-valued field variables. However,
both scalar-valued (e.g., temperature in a Poisson conduction problems) and vector-valued (e.g.,
displacement in a linear elasticity problem) field variables w : Ω → Rdv may be considered: here dv
denotes the dimension of the field variable; for scalar-valued fields, dv = 1, while for vector-valued
fields, dv = d. We also introduce (boundary measurable) segments of ∂Ω, ΓDi , 1 ≤ i ≤ dv, over
which we will impose Dirichlet boundary conditions on the components of the field variable.

Let us also introduce the scalar spaces Vi, 1 ≤ i ≤ dv,

Vi = Vi(Ω) = {v ∈ H1(Ω) | v|ΓDi = 0}, 1 ≤ i ≤ dv.

In general H1
0 (Ω) ⊂ Vi ⊂ H1(Ω), and for ΓDi = ∂Ω, Vi = H1

0 (Ω). We construct the space in
which our vector-valued field variable shall reside as the Cartesian product V = V1 × . . .Vdv ; a
typical element of V is denoted w = (w1, . . . , wdv ). We equip V with an inner product (w, v)V,
∀ w, v,∈ V, and the induced norm ‖w‖V =

√
(w,w)V, ∀ w ∈ V: any inner product which induces a

norm equivalent to the (H1(Ω))dv norm is admissible. Therefore, V is a Hilbert space.
We finally introduce a (suitably regular) closed parameter domain P ∈ RP , a typical parameter

(or input) point, or vector, or P -tuple, denoted as µ = (µ[1], µ[2], . . . , µ[P ]). We may thus define our
parametric field variable as u ≡ (u1, . . . , udv ): P → V; here, u(µ) denotes the field for parameter
value µ ∈ P.

2.1.1 Parametric weak formulation

Let us briefly introduce the general stationary problem in an abstract form. All of the working
examples in this text can be cast in this framework. We are given parametrized linear forms f :
V × P → R and ` : V × P → R where the linearity is with respect to the first variable, and a
parametrized bilinear form a : V×V× P→ R where the bilinearity is with respect to the first two
variables. Examples of such parametrized linear forms are given in the two examples of Section 2.3.
The abstract formulation reads: given µ ∈ P, we seek u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ), ∀ v ∈ V, (2.1)
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and evaluate
s(µ) = `(u(µ);µ). (2.2)

Here s is an output of interest, s: P→ R is the input (parameter)-output relationship, and ` takes
the role of a linear “output” functional which links the input to the output through the field variable
u(µ).

In this initial part of the text we assume that problems of interest are compliant. A compliant
problem of the form (2.1)–(2.2) satisfies two conditions:

(i) `( · ;µ) = f( · ;µ), ∀ µ ∈ P — the output functional and load/source functional are identical,

(ii) the bilinear form a( · , · ;µ) is symmetric for any parameter value µ ∈ P.

Together, these two assumptions greatly simplify the formulation, the a priori convergence theory
for the output, and the a posteriori error estimation for the output. Though quite restrictive, there
are many interesting problems fulfilling this requirement across mechanics and physics, e.g., material
properties, geometrical parametrization, etc. However, we return to the more general non-compliant
case in the final Chapter 6.

2.1.2 Inner products, norms and well-posedness of the parametric weak formulation

The Hilbert space V is equipped with an intrinsic norm ‖ · ‖V. In many cases this norm coincides
with, or is equivalent to, the norm induced by the bilinear form a for a fixed parameter µ̄ ∈ P:

(w, v)V = (w, v)µ̄ (= a(w, v; µ̄)) , ∀ w, v ∈ V, (2.3)

‖v‖V = ‖w‖µ̄
(

=
√
a(w,w; µ̄)

)
, ∀ w ∈ V.

The well-posedness of the abstract problem formulation (2.1) can be established by the Lax-Milgram
theorem [131]. In order to state a well-posed problem for all parameter values µ ∈ P, we assume in
addition to the bilinearity and the linearity of the parametrized forms a(·, ·;µ) and f(·;µ), that

(i) a( · , · ;µ) is coercive and continuous for all µ ∈ P with respect to the norm ‖·‖V, i.e., for every
µ ∈ P, there exists a positive constant α(µ) ≥ α > 0 and a finite constant γ(µ) ≤ γ < ∞
such that

a(v, v;µ) ≥ α(µ) ‖v‖2V and a(w, v;µ) ≤ γ(µ) ‖w‖V ‖v‖V, (2.4)

for all w, v ∈ V.

(ii) f( · ;µ) is continuous for all µ ∈ P with respect to the norm ‖ · ‖V, i.e., for every µ ∈ P, there
exists a constant δ(µ) ≤ δ <∞ such that

f(v;µ) ≤ δ(µ) ‖v‖V, ∀ v ∈ V.

The coercivity and continuity constants of a( · , · ;µ) over V are, respectively, defined as

α(µ) = inf
v∈V

a(v, v;µ)

‖v‖2V
, and γ(µ) = sup

w∈V
sup
v∈V

a(w, v;µ)

‖w‖V‖v‖V
, (2.5)

for every µ ∈ P.
Finally, we also may introduce the usual energy inner product and the induced energy norm as
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(w, v)µ = a(w, v;µ), ∀ w, v ∈ V , (2.6)

‖w‖µ =
√
a(w,w;µ), ∀ w ∈ V , (2.7)

respectively; note that these quantities are parameter-dependent. Thanks to the coercivity and
continuity assumptions on a, it is clear that (2.6) constitutes a well-defined inner product and (2.7)
an induced norm equivalent to the ‖ · ‖V-norm.

2.2 Discretization techniques

This section supplies an abstract framework of the discrete approximations of the parametric weak
formulation (2.1) for conforming approximations, i.e., there is a discrete approximation space Vδ
in which the approximate solution is sought. This is a subset of V, i.e., Vδ ⊂ V. The conforming
nature of the approximation space Vδ is an essential assumption in the upcoming presentation of
the method in Chapter 3, and for the error estimation discussed in Chapter 4.

As an example, the approximation space Vδ can be constructed as a standard finite element
method based on a triangulated and using piece-wise linear basis functions Other examples include
spectral methods or higher order finite elements, provided only that the formulation is based on a
variational approach.

We denote the dimension of the discrete space Vδ by Nδ = dim(Vδ) and equip Vδ with a
basis {ϕi}Nδi=1. For each µ ∈ P, the discrete problem consists of finding uδ(µ) ∈ Vδ such that

a(uδ(µ), vδ;µ) = f(vδ;µ), ∀ vδ ∈ Vδ, (2.8)

and evaluate
sδ(µ) = `(uδ(µ);µ).

This problem is denoted as the truth problem . It is a solver of choice in the case where the solution
needs to be computed for one parameter value only and it is assumed that this solution, called the
truth approximation , can be achieved with as high accuracy as desired.

The computation of the truth solution is, however, potentially very expensive since the space
Vδ may involved many degrees of freedom Nδ to achieve the desired accuracy level. On the other
hand, it provides an accurate approximation uδ(µ) in the sense that the error ‖u(µ) − uδ(µ)‖V is
acceptably small. This model is sometimes also referred to as high fidelity model.

We note that due to the coercivity and continuity of the bilinear form, and the conformity of
the approximation space, we ensure the Galerkin orthogonality

a
(
u(µ)− uδ(µ), vδ;µ

)
= 0, ∀ vδ ∈ Vδ,

to recover Cea’s lemma. Indeed, let vδ ∈ Vδ be arbitrary and observe that

‖u(µ)− uδ(µ)‖V ≤ ‖u(µ)− vδ‖V + ‖vδ − uδ(µ)‖V,

by the triangle inequality. Furthermore, it holds that

α(µ)‖vδ − uδ(µ)‖2V ≤ a(vδ − uδ(µ), vδ − uδ(µ);µ) = a(vδ − u(µ), vδ − uδ(µ);µ)

≤ γ(µ) ‖vδ − u(µ)‖V ‖vδ − uδ(µ)‖V
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Linear algebra box: The truth solver

We denote the stiffness matrix and the right hand side of the truth problem by Aµ
δ ∈ RNδ×Nδ and

fµδ ∈ RNδ , respectively. Further, we denote by Mδ ∈ RNδ×Nδ the matrix associated with the inner
product (·, ·)V of Vδ, defined as

(Mδ)ij = (ϕj , ϕi)V, (Aµ
δ )ij = a(ϕj , ϕi;µ), and (fµδ )i = f(ϕi;µ),

for all 1 ≤ i, j ≤ Nδ. We recall that {ϕi}Nδi=1 is of a basis of Vδ. Then, the truth problem reads: for each
µ ∈ P, find uµδ ∈ RNδ s.t.

Aµ
δ uµδ = fµδ .

Then, evaluate the output functional (in the compliant case)

sδ(µ) = (uµδ )T fµδ .

The field approximation uδ(µ) is obtained by uδ(µ) =
∑Nδ
i=1(uµδ )i ϕi where (uµδ )i denotes the i-th

coefficient of the vector uµδ .

by applying the coercivity assumption, the Galerkin orthogonality and the continuity assumption
to obtain

‖u(µ)− uδ(µ)‖V ≤
(

1 +
γ(µ)

α(µ)

)
inf
vδ∈Vδ

‖u(µ)− vδ‖V.

This implies that the approximation error ‖u(µ) − uδ(µ)‖V is closely related to the best approxi-
mation error of u(µ) in the approximation space Vδ through the constants α(µ), γ(µ). More details
on the numerical analysis of unparametrized problems can be found in the Appendix.

The linear algebra box The truth solver illustrates the implementation of the truth solver on the
level of linear algebra. The size of the unknown vector is Nδ and the size of the stiffness matrix is
Nδ × Nδ. Depending on the solver of choice to invert the linear system and the properties of the
stiffness matrix, the operation count of the map µ → sδ(µ) is O(Nδ

α), for α ≥ 1, but in any case
dependent of Nδ.

2.3 Toy problems

We want to consider simple parametrized examples, intended to be representative of larger classes
of problems, to motivate the reader. We consider two model problems: a (steady) heat conduction
problem with conductivity and heat flux as parameters; and a linear elasticity problem with load
traction conditions as parameters.

We will present generalizations of these examples later in this text in Chapters 5 and 6. We thus
limit ourselves to the following problems only for the introduction of the topic and present some
advanced examples later.

2.3.1 Illustrative Example 1: Heat Conduction part 1

We consider a steady heat conduction problem (we refer the reader in need of more infomation
about thermal problems to [108]) in a two-dimensional domain Ω = (−1, 1)× (−1, 1) with outward



2.3 Toy problems 11
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κ = 1
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Γ2

Γ1

Fig. 2.1: Geometrical set-up (left) of the heat conductivity problem, illustrative Example 1, and
(right) the elasticity problem, illustrative Example 2.

pointing unit normal n on ∂Ω. The boundary ∂Ω is split into three parts: the bottom Γbase =
(−1, 1)× {−1}, the top Γtop = (−1, 1)× {1} and the sides Γside = {±1} × (−1, 1). The normalized
thermal conductivity is denoted by κ. Let Ω0 be a disk centered at the origin of radius r0 = 0.5
and define Ω1 = Ω\Ω0. Consider the conductivity κ to be constant on Ω0 and Ω1, i.e.

κ|Ω0 = κ0 and κ|Ω1 = 1.

The geometrical set-up is illustrated in Figure 2.1.
We consider P = 2 parameters in this model problem. The first one is related to the conductivity

in Ω0, i.e. µ[1] = κ0. We can write κµ = 1Ω1
+ µ[1]1Ω0

, where 1 is the characteristic function of the
corresponding set in the sub-script. The second parameter µ[2] reflects the constant heat flux over
Γbase. Our parameter vector is thus given by µ = (µ[1], µ[2]).

The scalar field variable u(µ) is the temperature that satisfies Poisson’s equation in Ω; homo-
geneous Neumann (zero flux, or insulated) conditions on the side boundaries Γside; homogeneous
Dirichlet (temperature) conditions on the top boundary Γtop; and parametrized Neumann condi-
tions along the bottom boundary Γbase.

The output of interest is the average temperature over the base made up by Γbase. Note that
we consider a non-dimensional formulation in which the number of physical parameters has been
kept to a minimum.

The strong formulation of this parametrized problem is stated as: for some parameter value
µ ∈ P, find u(µ) such that 

∇ · κµ∇u(µ) = 0 in Ω,
u(µ) = 0 on Γtop,

κµ∇u(µ) · n = 0 on Γside,
κµ∇u(µ) · n = µ[2] on Γbase.

The output of interest is given as

s(µ) = `(u(µ);µ) = µ[2]

∫
Γbase

u(µ).

We recall that the function space associated with this set of boundary conditions is given by
V = {v ∈ H1(Ω) | v|Γtop = 0}: the Dirichlet boundary conditions are essential; the Neumann
boundary conditions are natural.
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Fig. 2.2: Finite element mesh for Example 1 (left) and Example 2 (right).

The weak parametrized formulation then reads: for some parameter µ ∈ P, find u(µ) ∈ V such
that

a(u(µ), v;µ) = f(v;µ) ∀ v ∈ V,

with

a(w, v;µ) =

∫
Ω

κµ∇w · ∇v and f(v;µ) = µ[2]

∫
Γbase

v,

for all v, w ∈ V. We endow the space V with the scalar product

(v, w)V = a(v, w; µ̄) =

∫
Ω

∇w · ∇v, ∀ w, v ∈ V,

for µ̄ = (µ[1], µ[2]) such that µ[1] = 1. For the problem to be well-posed, we assume that µmin
[1] > 0

so that κµ ≥ min(1, µmin
[1] ) > 0 and coercivity of the bilinear form a follows. Further, continuity

of the forms a and f can be easily obtained using the Cauchy-Schwarz inequality; and linearity
and bilinearity can be easily verified as well. We can therefore apply the Lax-Milgram theorem to
guarantee existence and uniqueness of the solution u(µ) ∈ V for any parameter value µ ∈ P.

A conforming discretization introduces a finite-dimensional subspace Vδ ⊂ V, for instance a
standard finite element space. Following the Galerkin approach we obtain the following discrete
problem: for some parameter µ ∈ P, find uδ(µ) ∈ Vδ such that

a(uδ(µ), vδ;µ) = f(vδ : µ) ∀ vδ ∈ Vδ.

In the following illustration, the finite element method, employing piece-wise linear elements, has
been chosen as the truth model. The mesh is illustrated in Figure 2.2 (left) featuring 812 elements.
The chosen ranges for the parameters are

µ = (µ[1], µ[2]) ∈ P = [0.1, 10]× [−1, 1].

In Figure 2.3, four representative solutions - snapshots - are depicted for different values of the
parameters.
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Fig. 2.3: Four different representative solutions for the parametrized conductivity problem (Exam-
ple 1).

2.3.2 Illustrative Example 2: Linear Elasticity part 1

We consider a linear elasticity example [33, 90] in the two-dimensional domain Ω = (0, 1)× (0, 1),
shown in Figure 2.1 with 9 mini-blocks Ωi, where the Young’s modulus on each mini-block is denoted
by Ei and the Poisson’s ratio is set to ν = 0.30. The outward pointing unit normal on ∂Ω is denoted
by n.

We consider P = 11 parameters: the 8 Young’s moduli with respect to the reference value
E = E9 = 10 set in Ω9 and the 3 horizontal traction/compression load conditions at the right
border of the elastic block. Our parameter vector is thus given by µ = (µ[1], . . . , µ[P ]) and we choose
for our parameter domain P = [µmin

[1] , µ
max
[1] ]× · · · × [µmin

[P ] , µ
max
[P ] ] where

[µmin
[p] , µ

max
[p] ] = [1, 100], p = 1, . . . , 8,

[µmin
[p] , µ

max
[p] ] = [−1, 1], p = 9, . . . , 11.

The local Young’s moduli are given by Ei = µ[i]E.
Our vector field variable u(µ) = (u1(µ), u2(µ)) is the displacement of the elastic block under

the applied load: the displacement satisfies the plane-strain linear elasticity equations in Ω in
combination with the following boundary conditions: homogeneous Neumann (load-free) conditions
are imposed on the top and bottom boundaries Γtop and Γbase of the block; homogeneous Dirichlet
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(displacement) conditions on the left boundary Γleft (the structure is clamped); and parametrized
inhomogeneous Neumann conditions on the right boundary Γright = Γ1 ∪ Γ2 ∪ Γ3 with zero shear.
The non-trivial (inhomogeneous) boundary conditions are summarized as followsn · u = µ[9] on Γ1,

n · u = µ[10] on Γ2,
n · u = µ[11] on Γ3,

representing traction loads. The output of interest s(µ) is the integrated horizontal (traction/compression)
displacement over the full loaded boundary Γright, given by

s(µ) =

∫
Γ1∪Γ2∪Γ3

u1(µ).

This corresponds to the compliant situation as we will see later.
The function space associated with this set of boundary conditions is given by

V =
{
v ∈ (H1(Ω))2

∣∣ v|Γleft
= 0
}
.

Hence, the Dirichlet interface and boundary conditions are essential and the Neumann interface
and boundary conditions are natural. We then define the load (and also output) functional

fi(v;µ) =

∫
Γi

v1, ∀ v = (v1, v2) ∈ V and i = 1, 2, 3,

such that

f(v;µ) =

3∑
i=1

µ[i+8]fi(v;µ).

The bilinear form associated with the left-hand-side of the problem is given by:

a(w, v;µ) =

8∑
p=1

µ[p]E

∫
Ωp

∂vi
∂xj

Cijkl
∂wk
∂xl

+ E

∫
Ω9

∂vi
∂xj

Cijkl
∂wk
∂xl

,

where µ[p] is the ratio between the Young modulus in Ωp and Ω9.
For our isotropic material, the elasticity tensor is given by

Cijkl = λ1δijδkl + λ2 (δikδjl + δilδjk) ,

where

λ1 =
ν

(1 + ν)(1− 2ν)
and λ2 =

1

2(1 + ν)
,

are the Lamé constants for plane strain. We recall that the Poisson’s ratio is set to ν = 0.30. The
weak form is then given by (2.1)–(2.2). The inner product is specified by (2.3),

(v, w)V = a(v, w; µ̄) = E

∫
Ω

∂vi
∂xj

Cijkl
∂wk
∂xl

, ∀ w, v ∈ V,

for some µ ∈ P satisfying µ[p] = 1, for all 1 ≤ p ≤ 8.
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Fig. 2.4: Four representative solutions for the laterally loaded (traction/compression) elastic block
(Example 2).

We can now readily verify our hypotheses. First, it is standard to confirm that f is indeed
bounded. Second, we readily confirm by inspection that a is symmetric, and we further verify by
application of the Korn inequality [91] and the Cauchy-Schwarz inequality that a is coercive and
continuous, respectively.

The finite element method, employing piece-wise elements, has been chosen as the truth model.
In Figure 2.2 (right) the mesh is represented, featuring 4’152 elements. In Figure 2.4, four repre-
sentative solutions are illustrated.
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Reduced Basis Methods

With target applications characterized by computationally intensive parametrized problems that
require repeated evaluation, it is clear that we need to seek alternatives to simply solving the full
problem many times. This is exactly the place where reduced models have it place and we are now
ready to dive deeper into a discussion of central elements of the certified reduced basis method.

While this initial discussion is the main topic of this chapter we will quickly observe that several
elements have to come together to fully realize the method. Some of these elements are not discussed
in detail until in later chapters, and are simply stated as assumptions within this chapter.

When introducing reduced models it is inevitable to familiarize the reader with the notion of a
solution manifold , that is the set of all solutions to the parametrized problem under variation of
the parameter. The final goal of RBM is to approximate any member of this solution manifold with
a low number of, say N , basis functions. This set of basis functions is denoted as the reduced basis

The reduced basis method is based on a two stage procedure, comprising an offline and an
online stage. During the potentially very costly offline stage, one empirically explores the solution
manifold to construct a reduced basis that approximates any member of the solution manifold to
within a prescribed accuracy. As this involves the solution of at least N truth problems, each with Nδ
degrees of freedom, the cost can be high. This results in the identification of an linear N -dimensional
reduced basis. The online stage consists of a Galerkin projection, using the parametrized bilinear
form a( · , · ;µ) with a varying parameter value µ ∈ P, onto the space spanned by the reduced basis.
During this stage, one can explore the parameter space at a substantially reduced cost, ideally at
a cost independent of Nδ.

This offline/online separation is beneficial in at least two different scenarios. First, if the reduced
basis approximation needs to be evaluated for many parameter values, a direct evaluation of the
truth could be prohibitive. Typical examples can be found in areas of optimization, design, uncer-
tainty quantification, query of simulation based databases etc. Secondly, the online procedure can
be embedded in a computer environment that has only limited computational power and memory
to allow rapid online query of the response of an otherwise complex system for control, visualization
and analysis using a deployed device.
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3.1 The solution manifold and the reduced basis approximation

Our primary interest is the solution of the parametric exact problem (2.1) given as: find u(µ) ∈ V
such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ V.

We shall refer to this as the exact solution . Let us introduce the notion of solution manifold
comprising of all solutions of the parametric problem under variation of the parameters, i.e.,

M = {u(µ) | µ ∈ P} ⊂ V,

where each u(µ) ∈ V corresponds to the solution of the exact problem.
In many cases of interest, the exact solution is not available in an analytic or otherwise simple

manner, and we seek an approximate solution by seeking uδ(µ) ∈ Vδ such that

a(uδ(µ), vδ;µ) = f(vδ;µ), ∀vδ ∈ Vδ, (3.1)

referred to as the truth. Throughout the subsequent discussion we assume that ‖u(µ) − uδ(µ)‖V
can be made arbitrarily small for any given parameter value, µ ∈ P. This simply states that we
assume that a computational model is available to solve the truth problem, thus approximate the
exact solution at any required accuracy. However, we shall not specify the details of this other than
we will require it to be based on variational principles. This accuracy requirement also implies that
the computational cost of evaluating the truth model may be very high and depend directly on
Nδ = dim(Vδ).

Following the definition for the continuous problem, we also define the discrete version of the
solution manifold

Mδ = {uδ(µ) | µ ∈ P} ⊂ Vδ, (3.2)

where each uδ(µ) ∈ Vδ corresponds to the solution of the parametric truth problem (3.1).
A central assumption in the development of any reduced model is that the solution manifold

is of low dimension, i.e., that the span of a low number of appropriately chosen basis functions
represents the solution manifold with a small error. We shall call these basis functions the reduced
basis and it will allow us to represent the truth solution, uδ(µ) based on an N -dimensional subspace
Vrb of Vδ. Let us initially assume that an N -dimensional reduced basis, denoted as {ξn}Nn=1 ⊂ Vδ,
is available, then, the associated reduced basis space is given by

Vrb = span{ξ1, . . . , ξN} ⊂ Vδ.

The assumption of the low dimensionality of the solution manifold implies that N � Nδ. Given
the N -dimensional reduced basis space Vrb, the reduced basis approximation is sought as: for any
given µ ∈ P, find urb(µ) ∈ Vrb s.t.

a(urb(µ), vrb;µ) = f(vrb;µ), ∀vrb ∈ Vrb, (3.3)

and evaluate
srb(µ) = f(urb(µ);µ), (3.4)

since we assume to be in the compliant case. Otherwise it would be srb(µ) = `(urb(µ);µ). Since the

basis functions of Vrb are given by ξ1, . . . , ξN , we can represent urb(µ) by urb(µ) =
∑N
n=1(uµrb)n ξn

where {(uµrb)n}Nn=1 denote the coefficients of the reduced basis approximation. In the linear algebra
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Linear algebra box: The reduced basis approximation

Let {ξn}Nn=1 denote the reduced basis and define the matrix B ∈ RNδ×N such that

ξn =

Nδ∑
i=1

Bin ϕi,

i.e., the n-th column of B denotes the coefficients when the n-th basis function ξn is expressed in terms
of the basis functions {ϕi}Nδi=1. Then, the reduced basis solution matrix Aµ

rb ∈ RN×N and right hand
side fµrb ∈ RN defined by

(Aµ
rb)mn = a(ξn, ξm;µ), and (fµrb)m = f(ξm;µ), 1 ≤ n,m ≤ N,

can be computed by
Aµ

rb = BT Aµ
δ B, and fµrb = BT fµδ .

The reduced basis approximation urb(µ) =
∑N
n=1(uµrb)n ξn is obtained by solving the linear system

Aµ
rb uµrb = fµrb,

and the output of interest evaluated as srb(µ) = (uµrb)
T fµrb.

box The reduced basis approximation we further explain the reduced basis approximation at the level
of the involved linear algebra.

Within this setting, we can now begin to consider a number of central questions, related to the
computational efficiency and accuracy of the reduced model as a representation of the truth approx-
imation across the parameter space. If we begin by assuming that the reduced basis approximation
is available, questions of accuracy can be addressed by considering the simple statement

‖u(µ)− urb(µ)‖V ≤ ‖u(µ)− uδ(µ)‖V + ‖uδ(µ)− urb(µ)‖V.

For a given parameter value, µ ∈ P, we assume that the accuracy of the first part on the right
hand side can be controlled by the accuracy of the truth approximation as assumed above. This
assumption also extends to the solution manifold for which we assume that Mδ approximates M
arbitrarily well.

Hence, accuracy of the reduced basis approximation is guaranteed if we can estimate the accuracy
by which the reduced basis approximation approximates the truth for a given parameter value. This
error estimation is a key element of the process and will be discussed in detail in Chapter 4. The
computational cost on the other hand is dominated by the cost of effectively evaluating (3.3) for a
new parameter value and, naturally, the compactness of the reduced basis, N .

