
Jan S Hesthaven
EPFL-SB-MATHICSE-MCSS
jan.Hesthaven@epfl.ch

Reduced order models for parameterized
problems: Lecture One

DTU 2016

w/ assistance from B. Stamm (Aachen, D) and G. Rozza (SISSA, IT)

mailto:jan.Hesthaven@epfl.ch

Overview of the lectures

Lecture 1: Introduction, motivation, basics

Lecture 2: Certified reduced methods

Lecture 3: The ‘ non’s ’ etc

Free: https://infoscience.epfl.ch/record/213266?ln=en

Hesthaven, Rozza, Stamm
Certified Reduced Basis Methods for Parametrized
Partial Differential Equations
Springer Briefs in Mathematics, 2