While the former challenge is primarily an algorithmic challenge, the latter is a question that
clearly has a problem specific answer, i.e., some problems will allow a very efficient reduced basis
representation while other problems will escape this entirely. To get a handle on this, it is instructive
to introduce the notion of the Kolmogorov N -width. Let us first define

E(Mδ,Vrb) = sup
uδ∈Mδ

inf
vrb∈Vrb

‖uδ − vrb‖V.

The Kolmogorov N -width of Mδ in Vrb is then defined as
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dN (Mδ) = inf
Vrb

sup
uδ∈Mδ

inf
vrb∈Vrb

‖uδ − vrb‖V, (3.5)

where the first infimum is taken over all N -dimensional subspaces Vrb of V. Hence, the N -width
measures how well Mδ can be approximated by some N -dimensional subspace Vrb. If, indeed,
the N -width decays rapidly as N increases, it suggests that the solution manifold can be well
approximated by a small reduced basis, yielding a compact and efficient approximation across the
entire parameter space. In our case of interest, we can think of the regularity of the solution in
parameter space, where in some case, the Kolmogorov N -width may even decay exponentially, i.e.,
dN (Mδ,Vrb) ≤ Ce−cN . A challenge we shall discuss later in this chapter is how to find this low-
dimensional subspace and how compact we can expect it to be provided we have some information
about the Kolmogorov N -width for a particular problem.

Following the discussion just above, we assume that the reduced basis is constructed to en-
sure good approximation properties across the parameter space. This is measured through the
Kolmogorov N -width by its capability to approximate any member of Mδ,

sup
uδ∈Mδ

inf
vrb∈Vrb

‖uδ − vrb‖V.

One can relax the supremum-norm overMδ to obtain a different (least-square) notion of optimality
as √∫

µ∈P
inf

vrb∈Vrb

‖uδ(µ)− vrb‖2V dµ. (3.6)

In addition to these considerations about approximating a solution manifold by an N -dimensional
space in the best approximation, observe that applying Cea’s lemma for a given approximation
space Vrb and a given parameter value µ ∈ P connects the best approximation error with the
reduced approximation:

‖u(µ)− urb(µ)‖V ≤
(

1 +
γ(µ)

α(µ)

)
inf

vrb∈Vrb

‖u(µ)− vrb‖V. (3.7)

Thus, the quality of the reduced basis approximation , based on a Galerkin projection, depends,
as the truth approximation, on the coercivity and continuity constants of the bilinear form, both
of which are problem-dependent. Furthermore, the quality of also depends on the ability of the
reduced basis space to approximate any member of the solution manifold.

In the following, we are going to address the following two fundamental questions:

• How do we generate accurate reduced basis spaces during the offline stage?

• How do we recover the reduced basis solution efficiently during the online stage?

3.2 Reduced basis space generation

While there are several strategies for generating reduced basis spaces, we shall focus on the proper
orthogonal decomposition (POD) and the greedy construction in the following. In both cases, one
begins by introducing a discrete and finite-dimensional point-set Ph ⊂ P in parameter domain ,
e.g., it can consist of a regular lattice or a randomly generated point-set intersecting with P. We
can then introduce the following set
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Mδ(Ph) = {uδ(µ) |µ ∈ Ph}

of cardinality M = |Ph|. Of course, it holds thatMδ(Ph) ⊂Mδ as Ph ⊂ P but if Ph is fine enough,
Mδ(Ph) is also a good representation of Mδ.

3.2.1 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) is an explore-and-compress strategy in which one samples
the parameter space, compute the corresponding truth solutions at all sample points and, following
compression, retains only the essential information. The N -dimensional POD-space is the space
that minimizes the quantity √

1

M

∑
µ∈Ph

inf
vrb∈Vrb

‖uδ(µ)− vrb‖2V (3.8)

over all N -dimensional subspaces Vrb of the span VM = span{uδ(µ) |µ ∈ Ph} of the elements of
Mδ(Ph). It is a discrete version of (3.6) using Mδ(Ph) instead of Mδ.

We introduce an ordering µ1, . . . , µM of the values in Ph, hence inducing an ordering uδ(µ1), . . . , uδ(µM )
of the elements of Mδ(Ph). For the sake of a short notation, we denote ψm = uδ(µm) for all
m = 1, . . . ,M in the following. To construct the POD-space, let us define the symmetric and linear
operator C : VM → VM defined by

C(vδ) =
1

M

M∑
m=1

(vδ, ψm)V ψm, vδ ∈ VM,

and consider the eigenvalue-eigenfunction pairs (λn, ξn) ∈ R× VM of the operator C with normal-
ization constraint ‖ξn‖V = 1 satisfying

(C(ξn), ψm)V = λn(ξn, ψm)V, 1 ≤ m ≤M. (3.9)

Here we assume that the eigenvalues are sorted in descending order λ1 ≥ λ2 ≥ . . . ≥ λM . The
orthogonal POD basis functions are given by the eigenfunctions ξ1, . . . , ξM and they span VM. If one
truncates the basis and only considers the first N functions ξ1, . . . , ξN , they span the N -dimensional
space VPOD that satisfies the optimality criterion (3.8). Further, the projection PN : V → VPOD for
arbitrary functions in V onto VPOD, defined as

(PN [f ], ξn)V = (f, ξn)V, 1 ≤ n ≤ N,

is given as

PN [f ] =

N∑
n=1

(f, ξn)V ξn.

In particular, if the projection is applied to all elements in Mδ(Ph) it satisfies the following error
estimate √√√√ 1

M

M∑
m=1

‖ψm − PN [ψm]‖2V =

√√√√ M∑
m=N+1

λm.
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Linear algebra box: Proper Orthogonal Decomposition (POD)

Denote ψm = uδ(µm) for m = 1, . . . ,M and let us construct the correlation matrix C ∈ RM×M by

Cmq = 1
M

(ψm, ψq)V, 1 ≤ m, q ≤M.

Then, solve for the N largest eigenvalue-eigenvector pairs (λn, vn) with ‖vn‖`2(RM ) = 1 such that

C vn = λnvn, 1 ≤ n ≤ N,

which is equivalent to (3.9). With the eigenvalues sorted in descending order λ1 ≥ λ2 ≥ . . . ≥ λN the
orthogonal POD basis functions {ξ1, . . . , ξN} span the POD-space VPOD = span{ξ1, . . . , ξN} and are
given by the linear combinations

ξn(x) = 1√
M

M∑
m=1

(vn)m ψm(x), 1 ≤ n ≤ N,

where (vn)m denotes the m-th coefficient of the eigenvector vn ∈ RM .

Remark 3.1 (Relation with singular value decomposition (SVD)). In the simplified case where the scalar
product (ψm, ψq)V is replaced by the simple `2-scalar product of the degrees of freedom of ψm =
uδ(µm) =

∑Nδ
i=1(uµmδ )i ϕi and ψq = uδ(µq) =

∑Nδ
i=1(u

µq
δ )i ϕi, i.e., by

Nδ∑
i=1

(uµmδ )i (u
µq
δ )i,

the correlation matrix becomes C = 1
M

UT
δ Uδ where Uδ ∈ RNδ×M denotes the matrix of the column-

wise vectors uµmδ for m = 1, . . . ,M . In this case, the eigenvalues of C correspond to the square of the
singular values of 1√

M
Uδ.

The computational aspects of the POD procedure is discussed in the linear algebra box Proper
Orthogonal Decomposition (POD), highlighting the reliance on basic tools of linear algebra.

We note that the orthonormality of the eigenvectors in the sense of `2(RM ) implies the following
orthogonality relationship of the eigenfunctions

(ξm, ξq)V = Mλnδmq, 1 ≤ m, q ≤M

where δmq denotes the Kronecker delta.
While the construction of the POD-basis results in a basis that is optimal in an `2-sense over the

parameter space, the cost of the procedure is potentiality very high. To ensure a reduced basis of
sufficient accuracy, a potentially large number M of truth solutions may be required and, worse yet,
a proper choice of M is not known or predictable for a general problem. This implies that one often
has to choose M � N , leading to a very substantial computational overhead by having to compute
a large number of truth solutions only to discover that the majority of these solutions do not
contribute to the reduced basis. Furthermore, for M and Nδ being large, the cost of computing the
reduced basis itself, requiring the solution of a large dense eigenvalue problem, scales like O(NNδ

2).
While this construction is straightforward and display desirable optimality properties, the lack of
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an error estimator beyond the magnitude of the largest ignored eigenvalue and, most importantly,
the high computational offline cost suggests that we seek an alternative approach.

3.2.2 Greedy basis generation

In contrast to the generation of the reduce basis using the proper orthogonal decomposition (POD),
the greedy generation of the reduced basis space is an iterative procedure where at each iteration
one new basis function is added and the overall precision of the basis set is improved. It requires
one truth solution to be computed per iteration and a total of N truth solutions to generate the
N -dimensional reduced basis space.

An essential ingredient of the greedy algorithm is the availability of an error η(µ) which predicts
the error due to the model order reduction, i.e., it provides an estimate of the error induced by
replacing Vδ by the reduced basis space Vrb in the variational formulation. We shall postpone the
discussion of how to develop such estimators to Chapter 4 and simply assume here that one is
available satisfying

‖uδ(µ)− urb(µ)‖µ ≤ η(µ),

for all µ ∈ P. Here uδ(µ) is a solution of (3.1) and urb(µ) is solution of (3.3) for a certain reduced
basis space Vrb. Alternatively, a different norm, i.e., the parameter-independent norm ‖uδ(µ) −
urb(µ)‖V, or even the measure of the output functional |sδ(µ) − srb(µ)| can be chosen. But in
all cases, η(µ) consist of a strict upper bound of the corresponding error-quantity. As already
mentioned, details are postponed to Chapter 4.

During this iterative basis selection process and if at the n-th step a n-dimensional reduced basis
space Vrb is given, the next basis function is the one that maximizes the estimated model order
reduction error given the n-dimensional space Vrb over P. That is, we select

µn+1 = arg max
µ∈P

η(µ), (3.10)

and compute uδ(µn+1) to enrich the reduced basis space as Vrb = span{uδ(µ1), . . . , uδ(µn+1)}.
This is repeated until the maximal estimated error is below a required error tolerance. The greedy
algorithm always selects the next parameter sample point as the one for which the model error is
the maximum as estimated η(µ). This yields a basis that aims to be optimal in the maximum norm
over P rather than L2 for the POD basis.

Computing the maximum in (3.10) over the entire parameter space P is impossible and, as for
the POD approach, we introduce a finite point-set Ph. However, since a point in Ph only requires
the evaluation of the error estimator and not a truth solution, the cost per point is small and
Ph can therefore be considerably denser than the one used in the construction of the POD basis,
provided the error estimator can be evaluated efficiently. Furthermore, one can utilize that the
evaluation of the error estimator is embarrassingly parallel to further accelerate this part of the
offline computation. The computational aspects of the greedy basis generation is discussed in the
algorithm box The greedy algorithm, highlighting the importance of the error estimator in this
development.

Provided this approach leads to a basis of sufficient accuracy and compactness commensurate
with the Kolmogorov N -width of the problem, its advantages over the POD basis generation are
clear. Not only is the need for solving a potentially very large eigenproblem eliminated but we
also dramatically reduce the total cost of the offline computation by only computing the N truth
solutions in contrast to the M solutions needed for the POD basis generation, where M � N
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Algorithm: The greedy algorithm

Input: tol, µ1 and n = 1.

Output: A reduced basis space Vrb.

1. Compute uδ(µn) solution to (3.1) for µn and set Vrb = span{uδ(µ1), . . . , uδ(µn)}

2. For each µ ∈ Ph
a. Compute the reduced basis approximation urb(µ) ∈ Vrb defined by (3.3) for µ

b. Evaluate the error estimator η(µ)

3. Choose µn+1 = arg max
µ∈Ph

η(µ)

4. If η(µn+1) > tol, then set n := n+ 1 and go to 1., otherwise terminate.

in almost all cases. Note also that the sequence of approximation spaces is hierarchical. Hence, if
the N -dimensional reduced basis space is not sufficientlt accurate, one can enrich it by adding n
additional modes. This which results in exactly the same space as having build the reduced basis
space with N + n basis functions.

Let us elaborate a little further on the greedy algorithm. We consider a general family F =
{f(µ) |µ ∈ P} of parametrized functions, f(µ) : Ω → R, for which we find an approximation space
using a greedy approach to iteratively select the basis functions as

fn+1 = arg max
µ∈P

‖f(µ)− Pnf(µ)‖V,

and where Pnf is the orthogonal projection onto Fn = span{f1, . . . , fn}, we have the following
convergence result for the basic greedy approximation [10] (see also [36] for a generalization to
Banach spaces):

Theorem 3.2. Assume that F has an exponentially small Kolmogorov N -width, dN (F ) ≤ ce−aN

with a > log 2. Then there exists a constant β > 0 such that the set FN , obtained by the greedy
algorithm is exponentially accurate in the sense that

‖f − PNf‖V ≤ Ce−βN .

See also [15] for the first but less sharp estimates. In other words, if the underlying problem allows an
efficient and compact reduced basis, the greedy approximation will find an exponentially convergent
approximation to it.

Recall that the parameter-independent coercivity and continuity constants α and γ, introduced
in (2.4), satisfy

∀µ ∈ P : a(u, v;µ) ≤ γ‖u‖V‖v‖V, ∀u, v ∈ V,
∀µ ∈ P : a(u, u;µ) ≤ α‖u‖2V, ∀u ∈ V.

Then this convergence behavior can be extended to the reduced basis approximation as [10]:

Theorem 3.3. Assume that the set of all solutions M (approximated by Mδ in all computations)
has an exponentially small Kolmogorov N -width dN (M) ≤ ce−aN , a > log

(
1 +

√
γ
α

)
, then the
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Linear algebra box: The affine assumption

The affine assumption is inherited at the linear algebra level to allow the efficient assembly of the
reduced basis solution matrix, right hand side and output functional. During the offline stage one
precomputes all matrices

Aq
rb = BT Aq

δ B ∈ RN×N , 1 ≤ q ≤ Qa,

fqrb = BT fqδ ∈ RN , 1 ≤ q ≤ Qf,

lqrb = BT lqδ ∈ RN , 1 ≤ q ≤ Ql,

where (Aq
δ)ij = aq(ϕj , ϕi), (fqδ )j = fq(ϕj) and (lqδ)j = `q(ϕj) for 1 ≤ i, j ≤ Nδ. During the online stage,

one can then efficiently build the required operators as

Aµ
rb =

Qa∑
q=1

θqa (µ) Aq
rb, fµrb =

Qf∑
q=1

θqf (µ) fqrb, lµrb =

Ql∑
q=1

θql (µ) lqrb.

reduced basis approximation converges exponentially fast in the sense that there exists a β > 0 such
that

∀µ ∈ P : ‖uδ(µ)− urb(µ)‖V ≤ Ce−βN .

Hence, the reduced basis approximation converges exponentially fast to the truth approximation.
It is worth reiterating that the error between the truth approximation and the exact solution is
assumed to be very small. If this is violated, the reduced basis approximation will still display
exponential convergence to the truth approximation but this will possibly be a poor representa-
tion of the exact solution, i.e., the reduced basis approximation would be polluted by the lack of
approximability of the truth solution.

From a practical viewpoint, it is important to observe that the different snapshots
uδ(µ1), . . . , uδ(µN ) may be (almost) linearly dependent, resulting in a large condition number of
the associated solution matrix. It is therefore advised to orthonormalize the snapshots in order to
obtain the basis functions ξ1, . . . , ξN . For instance, one can use the Gram-Schmidt orthonormaliza-
tion algorithm based on the vector of degrees of freedom of the functions uδ(µn) and the discrete
scalar product of `2. Observe that one does not rely on the properties of orthonormality even if this
is often desirable for numerical stability. All that is required is a set of basis functions ξ1, . . . , ξN
which spans the same space Vrb and generates a solution matrix Arb with a reasonable condition
number.

3.3 Ensuring efficiency through the affine decomposition

Having addressed the offline computation of the reduced basis, we can now turn to the online
stage where the central part is the computation of a solution urb(µ), defined by (3.3). In the ideal
setting, the cost of accomplishing this should be independent of the complexity of the truth problem,
measured by Nδ, and should depend only on the size N � Nδ of the reduced basis approximation.

To get a handle on this, first note that for each new parameter value µ ∈ P, the reduced basis
solution matrix Aµ

rb, as defined in the linear algebra box The reduced basis approximation, needs
to be assembled. Since the parameter value µ may be in the bilinear form a(·, ·;µ), one generally
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Algorithm: The online procedure

Input: A reduced basis model based on the reduced basis space Vrb and a parameter value µ ∈ P.

Output: Fast evaluation of the output functional (srb(µ) and the aposteriori estimate η(µ)) that
is independent of Nδ.

1. Assemble the reduced basis solution matrix and right hand side:

Aµ
rb =

Qa∑
q=1

θqa (µ) Aq
rb, fµrb =

Qf∑
q=1

θqf (µ) fqrb, and lµrb =

Ql∑
q=1

θql (µ) lqrb.

2. Solve the linear system
Aµ

rbu
µ
rb = fµrb,

in order to obtain the degrees of freedom (uµrb)n of the reduced basis solution urb(µ).

3. Computate the output functional srb(µ) = (uµrb)
T lµrb.

4. Computate the error estimate η(µ), see the upcoming Chapter 4 for details.

would need to first assemble the truth matrix Aµ
δ and then construct Aµ

rb = BT Aµ
δ B, where B is

the representation of the reduced basis in terms of the basis functions of the truth space Vδ. This
is a computation that depends on Nδ, as Aµ

δ ∈ RNδ×Nδ and B ∈ RNδ×N , and would severely limit
the potential for rapid online evaluation of new reduced basis solutions.

However, this restriction can be overcome if we assume that the forms a(·, ·;µ), f(·;µ) and `(·;µ)
allow the affine decomposition

a(w, v;µ) =

Qa∑
q=1

θqa(µ) aq(w, v), (3.11)

f(v;µ) =

Qf∑
q=1

θqf(µ) fq(v), (3.12)

`(v;µ) =

Ql∑
q=1

θql(µ) `q(v), (3.13)

where each form
aq : V× V→ R, fq : V→ R, `q : V→ R,

is independent of the parameter value µ and the coefficients

θqa : P→ R, θqf : P→ R, θql : P→ R,

are scalar quantities which are independent of w and v. Note that we consider the abstract form of a
general non-compliant problem for sake of completeness in this section and therefore also illustrate
the affine decomposition of the output functional `.

Illustrated by the example of the bilinear form a(·, ·, µ), a series of Qa N × N -dimensional
matrices Aq

rb (each associated to aq(·, ·)) can be precomputed at the offline stage once the reduced
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Fig. 3.1: Maximum and average error bound with respect to the number of selected basis functions
in comparison with a SVD for the illustrative Example 1(left) and Example 2 (right).

basis space is known since the forms aq(·, ·) are independent of the parameter value. Then, during
the online stage, when a new parameter value µ is given, one builds the new solution matrix as

Aµ
rb =

Qa∑
q=1

θqa(µ) Aq
rb,

by weighting the different matrices Aq
rb by the factors parameter dependent θqa(µ). This operation

is independent of Nδ and scales proportionally to Qa ·N2. The treatment of the linear forms f(·, µ)
and `(·, µ) is similar and an account of the steps needed is provided in the algorithm box The affine
assumption.

For cases where an affine decomposition does not hold naturally for the operator or the linear
forms, one can often find an approximate form that satisfies this property using a technique known
as Empirical Interpolation. We shall discuss this technique in detail in Chapter 5.

The evaluation of (3.3) and (3.4) on an algebraic level can then be done as outlined in algorithm
box The online procedure, involving only operations that are independent of Nδ.

3.4 Illustrative Examples

We illustrate below how the affine assumption can be satisfied on our toy problems defined in Section
2.3 and provide some numerical results illustrating the convergence of the reduced model for the
basis being assembled using the greedy- and the POD-algorithms during the offline procedure.

3.4.1 Illustrative Example 1: Heat Conduction part 2

For Example 1 introduced in Section 2.3.1, recall that the bilinear and linear forms are given by
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(a) (b) (c)

Fig. 3.2: Visual comparison between the truth (finite element) solution (a), the reduced basis ap-
proximation (b) for µ = (6.68, 0.94). The difference (error) between the two solutions is illustrated
in (c).

a(w, v;µ) =

∫
Ω

κµ∇w · ∇v and f(v;µ) = µ[2]

∫
Γbase

v.

Since κµ = 1Ω1
+ µ[1]1Ω0

we can decompose the bilinear form into two parts to recover the affine
decomposition with Qa = 2, Qf = 1, θ1

a(µ) = 1, θ2
a(µ) = µ[1], θ

1
f(µ) = µ[2] and

a1(w, v) =

∫
Ω1

∇w · ∇v, a2(w, v) =

∫
Ω0

∇w · ∇v, and f1(v;µ) =

∫
Γbase

v.

Note that the way the affine assumption is satisfied is not unique. Considering for example the
bilinear form a, one could alternatively define Qa = 2, θ1

a(µ) = 1, θ2
a(µ) = µ[1] − 1 and

a1(w, v) =

∫
Ω

∇w · ∇v, a2(w, v) =

∫
Ω0

∇w · ∇v.

We now briefly illustrate the reduced basis construction for this problem with basis functions have
been obtained by orthogonalization, through the Gram-Schmidt procedure, of snapshots computed
for selected parameters provided by the greedy algorithm based on Ph of cardinality 1’000. In
Figure 3.1(left), the maximum and average absolute errors, i.e.,

max
µ∈Ph

‖uδ(µ)− urb(µ)‖µ, and
1

|Ph|
∑
µ∈Ph

‖uδ(µ)− urb(µ)‖µ, (3.14)

with respect to the number of selected basis functions is reported. In addition, we also plot the
decay of the relative singular values of the solution matrix over the training set Ph as a measure of
optimality.

In Figure 3.2, the outcomes provided by the finite element and the reduced basis approximations,
for a randomly chosen µ = (6.68, 0.94) and N = 5, are compared. The difference between the two
solutions, thus the error function, is also shown, confiming the high accuracy of the model.
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(a) (b) (c)

Fig. 3.3: Comparison between truth (finite element) solution (a), reduced basis approximation (b)
for µ = (7.737, 7.124, 0.729, 4.620, 3.072, 6.314, 3.590, 7.687,−0.804, 0.129,−0.232). The difference
(error) between the two solutions is illustrated in (c).

3.4.2 Illustrative Example 2: Linear Elasticity part 2

Concerning the elastic block of the illustrative Example 2, the forms a and f are clearly affine in the
parameter dependency. Indeed, f does explicitly depend on the parameter, and hence Qf = 3 with
θqf(µ) = µ[8+q] for q = 1, 2, 3. The bilinear form a is affine for Qa = 9 with θqa(µ) = µ[q], 1 ≤ q ≤ 8,
θ9
a(µ) = 1, and

aq(w, v) = E

∫
Ωq

∂vi
∂xj

Cijkl
∂wk
∂xl

, 1 ≤ q ≤ 9 .

The basis functions have been obtained by orthogonalization, always through a Gram-Schimdt
procedure, of snapshots obtained by the greedy algorithm based on Ph of cardinality 7’500. The
maximum and average errors, given by (3.14), with respect to the number of basis functions em-
ployed is reported in Figure 3.1(right). In addition, we also plot the decay of the relative singular
values of the solution matrix over the training set Ph as as a measure of optimality.

In Figure 3.3, the outcomes provided by the finite element and the reduced basis solution for a
randomly chosen system configuration

µ = (7.737, 7.124, 0.729, 4.620, 3.072, 6.314, 3.590, 7.687,−0.804, 0.129,−0.232),

with reduced basis dimension N = 53 are compared, and the difference (error) between the two
solutions is shown, confirming the expected accuracy.

3.5 Overview/summary of the method

The elements of the method can be summarized as follows. In an offline procedure, one seeks to
identify a reduced basis space Vrb ⊂ Vδ that has a dimension as small as possible such that any
element of the solution manifoldMδ can be approximated with an element of Vrb to within a desired
accuracy. This step can be seen as discarding any degrees of freedom of Vδ that are not needed to
approximate functions of Mδ. This is an empirical procedure which depends on the parametrized
problem and thus also on the parameter space P considered in a specific application. Hence, the
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Algorithm: The offline procedure

Input: An abstract truth model of the form (2.8) satisfying the affine assumption (3.11)–(3.13).
An aposteriori error estimator η(µ) such that ‖uδ(µ)− urb(µ)‖µ ≤ η(µ).
An error tolerance tol.
A discrete training set Ph.

Output: A reduced basis model based on the reduced basis space Vrb that guarantees that
maxµ∈Ph ‖uδ(µ)− urb(µ)‖µ ≤ tol.

Initialization: Take µ1 ∈ P arbitrary and set n = 1.

Loop:
(i) Offline-offline:

a. Compute uδ(µn) as solution to (3.1) for µn and set Vrb = span{uδ(µ1), . . . , uδ(µn)}.

b. Based on Vrb, pre-compute all quantities from the affine-decomposition that are
parameter-independent, e.g., the n-dimensional matrices Aq

rb or the n-dimensional vec-
tors fqrb.

(ii) Offline-online:
a. For each µ ∈ Ph, compute the reduced basis approximation urb(µ) ∈ Vrb defined by

(3.3) for µ and the error estimator η(µ).

b. Choose µn+1 = arg max
µ∈Ph

η(µ).

c. If η(µn+1) > tol, then set n := n+ 1 and go to (i), otherwise terminate.

resulting approximation space Vrb and its basis are not multi-purpose, but rather tailor made for
a specific problem. Most commonly, the construction of Vrb is built on the greedy algorithm which
is based on the existence of an a posteriori error estimator η(µ) which will be developed in the
upcoming Chapter 4.

The online procedure comprises a fast evaluation of the map µ 7→ srb(µ) which can be evaluated
independently of Nδ, the dimension of the truth approximation space Vδ. The efficiency, i.e., the
independence on Nδ, is enabled by the affine assumption of the bilinear form a( · , · , µ) and the
linear form f( · ;µ).

The construction of the reduced basis approximation and the importance of affine assumption
can best be illustrated by a brief overview of the different elements discussed so far as well as a
discussion of the computational complexity of the entire approach. We can, for illustration only,
compare this with the cost of solving a similar problem using the truth solver for all evaluations.

Let us first consider the offline procedure, outlined in the algorithm box The offline procedure.
The computation cost of the offline development of the reduced basis approximation is dominated
by the need to solve the truth problem N times, yielding an overall computational cost of O(NNδ

p)
where p ≤ 3 is determined by details of the solver, i.e., where direct or iterative solvers are used,
the quality of the preconditioner etc. However, since Nδ � N the cost is considerable.

Turning to the cost of the online evaluation of the reduced approximation outlined in the al-
gorithm box The online procedure, we have several terms, i.e., O(QaN

2) to assemble the operator,
O(QfN) to assemble the right hand side, O(N3) to recover the reduced basis solution, and, finally
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O(QlN) to evaluate the output of interest in the general non-compliant case (Ql = Qf otherwise).
To furthermore certify the accuracy through the error estimator we need O((Qf+NQa)

2) operations
to evaluate the residual (based on results from Chapter 4). The cost of estimating the stability con-
stant, needed in the error estimator, depends on the details of the method used but is independent
of Nδ. The key point is that although the online cost can not be neglected for large values of N and
the affine parameters, Qa, Qf, Ql, the entire computational process is independent of Nδ. Hence, for
applications where Nδ � N , this will be substantially faster than for solving the truth problems, in
particular for applications where Nδ is very large, e.g., multi-scale and three-dimensional problems,
or for problems where a very large number of parameter evaluations are needed.





4

Certified Error Control

4.1 Introduction

The development of effective and reliable a posteriori error estimators for the field variable or an
output of interest is crucial to ensure the reliability and efficiency of the reduced basis approxi-
mations. Reduced basis approximations are problem dependent since discretizations are problem
specific. They are typically pre-asymptotic since we choose N small to control the online computa-
tional cost. Furthermore, the reduced basis functions can not be directly related to specific spatial
or temporal scales so problem intuition is of limited value and may even be faulty. Finally, the
reduced basis approach is often applied in a real-time context where there is no time for offline
verification and errors may be manifested immediately and in deleterious ways. It is thus essential
that the development of techniques for the efficient and reliable computation of error estimates
plays a central role during both the offline and online stages.

In the greedy algorithm, executed during the offline stage, the error estimates are used as
surrogates for the actual error to enable large training sets without dramatically increasing the
offline cost. This subsequently results in reduced basis approximations of high fidelity as they can
be trained on large and finely sampled spaces of parameters. It is clear that the offline sampling
procedures can not be exhaustive, particularly for high-dimensional parameter dimensions P where
large parts of the parameter set P may remain unexplored. Hence, we must accept that we can only
accurately account for the online quality of the output for parameters in well sampled parts of P
and the error is controlled over Ph rather than P. However, the a posteriori estimation guarantees
that we can rigorously and efficiently bound the output error in the online procedure for any given
new µ ∈ P.

During the online stage, the error estimators enable the identification of the minimal reduced
dimension N ensuring the required accuracy. This guarantees that constraints are satisfied and
feasibility conditions are verified. This subsequently ensures the validity of the prediction, hence
enabling online prediction endowed with the certified accuracy of the truth solution.

In the following we present several a posteriori estimates. These are developed both for the field
variable in combination with different norms and for the output functional. They can be used either
in the greedy selection of the reduced basis space during the offline procedure or during the online
procedure to certify the out, depending on the application and criteria of the user.
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4.2 Error control for the reduced order model

The need for efficient and accurate error bounds in turn place additional requirements on the error
estimation. The error bounds must be rigorous and valid for all N and for all parameter values in
the parameter domain P. Indeed, non-rigorous error indicators may suffice for adaptivity, but not
for reliability. Furthermore, the bounds must be reasonably sharp since overly conservative errors
will yield inefficient approximations, with N being large in the RB model, or suboptimal engineering
results with, e.g., unnecessary safety margins. Finally, the bounds must be computable at low cost,
independent of Nδ, due to the critical role these play in both the offline and the online stage.

We recall that our reduced basis error bounds will be defined relative to the underlying accu-
rate discretization method, e.g., the finite element approximation - the truth. Hence, if the truth
approximation is poor, the error estimator will still reflect convergence but it will be convergence
to a solution that only poorly approximates the solution of the continuous problem.

4.2.1 Discrete coercivity and continuity constants of the bilinear form

The error certification we will be based on the discrete coercivity and continuity constants defined
by

αδ(µ) = inf
vδ∈Vδ

a(vδ, vδ;µ)

‖vδ‖2V
, and γδ(µ) = sup

wδ∈Vδ
sup
vδ∈Vδ

a(wδ, vδ;µ)

‖wδ‖V‖vδ‖V
. (4.1)

Since the approximation space is conforming, i.e., Vδ ⊂ V, it holds that α(µ) ≤ αδ(µ) and γδ(µ) ≤
γ(µ) where α(µ) and γ(µ) are the continuous coercivity and continuity constants introduced in
(2.5).

4.2.2 Error representation

The central equation in residual-based a posteriori theory is a quantification of the relationship
between the error and the residual. It follows from the problem statements for uδ(µ), defined by
(2.8), and urb(µ), defined by (3.3), that the error e(µ) = uδ(µ) − urb(µ) ∈ Vδ satisfies the classic
error equation

a(e(µ), vδ;µ) = r(vδ;µ), ∀ vδ ∈ Vδ, (4.2)

where r( · ;µ) ∈ V′δ (the dual space to Vδ) is the residual,

r(vδ;µ) = f(vδ;µ)− a(urb(µ), vδ;µ), ∀ vδ ∈ Vδ. (4.3)

Indeed, (4.2) follows from (4.3) by the bilinearity of a and the definition of e(µ).
It shall prove convenient to introduce the Riesz representation of r( · ;µ), denoted by r̂δ(µ) ∈ Vδ

and defined as the unique r̂δ(µ) ∈ Vδ satisfying

(r̂δ(µ), vδ)V = r(vδ;µ), ∀ vδ ∈ Vδ. (4.4)

Consequently, it holds that

‖r̂δ(µ)‖V = ‖r( · , µ)‖V′δ = sup
vδ∈Vδ

r(vδ;µ)

‖vδ‖V
.

We can also write the error equation as
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a(e(µ), vδ;µ) = (r̂δ(µ), vδ)V, ∀ vδ ∈ Vδ. (4.5)

As we shall see shortly, the evaluation of the dual norm of the residual through the Riesz represen-
tation is a central element in the construction of efficient and reliable a posteriori estimators.

In the next proposition we discuss some error relations which can be established due to the
Galerkin framework and the nature of the compliant problem that turns out to be useful in the
upcoming proofs.

Proposition 4.1. For a compliant problem it holds

sδ(µ)− srb(µ) = ‖uδ(µ)− urb(µ)‖2µ,

for all µ ∈ P. Hence sδ(µ) ≥ srb(µ).

Proof. Let µ ∈ P be arbitrary. We first observe by the definitions (2.8) (or (3.1)) and (3.3) of
uδ(µ) ∈ Vδ and urb(µ) ∈ Vrb that the following Galerkin orthogonality holds

a
(
uδ(µ)− urb(µ), vrb;µ

)
= 0, ∀vrb ∈ Vrb.

Then, by the linearity of the right hand side f( · , µ), the definition of uδ(µ) and the Galerkin
orthogonality we obtain

sδ(µ)− srb(µ) = f
(
e(µ);µ

)
= a

(
uδ(µ), e(µ);µ

)
= a

(
e(µ), e(µ);µ

)
= ‖e(µ)‖2µ,

Since we consider a compliant problem. ut

In the following Sections 4.2.3 and 4.2.4 we initially assume that we have access to a lower bound
αLB(µ) of the coercivity constant αδ(µ), defined by (4.1), for any value of µ ∈ P in a way that is
independent of Nδ. In Section 4.3 we shall then revisit this assumption and construct such bounds.

4.2.3 Energy and Output Error Bounds

We define computable error estimators for the energy norm, output, and relative output as

ηen(µ) =
‖r̂δ(µ)‖V
α

1/2
LB (µ)

, (4.6a)

ηs(µ) =
‖r̂δ(µ)‖2V
αLB(µ)

=
(
ηen(µ)

)2
, (4.6b)

ηs,rel(µ) =
‖r̂δ(µ)‖2V

αLB(µ) srb(µ)
=

ηs(µ)

srb(µ)
. (4.6c)

The following proposition ensures that those estimators are rigorous upper bounds of the quantities
they estimate.
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Proposition 4.2. For the computable a posteriori error estimators defined by (4.6a)–(4.6c) there
holds

‖uδ(µ)− urb(µ)‖µ ≤ ηen(µ) (4.7a)

sδ(µ)− srb(µ) ≤ ηs(µ), (4.7b)

sδ(µ)− srb(µ)

sδ(µ)
≤ ηs,rel(µ), (4.7c)

for all µ ∈ P.

Proof. It follows directly from the error equation, (4.5) with vδ = e(µ), and the Cauchy-Schwarz
inequality that

‖e(µ)‖2µ = a(e(µ), e(µ);µ) ≤ ‖r̂δ(µ)‖V ‖e(µ)‖V. (4.8)

Since αLB(µ) is assumed to be a lower bound of the coercivity constant αδ(µ) we conclude that

αLB(µ) ‖e(µ)‖2V ≤ a(e(µ), e(µ);µ) = ‖e(µ)‖2µ.

Combining thus with (4.8) yields (4.7a).

Next, we know from Proposition 4.1 that sδ(µ)− srb(µ) = ‖e(µ)‖2µ, and since ηs(µ) = (ηen(µ))
2
,

(4.7b) follows. Finally, we can easily deduce that srb(µ) ≤ sδ(µ) (by Proposition 4.1) which, in
combination with (4.7b), implies (4.7c). ut

We next introduce the effectivity index associated with these error estimators:

effen(µ) =
ηen(µ)

‖uδ(µ)− urb(µ)‖µ
, (4.9a)

effs(µ) =
ηs(µ)

sδ(µ)− srb(µ)
, (4.9b)

effs,rel(µ) =
ηs,rel(µ)

(sδ(µ)− srb(µ)) /s(µ)
, (4.9c)

as measures of the quality of the proposed estimator. To ensure rigor of the estimates, we require
effectivities ≥ 1 as ensured by Proposition 4.2. For sharpness of the error estimates, however, we
desire effectivities as close to unity as possible.

Under the assumption that we remain in the coercive, compliant and, hence, symmetric frame-
work, we recover the following proposition.

Proposition 4.3. The effectivities (4.9) satisfy

effen(µ) ≤
√
γδ(µ)/αLB(µ), (4.10a)

effs(µ) ≤ γδ(µ)/αLB(µ), (4.10b)

effs,rel(µ) ≤ (1 + ηs,rel) γδ(µ)/αLB(µ), (4.10c)

for all µ ∈ P. We recall that αLB(µ) denotes an lower bound of the coercivity constant αδ(µ) and
that γδ(µ) defines the continuity constant defined by (4.1).
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Proof. Consider (4.5) with vδ = r̂δ(µ). In combination with the Cauchy-Schwarz inequality this
yields

‖r̂δ(µ)‖2V = a(e(µ), r̂δ(µ);µ) ≤ ‖r̂δ(µ)‖µ ‖e(µ)‖µ. (4.11)

By continuity (2.5) of the bilinear form we obtain

‖r̂δ(µ)‖2µ = a(r̂δ(µ), r̂δ(µ);µ) ≤ γδ(µ) ‖r̂δ(µ)‖2V ≤ γδ(µ) ‖r̂δ(µ)‖µ ‖e(µ)‖µ. (4.12)

Combining (4.11) and (4.12) implies

η2
en(µ) =

‖r̂δ(µ)‖2V
αLB(µ)

≤ ‖r̂δ(µ)‖µ‖e(µ)‖µ
αLB(µ)

≤ γδ(µ)

αLB(µ)
‖e(µ)‖2µ,

which establishes (4.10a).
Next recall that from Proposition 4.1 we have sδ(µ)− srb(µ) = ‖e(µ)‖2µ, and hence

effs(µ) =
ηs(µ)

sδ(µ)− srb(µ)
=

(ηen(µ))
2

‖e(µ)‖2µ
= (effen)

2 ≤ γδ(µ)

αLB(µ)

through (4.10a).
Finally, since ηs,rel(µ) = ηs(µ)/srb(µ), we obtain

effs,rel(µ) =
(
sδ(µ)/srb(µ)

)
effs(µ). (4.13)

Observe that srb(µ) ≤ sδ(µ) as consequence of Proposition 4.1. Applying (4.7b) yields

sδ(µ)

srb(µ)
= 1 +

sδ(µ)− srb(µ)

srb(µ)
≤ 1 +

ηs(µ)

sδ(µ)
= 1 + ηs,rel(µ),

which, in combination with (4.13) and (4.10b), proves (4.10c). ut

Proposition 4.2 establishes that the estimators (4.9a)–(4.9c) are rigorous upper bounds for the
reduced basis error in the energy norm, the reduced basis output error, and the reduced basis
relative output error, respectively. Furthermore, the effectivity of the energy-norm and output error
estimators is bounded from above independent of N by Proposition 4.3 while being rigorously
bounded from below as

γδ(µ)/αLB(µ) ≥ 1,

by the definition of the constants.

4.2.4 V-Norm Error Bounds

Although the bounds on the accuracy of the output are arguably the most relevant, it also proves
useful (e.g., in a visualization context) to provide a certificate of fidelity for the full field error
uδ(µ) − urb(µ) in a norm which is independent of µ. For this, we introduce error estimators in
the V-norm and the relative V-norm. We note here that the choice of the V-norm (and hence of
µ̄) does not affect the reduced basis output prediction srb(µ) but may affect the sharpness of the
a posteriori output error bounds. In what follows, the V-norm can be replace by any norm on Vδ
without impacting the validity of the results.
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Let us introduce the following error estimators

ηV(µ) =
‖r̂δ(µ)‖V
αLB(µ)

, (4.14a)

ηV,rel(µ) =
2 ‖r̂δ(µ)‖V

αLB(µ) ‖urb(µ)‖V
.

Proposition 4.4. It holds that

‖uδ(µ)− urb(µ)‖V ≤ ηV(µ), ∀µ ∈ P. (4.15)

Furthermore, if ηV,rel(µ) ≤ 1 for some µ ∈ P, then

‖uδ(µ)− urb(µ)‖V
‖uδ(µ)‖V

≤ ηV,rel(µ). (4.16)

Proof. Inequality (4.15) follows from (4.7a) of Proposition 4.2, αLB(µ) ‖e(µ)‖2V ≤ ‖e(µ)‖2µ, and the
definition of ηV(µ), (4.14a).

For (4.16) we first observe that

ηV,rel(µ) = 2
‖r̂δ(µ)‖V

αLB(µ)‖urb(µ)‖V
= 2

‖uδ(µ)‖V
‖urb(µ)‖V

ηV(µ)

‖uδ(µ)‖V
. (4.17)

By (4.15) and the assumption that ηV,rel(µ) ≤ 1 we further recover

‖uδ(µ)‖V = ‖urb(µ)‖V + ‖uδ(µ)‖V − ‖urb(µ)‖V ≥ ‖urb(µ)‖V − ‖uδ(µ)− urb(µ)‖V

≥ ‖urb(µ)‖V − ηV(µ) = (1− 1
2ηV,rel) ‖urb(µ)‖V ≥ 1

2‖urb(µ)‖V.

Combined with (4.17) and (4.15), this yields

ηV,rel(µ) = 2
‖uδ(µ)‖V
‖urb(µ)‖V

ηV(µ)

‖uδ(µ)‖V
≥ ηV(µ)

‖uδ(µ)‖V
≥ ‖uδ(µ)− urb(µ)‖V

‖uδ(µ)‖V
.

ut

We define the associated effectivities,

effV(µ) =
ηV(µ)

‖uδ(µ)− urb(µ)‖V
,

effV,rel(µ) =
ηV,rel(µ)

‖uδ(µ)− urb(µ)‖V/‖uδ(µ)‖V
.

Proposition 4.5. It holds that

effV(µ) ≤ γδ(µ)
αLB(µ) , ∀µ ∈ P. (4.19)

Furthermore, if ηV,rel(µ) ≤ 1 for some µ ∈ P, then

effV,rel(µ) ≤ 3 γδ(µ)
αLB(µ) . (4.20)
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Proof. Indeed, inequality (4.19) follows directly from (4.10a) and ‖e(µ)‖µ ≤ γδ(µ) ‖e(µ)‖V as

effV(µ) =
effen(µ)

α
1/2
LB (µ)

≤
γ

1/2
δ (µ)

αLB(µ)

‖e(µ)‖µ
‖e(µ)‖V

≤ γδ(µ)

αLB(µ)
.

To demonstrate (4.20), we first note that

effV,rel(µ) = 2
‖uδ(µ)‖V
‖urb(µ)‖V

effV(µ) = 2

(
1 +
‖uδ(µ)‖V − ‖urb(µ)‖V

‖urb(µ)‖V

)
effV(µ)

and observe that by (4.15) and the assumption effV,rel(µ) ≤ 1 we recover

‖uδ(µ)‖V−‖urb(µ)‖V ≤ ‖uδ(µ)−urb(µ)‖V ≤ α−1
LB (µ)‖r̂δ(µ)‖V = 1

2‖urb(µ)‖V ηV,rel(µ) ≤ 1
2‖urb(µ)‖V.

From (4.19) we finally get

effV,rel(µ) ≤ 3 γδ(µ)
αLB(µ) .

ut

4.2.5 Efficient computation of the a posteriori estimators

The error estimators (4.6) and (4.14) all require the evaluation of the residual in the dual norm,
computed through the Riesz representation ‖r̂δ(µ)‖V of the residual. Since this evaluation is needed
during the online stage of the reduced basis method to certify the output, the computation of
‖r̂δ(µ)‖V must be efficient and at a cost independent of Nδ (the dimension of Vδ).

To achieve this, we take advantage of the affine decomposition (3.11)–(3.12) and expand the
residual as

r(vδ;µ) =

Qf∑
q=1

θqf(µ) fq(vδ)−
Qa∑
q=1

N∑
n=1

θqa(µ) (uµrb)n aq(ξn, vδ), (4.21)

recalling that urb(µ) =
∑N
n=1(uµrb)n ξn. Let us next introduce the coefficient vector r(µ) ∈ RQr ,

with Qr = Qf +QaN terms, as

r(µ) =
(
θ1
f(µ), . . . , θQf

f (µ), −(uµrb)
T θ1

a(µ), . . . , −(uµrb)
T θQa

a (µ)
)T

.

With a similar ordering, we define the vectors of forms F ∈ (V′δ)Qf and Aq ∈ (V′δ)N for 1 ≤ q ≤ Qa

as
F =

(
f1, . . . , fQf

)
, and Aq =

(
aq(ξ1, · ), . . . , aq(ξN , · )

)
,

and the vector of forms R ∈ (V′δ)Qr as

R =
(
F,A1, . . . , AQa

)T
.

Combining (4.4) and (4.21) we obtain

(r̂δ(µ), vδ)V = r(vδ;µ) =

Qr∑
q=1

rq(µ)Rq(vδ), ∀vδ ∈ Vδ.
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Linear algebra box: Efficient computation of the residual norm

We show how the computation of ‖r̂δ(µ)‖V in (4.22) can be implemented.
We start with recalling the affine decomposition

Aµ
δ =

Qa∑
q=1

θqa (µ) Aq
δ, and fµδ (v) =

Qf∑
q=1

θqf (µ) fqδ .

Define the matrix R ∈ RNδ×Qr by Riq = Rq(ϕi) for 1 ≤ i ≤ Nδ, 1 ≤ q ≤ Qr, Qr = Qf + QaN. This
can be formed directly by

R = (f1δ , . . . , f
Qf

δ ,A1
δ B, . . . ,AQa

δ B)T ,

where we recall that B:n denotes the coefficient column vector of ξn in the basis {ϕi}Nδi=1 of Vδ. Then,

G = RT M−1
δ R ∈ RQr×Qr and ‖r̂δ(µ)‖V =

√
r(µ)T G r(µ),

with

r(µ) =
(
θ1f (µ), . . . , θQf

f (µ), −(uµrb)
T θ1a (µ), . . . , −(uµrb)

T θQa
a (µ)

)T
.

Here (Mδ)ij = (ϕj , ϕi)V is the mass matrix associated with the basis {ϕi}Nδi=1.

Denoting by r̂qδ the Riesz representation of the form Rq ∈ V′δ, i.e., (r̂qδ , vδ)V = Rq(vδ) for all vδ ∈ Vδ
and 1 ≤ q ≤ Qr, we recover

r̂δ(µ) =

Qr∑
q=1

rq(µ) r̂qδ ,

and

‖r̂δ(µ)‖2V =

Qr∑
q,q′=1

rq(µ) rq′(µ) (r̂qδ , r̂
q′

δ )V. (4.22)

In this final expression, the terms (r̂qδ , r̂
q′

δ )V can be precomputed once and for all in the offline stage
of the method. Thus, given any µ ∈ P one can compute ‖r̂δ(µ)‖V independently of Nδ by directly
evaluating (4.22).

4.2.6 Illustrative Examples 1 and 2: Heat Conduction and Linear Elasticity part 3

We present here the effectivities of the a posteriori estimators employed in the numerical tests that
were presented in the illustrative examples in Section 3.4.

In these tests, we are considering a validation set Pv
h ⊂ P of 1’000 samples and we are tracking

the average value of the error estimator

ηen,av =
1

|Pv
h|
∑
µ∈Pv

h

ηen(µ)

as a function of an increasing number of basis functions N . The maximal and average effectivities
are measured by
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N ηen,av effen,max effen,av
1 3.57e-1 2.40 1.24
2 1.72e-3 2.30 1.64
3 8.91e-5 2.34 1.62
4 8.47e-7 20.24 1.68

N ηen,av effen,max effen,av
5 2.08e-2 6.22 1.35
10 3.54e-3 5.06 1.17
15 8.16e-4 5.39 1.40
20 2.43e-4 5.26 1.33

Table 4.1: Error bounds and effectivity metrics as function of N for the illustrative example 1 (left)
and 2 (right).

effen,max = max
µ∈Pv

h

ηen(µ)

‖uδ(µ)− urb(µ)‖µ
and effen,av =

1

|Pv
h|
∑
µ∈Pv

h

ηen(µ)

‖uδ(µ)− urb(µ)‖µ
. (4.23)

The error bounds and effectivity metrics as function of the number of basis functions N employed
are then reported in Tab. 4.1 for both illustrative examples.

4.3 The stability constant

A central feature of the certified reduced basis method is its ability to rigorously bound the error
associated with the model reduction. However, as already discussed in Section 4.2.3, this step
requires the computation of the (discrete) residual and an estimation of a lower bound for the
stability parameter, e.g., the coercivity or inf-sup constant. Since this must be done during the
online phase, the computation of the stability constant must be accomplished with a computational
complexity that is independent of the dimension of the underlying truth approximation space,
Nδ = dim(Vδ), to obtain a rigorous error certification in an efficient way. Accomplishing this is
a central element of the entire approach and we shall discuss different strategies for this in the
following

Let us start by recalling that the definition of the (discrete) coercivity constant is given by

αδ(µ) = inf
vδ∈Vδ

a(vδ, vδ;µ)

‖vδ‖2V
.

The coercivity constant αδ(µ) is thus defined as the smallest eigenvalue of a generalized eigenvalue-
problem: Find (λ,wδ) ∈ R+ × Vδ such that

a(wδ, vδ;µ) = λ(wδ, vδ)V, ∀vδ ∈ Vδ. (4.24)

We recall that if a Galerkin approximation is used for approximating a coercive problem, the
underlying solution matrix Aµ

δ is symmetric positive definite.
In the following, we discuss three approaches of increasing generality and complexity for the com-

putation of lower bounds for the coercivity constant αδ(µ). The simplest one, the Min-θ-approach,
applies only to a restricted family of problems: so called parametrically coercive problems. Still
within this family of problems, the Min-θ-approach can be refined to provide sharper lower bounds,
leading to the multi-parameter Min-θ-approach. Finally, the general coercive case is handled by
the Successive Constraint Method (SCM), which can be generalized to non-symmetric, possibly
complex, matrices although this is not discussed in this text. We refer to [25, 26, 27, 58, 61] for
further reading on the extension to general saddle-point problems.
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Linear algebra box: The computation of the coercivity constant

Equation (4.24) can be stated on matrix form as: find (λ,wδ) ∈ R+ × RNδ such that

Aµ
δ wδ = λMδ wδ

where (Aµ
δ )ij = a(ϕj , ϕi;µ), (Mδ)ij = (ϕj , ϕi)V and wδ ∈ RNδ is the representation vector of the

eigenfunctions wδ in terms of the basis {ϕi}Nδi=1 of Vδ.

4.3.1 Min-θ-approach

We first recall the affine decomposition

a(u, v;µ) =

Qa∑
q=1

θqa(µ) aq(u, v).

Parametrically coercive problems are then characterized by

1. θqa(µ) > 0, ∀µ ∈ P, q = 1, . . . , Qa,

2. aq( · , · ) : Vδ × Vδ → R is semi-positive definite for all q = 1, . . . , Qa,

i.e., the bilinear form is a convex combination of semi-positive bilinear forms. Under this assumption
and further assuming that the stability αδ(µ

′) has been computed for a single parameter value
µ′ ∈ P, we observe the following identity

αδ(µ) = inf
vδ∈Vδ

a(vδ, vδ;µ)

‖vδ‖2Vδ
= inf
vδ∈Vδ

Qa∑
q=1

θqa(µ)
aq(vδ, vδ)

‖vδ‖2V
= inf
vδ∈Vδ

Qa∑
q=1

θqa(µ)

θqa(µ′)
θqa(µ′)

aq(vδ, vδ)

‖vδ‖2V
.

sWe can derive a lower bound by

αδ(µ) ≥ inf
vδ∈Vδ

min
q=1,...,Qa

θqa(µ)

θqa(µ′)

Qa∑
q=1

θqa(µ′)
aq(vδ, vδ)

‖vδ‖2V

= min
q=1,...,Qa

θqa(µ)

θqa(µ′)
inf
vδ∈Vδ

Qa∑
q=1

θqa(µ′)
aq(vδ, vδ)

‖vδ‖2V︸ ︷︷ ︸
=αδ(µ′)

= αδ(µ
′) min
q=1,...,Qa

θqa(µ)

θqa(µ′)
=: αLB(µ).

While this approach provides a positive lower bound αLB(µ) for αδ(µ) it is generally not a sharp
bound, possibly resulting in error bounds that are overly conservative. Note also that this lower
bound provides the exact coercivity constant if applied at µ = µ′.

4.3.2 Multi-parameter Min-θ-approach

Remaining in the framework of parametrically coercive problems, the previous approach can be
refined by defining a set of M parameter values µ1, . . . , µM for which the stability constant αδ(µm)
is computed from the lowest eigenvalue of (4.24). This is done during the offline phase.
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During the online procedure, a lower bound for αδ(µ) for any µ ∈ P is needed. Following the
same approach as for the Min-θ-approach for each µm, we observe

αδ(µm) min
q=1,...,Qa

θqa(µ)

θqa(µm)

is a guaranteed lower bound for all m = 1, . . . ,M . Thus

αLB(µ) = max
m=1,...,M

(
αδ(µm) min

q=1,...,Qa

θqa(µ)

θqa(µm)

)
is the sharpest of the lower bounds of αδ(µ) among all candidates. While it is a more accurate
approach, it also requires more eigenvalue problems to be solved. Furthermore, this approach re-
mains restricted to parametrically coercive problems. Note also that this lower bound interpolates
the exact coercivity constant at the sample points µ = µm.

4.3.3 Illustrative Example 1: Heat Conduction part 4

Let us illustrate the multi-parameter Min-θ-approach in the case of the Illustrative Example 1: Heat
Conduction. We recall that the affine decomposition holds for Qa = 2 with θ1

a(µ) = 1, θ2
a(µ) = µ[1]

and

a1(w, v) =

∫
Ω1

∇w · ∇v, a2(w, v) =

∫
Ω0

∇w · ∇v.

We therefore recognize that this problem is parametrically coercive and the multi-parameter Min-
θ-approach is applicable.

We construct one Min-θ lower bound based on µ′ = 1 given by

αθLB(µ) = αδ(µ
′) min
q=1,...,Qa

θqa(µ)

θqa(µ′)
= αδ(µ

′) min(1, µ),

and a multi-parameter Min-θ lower bound based on the sample points

(µ1, . . . , µ5) = (10−1, 10−1/2, 1, 101/2, 10)

as

αθ,MPLB (µ) = max
m=1,...,M

(
αδ(µm) min

q=1,...,Qa

θqa(µ)

θqa(µm)

)
= max
m=1,...,5

(
αδ(µm) min

(
1,

µ

µm

))
.

The results of these lower bounds as well as the value of the coercivity constant itself are illustrated
in Figure 4.1. We note in particular that the exact discrete coercivity constant is recovered by the
lower bounds at the sample points.

4.3.4 The Successive Constraint Method (SCM)

To address the challenges associated with the need to estimate αLB(µ) for more general problems,
[67] proposed a local minimization approach, known as the successive constraint method (SCM). As
for the multi-parameter Min-θ-approach, the SCM is an offline/online procedure where generalized
eigenvalue problems of size Nδ need to be solved during the offline phase. The online part is then
reduced to provide a lower bound αLB(µ) of the coercivity constant αδ(µ) for each new parameter
value µ ∈ P with an operation count that is independent of the dimension Nδ. The original algo-
rithm [67] was subsequently refined, extended to non-coercive problems and generalized to complex
matrices in [25, 26, 27, 58, 61].
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Fig. 4.1: Illustration of the Min-θ and the multi-parameter Min-θ-approach for the Illustrative
Example 1.

Offline procedure of SCM

We recall that the coercivity constant can be written as

αδ(µ) = inf
vδ∈Vδ

Qa∑
q=1

θqa(µ)
aq(vδ, vδ)

‖vδ‖2V
, (4.25)

using the affine decomposition. The key idea of the SCM is to express the right hand side of (4.25)
as a minimization problem of the functional

S : P× RQa −→ R

(µ, y) 7−→ S(µ, y) =

Qa∑
q=1

θqa(µ) yq

over the set of admissible solutions

Y =

{
y = (y1, . . . , yQa

) ∈ RQa

∣∣∣∣ ∃ vδ ∈ Vδ s.t. yq =
aq(vδ, vδ)

‖vδ‖2V
, 1 ≤ q ≤ Qa

}
.

Then, we can equivalently write
αδ(µ) = min

y∈Y
S(µ, y)

and a lower and upper bound can be found by enlarging or restricting the admissible set of solution
vectors y. This is done by introducing YUB ⊂ Y ⊂ YLB and defining

αLB(µ) = min
y∈YLB

S(µ, y), and αUB(µ) = min
y∈YUB

S(µ, y).

The remaining question is how to efficiently design the spaces YUB and YLB to ensure that any
target accuracy for the error quantity
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1− αLB(µ)

αUB(µ)
,

can be achieved.
Denote by Pa the restriction of P to the set of actively varying parameters of the bilinear form

a( · , · ; · ). The offline part of the SCM is based on an greedy approach where the n-th iteration of
the offline procedure is initiated by assuming that

1. We know the coercivity constants αδ(µj), 1 ≤ j ≤ n, for some parameter values Cn =
{µ1, . . . , µn} ⊂ Pa.

2. Let Ξa ⊂ Pa be a representative finite point-set discretization of Pa. For each µ ∈ Ξa, we have
some lower bound αn−1

LB (µ) ≥ 0 of αδ(µ) from the previous iteration. For n = 1, set α0
LB(µ) = 0

for all µ ∈ Ξa.

The eigensolutions (αδ(µj), w
j
δ) ∈ R+ × Vδ are solutions to the generalized eigenvalue problem

a(wjδ , vδ;µj) = αδ(µj)(w
j
δ , vδ)V, ∀vδ ∈ Vδ, (4.26)

where αδ(µj) is the smallest eigenvalues for each j and wjδ the corresponding eigenfunction. The

collection of eigenfunctions {wjδ}nj=1 provide the corresponding vectors {yj}nj=1 by

(yj)q =
aq(w

j
δ , w

j
δ)

‖wjδ‖2V
, 1 ≤ q ≤ Qa, 1 ≤ j ≤ n,

where (yj)q denotes the q-th coefficient of yj ∈ RQa . We set

Yn
UB =

{
yj
∣∣ 1 ≤ j ≤ n} ,

which is clearly a subset of Y . For Yn
UB we therefore use this finite set of precomputed vectors yj .

Indeed, computing αnUB(µ) = miny∈YnUB S(µ,y) consists of forming the functional

S(µ, yj) =

Qa∑
q=1

θqa(µ) (yj)q

for the different vectors yj and then choosing the smallest value of the functional. This is clearly
independent of Nδ once the vectors yj have been built.

For YLB we define first a rectangular box B =
∏Qa

q=1[σ−q , σ
+
q ] ⊂ RQa containing Y by setting

σ−q = inf
vδ∈Vδ

aq(vδ, vδ)

‖vδ‖2V
and σ+

q = sup
vδ∈Vδ

aq(vδ, vδ)

‖vδ‖2V
.

This corresponds to computing the smallest and the largest eigenvalues of a generalized eigenvalue
problem for each aq( · , · ) and can be computed once at the beginning of the SCM algorithm. To
ensure that the set YLB is as small as possible while containing Y , we impose some additional
restrictions, which result in sharper lower bounds. These constraints depend on the value of the
actual parameter µ and we distinguish between two types:

1. Constraints based on the exact eigenvalues for some close parameter values among the set Cn.
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Algorithm: Offline-procedure of the SCM

Input: An error tolerance Tol, some initial set C1 = {µ1} and n = 1

Output: The sample points CN = {µ1, . . . , µN}, the corresponding coercivity constants αδ(µn)
and vectors yn, n = 1, . . . , N , as well as the lower bounds αNLB(µ) for all µ ∈ Ξa.

1. For each µ ∈ Ξa:
a. Compute the upper bound αnUB(µ) = miny∈YnUB S(µ, y).

b. Compute the lower bound αnLB(µ) = miny∈YnLB(µ) S(µ, y).

c. Define the error estimate η(µ;Cn) = 1− αnLB(µ)

αnUB(µ)
.

2. Select µn+1 = argmaxµ∈Pη(µ;Cn) and set Cn+1 = Cn ∪ {µn+1}.

3. If maxµ∈P η(µ;Cn) ≤ Tol, terminate.

4. Solve the generalized eigenvalue problem (4.26) associated with µn+1, store αδ(µn+1), yn+1.

5. Set n := n+ 1 and goto 1.

2. Constraints based on the previous lower bounds αn−1
LB for some neighbor parameter values.

Observe that, in contrast to YUB, the space YLB will change with variation of the parameter µ as
the constraints change with µ, reflected by the notation YLB(µ) in the following.

Next, we introduce the function that provides close parameter values

PM (µ;E) =

{
M closest points to µ in E if card(E) > M,
E if card(E) ≤M,

for either E = Cn or E = Ξa. For some Me and Mp, we define

Yn
LB(µ) =

{
y ∈ B

∣∣∣ S(µ′, y) ≥ αδ(µ′), ∀µ′ ∈ PMe
(µ;Cn),

S(µ′, y) ≥ αn−1
LB (µ′), ∀µ′ ∈ PMp

(µ;Ξa\Cn)
}
.

It can be shown that Yn
UB ⊂ Y ⊂ Yn

LB(µ) (see [67] for the proof). Consequently, Yn
UB, Y and Yn

LB(µ)
are nested as

Y1
UB ⊂ Y2

UB ⊂ . . . ⊂ Yn
UB ⊂ . . . ⊂ Y ⊂ . . . ⊂ Yn

LB(µ) ⊂ . . . ⊂ Y2
LB(µ) ⊂ Y1

LB(µ).

Note that finding αnLB(µ) = miny∈YnLB(µ) S(µ,y) corresponds to a linear programming problem of Qa

design variables and 2Qa +Me +Mp conditions. The complexity of the linear programming problem
is thus independent of Nδ.

Having defined the two sets Yn
LB(µ) and Yn

UB, we can define a greedy selection to enrich the space
Cn and build Cn+1 at all stages of n. The algorithm is outlined in the algorithm box Offline-procedure
of the SCM.

Online procedure of SCM

Once the offline-procedure is completed, we denote Yn
LB(µ) by YLB(µ) and Yn

UB by YUB.
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For an arbitrary parameter value µ ∈ P, we can compute a lower bound αLB(µ) by only retaining
the information about αδ(µ) for all µ ∈ Cn and αLB(µ) for all µ ∈ Ξa: For any new µ ∈ P, find the
solution of

αLB(µ) = min
y∈YLB(µ)

S(µ, y),

which consists again of a linear program with Qa design variables and 2Qa +Me +Mp constraints.
Note that we now consider, during the online stage, any parameter µ ∈ P not necessarily contained
in Ξa. This implies that we must add the additional constraint that S(µ, y) ≥ 0. Further, note

that 1 − αLB(µ)
αUB(µ) still provides an indicator of the sharpness of the bounds that can be evaluated a

posteriori.

Numerical results

We refer to Sections 6.3.1 and 6.5 in Chapter 6 where we employ the SCM with complete numerical
examples. Within these examples, we illustrate the convergence of the SCM-greedy algorithm with
respect to the number of solved eigenvalue problems.

4.3.5 A comparitive discussion

In this section we compare the lower bounds obtained by the Min-θ-approach and the multi-
parameter Min-θ-approach with the ones obtained by the SCM in the parametrically coercive case.
We assume throughout this section that the problem is parametrically coercive.

For a given µ ∈ Pa, denote by q̂ the (or an) index such that

θq̂a(µ)

θq̂a(µ′)
= min
q=1,...,Qa

θqa(µ)

θqa(µ′)
,

and observe that the lower bound provided by the Min-θ-approach is provided by

αθLB(µ) = αδ(µ
′)
θq̂a(µ)

θq̂a(µ′)
.

On the other hand, consider the SCM with C1 = {µ′}, Mp = 0 and denote the corresponding
minimization space used for the lower bound as

Yµ′

LB(µ) =
{

y ∈ B
∣∣∣ S(µ′, y) ≥ αδ(µ′)

}
.

Then, the following lemma holds.

Lemma 4.6. For parametrically coercive problems, consider the Min-θ-approach based upon the

computation of αδ(µ
′) and the lower bound of the SCM based upon Yµ′

LB(µ). Then, the Min-θ lower
bound αθLB(µ) is at most as sharp as the lower bound provided by this SCM, i.e.,

min
y∈Yµ

′
LB (µ)

S(µ, y) ≥ αθLB(µ).
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Proof. For any y ∈ Yµ′

LB(µ) it holds that

S(µ′, y) ≥ αδ(µ′).

Multiplying by
θq̂a (µ)

θq̂a (µ′)
yields

θq̂a(µ)

θq̂a(µ′)
S(µ′, y) ≥ αθLB(µ).

Additionally we obtain

S(µ′, y) =

Qa∑
q=1

θqa(µ)
θqa(µ′)

θqa(µ)
yq ≤ max

q=1,...,Qa

θqa(µ′)

θqa(µ)

Qa∑
q=1

θqa(µ) yq = max
q=1,...,Qa

θqa(µ′)

θqa(µ)
S(µ, y).

Now, since

max
q=1,...,Qa

θqa(µ′)

θqa(µ)
=

1

minq=1,...,Qa

θqa (µ)
θqa (µ′)

=
θq̂a(µ′)

θq̂a(µ)
,

the result follows. ut

Proposition 4.7. For parametrically coercive problems, consider the Min-θ-approach based upon
the computation of αδ(µ

′) and the SCM assuming that µ′ ∈ Cn. Then, the Min-θ lower bound is at
most as sharp as the lower bound provided by the SCM based upon Cn and any Mp ≥ 0, i.e.,

αSCM
LB (µ) ≥ αθLB(µ).

Proof. It is easy to see that YLB(µ) ⊂ Yµ′

LB(µ) as long as µ′ ∈ Cn, which is assumed here, and
therefore

αSCM
LB (µ) = min

y∈YLB(µ)
S(µ, y) ≥ min

y∈Yµ
′

LB (µ)

S(µ, y) ≥ αθLB(µ),

by Lemma 4.6. ut

We turn now our attention to the comparison with the multi-parameter Min-θ-approach. For a
given µ ∈ Pa, let q̂ and µ′ denote an index and snapshot parameter on which the multi-parameter
Min-θ-approach lower bound is based, i.e.,

αθ,mpLB (µ) = αδ(µ
′)
θq̂a(µ)

θq̂a(µ′)
= max
m=1,...,M

(
αδ(µm) min

q=1,...,Qa

θqa(µ)

θqa(µm)

)
.

Denote µ = {µ1, . . . , µM} and define

YµLB(µ) =
{

y ∈ B
∣∣∣ S(µm, y) ≥ αδ(µm), ∀ 1 ≤ m ≤M

}
.

Then, the following statement holds.

Lemma 4.8. For parametrically coercive problems, consider the multi-parameter Min-θ-approach
based upon the computation of αδ(µ1), . . . , αδ(µM ) and the SCM based upon YµLB(µ). Then, the

multi-parameter Min-θ lower bound αθ,mpLB (µ) is at most as sharp as the lower bound provided by this
SCM, i.e.,

min
y∈Yµ

LB(µ)
S(µ, y) ≥ αθ,mpLB (µ).
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Proof. For any y ∈ YµLB(µ) it holds that

S(µ′, y) ≥ αδ(µ′).

Multiplying by
θq̂a (µ)

θq̂a (µ′)
yields

θq̂a(µ)

θq̂a(µ′)
S(µ′, y) ≥ αθ,mpLB (µ).

Additionally we easily obtain, as in the proof of Lemma 4.6,

S(µ′, y) =

Qa∑
q=1

θqa(µ)
θqa(µ′)

θqa(µ)
yq ≤ max

m=1,...,M
max

q=1,...,Qa

θqa(µm)

θqa(µ)
S(µ, y).

Now, since

max
m=1,...,M

max
q=1,...,Qa

θqa(µ′)

θqa(µ)
=

1

minm=1,...,M minq=1,...,Qa

θqa (µ)
θqa (µ′)

=
θq̂a(µ′)

θq̂a(µ)
,

the result follows. ut

Finally we conclude with the following result.

Proposition 4.9. For parametrically coercive problems, consider the multi-parameter Min-θ-approach
based upon the computation of αδ(µ1), . . . , αδ(µM ) and the SCM assuming that µm ∈ Cn for all
1 ≤ m ≤M . Then, the multi-parameter Min-θ lower bound is at most as sharp as the lower bound
provided by the SCM based upon Cn and any Mp > 0, i.e.,

αSCM
LB (µ) ≥ αθLB(µ).

Proof. It is easy to see that YLB(µ) ⊂ YµLB(µ) as long as µm ∈ Cn for all 1 ≤ m ≤ M , which is
assumed here, and therefore

αSCM
LB (µ) = min

y∈YLB(µ)
S(µ, y) ≥ min

y∈Yµ
′

LB (µ)

S(µ, y) ≥ αθLB(µ),

by Lemma 4.8. ut

We end this comparative discussion by noting that the parameter values for which the coercivity
constant is computed is automatically detected in the case of the SCM, while needs to be specified
a priori by the user in the case of the (multi-parameter) Min-θ-approach.
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The Empirical Interpolation Method

5.1 Motivation and historical overview

As discussed previously, the computational efficiency of the reduced basis method relies strongly
on the affine assumption , i.e., we generally assume that

a(w, v;µ) =

Qa∑
q=1

θqa(µ) aq(w, v), ∀w, v ∈ V, ∀µ ∈ P, (5.1)

and similarly for the righthand side and the output of interest. Unfortunately, this assumption
fails for the majority of problems one would like to consider and it is essential to look for ways to
overcome this assumption by approximating the non-affine elements in a suitable way.

This is the key motivation behind the development of the Empirical Interpolation Method (EIM)
which seeks to approximate a general parametrized function by a sum of affine terms, i.e., on the
form

f(x, y) ≈
Q∑
q=1

gq(x)hq(y).

Such a decomposition often allows to establish an affine decomposition of the form (5.1). As we
shall discuss later, this is a powerful idea that allows for substantial extensions of the applicability
of reduced basis methods, including to nonlinear problems.

The central idea of EIM was presented first in [7] and applied in the context of reduced order
modeling in [51]. In [101] a broader set of applications of the EIM approach is discussed and an
a posteriori error analysis is presented in [51, 38, 23]. Extensions to hp-adpative EIM is discussed
[41] with an additional emphasis on high-dimensional parameter spaces being discussed in [59]. In
[19, 20], the authors introduce the discrete EIM (DEIM) as a special case of EIM. In this approach,
the function is given in terms of a finite set of vectors to allow for a simple way to build reduced
order models for nonlinear problems. A theoretical analysis of EIM is offered in [101] and a more
general family of EIM was recently introduced in [98, 100]. An overview illustrating the connection
with other low rank approximation techniques can be found in [9].
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5.2 The Empirical Interpolation Method

In a general setting, EIM is designed to approximate functions g : Ω × PEIM → R in situations
where each function gµ := g( · , µ), µ ∈ PEIM, belongs to some Banach space XΩ and PEIM denotes the
corresponding parameter space. The approximation is obtained through an interpolation operator Iq
that interpolates the function g( · , µ) at some particular interpolation points x1, . . . , xQ ∈ Ω as
a linear combination of some carefully chosen basis functions {h1, . . . , hQ}. These basis functions
do not consist of multi-purpose basis functions such as polynomials or trigonometric functions but
belong to the particular family {gµ}µ∈PEIM related to the problem being considered. They are built
empirically by means of linear combinations of Q snapshots gµ1

, . . . , gµQ where the sample points
µ1, . . . , µQ ∈ PEIM are chosen using a greedy approach.

Since an interpolation process requires point-wise evaluations of the functions we assume that
each function gµ belongs to C0(Ω), thus C0(Ω) ⊂ XΩ . The interpolant IQ[gµ] of gµ with µ ∈ PEIM
is expressed as

IQ[gµ](x) =

Q∑
q=1

aq(µ)hq(x), x ∈ Ω, (5.2)

and defined by the interpolation statement

IQ[gµ](xj) = gµ(xj), j = 1, . . . , Q. (5.3)

The interpolation is recovered by solving the following linear system

Q∑
q=1

aq(µ)hj(xj) = gµ(xj), j = 1, . . . , Q,

expressed as T aµ = gµ with Q unknowns and

Tij = hj(xi), (aµ)j = aj(µ), (gµ)i = gµ(xi), i, j = 1, . . . , Q. (5.4)

The remaining question is how to determine the basis functions {h1, . . . , hQ} and the interpola-
tion points x1, . . . , xQ and ensure that the system is uniquely solvable, i.e., that the interpolation
matrix Tij = hj(xi) is invertible.

As already mentioned, the basis functions are chosen as linear combinations of some selected
snapshots gµ1

, . . . , gµq . In this manner, one does not rely on the smoothness of g with respect to
x (in contrast to polynomial approximations) but on the fact that each function gµ can be well
approximated by similar functions gµ1, . . . , gµQ. This is related to the fact that the manifold

MEIM = {gµ |µ ∈ PEIM}

has small Kolmogorov N-width (3.5).
The construction of the basis functions and the interpolation points is based on a greedy algo-

rithm in which we add the particular function gµ that is least well approximated by the current
interpolation operator. In a similar fashion, the interpolation point is chosen as the point in space
where the corresponding error function is maximized.

Note that EIM is defined with respect to a given norm on Ω given by XΩ and we generally
consider Lp(Ω)-norms for 1 ≤ p ≤ ∞. The greedy EIM algorithm is outlined in the algorithm box
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Algorithm: Empirical Interpolation Method

Input: A family of functions gµ : Ω → R, parametrized by a parameter µ ∈ PEIM and a target
error tolerance tol.

Output: A set of Q basis functions {hq}Qq=1 and interpolation points {xq}Qq=1.

Set q = 1. Do while err < tol:

1. Pick the sample point
µq = arg sup

µ∈PEIM

∥∥gµ − Iq−1[gµ]
∥∥
XΩ
,

and the corresponding interpolation point

xq = arg sup
x∈Ω

∣∣gµq (x)− Iq−1[gµq ](x)
∣∣. (5.5)

2. Define the next basis function as the scaled error function

hq =
gµq − Iq−1[gµq ]

gµq (xq)− Iq−1[gµq ](xq)
. (5.6)

3. Define the error

err =
∥∥errp∥∥L∞(PEIM)

with errp(µ) =
∥∥gµ − Iq−1[gµ]

∥∥
XΩ
,

and set q := q + 1.

Empirical Interpolation Method. The output is a Q-term approximation. We note that the basis
functions {h1, . . . , hQ} and the snapshots {gµ1

, . . . , gµQ} span the same space by construction, i.e.,

VQ = span{h1, . . . , hQ} = span{gµ1 , . . . , gµQ}.

However, the former basis functions are preferred to the latter due to the properties

Tii = hi(xi) = 1, 1 ≤ i ≤ Q and Tij = hj(xi) = 0, 1 ≤ i < j ≤ Q.

This construction of the basis functions and interpolation points satisfies the following properties
[7]:

• The basis functions {h1, . . . , hq} are linearly independent;
• The interpolation matrix Tij is lower triangular with unity diagonal and hence invertible;
• The empirical interpolation procedure is well-posed in XΩ as long as convergence is not achieved.

Further, one easily shows that the interpolation operator IQ is the identity if restricted to the space
VQ, i.e., there holds

IQ[gµi ](x) = gµi(x), i = 1, . . . , q, ∀x ∈ Ω,

and
IQ[gµ](xi) = gµ(xi), i = 1, . . . , q, ∀µ ∈ PEIM,

by the interpolation property.
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Remark 5.1. As explained in [101], this algorithm can be applied to the selection of the interpolation
points only, in the case where the family of interpolating functions is predefined. This can be the
case if a canonical basis and ordering like the set of polynomials is selected beforehand. In this
case, the algorithm selects reasonable interpolation points on arbitrary domains Ω. The sequence of
sets of generated interpolations points for different numbers of basis functions is hierarchical. Note
that the construction of good interpolation points on arbitrary non-tensorized domains is far from
trivial. The proposed procedure can provide good, but not optimal, points in such a case, c.f. [101].

If the L∞(Ω)-norm is considered, the error analysis of the interpolation procedure involves the
Lebesgue constant Λq = supx∈Ω

∑q
i=1 |Li(x)| where Li ∈ Vq are the Lagrange functions satisfying

Li(xj) = δij . In this case, the following bound holds [7]∥∥gµ − Iq[gµ]
∥∥
L∞(Ω)

≤ (1 + Λq) inf
vq∈Vq

∥∥gµ − vq∥∥L∞(Ω)
.

Although in practice a very conservative bound, an upper bound of the Lebesque constant is given
by

Λq ≤ 2q − 1,

see [101]. Further, assume that MEIM ⊂ XΩ ⊂ L∞(Ω) and that there exists a sequence of finite
dimensional spaces

Z1 ⊂ Z2 ⊂ . . . , dim(Zq) = q, and Zq ⊂MEIM, ∀q,

such that there exists c > 0 and α > log(4) with

inf
vq∈Zq

∥∥gµ − vq∥∥XΩ ≤ ce−αq, µ ∈ PEIM.

Then the upper bound on the Lebesque constant yields the estimate∥∥gµ − Iq[gµ]
∥∥
L∞(Ω)

≤ ce−(α−log(4)) q.

Remark 5.2. The worst-case scenario in which the Lebesgue constant scales like Λq ≤ 2q − 1 is
rather artificial. In implementations involving functions belonging to some reasonable set with a
small Kolmogorov N -width, one observes a growth of the Lebesgue constant that is much more
reasonable. In many cases a linear growth is observed, similar to what is observed for classic inter-
polation estimates where the growth is typically bounded by the logarithm of the cardinality of the
interpolation points. The generation of interpolation points can be seen as a generalization of Leja
points for arbitrary basis functions, see [9].

Remark 5.3. Recovering an affine decomposition (5.2) is closely related to the identification of a low
rank approximation of a bivariate function f(x, y) of the form

f(x, y) ≈
Q∑
q=1

gq(x)hq(y).

The similarities between EIM and the Adaptive Cross Approximation (ACA) are discussed in detail
in [9].
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Remark 5.4. A generalization of the EIM, known as Generalized Empirical Interpolation Method
(GEIM) [98, 100], consists in replacing the point-wise interpolation (5.3) by the statement

σj(IQ[gµ]) = σj(gµ), j = 1, . . . , Q,

where the σj are well-chosen functionals among a set Σ of functionals. The particular case of
σj = δxj (δxj denoting Dirac’s delta-function) recovers the EIM. In the general case, the set Σ can
consist of functionals requiring less regularity on the function gµ than continuity, e.g., L2-regularity.
The functionals can consist of local averages or convolutions with Gaussian’s, to mention a few
examples.

The algorithm presented in the linear algebra box Empirical Interpolation Method can easily be
adapted to this case by replacing (5.5) by

σq = arg sup
σ∈Σ

∣∣σ(gµq )− σ(Iq−1[gµq ])
∣∣,

and (5.6) by

hq =
gµq − Iq−1[gµq ]

σq(gµq )− σq(Iq−1[gµq ])
.

An elaborate convergence analysis of GEIM can be found in [99].

5.3 EIM in the context of the RBM

As already mentioned, there are several scenarios in which EIM becomes an essential component of
the reduced basis method paradigm to ensure computational efficiency. Most of these are related
to ensure an affine decomposition of the form (5.1) or the associated problem with force or output
functionals, or in the more general case to deal with nonlinear problems. In the following we discuss
in more detail how EIM can be used to address these challenges.

5.3.1 Non-affine parametric coefficients

In this first and still abstract example, we assume, as an example, that the bilinear form has the
following form

a(w, v;µ) =

∫
Ω

g(x;µ) b(w, v;x) dx,

where b(w, v;x) is bilinear in w and v for any x ∈ Ω but the coefficient function g has a non-trivial
dependency on µ. If there is no known affine decomposition of the type

g(x;µ) =

Qa∑
q=1

aq(µ)hq(x), µ ∈ P, x ∈ Ω,

one can apply EIM to recover an approximate affine decomposition

g(x;µ) ≈
Qa∑
q=1

aq(µ)hq(x), µ ∈ P, x ∈ Ω,
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Linear algebra box: Empirical Interpolation Method

Given a discrete representation of the spaces Ω and PEIM by Ωh = {x1, . . . , xM} and PhEIM = {µ1, . . . , µN}
which are M - resp. N -dimensional point-sets of Ω and PEIM. Consider the representative matrix of g
defined by

Gij = g(xi, µj), 1 ≤ i ≤M, 1 ≤ j ≤ N.
For the sake of notation we apply the notation A:j to express the j-th column of any matrix A.
Assume that we are given a set of basis vectors HQ = [h1, . . . , hQ] and interpolation indices i1, . . . , iQ.
The discrete interpolation operator IQ : RQ → RM of some column vector g ∈ RQ is given as the span
of the basis vectors {hq}Qq=1 through IQ[g] = HQ a(g) for the vector a(g) such that T a(g) = g with

Tkq = (HQ)ikq, k, q = 1, . . . , Q.

Then, EIM can be expressed as:
Set q = 1. Do while err < tol

1. Pick the sample index
jq = arg max

j=1,...,M

∥∥G:j − Iq−1[G:j ]
∥∥
`p
,

and the corresponding interpolation index

iq = arg max
i=1,...,N

∣∣Gijq − (Iq−1[G:jq ])i
∣∣.

2. Define the next approximation column by

hq =
G:jq − Iq−1[G:jq ]

Giqjq − (Iq−1[G:jq ])iq
.

3. Define the error level by
err = max

j=1,...,M

∥∥G:j − Iq−1[G:j ]
∥∥
`p

and set q := q + 1.

This procedure allows the definition of an approximation of any coefficient of the matrix G. In some
cases, however, one would seek to obtain an approximation of g(x, µ) for any (x, µ) ∈ Ω × PEIM. This is
possible as the interpolation points are provided by xi1 , . . . , xiQ . The construction of the (continuous)
basis functions hq is subsequently based on mimicking part 2. in a continuous context. During the
discrete version outlined above, one saves the following data

S:q = a(G:jq )
, from Iq−1[G:jq ] = Hq−1 a(G:jq )

,

Sqq = Giqjq − (Iq−1[G:jq ])iq .

Then, the continuous basis functions can be recovered by the recursive formula

hq =
g( · , µiq )−

∑q−1
j=1 Sjq hj

Sqq
.

and therefore



5.3 EIM in the context of the RBM 57

Ω1

Ω0(µ) Ω0

r0

µ[3]

Fig. 5.1: The geometrical set-up for the extended illustrative Example 1.

a(w, v;µ) ≈
Qa∑
q=1

aq(µ) aq(w, v) =

Qa∑
q=1

aq(µ)

∫
Ω

hq(x) b(w, v;x) dx.

This technique can be applied in an entirely similar manner to obtain approximate affine decom-
positions of the right hand side f(v;µ) or output functionals, as needed.

5.3.2 Illustrative Example 1: Heat Conduction part 5

Let us now illustrate how the Illustrative Example 1: Heat Conduction can be extended to account
for a geometric parametrization and ensure that the affine decomposition holds by the tools provided
by EIM.

Assume that the geometric configuration of the inclusion Ω0 is parametrized. We still assume
that the inclusion Ω0 is a disk centered at the origin but it has a variable radius µ[3] ∈ [rmin, rmax].
We denote the disk as Ω0(µ) and the geometrical set-up is shown in Figure 5.1. Furthermore, let
us introduce the reference radius r0 = 0.5 - the one introduced in Section 2.3.1. Then Ω0 = Ω(µ)
for any µ such that µ[3] = r0. In addition to the existing diffusion parameter µ[1] = κ0 and the flux
intensity µ[2] we now have introduced a geometric parameter µ[3]. We therefore have that P = 3
and we denote the vector of parameters as µ = (µ[1], µ[2], µ[3]).

The thermal conductivity, as a function acting on x ∈ Ω, is defined by

κµ = 1 + (µ[1] − 1) 1Ω0(µ),

where 1Ω0(µ) denotes the characteristic function of the parametrized inclusion Ω0(µ).
In terms of approximability of both the induced solution manifold Mδ and G = {κµ | ∀µ ∈ P},

it would not be a good idea to apply EIM directly to the family of functions κµ. The resulting
approximation space would not be low dimensional as one would expect errors of order one if
approximating the characteristic function 1Ω0(µ) by linear combinations of characteristic functions
based on some different sample radii.
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However, a reformulation of the problem can result in an approach with a low dimensional
approximation space and, thus, a reduced computational cost.

For each r ∈ [rmin, rmax], we introduce a continuous transformation (more precisely a homeo-
morphism) Tr : Ω → Ω such that Tr|∂Ω = Id and |Tr(x̂)| = r for all x̂ ∈ Ω such that |x̂| = r0

and thus Im(Tr|Ω0
) = Ω0(µ). More precisely, we can realize this by defining r−, r+ such that

0 < r− < rmin < rmax < r+ < 1 and Tr(x̂) = ϕr(|x̂|) x̂ for all x̂ ∈ Ω where

ϕr(|x̂|) =


1 if 0 ≤ |x̂| < r−

1
r0(r0−r−) [r0(r0 − |x̂|) + r(|x̂| − r−)] if r− ≤ |x̂| < r0

1
r0(r0−r+) [r0(r0 − |x̂|) + r(|x̂| − r+)] if r0 ≤ |x̂| < r+

1 if r+ ≤ |x̂|

.

Recall that the illustrative example can be expressed as: for any µ ∈ P, find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ V, (5.7)

where

a(w, v;µ) =

∫
Ω

κµ∇w · ∇v, and f(v;µ) = µ[2]

∫
Γbase

v.

By substitution we observe that

a(w, v;µ) =

∫
Ω

κµ(Tµ[3]
(x̂))

(
(Ĵµ[3]

(x̂))−1∇ŵ(x̂)
)
·
(

(Ĵµ[3]
(x̂))−1∇v̂(x̂)

) ∣∣∣det Ĵµ[3]
(x̂)
∣∣∣ dx̂,

f(v;µ) = µ[2]

∫
Γbase

v̂(x̂) dx̂,

where ŵ(x̂) = w(Tµ[3]
(x̂)), v̂(x̂) = v(Tµ[3]

(x̂)) and (Ĵµ[3]
(x̂))kl =

∂(Tµ[3] (x̂))l

∂x̂k
. In a similar manner,

define κ̂µ(x̂) = κµ(Tµ[3]
(x̂)) and observe that κ̂µ|Ω0

= µ[1] and κ̂µ|Ω1
= 1. Based on this, we define

new bilinear and linear forms â and f̂ as

â(ŵ, v̂;µ) =

∫
Ω1

∇ŵ(x̂) ·
(
Gµ[3]

(x̂)∇v̂(x̂)
)
dx̂+ µ[1]

∫
Ω0

∇ŵ(x̂) ·
(
Gµ[3]

(x̂)∇v̂(x̂)
)
dx̂,

f̂(v̂;µ) = µ[2]

∫
Γbase

v̂(x̂) dx̂,

with

Gµ[3]
(x̂) =

∣∣∣det Ĵµ[3]
(x̂)
∣∣∣ ((Ĵµ[3]

(x̂))−1
)T

(Ĵµ[3]
(x̂))−1.

By the regularity of the homeomorphic mapping Tr, (5.7) is equivalent to the statement: for any
µ ∈ P, find û(µ) ∈ V such that

â(û(µ), v̂;µ) = f̂(v̂;µ), ∀v̂ ∈ V.

While this resolves the problem of the affine dependency of κµ, we have introduced a new dependency

of the parameter in the bilinear form â through Ĵµ[3]
. Introducing the short notation ϕµ[3]

and ϕ′µ[3]

for ϕµ[3]
(|x̂|) and ϕ′µ[3]

(|x̂|), respectively, we can write
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Ĵµ[3]
(x̂) = ϕµ[3]

(
1 0
0 1

)
+
ϕ′µ[3]

|x̂|

(
x̂2

1 x̂1x̂2

x̂1x̂2 x̂2
2

)
,

so that

det Ĵµ[3]
(x̂) = ϕµ[3]

(
ϕµ[3]

+ |x̂|ϕ′µ[3]

)
.

Under some mild assumptions on rmin, rmax with respect to r−, r+ and r0, one can show that this
determinant is always positive. This allows us to express the inverse Jacobian as

Ĵ−1
µ[3]

(x̂) =
1

det Ĵµ[3]
(x̂)

[
ϕµ[3]

(
1 0
0 1

)
+
ϕ′µ[3]

|x̂|

(
x̂2

2 −x̂1x̂2

−x̂1x̂2 x̂2
1

)]

and, consequently, we obtain

Gµ[3]
(x̂) =

1

det Ĵµ[3]
(x̂)

[
ϕ2
µ[3]

(
1 0
0 1

)
+

(
ϕµ[3]

ϕ′µ[3]

|x̂|
+ (ϕ′µ[3]

)2

)(
x̂2

2 −x̂1x̂2

−x̂1x̂2 x̂2
1

)]
.

We can now apply the EIM to get an affine decomposition of the form

Gµ[3]
(x̂) ≈ IQ[Gµ[3]

](x̂) =

Q∑
q=1

αq(µ[3]) Hq(x̂)

for some basis functions H1, . . . ,HQ chosen by EIM.
The framework of EIM needs to be slightly adapted to the case where the function to be

interpolated is a vector function in RN×M . An interpolation point at the q-th iteration is specified
by a point x̂q ∈ Ω and indices (iq, jq) with 1 ≤ iq ≤ N and 1 ≤ jq ≤ M that are encoded in a
functional σq defined by

σq
(
Gµ[3]

)
= (Gµ[3]

)iqjq (x̂q).

The set of all such functionals shall be denoted by Λ. Given Q functionals σq ∈ Λ of this form
chosen by EIM, the coefficients αq can be recovered by solving the linear system

Q∑
q=1

αq(µ[3])σi(Hq) = σi
(
Gµ[3]

)
, ∀i = 1, . . . , Q.

An overview of the algorithm in this more general setting is given in the algorithm box Empirical
Interpolation Method for vector functions. Let us finally mention that an alternative would be to apply
a separate scalar EIM for each of the components independently. This has the drawback that linear
dependencies among different coefficients are not explored, resulting in an affine decomposition with
a larger number of terms.

In Figure 5.2 we present the solution, using r− = 0.1, r+ = 0.9 and r0 = 0.5 for the particular
parameter value µ[3] = r = 0.6. Figure 5.3 shows the convergence of the EIM for µ[3] = r ∈ [0.3, 0.7]
with respect to the number Q of basis functions. One can clearly see an exponential decay.
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Fig. 5.2: The three components of the symmetric Gµ[3]
for µ[3] = 0.6 with r0 = 0.5.

5.3.3 Illustrative Example 1: Heat Conduction part 6

Problem formulation

We illustrate the application of the EIM to a variety of further challenges: nonlinear problems. In
the context of the illustrative example 1, assume that Ω0 is again a fixed domain as presented in
Section 2.3.1, but that the problem is made more complex by adding a nonlinearity to the equation.
We consider the following nonlinear truth problem: for any µ ∈ P, find uδ(µ) ∈ Vδ such that(

∇uδ(µ),∇vδ
)
Ω1

+ µ[1]

(
∇uδ(µ),∇vδ

)
Ω0

+
(
g(uδ(µ)), vδ

)
Ω

= f(vδ;µ), ∀vδ ∈ Vδ, (5.8)

where g : R → R is a nonlinear function, (·, ·)Ω1
and (·, ·)Ω0

denote the L2-scalar products on Ω1

and Ω0 respectively. In this case, the reduced basis approximation reads: find urb ∈ Vrb such that(
∇urb(µ),∇vrb

)
Ω1

+ µ[1]

(
∇urb(µ),∇vrb

)
Ω0

+
(
g(urb(µ)), vrb

)
Ω

=
(
f, vrb

)
Ω
, ∀vrb ∈ Vrb. (5.9)

Unfortunately, this most immediate formulation will not be computationally efficient as the cost of
evaluating the solution depends on Nδ through the nonlinear term. Indeed, consider the associated
system of nonlinear equations obtained by testing (5.8) with any test-function ϕj ∈ Vδ: find uµδ ∈
RNδ such that
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Fig. 5.3: Convergence of the EIM with respect to the number Q of basis functions.

(A1
δ + µ[1]A

2
δ) uµδ + gδ(u

µ
δ ) = fδ, (5.10)

with gδ(u
µ
δ ) ∈ RNδ being defined component-wise by

(
gδ(u

µ
δ )
)
i

=
(
g(uδ(µ)), ϕi

)
Ω

and where A1
δ , A2

δ ,
fδ and uδ are defined following the standard notation used in here. The reduced basis counter-part
reads then: find uµrb ∈ RN such that

(A1
rb + µ[1]A

2
rb) uµrb + grb(u

µ
rb) = frb, (5.11)

with grb(u
µ
rb) ∈ RN defined component-wise by

(
grb(u

µ
rb)
)
n

=
(
g(urb(µ)), ξn

)
Ω

and where again

A1
rb, A2

rb, frb and urb are defined following the standard notation. It follows therefore that

grb(u
µ
rb) = BT gδ(Buµrb).

This assembly process clearly depends on Nδ as the matrix B ∈ RNδ×N is of dimension Nδ ×N .
In the following we will discuss two different strategies which are based on the EIM to obtain

efficient and accurate approximations of this term.

Using the Empirical Interpolation Method

As proposed in [101], a remedy can be based on the EIM applied to the family of functions

Mδ,g =
{
gµ := g(uδ(µ))

∣∣∣µ ∈ P and uδ(µ) solution to the truth problem (5.8)
}
,

where each member is a function of Ω, i.e. gµ : Ω → R.
During the Offline-stage, one applies the EIM to the family of functionsMδ,g in order to obtain

Q interpolation points x1, . . . , xQ ∈ Ω, Q sample points µ1, . . . , µQ ∈ P and Q basis functions
h1, . . . , hQ such that

span{h1, . . . , hQ} = span{gµ1 , . . . , gµQ}.

Then, for any µ ∈ P, the interpolant IQ[gµ] =
∑Q
q=1 aq(µ)hq is defined by
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Algorithm: Empirical Interpolation Method for vector functions

Input: A family of vector functions Gµ : Ω → RN×M , parametrized by a parameter µ ∈ PEIM
and a target error tolerance tol.

Output: A set of Q basis functions {Hq}Qq=1 and interpolation functionals {σq}Qq=1.

Set q = 1. Do while err < tol:

1. Pick the sample point

µq = arg sup
µ∈PEIM

sup
1≤i≤N
1≤j≤M

∥∥(Gµ)ij − (Iq−1[Gµ])ij
∥∥
XΩ
,

and the corresponding interpolation functional

σq = arg sup
σ∈Λ

∣∣σ (Gµq − Iq−1[Gµq ]
) ∣∣.

2. Define the next basis function as

hq =
Gµq − Iq−1[Gµq ]

σq
(
Gµq − Iq−1[Gµq ]

) .
3. Define the error

err =
∥∥errp∥∥L∞(PEIM)

with errp(µ) = sup
1≤i≤N
1≤j≤M

∥∥(Gµ)ij − (Iq−1[Gµ])ij
∥∥
XΩ
,

and set q := q + 1.

IQ[gµ](xq) = gµ(xq) = g(uδ(xq;µ)), ∀q = 1, . . . , Q.

To recover an online procedure that is independent on Nδ, the strategy is to replace the term
g(urb(µ)) by its interpolant IQ[g(urb(µ))] =

∑Q
q=1 aq(µ)hq in (5.9) to obtain an approximate non-

linear term (
g(urb(µ)), vrb

)
Ω
'

Q∑
q=1

aq(µ)
(
hq, vrb

)
Ω
.

If the reduced basis approximation is expressed as urb(µ) =
∑
n=1(uµrb)n ξn, then

aq(µ) =

Q∑
k=1

(T−1)qk g(urb(xk;µ)) =

Q∑
k=1

(T−1)qk g

(
N∑
n=1

(uµrb)n ξn(xk)

)
,

where T−1 denotes the inverse of the interpolation matrix (T)kq = hq(xk) provided by the EIM.
Therefore the approximate nonlinear part has an affine decomposition

(
g(urb(µ)), vrb

)
Ω
≈

Q∑
q=1

θq(u
µ
rb) bq(vrb),

where
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bq(vrb) =
(
hq, vrb

)
Ω
,

θq(u
µ
rb) =

Q∑
k=1

(T−1)qk g

(
N∑
n=1

(uµrb)n ξn(xk)

)
.

The efficient implementation of the reduced basis approximation then becomes: find urb(µ) =∑
n=1(uµrb)n ξn ∈ Vrb such that

(
∇urb,∇vrb

)
Ω1

+ µ[1]

(
∇urb,∇vrb

)
Ω0

+

Q∑
q=1

θq(u
µ
rb) bq(vrb) = f(vrb;µ), ∀vrb ∈ Vrb, (5.12)

which translates into the N -dimensional system of nonlinear algebraic equations

(A1
rb + µ[1]A

2
rb) uµrb +

Q∑
q=1

θq(u
µ
rb) bqrb = frb, (5.13)

for the unknown uµrb, where bqrb ∈ RN with (bqrb)n = bq(ξn). This can then be solved with Newton’s
method for example.

The Discrete Empirical Interpolation Method (DEIM)

In the context of nonlinear equations, a slightly different technique, called discrete EIM (DEIM)
and introduced in [20] as a variant of the general EIM, has become popular in the POD-community.
Indeed, the differences with respect to the strategy outlined above can be summarized in (i) the
generation of the collateral basis functions {h1, . . . , hQ} and (ii) the representation of the nonlin-
earity by its finite-dimensional expression gµ = gδ(u

µ
δ ) ∈ RNδ rather than as the generic nonlinear

function gµ = g(uδ(µ)) : Ω → R. Therefore, the focus is naturally on the algebraic representations
in the form of (5.10) and (5.11).

Consider the set

MNδ,g =
{

gµ := gδ(u
µ
δ )
∣∣∣µ ∈ P and uδ(µ) =

∑Nδ
i=1(uµδ )i ϕi solution to the truth problem (5.8)

}
.

Then, different snapshots {gδ(uµ1

δ ), . . . , gδ(u
µM
δ )} ⊂ RNδ for a large number M of samples are col-

lected in order representMNδ,g accurately. A representative basis {b1
δ , . . . ,b

Q
δ } ⊂ RNδ of Q terms

is obtained by means of a Proper Orthogonal Decomposition (POD) (see Section 3.2.1 for a dis-
cussion of POD). This means that any of the snapshots can be obtained as a linear combination of

the basis functions {b1
δ , . . . ,b

Q
δ } up to some precision.

Given any function uµδ ∈ Vδ, represented by uµδ ∈ RNδ , the coefficients of the linear combination

of {b1
δ , . . . ,b

Q
δ }, needed to approximate gδ(u

µ
δ ) are provided through interpolation at some selected

indices. Indeed, let {i1, . . . , iQ} be Q distinct indices among {1, . . . , Nδ} so that the matrix T ∈
RQ×Q with Tkq = (bqδ)ik is invertible. Then, the approximation to gδ(u

µ
δ ) is given by imposing the

interpolation at the specified indices

Q∑
q=1

Tkq aq(µ) =
(
gδ(u

µ
δ )
)
ik
, k = 1, . . . , Q,
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to uniquely determine the coefficients aq(µ). The approximation is then given by

gδ(u
µ
δ ) ≈

Q∑
q=1

aq(µ) bqδ.

If provided with a reduced basis approximation uµrb ∈ Vrb, represented by uµrb, the approximation
comprises

grb(u
µ
rb) ≈

Q∑
q=1

θq(u
µ
rb) bqrb,

with bqrb = BTbqδ ∈ RN . Here B ∈ RNδ×N represents the reduced basis functions ξn in the truth

space Vδ. Further, the coefficients {aq(µ)}Qq=1 are obtained through the interpolation

Q∑
q=1

Tkq aq(µ) =
(
grb(u

µ
rb)
)
ik
, k = 1, . . . , Q, (5.14)

and thus

θq(u
µ
rb) =

Q∑
k=1

(T−1)qk
(
grb(u

µ
rb)
)
ik
, q = 1, . . . , Q.

With the above definitions the reduced basis approximation is obtained by the solution of the
following N -dimensional system of nonlinear equations

(A1
rb + µ[1]A

2
rb) uµrb +

Q∑
q=1

θq(u
µ
rb) bqrb = frb,

similar to (5.13) but with a slightly different definition of the coefficients θq and the vectors bqrb.
There are two remaining questions: (i) How to select the interpolation indices ik, and (ii) how

to access efficiently (independent on Nδ) the coefficients
(
grb(u

µ
rb)
)
ik

.

The interpolating indices are found by applying an EIM-like procedure where the basis vectors
b1
δ , . . . ,b

Q
δ (including its specific order) are given. The indices are then defined iteratively by

iq = arg max
i=1,...,Nδ

∣∣(bqδ − Iq−1[bqδ])i
∣∣,

where Iq−1 denotes the interpolant based on the basis functions b1
δ , . . . ,b

q−1
δ and the interpolation

indices i1, . . . , iq−1 obtained at previous iterations. Such a procedure was already introduced in
[101] in order to find good interpolation points for interpolation by arbitrary (possibly polynomial)
functions on non-standard domains and is referred to as Magic Points.

Finally, for an efficient implementation, it is important that the procedure

uµrb 7→
{(

gδ(u
µ
rb)
)
ik

}Q
k=1

,

is independent of Nδ, as this is needed to obtain the coefficients in (5.14). This is indeed possible
if the corresponding mass matrix (ϕi, ϕj)Ω is sparse and we refer to [20] for the details. Note that
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the sparsity is essential for an efficient implementation and therefore the approach is not suited for
spectral methods for example.

Let us conclude with some remarks. The complete strength of the EIM is not used in the above
presentation as the interpolating matrix T can be ill-conditioned. However, this is avoidable by a
simple trick. It is recommended to also update the basis functions by substracting the previous
interpolant and scaling the error function by

b̃qδ =
bqδ − Ĩq−1[bqδ]

(bqδ − Ĩq−1[bqδ])iq
,

where now Ĩq−1 denotes the interpolant based on the modified basis functions b̃1
δ , . . . , b̃

q−1
δ and

interpolation indices i1, . . . , iq−1 obtained at the previous iterations. This guarantees that the linear
system, needed to solve the interpolation problem, is always well-conditioned since the matrix is
lower triangular with ones on the diagonal.

A comparitive discussion

As a general feature, it should be mentioned that the basis generation is handled differently in EIM
and in DEIM. While EIM is based on a greedy-procedure, the DEIM is based on a POD-procedure.
In both cases however, the basis generation can be uncoupled from the general framework (working
with the nonlinear function gµ versus its finite-dimensional representation gµ) so that either basis
generation can potentially be applied.

A distinguishing element of the two techniques is the order in which EIM and discretization is
applied. In the EIM-based approach, one first applies the function-based EIM which subsequently is
discretized. On the contrary, in DEIM the starting point for the EIM is the discrete representation
of the nonlinearity. The level of discretization may render the two results different, recovering the
same approximation in the continuous limit.

The different aspects of the online phase can be summarized as follows.

EIM DEIM

Input: Interpolation points x1, . . . , xQ Interpolation indices i1, . . . , iQ
Basis functions h1, . . . , hQ : Ω → R Basis vectors b1

δ, . . . , b
Q
δ ∈ RNδ

Interpolation
(T)kq = hq(xk) Tkq = (bqδ)ikmatrix:

Reduced basis
(bqrb)n =

(
hq, ξn

)
Ω
, ∀n = 1, . . . , N bqrb = BTbqδvectors:

Nonlinearity
θq(u

µ
rb) =

Q∑
k=1

(T−1)qk g

(
N∑
n=1

(uµrb)n ξn(xk)

)
θq(u

µ
rb) =

Q∑
k=1

(T−1)qk
(
grb(u

µ
rb)
)
ikin uµrb:
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Beyond the basics

In this final chapter we discuss some important extensions to the methodology presented in details
in the previous chapters to motivate the readers to apply the reduced basis methodology to more
complex problems of their own interest. The extensions are related to (i) time-dependent problems,
(ii) geometrical parametrization of the computational domain and (iii) non-compliant outputs and
primal-dual approximations, and (iv) non-coercive problems. Although the discussion of these ex-
tensions are accompanied by numerical tests, we conclude with a final numerical example to offer
evidence of the potential of the discussed techniques for complex three-dimensional applications.

6.1 Time-dependent problems

Consider the following parabolic model problem: Given a parameter value µ ∈ P ⊂ RP , evaluate
the output of interest

s(t;µ) = `(u(t;µ)), ∀ t ∈ I := [0, Tf],

where u(µ) ∈ C0(I;L2(Ω)) ∩ L2(I;V) satisfies(
∂tu(t;µ), v

)
L2(Ω)

+ a
(
u(t;µ), v;µ

)
= g(t)f(v), ∀v ∈ V, ∀t ∈ I, (6.1)

subject to initial condition u(0;µ) = u0 ∈ L2(Ω). Here g(t) ∈ L2(I) is called the control function.
To keep the presentation simple we assume that the right hand side f and the output functional `
are independent of the parameter although this assumption can be relaxed. As in the elliptic case,
we assume that the bilinear form a( · , · ;µ) is coercive and continuous (2.4), satisfies the affine
assumption (3.11) and is time-invariant. We denote by ( · , · )L2(Ω) the L2(Ω) scalar product. In the
following, we consider a compliant output as

s(t;µ) = f(u(t;µ)), ∀ t ∈ I := [0, Tf].

6.1.1 Discretization

We next introduce a finite difference discretization in time and maintain the discrete approximation
space Vδ in space to discretize (6.1). We first divide the time interval I into K subintervals of equal
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Linear algebra box: Algebraic formulation of the time-dependent truth problem

We develop the algebraic equations associated with (6.2)–(6.3). The truth approximation ukδ (µ) ∈ Vδ
is expressed as

ukδ (µ) =

Nδ∑
i=1

(uµδ,k)i ϕi, (6.4)

given the basis Vδ = span{ϕ1, . . . , ϕNδ} of the truth space Vδ. By testing with vδ = ϕj for all 1 ≤ j ≤ N
in (6.2) and using (6.4) we obtain(

1
∆t

Mδ + Aµ
δ

)
uµδ,k = 1

∆t
Mδ uµδ,k−1 + g(tk) fδ,

which defines the coefficient vector uµδ,k at the k-th step. The matrices Aµ
δ , Mδ and the vector fδ are

defined by

(Mδ)ij = (ϕj , ϕi)L2(Ω), (Aµ
δ )ij = a(ϕj , ϕi;µ), and (fδ)i = f(ϕi),

for all 1 ≤ i, j ≤ Nδ. We can evaluate the output as

skδ (µ) = (uµδ,k)T fδ.

length ∆t = Tf/K and define tk = k∆t, 0 ≤ k ≤ K. Hence, given µ ∈ P, we seek ukδ (µ) ∈ Vδ, 0 ≤
k ≤ K, such that

1
∆t

(
ukδ (µ)− uk−1

δ (µ), vδ
)
L2(Ω)

+ a
(
ukδ (µ), vδ;µ

)
= g(tk)f(vδ), ∀vδ ∈ Vδ, 1 ≤ k ≤ K, (6.2)

subject to initial condition (u0
δ , vδ)L2(Ω) = (u0, vδ)L2(Ω),∀vδ ∈ Vδ. Recalling the compliance as-

sumption, we evaluate the output for 0 ≤ k ≤ K,

skδ (µ) = f(ukδ (µ)). (6.3)

Equation (6.2), comprising a backward Euler-Galerkin discretization of (6.1), shall be our point
of departure. We presume that ∆t is sufficiently small and Nδ is sufficiently large such that ukδ (µ)
and skδ (µ) are effectively indistinguishable from u(tk;µ) and s(tk;µ), respectively. The development
readily extends to Crank-Nicholson or higher order discretization. The solution process for the truth
solver is outlined in Linear algebra box: Algebraic formulation of the time-dependent truth problem

As in the elliptic case, we consider the discrete solution manifold

MK
δ = {ukδ (µ) | 1 ≤ k ≤ K, µ ∈ P} ⊂ Vδ,

as the analogous entity of (3.2) for the parabolic case and seek a small representative basis thereof,
i.e., the reduced basis for the parabolic problem. The reduced basis approximation [52, 111] is
based on an N -dimensional reduced basis space Vrb, generated by a sampling procedure which
combines spatial snapshots in time and parameter space in an optimal fashion. Given µ ∈ P, we
seek ukrb(µ) ∈ Vrb, 0 ≤ k ≤ K, such that

1
∆t (u

k
rb(µ)− uk−1

rb (µ), vrb)L2(Ω) + a
(
ukrb(µ), vrb;µ

)
= g(tk) f(vrb), ∀vrb ∈ Vrb, 1 ≤ k ≤ K, (6.5)

subject to (u0
rb(µ), vrb)L2(Ω) = (u0

δ , vrb)L2(Ω),∀vrb ∈ Vrb and evaluate the associated output: for
0 ≤ k ≤ K,
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Linear algebra box: Algebraic formulation of the time-dependent reduced basis problem

We develop the algebraic equations associated with (6.5)–(6.6). The reduced approximation ukrb(µ) ∈ Vrb

is expressed as

ukrb(µ) =

N∑
n=1

(uµrb,k)n ξn, (6.7)

given the reduced basis Vrb = span{ξ1, . . . , ξN}. By testing with vrb = ξn for all 1 ≤ n ≤ N in (6.5)
and using (6.7) we obtain:(

1
∆t

Mrb + Aµ
rb

)
uµrb,k = 1

∆t
Mrb uµrb,k−1 + g(tk) frb, (6.8)

for defining the reduced basis coefficients (uµrb,k)n, 1 ≤ n ≤ N , at the k-th step. The matrices Aµ
rb, Mrb

and the vector frb are defined by

(Mrb)nm = (ξm, ξn)L2(Ω), (Aµ
rb)nm = a(ξm, ξn;µ), and (frb)n = f(ξn),

for all 1 ≤ n,m ≤ N . Subsequently we evaluate the reduced basis output as

skrb(µ) = (uµrb,k)T frb.

Using the affine decompositions, (6.8) can be written as(
1
∆t

Mrb +

Qa∑
q=1

θqa (µ) Aq
rb

)
uµrb,k = 1

∆t
Mrb uµrb,k−1 + g(tk) frb,

where
(Aq

rb)nm = aq(ξm, ξn), 1 ≤ n,m ≤ N.
Note that the matrices and vectors are related to the truth matrices and vectors by

Mq
rb = BTMq

δ B, Arb = BTAδ B, and frb = BT fδ,

where B is the matrix that represents the reduced basis in terms of the truth basis; see linear algebra
box The reduced basis approximation in Chapter 3.

skrb(µ) = f(ukrb(µ)). (6.6)

The solution process for the reduced basis approximation is outlined in Linear algebra box: Algebraic
formulation of the time-dependent reduced basis problem

The offline-online procedure is now straightforward since the unsteady case is very similar to
the steady case discussed before. There are, however, a few critical issues to address. As regards
storage, we must now append to the elliptic offline data set the mass matrix Mrb associated with
the unsteady term. Furthermore, we must multiply the elliptic operation counts by K to arrive at
O(KN3) for the online operation count, where K is the number of time steps. Nevertheless, the
cost of the online evaluation of skrb(µ) remains independent of Nδ even in the unsteady case.

6.1.2 POD-greedy sampling algorithm

We now discuss a widely used sampling strategy to construct reduced basis spaces for the time-
dependent parabolic case based on combining proper orthogonal decomposition in time with a
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Algorithm: The POD-greedy algorithm

Input: tol, µ1, n = 1, N1 and N2, Z = 0.

Output: A reduced basis space Vrb.

1. Compute {u1
δ(µn), . . . , uKδ (µn)} as the sequence of truth solutions to (6.2) for µn.

2. Compress this time-trajectory using a POD and retain the relevant modes: {ζ1, . . . , ζN1} =
POD({u1

δ(µn), . . . , uKδ (µn)}, N1).

3. Z ← {Z, {ζ1, . . . , ζN1}}

4. Set N ← N +N2 and compute {ξ1, . . . , ξN} = POD(Z, N).

5. Vrb = span{ξ1, . . . , ξN}

6. µn+1 = arg max
µ∈Ph

η(tK ;µ)

7. If η(tK ;µn+1) > tol, then set n := n+ 1 and go to 1., otherwise terminate.

greedy approach in parameter space. Let us denote by Ph a finite sample of points in P, serving as
a surrogate for P in the calculation of errors and error bounds across the parameter domain.

A purely greedy approach [52] may encounter difficulties best treated by including elements of the
proper orthogonal decomposition selection process [57]. Hence, to capture the causality associated
with the evolution, the sampling method combines the proper orthogonal decomposition, see Section
3.2.1, for the time-trajectories, with the greedy procedure in the parameter space [52, 156, 144] to
enable the efficient treatment of the higher dimensions and extensive ranges of parameter variation.

Let us first summarize the basic POD optimality property, already discussed in Sect. 3.2.1,
applied to a time-trajectory: given K elements ukδ (µ) ∈ Vδ, 1 ≤ k ≤ K, the procedure
POD({u1

δ(µ), . . . , uKδ (µ)},M), with M < K, returns M V-orthonormal functions {ξm, 1 ≤ m ≤M}
for which the space VPOD = span{ξm, 1 ≤ m ≤M} is optimal in the sense of

VPOD = arg inf
YM⊂span{uk

δ
(µ),1≤j≤K}

(
1

K

K∑
k=1

inf
v∈YM

‖ukδ (µ)− v‖2V
)1/2

.

Here YM denotes a M -dimensional linear subspace of V. The POD-greedy algorithm, as outlined in
the algorithm box The POD-greedy algorithm, comprises an intertwined greedy and POD algorithm.
The greedy algorithm provides the outer algorithm where, for each new selected parameter point
µn, the first N1 principal components of the time-trajectory u1

δ(µn), . . . , uKδ (µn) are recovered. In a
subsequent step, the existing N -dimensional reduced basis space is enriched with those components
to build a new N +N2 dimensional basis. Finally, the a posteriori error estimator is used to define
a new sample point µn+1 which minimizes the estimated error over the training set Ph.

To initiate the POD-greedy sampling procedure we specify Ph, an initial sample point µ1 and a
tolerance tol. The algorithm depends on two suitable integers N1 and N2.

We choose N1 to satisfy an internal POD error criterion based on the usual sum of eigenvalues
and tol. Furthermore, we choose N2 ≤ N1 to minimize duplication with the existing reduced basis
space. It is important to observe that the POD-greedy method is based on successive greedy cycles so
that new information will always be retained and redundant information rejected. A purely greedy
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approach in both t and µ [52], though often generating good spaces, can stall. Furthermore, since
the proper orthogonal decomposition is conducted in only one dimension, the computational cost
remains relatively low, even for large parameter domains and extensive parameter train samples.

As we discuss in Section 6.1.3, η(tk;µ) is assumed to provide a sharp and inexpensive a posteriori
error bound for ‖ukδ (µ) − ukrb(µ)‖V. In practice, we exit the POD-greedy sampling procedure at
N = Nmax for which a prescribed error tolerance

max
µ∈Ph

η(tK ;µ) < tol,

is satisfied. Note that the POD-greedy generates hierarchical spaces VNPOD, 1 ≤ N ≤ Nmax, which is
computationally advantageous.

Concerning the computational aspects, a crucial point is that the operation count for the POD-
greedy algorithm is additive and not multiplicative in the number of training points in Ph and
Nδ. In a pure proper orthogonal decomposition approach, we would need to evaluate the “truth”
solution for each µ ∈ Ph. Consequently, in the POD-greedy approach we can take Ph relatively
large and we can expect that a reduced model will provide rapid convergence uniformly over the
parameter domain.

A slightly different version of the POD-greedy algorithm was proposed in [57] where the error
trajectories ukδ (µn)− ukrb(µn) are added instead of ukδ (µn) to avoid the second POD-compression.

6.1.3 A posteriori error bounds for the parabolic case

Let us discuss the a posteriori error estimation for affinely parametrized parabolic coercive partial
differential equations. As for the elliptic case, discussed in Chapter 3, we need two ingredients to
construct the a posteriori error bounds. The first is the Riesz representation r̂kδ (µ) of the residual
rk( · ;µ) such that

‖r̂kδ (µ)‖V = sup
vδ∈Vδ

rk(vδ;µ)

‖vδ‖V
, 1 ≤ k ≤ K,

where rk( · ;µ) is the residual associated with the reduced basis approximation (6.5) defined by

rk(vδ;µ) = g(tk)f(vδ)− 1
∆t

(
ukrb(µ)− uk−1

rb (µ), vδ
)
L2(Ω)

− a
(
ukrb(µ), vδ;µ

)
,

for all vδ ∈ Vδ, 1 ≤ k ≤ K. The second ingredient is a lower bound for the coercivity constant
αδ(µ), 0 < αLB(µ) ≤ αδ(µ), ∀µ ∈ P.

We can now define our error bounds in terms of these two ingredients as it can readily be proven
[52, 57] that for all µ ∈ P,

‖ukδ (µ)− ukrb(µ)‖µ ≤ ηken(µ) and |skδ (µ)− skrb(µ)| ≤ ηks (µ), 1 ≤ k ≤ K,

where ηken(µ) and ηks (µ) are given as

ηken(µ) =

(
∆t

αLB(µ)

k∑
k′=1

‖r̂k
′

δ (µ)‖2V

) 1
2

and ηks (µ) = (ηken(µ))2.

We assume here for simplicity that u0
δ(µ) ∈ Vrb; otherwise there will be an additional contribution

to ηken(µ).
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Although based on the same elements as the elliptic case, the offline-online procedure for the
error bound is a bit more involved. Following [111], consider the decomposition of the residual using
the affine decomposition

rk(vδ;µ) = g(tk) f(vδ)− 1
∆t

N∑
n=1

(∆µ
rb,k)n (ξn, vδ)L2(Ω) −

Qa∑
q=1

N∑
n=1

θqa(µ) (uµrb,k)n aq(ξn, vδ),

with (∆µ
rb,k)n = (uµrb,k)n − (uµrb,k−1)n and then introduce the coefficient vector rk(µ) ∈ RQr , with

Qr = 1 +N +QaN terms, as

rk(µ) =
(
g(tk), − 1

∆t (∆
µ,k
rb )T , −(uµ,krb )T θ1

a(µ) , . . . , −(uµ,krb )T θQa
a (µ)

)T
.

With a similar ordering, we define M ∈ (V′δ)N and Aq ∈ (V′δ)N for 1 ≤ q ≤ Qa by

M =
(
(ξ1, · )L2(Ω), . . . , (ξN , · )L2(Ω)

)
, and Aq =

(
aq(ξ1, · ), . . . , aq(ξN , · )

)
,

and the vector of forms R ∈ (V′δ)Qr as

R = (f,M,A1, . . . , AQa
)T ,

to obtain

rk(vδ;µ) =

Qr∑
q=1

rkq (µ)Rq(vδ), ∀vδ ∈ Vδ.

As in Chapter 4, denoting by r̂qδ the Riesz representation of Rq, i.e. (r̂qδ , vδ)V = Rq(vδ) for all vδ ∈ Vδ
and 1 ≤ q ≤ Qr, we recover

r̂kδ (µ) =

Qr∑
q=1

rkq (µ) r̂qδ ,

and

‖r̂kδ (µ)‖2V =

Qr∑
q,q′=1

rkq (µ) rkq′(µ)
(
r̂qδ , r̂

q′

δ

)
V. (6.9)

Observe that (r̂qδ , r̂
q′

δ )V are time-independent.
The offline-online decomposition is now clear. In the µ-independent construction stage we find

the Riesz-representations r̂qδ , and the inner products (r̂qδ , r̂
q′

δ )V at possibly large computational cost
O(QrNδ

2 +Q2
r Nδ). In the µ-dependent online procedure we simply evaluate (6.9) from the stored

inner products in O(Q2
r) operations per time step and hence O(Q2

rK) operations in total. The cost
and storage in the online phase is again independent of Nδ.

We may also pursue a primal-dual reduced approximations [124, 52, 144], explained in more
detail in Section 6.3, to ensure an accelerated rate of convergence of the output and a more robust
estimation of the output error. However, in cases where many outputs are of interest, e.g., inverse
problems, the primal-only approach described above can be more efficient and also more flexible
by being expanded to include additional output functionals.
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Fig. 6.1: Geometric set-up (left) and the convergence of the POD-greedy algorithm (right) for the
time-dependent thermal block heat conductivity problem.

6.1.4 Illustrative Example 3: Time-Dependent Heat Conduction

In this example we solve a time-dependent heat transfer problem in the two-dimensional domain
shown in Figure 6.1, using the POD-greedy approach.

The bilinear form for the problem (6.1) is given as

a(w, v;µ) =

8∑
p=1

µ[p]

∫
Ωp

∇w · ∇v +

∫
Ω9

∇w · ∇v,

where µ[p] is the ratio between the conductivity of the Ωp and Ω9 subdomains, respectively, and

µ[p] ∈ [0.1, 10] for p = 1, . . . , 8.

Homogeneous Dirichlet boundaries conditions have been applied on Γtop and thus

w = 0 on Γtop.

Inhomogeneous parametrized Neumann boundary conditions, corresponding to heat fluxes, are im-
posed on the bottom boundary Γbottom and result in the following right-hand side:

f(v;µ) = µ[9]

∫
Γbottom

v.

where
µ[9] ∈ [−1, 1] .

Finally, homogeneous Neumann boundary conditions are applied on the remaining part of the
boundary, i.e. on the left Γleft and the right Γright of the square.

In Figure 6.1 the convergence of the POD-greedy algorithm is illustrated confirming exponential
convergence also in this time-dependent case (Tf = 3s, ∆t = 0.05s). The algorithm was performed
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N ηen,av effen,max effen,av
5 0.18 24.67 7.51
10 0.07 26.27 7.69
15 0.03 25.82 6.79
20 0.02 31.63 9.53

Table 6.1: Error bounds and effectivity metrics for the field variable urb(µ) with respect to the
number of reduced basis functions N for the thermal block time-dependent problem.

on a training set Ph of cardinality 5’000. Table 6.1 shows the averaged a posteriori error estimate
over the validation set Pv

h of cardinality 3’000 as well as the maximum and average effectivities of
the estimator confirming the quality of the estimator.

Finally, we show in Figures 6.2–6.4 the truth solution as well as the reduced basis approximation
and the pointwise errors for three different parameter values.

6.2 Geometric Parametrization

Reduced basis methods can be applied in many problems of industrial interest: material sciences
and linear elasticity [107, 31, 64, 66], heat and mass transfer [35, 148, 143, 46], acoustics [150],
potential flows [141], micro-fluid dynamics [145], electro-magnetism [27]. In many such problems,
there are physical or engineering parameters which characterize the problem, but often also geo-
metric parameters to consider. This combination is quite typical for many industrial devices, e.g,
biomedical devices or complex aerodynamic shapes [104, 102, 83, 146].

Let us consider a scalar field in d space dimension. We define an original problem, denoted by
subscript o, posed over the parameter-dependent physical domain Ωo = Ωo(µ). We denote by Vo(µ)
a suitable Hilbert space defined on Ωo(µ) and consider an elliptic problem of the following form:
Given µ ∈ P, evaluate

so(µ) = `o(uo(µ);µ), (6.10)

where uo(µ) ∈ Vo(µ) satisfies

ao(uo(µ), v;µ) = fo(v;µ), ∀v ∈ Vo(µ). (6.11)

The reduced basis framework requires a reference (µ-independent) domain Ω to compare and com-
bine discrete solutions that otherwise are computed on different domains and grids. Hence, we
map Ωo(µ) to a reference domain Ω = Ωo(µ̄), µ̄ ∈ P to recover a transformed problem of the
form (2.1)–(2.2), which is the point of departure of the reduced basis approach. The reference do-
main Ω is related to the original domain Ωo(µ) through a parametric mapping T ( · ;µ), such that
Ωo(µ) = T (Ω;µ) and T ( · ; µ̄) becomes the identity. It remains to place some restrictions on both
the geometry (i.e. on Ωo(µ)) and the operators (i.e. ao, fo, `o) such that the transformed problem
satisfies the basic hypotheses introduced above, in particular, the affine assumptions (3.11)–(3.13).
For many problems, a domain decomposition may be useful [144] as we shall demonstrate shortly.

Let us first consider a simple class of admissible geometries. To build a parametric mapping
related to geometrical properties, we introduce a conforming domain partition of Ωo(µ),

Ωo(µ) =

LΩ⋃
l=1

Ωlo(µ), (6.12)
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(a) (b) (c)

Fig. 6.2: Comparison between the truth model (a), the reduced basis approximation (b) for µ =
(1.0, 10.0, 10.0, 1.0, 10.0, 1.0, 10.0, 1.0, 10.0,−1.0) at the final time Tf = 3s. The pointwise error
between the two solutions is reported in (c).

(a) (b) (c)

Fig. 6.3: Comparison between the truth model (a), the reduced basis approximation (b) for
µ = (5.24, 1.34, 8.52, 5.25, 1.38, 7.98, 0.94, 2.54, 0.98) at the final time Tf = 3s. The pointwise er-
ror between the two solutions is reported in (c).

(a) (b) (c)

Fig. 6.4: Comparison between the truth model (a), the reduced basis approximation (b) for µ =
(6.96, 4.79, 5.33, 9.42, 6.09, 1.87, 8.04, 9.22,−0.94) at the final time Tf = 3s. The pointwise error
between the two solutions is reported in (c).
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consisting of mutually nonoverlapping open subdomains Ωlo(µ), such that Ωlo(µ) ∩ Ωl′o (µ) = ∅,
1 ≤ l < l′ ≤ LΩ . The geometric input parameters, e.g. lengths, thicknesses, orientation, diameters
or angles, allows for the definition of parametric mappings to be done in an intuitive fashion.
The regions can represent different material properties, but they can also be used for algorithmic
purposes to ensure well-behaved mappings. In the following we will identifyΩl = Ωlo(µ̄), 1 ≤ l ≤ LΩ ,
and denote (6.12) the reduced basis macro triangulation. It will play an important role in the
generation of the affine representation (3.11)–(3.13). The original and the reference subdomains
must be linked via a mapping T ( · ;µ) : Ωl → Ωlo(µ), 1 ≤ l ≤ LΩ , as

Ωlo(µ) = T l(Ωl;µ), 1 ≤ l ≤ LΩ .

These maps must be bijective, collectively continuous, such that T l(x;µ) = T l
′
(x;µ), ∀ x ∈ Ωl∩Ωl′ ,

for 1 ≤ l < l′ ≤ LΩ .
If we consider the affine case, where the transformation is given, for any µ ∈ P and x ∈ Ωl, as

T l(x, µ) = Gl(µ)x+ cl(µ),

for given translation vectors cl : P → Rd and linear transformation matrices Gl : P → Rd×d. The
linear transformation matrices can enable rotation, scaling and/or shear and must be invertible.
The associated Jacobians are defined as J l(µ) = |det (Gl(µ))|, 1 ≤ l ≤ LΩ .

Let us now explain how to introduce the geometric parametrization in the operators. We consider
the bilinear forms

ao(w, v;µ) =

LΩ∑
l=1

∫
Ωlo(µ)

D(w)T Kl
o(µ)D(v) (6.13)

where D(v) : Ω → Rd+1 is defined by D(v) =
[
∂v
∂x1

, . . . , ∂v
∂xd

, v
]T
, and Kl

o : P → R(d+1)×(d+1),

1 ≤ l ≤ LΩ , are prescribed coefficients. Here, for 1 ≤ l ≤ LΩ , Kl
o : P → R(d+1)×(d+1) is a

given symmetric positive definite matrix, ensuring coercivity of the bilinear form. The upper d× d
principal submatrix of Kl

o is the usual tensor conductivity/diffusivity; the (d + 1, d + 1) element
of Kl

o represents the identity operator and the (d + 1, 1) − (d + 1, d) (and (1, d + 1) − (d, d + 1))
elements of Kl

o, which we can be zero if the operators are symmetric, represent first derivative terms
to model convective terms.

Similarly, we require that fo( · ) and `o( · ) are expressed as

fo(v;µ) =

LΩ∑
l=1

∫
Ωlo(µ)

F lo(µ) v, `o(v;µ) =

LΩ∑
l=1

∫
Ωlo(µ)

Llo(µ) v,

where F lo : P → R and Llo : P → R, for 1 ≤ l ≤ LΩ , are prescribed coefficients. By identifying
u(µ) = uo(µ) ◦ T ( · ;µ) and tracing (6.13) back to the reference domain Ω by the mapping T ( · ;µ),
we can define a transformed bilinear form a( · , · ;µ) as

a(w, v;µ) =

LΩ∑
l=1

∫
Ωl
D(w)TKl(µ)D(v), (6.14)

where Kl : P→ R(d+1)×(d+1), 1 ≤ l ≤ LΩ , is a parametrized tensor

Kl(µ) = J l(µ) Ĝl(µ) Kl
o(µ) (Ĝl(µ))T
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and Ĝl : P→ R(d+1)×(d+1) is given by

Ĝl(µ) =

(
(Gl(µ))−1 0

0 1

)
, 1 ≤ l ≤ LΩ .

The transformed linear forms can be expressed similarly as

f(v;µ) =

LΩ∑
l=1

∫
Ωl
F l(µ) v, `(v;µ) =

LΩ∑
l=1

∫
Ωl
Ll(µ) v, (6.15)

where F l : P→ R and Ll : P→ R are given by F l = J l(µ)F lo(µ), Ll = J l(µ)Llo(µ), for 1 ≤ l ≤ LΩ .
In this setting, the problem on the original domain has been recast on the reference configuration
Ω, resulting in a parametrized problem where the effect of geometry variations is now expressed
by its parametrized transformation tensors. With the above definitions and defining V = Vo(µ̄),
(6.10)–(6.11) is equivalent to: given µ ∈ P, evaluate

s(µ) = `(u(µ);µ),

where u(µ) ∈ V satisfies
a(u(µ), v;µ) = f(v;µ), ∀v ∈ V.

The affine formulation (3.11) (resp. (3.12) and (3.13)) can be derived by simply expanding the
expression (6.14) (and (6.15)) in terms of the subdomains Ωl and the different entries of Kl (and
F l, Ll).

The process by which we map this original problem to the reference problem can be auto-
mated [144]. There are many ways in which we can relax the given assumptions and treat an even
broader class of problems. For example, we may consider curved triangular subdomains [144] or
coefficient functions K, M which are high order polynomials in the spatial coordinate or approxi-
mated by the Empirical Interpolation Method, see Chapter 5. In general, an increased complexity in
geometry and operator will result in more terms in affine expansions with a corresponding increase
in the online reduced basis computational costs.

6.2.1 Illustrative Example 4: a 2D geometric parametrization for an Electronic
Cooling Component

We consider a first example to illustrate the geometrical parametrization in the context of reduced
basis methods to apply the above theoretical considerations. The original domain Ωo(µ)

Ωo(µ) = (−2, 2)× (−2, 2) \ (−µ[1], µ[1])× (−µ[2], µ[2]),

is provided as a square with a variable rectangular hole. The two geometric parameters correspond
to the dimensions of the rectangular hole. The user-provided control points/edges are shown in
Figure 6.5(a) which yield the LΩ = 8 reduced basis macro triangulation of Ω shown in Figure
6.5(b). There are Qa = 10 different terms in our affine expansion (3.11) for the Laplacian. Due to
the symmetry in the reduced basis triangulation, the number of terms in the affine expansion for
the Laplacian reduces from the maximum possible of 24 to 10.

We consider this geometric configuration to study the performance of a device designed for
heat exchange. The internal walls Γ1 − Γ4 are subject to a constant heat flux to be dissipated.
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(−2,−2)

(−2, 2)

(2,−2)

(2, 2)

(−µ[1],−µ[2])

(−µ[1], µ[2])

(µ[1],−µ[2])
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(b)

Fig. 6.5: The geometric set-up and control-points (a) and the reduced basis macro triangulation of
the reference configuration Ω, used to define the piecewise affine transformation (b).

The outer walls Γ5 − Γ8 of the square are characterized by a heat exchange rate with a fluid
surrounding the device. We model the air flow by a simple convection heat transfer coefficient, i.e.
the Biot number, used as third parameter µ[3] for the model problem. The steady-state temperature
distribution is governed by a Laplace equation. Our output of interest is the average conduction
temperature distribution at the inner walls. We shall therefore consider the Laplace operator (thus
with isotropic diffusivity) corresponding to (Kl

o)11 = (Kl
o)22 = 1 and all other entries of Kl

o zero
for 1 ≤ l ≤ LΩ . We are dealing with P = 3 parameters and the parameter domain is given by
P = [0.5, 1.5]× [0.5, 1.5]× [0.01, 1].

From an engineering point of view, this problem illustrates the application of conduction analysis
to an important class of cooling problems, for example for electronic components and systems.

We now turn the attention to the problem formulation on the “original” domain Ωo(µ). We
consider (6.10)–(6.11) with Vo(µ) = H1(Ωo(µ)) and

ao(w, v;µ) =

∫
Ωo(µ)

∇w · ∇v + µ[3]

(∫
Γo,5

w +

∫
Γo,6

w +

∫
Γo,7

w +

∫
Γo,8

w

)
,

fo(v) =

∫
Γo,1

v +

∫
Γo,2

v +

∫
Γo,3

v +

∫
Γo,4

v,

which represents the bilinear form associated with the Laplace operator, imposing the the Robin-
type boundary conditions on the outer wall, and the linear form, imposing the constant heat flux
on the interior walls respectively. The problem is clearly coercive, symmetric, and compliant as
so(µ) = fo(u(µ)).

The Finite Element method has been computed employing first order elements. In Fig. 6.6(a)
the mesh of the reference domain Ω featuring 4’136 elements is illustrated.

The basis functions are obtained by orthogonalization, through a standard Gram-Schimdt pro-
cedure, of snapshots selected by the greedy algorithm as discussed in Section 3.2.2. The training
space Ph consists of 1’000 points in P. In Fig. 6.6(b), we plot the maximum error (over Ph) with
respect to the number of basis functions employed. The first four snapshots are depicted in Fig. 6.7.
In Fig. 6.8, the outcomes provided by the truth solver and the reduced basis computations, for a ran-
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Fig. 6.6: The finite element mesh used for the truth solver (a) and the maximum error of the
greedy-algorithm with respect to the number of basis functions employed (b) for the electronic
cooling component problem.

N ηen,av effen,max effen,av
5 0.43 16.73 8.23
10 0.11 23.45 12.37
15 4.21e-2 33.65 14.78
20 5.67e-3 38.24 16.35

N ηs,av effs,max effs,av
5 0.13 12.20 4.53
10 1.17e-2 23.95 11.86
15 1.82e-3 34.03 18.48
20 3.25e-5 41.65 22.18

Table 6.2: Error bounds and output error bounds with effectivity metrics as a function of N for the
example with geometrical parametrization. The error are shown in the solution urb(µ) (left) and
the output srb(µ) (right).

domly chosen combination µ = (1.176, 0.761, 0.530) and N = 20, are compared, and the pointwise
difference between the two solutions is plotted, highlighting the overall accuracy.

In Tab. 6.2 the error bounds and effectivity metrics for the energy-norm estimates as well as for
the estimates for the output functional with respect to the number of basis functions employed are
shown. The values have been averaged over a validation set Pv

h consisting of 3’000 sample points,
i.e., using (4.23) for the energy-norm effectivities, and

ηs,av =
1

|Pv
h|
∑
µ∈Pv

h

ηs(µ)

where

effs,max = max
µ∈Pv

h

ηs(µ)

|sδ(µ)− srb(µ)|
and effs,av =

1

|Pv
h|
∑
µ∈Pv

h

ηs(µ)

|sδ(µ)− srb(µ)|
. (6.16)
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Fig. 6.7: The first four basis functions, representing the most important modes of the solution
manifold, illustrated on the original domain Ωo(µ).

(a) (b) (c)

Fig. 6.8: Comparison between the truth solution (a) and the reduced basis approximation (b) for
µ = (1.176, 0.761, 0.530). The pointwise difference between the two solutions is reported in (c).

6.2.2 Illustrative Example 5: a 3D geometric parametrization for a Thermal Fin

This problem addresses the performance of a heat sink for cooling electronic components. The heat
sink is modelled as a spreader Ω1

o , see Fig. 6.9(a), depicted in blue, which supports a plate fin Ω2
o (µ)
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Fig. 6.9: The subdomain division (a), the finite element mesh used for the truth solver (b) and
the maximum error over Ph of the greedy-algorithm with respect to the number of basis functions
employed (c) for the thermal fin problem with a geometric parametrization.

exposed to flowing air, depicted in red, Fig. 6.9(b). The heat transfer from the fin to the air is taken
into account with the Biot number, which is the first parameter µ[1]. The second parameter is the
relative length of the fin with respect to the spreader, and is labeled as µ[2]. The third parameter µ[3]

is the ratio between the thermal conductivity of the spreader and the fin. The parameters ranges
are

µ[1] ∈ [0.1, 1.0], µ[2] ∈ [0.5, 10.0], µ[3] ∈ [1.0, 10.0].

A uniform heat flux is applied at the base of the spreader, denoted here by Γbottom, and Robin
boundary conditions are imposed on the vertical faces of the fin, denoted here by Γside. Homogeneous
Neumann conditions are imposed at all other surfaces. The bilinear and linear forms of this problem
are given as

ao(w, v;µ) = µ[3]

∫
Ω1

o

∇w · ∇v +

∫
Ω2

o (µ)

∇w · ∇v + µ[1]

∫
Γ1

w v,

fo(v) =

∫
Γbottom

v,

and the output of interest so(µ) is computed as

so(µ) = fo(u(µ)), (6.17)

i.e., it is a compliant output. The finite element method, employing first order elements, is used
as the truth model. In Fig. 6.9(b) the mesh of the reference domain is reported, featuring 22’979
elements.

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt pro-
cedure, of snapshots computed by a greedy approach to select parameters Ph with cardinality of
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Fig. 6.10: First four basis functions for the thermal fin problem with a geometric parametrization.

(a) (b) (c)

Fig. 6.11: Comparison between the truth approximation (a) and the reduced basis approximation
(b) for µ = (1.176, 0.761, 0.530). The difference between the two solutions is reported in (c).

3’000. In Fig. 6.9(c) the graph showing the maximum error with respect to the number of basis
functions employed is reported.

In Fig. 6.10, the first four snapshots, corresponding to uδ(µ1), . . . , uδ(µ4), are depicted and
in Fig. 6.11, the outcomes provided by the truth model and the reduced method, for a randomly
chosen µ = (6.94, 1.36, 2.53) and N = 20, are compared. The pointwise difference between the two
approximations is plotted as well, illustrating the excellent error behavior.

6.3 Non-compliant output

For the sake of simplicity, we addressed in Chapter 3 the reduced basis approximation of affinely
parametrized coercive problems in the compliant case. Let us now consider the more general non-
compliant elliptic truth problem: given µ ∈ P, find

sδ(µ) = `(uδ(µ);µ),

where uδ(µ) ∈ Vδ satisfies
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a(uδ(µ), vδ;µ) = f(vδ;µ), ∀ vδ ∈ Vδ.

We assume that a( · , · ;µ) is coercive, continuous, and affine, but not necessarily symmetric. We
further assume that both ` and f are bounded functionals but we no longer require that ` = f .

Following the methodology outlined in Chapter 4, we can readily develop an a posteriori error
bound for srb(µ). By standard arguments [144, 122]

|sδ(µ)− srb(µ)| ≤ ‖`( · ;µ)‖(V)′ ηen(µ)

where ‖uδ(µ) − urb(µ)‖µ ≤ ηen(µ) and ηen(µ) is given by (4.6a). We denote this approach, i.e.,
ηs(µ) = ‖`( · ;µ)‖(V)′ ηen(µ), as primal-only. Although primal-only is perhaps the best approach in
the case of many outputs in which each additional output, and the associated error bound, is an
add-on, this approach has two drawbacks:

(i) we loose the quadratic convergence effect (see Proposition 4.1) for outputs, unless ` = f and
a( · , · ;µ) is symmetric, since the accuracy of the output is no longer the square of the accuracy
of the field variable.

(ii) the effectivities ηs(µ)/|sδ(µ) − srb(µ)| may be unbounded. If ` = f we know from Proposition
4.1 that |sδ(µ) − srb(µ)| ∼ ‖r̂δ(µ)‖2V and hence ηs(µ)/|sδ(µ) − srb(µ)| ∼ 1/‖r̂δ(µ)‖V → ∞ as
N → ∞. Thus, the effectivity of the output error bound (4.6b) tends to infinity as (N → ∞
and) urb(µ)→ uδ(µ). We may expect similar behavior for any ` close to f . The problem is that
(4.6b) does not reflect the contribution of the test space to the convergence of the output.

The introduction of reduced basis primal-dual approximations takes care of these issues and ensures
a stable limit as N →∞. We introduce the dual problem associated with the functional `( · ;µ) as
follows: find the adjoint or dual field ψ(µ) ∈ V such that

a(v, ψ(µ);µ) = −`(v;µ), ∀ v ∈ V.

Let us define the reduced basis spaces for the primal and the dual problem, respectively, as

Vpr = span{u(µnpr), 1 ≤ n ≤ Npr},

Vdu = span{ψ(µndu), 1 ≤ n ≤ Ndu}.

For our purpose, a single discrete truth space Vδ suffices for both the primal and dual, although
in many cases, the truth primal and dual spaces may be different. For a given µ ∈ P, the resulting
reduced basis approximations urb(µ) ∈ Vpr and ψrb(µ) ∈ Vdu solve

a(urb(µ), vrb;µ) = f(vrb;µ), ∀vrb ∈ Vpr,

a(vrb, ψrb(µ);µ) = −`(vrb;µ), ∀vrb ∈ Vdu.

Then, the reduced basis output can be evaluated as [124]

srb(µ) = `(urb;µ)− rpr(ψrb;µ),

where rpr(·;µ), rdu(·;µ) ∈ (Vδ)′, are defined by

rpr(vδ;µ) = f(vδ;µ)− a(urb, vδ;µ), vδ ∈ Vδ,

rdu(vδ;µ) = −`(vδ;µ)− a(vδ, ψrb;µ), vδ ∈ Vδ,
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Fig. 6.12: The geometric set-up for the non-compliant and geometrically parametrized Graetz prob-
lem.

are the primal and the dual residuals. In the non-compliant case using a primal-dual strategy, the
output error bound takes the form

ηs(µ) =
‖rpr( · ;µ)‖(Vδ)′

(αLB(µ))1/2

‖rdu( · ;µ)‖(Vδ)′
(αLB(µ))1/2

.

We thus recover the quadratic convergence of the output effect. Note that the offline-online proce-
dure is very similar to the primal-only case, but now everything must be done for both the primal
and the dual problem. Moreover, we need to evaluate both a primal and a dual residual for the
a posteriori error bounds. Error bounds related to the gradient of computed quantities, such as
velocity and pressure in potential flow problems, have been addressed in [141]. For parabolic prob-
lems, the treatment of non-compliant outputs follows the same strategy; we only note that the dual
problem in this case must evolve backward in time [52].

6.3.1 Illustrative Example 6: a 2D Graetz problem with non-compliant output

This example, known as the two-dimensional Graetz problem, aims to illustrate the computational
details of a problem with a non-compliant output of interest. In particular, we consider forced
heat convection in a geometrically parametrized channel divided into two parts such that Ωo(µ) =
Ω1

o ∪Ω2
o (µ) as illustrated in Figure 6.12. Within the first part Ω1

o (in blue) the temperature of the
flow at the wall is kept constant and the flow has a prescribed convective field. The length along
the axis x of the subdomain Ω2

o (µ), relative to the length of the subdomain Ω1
o , is given by the

parameter µ[1]. The heat transfer between the domains can be taken into account by means of the
Péclet number, measuring the ratio between the convective and the conduction heat transfer, which
will be labeled as the parameter µ[2]. The ranges of the two parameters are

µ[1] ∈ [0.1, 10], µ[2] ∈ [0.01, 10],

so that P = [0.1, 10]× [0.01, 10].
This problem represents an example of a non-symmetric operator, associated with a primal-

dual formulation for the non-compliant output, as well as a geometric parametrization treated by a
transformation to a reference domain. This is a simplified version of the larger problem, discussed
in detail in Section 6.5. We first need to reformulate the problem to obtain a Galerkin formulation,
based on an identical trial and test space. We introduce the two parameter-dependent spaces
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V̂(µ) =
{
v ∈ H1

(
Ωo(µ)

)
: v|Γo,1,5,6 = 0, v|Γo,2,4 = 1

}
,

V(µ) =
{
v ∈ H1

(
Ωo(µ)

)
: v|Γo,1,2,4,5,6

= 0
}
,

where we use the notation Γo,1,5,6 = Γo,1 ∪ Γo,5 ∪ Γo,6 and similarly for Γo,2,4 and Γo,1,2,4,5,6. The

original problem can be stated as follows: for any µ = (µ[1], µ[2]), find ûo(µ) ∈ V̂(µ) such that

1

µ[2]

∫
Ωo(µ)

∇ûo(µ) · ∇v +

∫
Ωo(µ)

x2(1− x2)∂x1
ûo(µ) v = 0, ∀v ∈ V(µ).

Further, set µ̄ ∈ P such that µ̄[1] = 1 and define Ω = Ωo(µ̄), V̂ = V̂(µ̄), V = V(µ̄). After a mapping

onto the reference domain Ω, the problem can be reformulated on Ω as follows: find û(µ) ∈ V̂ such
that

1

µ[2]

∫
Ω1

∇û(µ) · ∇v +
1

µ[1]µ[2]

∫
Ω2

∂x1 û(µ) ∂x1v + µ[1]µ[2]

∫
Ω2

∂x2 û(µ) ∂x2v

+

∫
Ω

x2(1− x2)∂x1 û(µ) v = 0, ∀v ∈ V,

with Ω1 = Ω1
o , Ω2 = Ω2

o (µ̄). Finally, using the (continuous) finite element interpolation Rδ of the
lifting function R = 1Ω2 (the characteristics functions of Ω2), the discrete problem is written as:
find uδ(µ) ∈ Vδ ⊂ V such that

a(uδ(µ), vδ;µ) = f(vδ;µ), ∀vδ ∈ Vδ,

where

a(w, v;µ) = µ[2]

∫
Ω1

∇w · ∇v +
µ[2]

µ[1]

∫
Ω2

∂xw ∂x1
v + µ[2]µ[1]

∫
Ω2

∂x2
w ∂x2

v +

∫
Ω

x2(1− x2) ∂x1
wv,

f(v;µ) = −a(Rδ, v;µ).

Finally, the non-compliant output of interest s(µ) is given by

sδ(µ) =

∫
Γo,3

uδ(µ).

In Fig. 6.13 we first illustrate the exponential convergence of the successive constraint method
(SCM) with respect to the number of eigenvalues for this more complicated problem. As expected,
one observes a rapidly converging model. We also show the convergence of both the primal and
the dual reduced basis approximation with increasing number of basis elements. Again we ob-
serve exponential convergence to the truth approximation. In Fig. 6.14 we illustrate the reduced
basis approximation for different values of the Péclet number for this two-dimensional Graetz prob-
lem, illustrating the substantial dynamic variation of the solution. Finally, we show in Table 6.3
the effectivities of the error estimator for both the solution and the output of interest. We ob-
serve in particular the quadratic convergence of the error estimate of the output as expected from
the primal-dual approach. Reduced basis approximation of convection-conduction and diffusion-
transport(advection)-reaction problems is still an open research field, above all concerning stabi-
lization techniques required also in the online part of the problem, taking into account parametrized
propagating fronts and boundary layers at higher Péclet numbers [118, 120, 32, 119] and in per-
spective higher Reynolds numbers for viscous flows.
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Fig. 6.13: Convergence of the SCM-algorithm with respect to the number of eigenvalue problems to
be solved (left) and convergence of the maximum absolute error bound with respect to the number
of selected basis functions for the primal and the dual reduced basis (right) for the non-compliant
numerical example.

Fig. 6.14: Three representative solutions for a fixed geometry (µ[1] = 2) and different Péclet numbers
µ[2] = 0.1, 1, 10 (from top to bottom) for the 2D Graetz problem.

6.4 Non-coercive problems

Let us now discuss wider classes of problems to treat with the reduced basis method, including
non-coercive problems, such as Helmholtz, Maxwell’s equations, saddle-point problems like Stokes
problem.

The reduced basis framework can be effectively applied to problems involving operators which
do not satisfy the coercivity assumption [156]. Examples include the (Navier)-Stokes problem, where
stability is fulfilled in the general sense of the inf-sup condition [131]. For the sake of simplicity,
we restrict our disucssion to the elliptic scalar case (2.1)–(2.2) and assume that the (parametrized)
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N ηen,av effen,max effen,av
5 1.41e-1 13.31 3.37
10 7.90e-2 8.52 3.24
15 7.76e-3 10.47 2.97
20 1.86e-3 13.01 3.60

N ηs,av effs,max effs,av
5 1.89e-2 12.01 4.32
10 6.20e-3 18.73 6.78
15 5.74e-5 27.26 9.67
20 3.46e-6 48.15 15.43

Table 6.3: Error bounds and output error bounds with effectivity metrics as function of N for the
non-compliant example for the error in the solution urb(µ) (left) and the output srb(µ) (right).

bilinear form a( · , · ;µ) : V×W→ R is continuous and satisfies the inf-sup condition

∃β > 0 : β(µ) = inf
v∈V\{0}

sup
w∈W\{0}

a(v, w;µ)

‖v‖V‖w‖W
≥ β ∀µ ∈ P.

We refer to the Appendix for a brief overview view on the numerical analysis of this class of problems
in a unparametrized setting. The discrete, and thus the subsequent reduced basis, approximation
is based on a more general Petrov-Galerkin approach. Given two truth spaces Vδ ⊂ V, Wδ ⊂ W,
the truth approximation uδ(µ) ∈ Vδ satisfies

a(uδ(µ), wδ, µ) = f(wδ;µ), ∀wδ ∈Wδ,

and the output can be evaluated as1

sδ(µ) = `(uδ(µ);µ).

To have a stable truth approximation, we require that there exists βδ > 0 such that

βδ(µ) = inf
vδ∈Vδ\{0}

sup
wδ∈Wδ\{0}

a(vδ, wδ;µ)

‖vδ‖V‖wδ‖W
≥ βδ ∀µ ∈ P. (6.18)

The reduced basis approximation inherits the same Petrov-Galerkin structure: Given some µ ∈ P,
find urb(µ) ∈ Vrb such that

a(urb(µ), wrb;µ) = f(wrb;µ), ∀wrb ∈Wµ
rb,

and evaluate
srb(µ) = `(urb(µ);µ),

where the test and trial spaces are taken to be of the form

Vrb = span{uδ(µn) | 1 ≤ n ≤ N}, Wµ
rb = span{Aµδ uδ(µn) | 1 ≤ n ≤ N},

for a common set of parameter points {µn}Nn=1. The so-called inner supremizer operator Aµδ : Vδ →
Wδ is defined by

(Aµδ vδ, wδ)W = a(vδ, wδ;µ), ∀ vδ ∈ Vδ, ∀wδ ∈Wδ,

1 We consider here a primal approximation. However, we can readily extend the approach to a primal-dual
formulation as described for coercive problems in Sect. 6.3. See also [28].
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which can be shown to realize the supremum:

βδ = inf
vδ∈Vδ\{0}

sup
wδ∈Wδ\{0}

a(vδ, wδ;µ)

‖vδ‖V‖wδ‖W
= inf
vδ∈Vδ\{0}

a(vδ, A
µ
δ vδ;µ)

‖vδ‖V‖Aµδ vδ‖W
.

Applying the inner supremizer and the Cauchy-Schwarz inequality implies

sup
wδ∈Wδ\{0}

a(vδ, wδ;µ)

‖vδ‖V‖wδ‖W
= sup
wδ∈Wδ\{0}

(Aµδ vδ, wδ)W
‖vδ‖V‖wδ‖W

≤ sup
wδ∈Wδ\{0}

‖Aµδ vδ‖W‖wδ‖W
‖vδ‖V‖wδ‖W

=
‖Aµδ vδ‖2W

‖vδ‖V‖Aµδ vδ‖W
=

a(vδ, A
µ
δ vδ;µ)

‖vδ‖V‖Aµδ vδ‖W
,

for all ∀vδ ∈ Vδ such that

βδ ≤ inf
vδ∈Vδ\{0}

a(vδ, A
µ
δ vδ;µ)

‖vδ‖V‖Aµδ vδ‖W
≤ βδ.

The particular ansatz of the test and trial spaces ensures stability of the reduced basis approximation
as seen by the following development

inf
vrb∈Vrb\{0}

sup
wrb∈Wµ

rb\{0}

a(vrb, wrb;µ)

‖vrb‖V‖wrb‖W
= inf
vrb∈Vrb\{0}

a(vrb, A
µ
δ vrb)W

‖vrb‖V‖Aµδ vrb‖W
≥ inf
vδ∈Vδ\{0}

a(vδ, A
µ
δ vδ)W

‖vδ‖V‖Aµδ vδ‖W
= βδ,

where we used again that A
µ
δ vrb is the supremizer but this time of the supremum over Wµ

rb\{0}
rather than Wδ\{0}. The arguments are identical can be done for any supremum. Therefore, this
ultimately guarantees that the reduced basis inf-sup constant

βrb(µ) = inf
vrb∈Vrb\{0}

sup
wrb∈Wµ

rb\{0}

a(vrb, wrb;µ)

‖vrb‖V‖wrb‖W
≥ βδ ∀µ ∈ P, (6.19)

is bounded from below by the truth inf-sup constant βδ, for any µ ∈ P and it holds

‖uδ(µ)− urb(µ)‖V ≤
(

1 +
γ(µ)

βδ(µ)

)
inf

vrb∈Vrb

‖uδ(µ)− vrb‖V,

which is the analogue of (3.7) for non-coercive problems. Observe that the approximation is provided
by Vrb and stability (through βrb) by Wµ

rb.
The offline-online computational strategies, as well as the a posteriori error estimation, are based

on the same arguments as in Chapter 4 for the coercive case. We note that the inner supremizer
operator can be written in the affine form under the affinity assumption (3.11) on a( · , · ;µ). In
particular, from (6.19), we can obtain that

ηV =
‖r̂δ(µ)‖V
βLB(µ)

,

where βLB(µ) is a lower bound of inf-sup constant βδ(µ) defined in (6.18) and can be computed by
means of the successive constrain method (SCM) procedure used for the lower bound of coercivity
constants [61, 145].

An interesting case of noncoercive problems is given by Stokes problems where approximation
stability is guaranteed by the fullfillment of an equivalent inf-sup stability condition on the pressure
term with reduced basis approximation spaces properly enriched [149, 140]. Error bounds can be
developed in the general noncoercive framework [145, 48] or within a penalty setting [47].
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Fig. 6.15: Subdomain division (left) and the finite element mesh (right) for the three-dimensional
Graetz convective problem.

6.5 Illustrative Example 7: a 3D parametrized Graetz channel

In this final numerical example, we return to a classic problem, dealing with forced steady heat
convection combined with heat conduction in a duct with walls at different temperature and of
different lengths. The first segment of the duct has cold walls, while the second segment has hot
walls. The flow has an imposed temperature at the inlet and a known convection field, i.e., a given
parabolic Poiseuille-type velocity profile. From an engineering point of view, this example illustrates
the application of convection and conduction analysis to an important class of heat transfer problems
in fluidic devices. From a physical point of view, the problem illustrates many aspects of steady
convection-diffusion phenomena such as heat transfer into a channel, forced convection with an
imposed velocity profile and heat conduction through walls and insulation [5]. The Péclet number,
providing a measure of relative axial transport velocity field, and the length of the hot portion of
the duct are only some of the interesting parameters used to extract average temperatures.

The forced heat convection flows into a channel that is divided into two parts, illustrated in
Fig. 6.15 (left), such that Ωo(µ) = Ω1

o ∪Ω2
o (µ). Within the first part Ω1

o (in blue) the temperature
is kept constant and the flow has a given convective field. The length of the axis x of Ω2

o (µ), relative
to the length of Ω1

o , is given by the geometrical parameter µ[1]. To maintain a common notation as
in Section 6.2 we denote the domains Ωo(µ) and Ω2

o (µ) despite the fact that the only geometrical
parameter is µ[1]. The heat transfer between the domains can be taken into account by means of the
Péclet number, labeled as the physical parameter µ[2]. A constant heat flux is imposed on the walls
of the right domain Ω2

o (µ), which is the third parameter µ[3]. The ranges of the three parameters
are the following:

µ = (µ[1], µ[2], µ[3]) ∈ P = [1.0, 10.0]× [0.1, 100.0]× [−1.0, 1.0].

At the inlet of Ω1
o and on its walls, homogeneous boundary conditions are imposed. At the interface

between Ω1
o and Ω2

o (µ), the continuity of the temperature and the heat flux are imposed. At the
outlet of Ω2

o (µ), denoted by Γ2,outlet(µ), a homogeneous Neumann boundary condition is imposed.
On the lateral walls of Ω2

o (µ), denoted by Γ2,side(µ), the heat flux is imposed trough a Neumann
boundary condition given by the parameter µ[3]. The non-symmetric bilinear and linear forms of
the problem are given by:
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Fig. 6.16: Maximum (over Ph) error for the primal and dual problem (left) and the average (over
Ph) error and estimator for the field variable and output functional (right) with respect to the
number of basis functions employed for the thtee-dimensional Graetz channel.

ao(w, v;µ) =
1

µ[2]

∫
Ωo(µ)

∇w · ∇v +

∫
Ωo(µ)

10
(
x2(1− x2) + x3(1− x3)

)
∂x1w v,

fo(v) = µ[3]

∫
Γ2,side(µ)

v.

The output of interest so(µ) is

so(µ) =

∫
Γ2,outlet(µ)

uo(µ).

It is worth mentioning that the aforementioned output is non-compliant and the state equation
is a non-symmetric operator. The finite element method, employing first order elements, is used
as the truth model. In Fig. 6.15(right) the mesh of the reference domain is reported, and features
51’498 elements. The basis functions have been obtained by orthogonalization, through a Gram-
Schimdt procedure, of snapshots selected by a greedy approach across Ph with cardinality 10’000.
In Fig. 6.16 (left) the graph shows the maximum error (over Ph) with respect to the number of basis
functions employed and Fig. 6.16 (right) depicts the average (over Ph) error and estimator for the
field variable and the output functional with respect to the number of basis functions employed.
One can clearly observe the quadratic convergence of the output functional due to the primal-dual
reduced basis approximation.

In Fig. 6.17, the outcomes provided by the RBM, for two different values of the Péclet number µ[2]

are reported. In particular, µ = (2.0, 0.1, 1.0) and µ = (2.0, 100.0, 1.0) have been considered. These
two cases show the very different physics induced by the Péclet number: a conduction phenomenon
without a thermal boundary layer and a well developed thermal boundary layer when the convective
field is dominating, respectively.

In the following, the representative solutions provided by the truth (finite element) model and
the RBM for three different values of the Péclet number µ[2] are reported in Figure (6.18)–(6.20).
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Fig. 6.17: Temperature field, provided by the reduced basis solution when (left) µ = (2.0, 0.1, 1.0),
without a thermal boundary layer and (right) µ = (2.0, 100.0, 1.0), showing a well developed thermal
boundary layer.

N ηen,av effen,max effen,av
5 0.98 21.54 3.51
10 0.10 26.05 5.69
15 0.013 20.78 7.29
20 4.0e-3 35.33 8.27

N ηs,av effs,max effs,av
5 0.96 18.45 5.78
10 0.012 24.82 7.26
15 0.0017 19.64 9.22
20 0.16e-5 26.86 11.38

Table 6.4: Error bounds and output error bounds with effectivity metrics as function of N for the
three-dimensional Graetz problem for the error in the solution urb(µ) (left) and the output srb(µ)
(right).

In particular, µ = (2.0, 0.1, 1.0), µ = (2.0, 35.0, 1.0) and µ = (2.0, 100.0, 1.0) have been chosen. The
pointwise error is reported too.

In Tab. 6.4 the output error bounds and solution error bounds, respectively, as well as effectivity
metrics as function of basis functions employed are presented. The values have been averaged over
2’000 samples and we observe again the expected quadratic convergence of the output and very
reasonable values of the effectivities.
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(a) (b) (c)

Fig. 6.18: Comparison between the truth model (a), the reduced basis approximation (b) for µ =
(2.0, 0.1, 1.0). The pointwise error between the two solutions is reported in (c).

(a) (b) (c)

Fig. 6.19: Comparison between the truth model (a), the reduced basis approximation (b) for µ =
(2.0, 35.0, 1.0). The pointwise error between the two solutions is reported in (c).

(a) (b) (c)

Fig. 6.20: Comparison between the truth model (a), the reduced basis approximation (b) for µ =
(2.0, 100.0, 1.0). The pointwise error between the two solutions is reported in (c).
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Mathematical Preliminaries

A.1 Banach and Hilbert spaces

Basic definitions

Let us start with a couple of definitions: Let V be a vector space on R (all the following definitions
and results can also be extended to the field of complex numbers C).

• For a set {w1, . . . , wN} ⊂ V of elements of V we denote by

span{w1, . . . , wN} =

{
v ∈ V

∣∣∣∣∣ v =

N∑
n=1

αnwn, αn ∈ R

}

the linear subspace spanned by the elements w1, . . . , wN .

• The space V is of finite dimension if there exists a maximal set of linearly independent elements
v1, . . . , vN , otherwise V is of infinite dimension.

• A norm ‖ · ‖V on V is an application ‖ · ‖V : V→ R such that

(i) ‖v‖V ≥ 0, ∀v ∈ V and ‖v‖V = 0 if and only if v = 0;

(ii) ‖αv‖V = |α| ‖v‖V, ∀α ∈ R, v ∈ V;

(iii) ‖u+ v‖V ≤ ‖u‖V + ‖v‖V, ∀u, v ∈ V.

• The pair (V, ‖ · ‖V) is a normed space and we can define a distance function d(u, v) = ‖u− v‖V
to measure the distance between two elements u, v ∈ V.

• A semi-norm on V is an application | · |V : V→ R such that |v|V ≥ 0 for all v ∈ V and (ii) and
(iii) above are satisfied. In consequence, a semi-norm is a norm if and only if |v|V = 0 implies
v = 0.

• Two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if there exists two constants C1, C2 > 0 such that

C1 ‖ · ‖1 ≤ ‖ · ‖2 ≤ C2 ‖ · ‖1, ∀v ∈ V. (A.1)
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Linear forms

Let (V, ‖ · ‖V) be a normed space. Then, we define the following notions.

• An application F : V→ R is said to be linear, a functional or a linear form if

F (u+ v) = F (u) + F (v), ∀u, v ∈ V,
F (αu) = αF (u), ∀α ∈ R, u ∈ V.

• F is bounded if there exists a constant C > 0 such that

|F (v)| ≤ C ‖v‖V, ∀v ∈ V.

• F is continuous if for all ε > 0 there exists a δε > 0 such that

‖u− v‖V ≤ δε ⇒ |F (u)− F (v)| < ε.

As a consequence of these definitions, one can show that the notion of continuity and boundedness
is equivalent for linear forms.

• The dual space of the normed space (V, ‖ · ‖V) denoted by (V′, ‖ · ‖V′) is defined by

V′ =
{
F : V→ R

∣∣ F is linear and continuous
}
,

endowed with the norm

‖F‖V′ = sup
v∈V,v 6=0

|F (v)|
‖v‖V

, ∀F ∈ V′.

Bilinear forms

• A bilinear form a( · , · ) acting on the vector spaces V and W is given as

a : V×W→ R,
(u, v) 7→ a(u, v),

and is linear with respect to each of its arguments.

• Let V and W be endowed with the norms ‖ · ‖V and ‖ · ‖W. A bilinear form a( · , · ) is continuous
if there exists a constant γ > 0 such that

|a(u, v)| ≤ γ ‖u‖V ‖v‖W, ∀u, v ∈ V.

• If V = W, a bilinear form a is coercive if there exists a constant α > 0 such that

a(v, v) ≥ α ‖v‖2V, ∀v ∈ V.
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Banach and Hilbert spaces

We first introduce the notation of a Banach space.

• Let {vn}n∈N by a sequence in a normed space (V, ‖ · ‖V). This sequence is a Cauchy sequence if

lim
n,m→∞

‖vn − vm‖V = 0.

• A normed space (V, ‖ · ‖V) is a Banach space if any Cauchy sequence in V converges to an
element in V (where the convergence is measured with respect to the norm ‖ · ‖V).

Hilbert spaces are particular Banach spaces. Let us begin with the following definitions.

• A inner product in a vector space V is an application ( · , · )V : V×V→ R with the properties:

(i) (u, v)V ≥ 0, ∀v ∈ V and (u, u)V = 0 if and only if u = 0;

(ii) (u, v)V = (v, u)V, ∀u, v ∈ V;

(iii) (αu+ βv,w)V = α(u,w)V + β(v, w)V, ∀α, β ∈ R, u, v, w ∈ V.

We therefor recognize that a inner product on (V, ‖ · ‖V) is a continuous and coercive bilinear
form.

The Cauchy-Schwarz inequality

|(u, v)V| ≤
√

(u, u)V
√

(v, v)V, ∀u, v ∈ V,

is a simple consequence of the definition of the inner product. Let V be a vector space endowed
with an inner product. Then, define

‖v‖V =
√

(v, v)V, ∀v ∈ V,

and as an immediate consequence of the Cauchy-Schwarz inequality, there holds

|(u, v)V| ≤ ‖u‖V ‖v‖V, ∀u, v ∈ V.

In addition, (V, ‖ · ‖V) is a normed space, since (relying on the definition of the inner product)

(i) ‖v‖V =
√

(v, v)V ≥ 0, ∀v ∈ V and ‖v‖V = 0 ⇔ (v, v)V = 0 ⇔ v = 0;

(ii) ‖αv‖V =
√

(αv, αv)V =
√
α2(v, v)V = |α|

√
(v, v)V, ∀α ∈ R, v ∈ V;

(iii) As a consequence of the Cauchy-Schwarz inequality we obtain

‖u+ v‖2V = (u+ v, u+ v)V = (u, u)V + (v, v)V + 2(u, v)V

≤ (u, u)V + (v, v)V + 2
√

(u, u)V
√

(v, v)V = (‖u‖V + ‖v‖V)
2
, ∀u, v ∈ V,

so that ‖u+ v‖V ≤ ‖u‖V + ‖v‖V for all u, v ∈ V.

• A Hilbert space is a Banach space whose norm is induced by an inner product.

Let us now recall some elementary results from functional analysis.



96 A Mathematical Preliminaries

Theorem A.1 (Riesz representation). Let V be a Hilbert space. For any F ∈ V′, there exists
an element v ∈ V such that

(v, w)V = F (w), ∀w ∈ V,

and
‖F‖V′ = ‖v‖V.

Theorem A.2 (Hilbert Projection Theorem). Let V be a Hilbert space and M ⊂ V a closed
subspace of V. Then, for any v ∈ V, there exists a unique PMv ∈M such that

‖PMv − v‖V = inf
w∈M

‖w − v‖V.

In addition, the infimum is characterized by PM ∈M such that (v − PMv, w)V = 0 for any w ∈M
(thus v − PMv ∈M⊥) and PMv = v for all v ∈M . The operator PM : V→M is linear and called
the orthogonal projection onto M .

A.2 Lax-Milgram and Banach-Nečas-Babuška theorem

Many problems in science and engineering can be formulated as: find u ∈ V such that

a(u, v) = F (v), ∀v ∈ V, (A.2)

where V is a Hilbert space, a : V × V → R a bilinear form and F ∈ V′ a linear form. Then, the
following theorem provides conditions to ensure a solution to such a problem exists, is unique and
stable with respect to the data.

Theorem A.3 (Lax-Milgram Theorem). Let V be a Hilbert space, a : V×V→ R a continuous
and coercive bilinear form and F ∈ V′ a continuous linear form. Then, problem (A.2) admits a
unique solution u ∈ V. Further, there holds that

‖u‖V ≤
1

α
‖F‖V′ ,

where α > 0 is the coercivity constant of a( · , · ).

A second class of problems can be defined as: find u ∈ V such that

a(u, v) = F (v), ∀v ∈W, (A.3)

where V and W are Hilbert spaces, a : V ×W → R is a bilinear form and F ∈ W′ a linear form.
Then, the following theorem provides conditions so that a solution to such a problem exists, is
unique and stable with respect to the data. Note that we assume here that V and W are Hilbert
spaces, which is not necessary as V can be taken as a Banach space and W a reflexive Banach space.

Theorem A.4 (Banach-Nečas-Babuška Theorem). Let V and W be Hilbert spaces. Let a :
V ×W → R be bilinear and continuous and f ∈ W′. Then, (A.3) admits a unique solution if and
only if
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(i) there exists a constant β > 0 such that for all v ∈ V there holds

β ‖v‖V ≤ sup
w∈W\{0}

a(v, w)

‖w‖W
; (A.4)

(ii) for all w ∈W, {
a(v, w) = 0, ∀v ∈ V

}
implies that w = 0.

Condition (A.4) is referred to as inf-sup condition as it is equivalent to the following statement:

β ≤ inf
v∈V\{0}

sup
w∈W\{0}

a(v, w)

‖v‖V‖w‖W
.

A.3 Sobolev spaces

Let Ω be an open subset of Rd and k a positive integer. Let L2(Ω) denote the space of square
integrable functions on Ω.

• The Sobolev space of order k on Ω is defined by

Hk(Ω) =
{
f ∈ L2(Ω)

∣∣ Dαf ∈ L2(Ω), |α| ≤ k
}
,

where Dα is the partial derivative

Dα =
∂|α|

∂xα1

d · · · ∂x
αd
d

,

in the sense of distributions for the multi-index α = (α1, . . . , αd) ∈ Nd using the notation
|α| = α1 + . . . + αd.

It holds by construction that Hk+1(Ω) ⊂ Hk(Ω) and that H0(Ω) = L2(Ω). Hk(Ω) is a Hilbert
space with the inner product

(f, g)Hk(Ω) =
∑

α∈Nd,|α|≤k

∫
Ω

(Dαf)(Dαg),

and the induced norm

‖f‖Hk(Ω) =
√

(f, f)Hk(Ω) =

√√√√ ∑
α∈Nd,|α|≤k

∫
Ω

|Dαf |2.

We also can endow Hk(Ω) by a semi-norm given by

‖f‖Hk(Ω) =

√√√√ ∑
α∈Nd,|α|=k

∫
Ω

|Dαf |2.

Finally, the following (simplified) theorem provides more intuitive information on the regularity of
such spaces.

Theorem A.5 (Sobolev embedding Theorem). Let Ω be an open subset of Rd. Then,

Hk(Ω) ⊂ Cm(Ω),

for any k > m+ d
2 .
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A.4 Galerkin Approximation and Cea’s lemma

One way to find an approximation to the solution of (A.2) (resp. (A.3) with some modifications)
is to introduce a finite dimensional subspace Vδ ⊂ V and consider the solution of the following
problem: find uδ ∈ Vδ such that

a(uδ, vδ) = F (vδ), ∀vδ ∈ Vδ. (A.5)

We denote the dimension of the discrete space Vδ by Nδ = dim(Vδ). Given any basis function
{ϕ1, . . . , ϕNδ} of Vδ, we can represent the approximation uδ ∈ Vδ by the vector uδ ∈ RNδ through
the relation

uδ =

Nδ∑
i=1

(uδ)i ϕi.

Then, we can write (A.5) as: find uδ ∈ RNδ such that

Nδ∑
i=1

(uδ)i a(ϕi, vδ) = F (vδ), ∀vδ ∈ Vδ.

By linearity of a( · , · ) in the second variable, we observe that testing the equation for any vδ ∈ Vδ
is equivalent to testing for all basis functions only, i.e., find find uδ ∈ RNδ such that

Nδ∑
i=1

(uδ)i a(ϕi, ϕj) = F (ϕj), ∀j = 1, . . . , Nδ.

We now recognize that this is a system of Nδ linear algebraic relations that can be written in matrix
form as

Aδ uδ = fδ,

where (Aδ)ij = a(ϕj , ϕi) and (fδ)i = f(ϕi) for all i, j = 1, . . . , Nδ.
We can now start to think about quantifying the quality of the approximation uδ of u. For this,

we introduce a sequence of finite dimensional approximation spaces {Vδ}δ>0 such that

• Vδ ⊂ V, ∀δ > 0,

• dim(Vδ) <∞, ∀δ > 0,

• limδ→0 infvδ∈Vδ ‖v − vδ‖V = 0, ∀v ∈ V.

Note that in the spirit of reduced basis methods, the approximation space Vδ is supposed to be
sufficiently rich to have an acceptable error of the Galerkin approximation ‖uδ − u‖V. The consid-
erations of numerical analysis that are outlined within this appendix are slightly different as here
one is interested in proving that limδ→0 uδ = u and quantify convergence rates with respect to the
discretization parameter δ.

We endow the discrete space with the (inherited) norm ‖ · ‖V and observe that the Lax-Milgram
Theorem also applies to (A.5) as Vδ ⊂ V. We have a guarantee of existence and uniqueness of the
approximation uδ as well as the stability result

‖uδ‖V ≤
1

α
‖F‖V′ .
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As a consequence, the ‖uδ‖V is uniformly bounded with respect to δ and stable with respect to
perturbations in the data F . Indeed, let ûδ ∈ Vδ be the solution to the perturbed system

a(ûδ, vδ) = F̂ (vδ), ∀vδ ∈ Vδ.

Then it holds that
a(uδ − ûδ, vδ) = F (vδ)− F̂ (vδ), ∀vδ ∈ Vδ,

and the stability result implies

‖uδ − ûδ‖V ≤
1

α
‖F − F̂‖V′ .

This means that any perturbation of the data results in a controllable error in the approximation.
Finally, we recall the following result.

Lemma A.6 (Cea’s Lemma). Let V be a Hilbert space, a : V×V→ R a continuous and coercive
bilinear form and F ∈ V′ a continuous linear form. Let further Vδ be a conforming approximation
space Vδ ⊂ V. Then, it holds that

‖u− uδ‖V ≤
γ

α
inf
vδ∈Vδ

‖u− vδ‖V,

where γ, α denote the continuity and coercivity constants respectively.

Corollary A.7. As we assumed that limδ→0 infvδ∈Vδ ‖v − vδ‖V = 0, for all v ∈ V we immediately
conclude that

lim
δ→0

uδ = u.

Cea’s Lemma is actually not difficult to prove. Recall indeed that

a(u, v) = F (v), ∀v ∈ V,
a(uδ, vδ) = F (vδ), ∀vδ ∈ Vδ,

so that
a(u− uδ, vδ) = 0, ∀vδ ∈ Vδ,

which is known as Galerkin orthogonality. Note that the conditions on the bilinear form a( · , · ),
i.e., coercivity, symmetry and bilinearity, imply that it is a inner product on V. Therefore, uδ is the
othogonal projector, see Theorem A.2, of u onto Vδ using the inner product a( · , · ) and its induced
norm which, however, differs from ‖ · ‖V in the general case. Cea’s lemma quantifies the relation
between the best approximation for the norm ‖ · ‖V and the one induced by a( · , · ) through the
norm equivalence, see (A.1), established by the coercivity and continuity constants α and γ.

Due to the coercivity, the Galerkin orthogonality and the continuity we can develop

α‖u− uδ‖2V ≤ a(u− uδ, u− uδ) = a(u− uδ, u− vδ) + a(u− uδ, vδ − uδ︸ ︷︷ ︸
∈Vδ

)

= a(u− uδ, u− vδ) ≤ γ‖u− uδ‖V‖u− vδ‖V,

which yields Cea’s lemma by taking the infimum over all vδ ∈ Vδ.
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The approximation to problem of the second class (A.3) is similar with the difference that we
also need to define a basis for a discrete test space Wδ ⊂W. We then define the approximation by
seeking uδ ∈ Vδ such that

a(uδ, wδ) = F (wδ), ∀wδ ∈Wδ. (A.6)

If the dimensions of the trial and test spaces Vδ and Wδ are equal, then this also results in a square
linear system. Solvability and stability is in this case not inherited from the continuous formulation
in contrast to coercive problems. However, the Banach-Nečas-Babuška Theorem can be applied to
the discrete formulation so that the two conditions

(i) there exists a constant βδ > 0 such that for all vδ ∈ Vδ it holds

βδ ‖vδ‖V ≤ sup
wδ∈Wδ\{0}

a(vδ, wδ)

‖wδ‖W
;

(ii) for all wδ ∈Wδ, {
a(vδ, wδ) = 0, ∀vδ ∈ Vδ

}
implies that wδ = 0;

imply existence of a unique solution. Again, the former condition is equivalent to

βδ ≤ inf
vδ∈Vδ\{0}

sup
wδ∈Wδ\{0}

a(vδ, wδ)

‖vδ‖V‖wδ‖W
.

Assume that these conditions are satisfied, then for any vδ ∈ Vδ it holds

‖u− uδ‖V ≤ ‖u− vδ‖V + ‖vδ − uδ‖V.

Combining the discrete inf-sup stability, the Galerkin orthogonality and the continuity yields

βδ ‖vδ − uδ‖V ≤ sup
wδ∈Wδ\{0}

a(vδ − uδ, wδ)
‖wδ‖W

= sup
wδ∈Wδ\{0}

a(vδ − u,wδ)
‖wδ‖W

≤ γ sup
wδ∈Wδ\{0}

‖vδ − u‖V‖wδ‖W
‖wδ‖W

= γ ‖vδ − u‖V

so that

‖u− uδ‖V ≤
(

1 +
γ

βδ

)
inf
vδ∈Vδ

‖u− vδ‖V,

which is the analogue of Cea’s lemma for non-coercive but inf-sup stable approximations. Note that
optimally convergent approximations can thus be obtained if βδ ≥ β̂ > 0 as δ → 0 for some β̂ that
is independent of the discretization parameter δ.
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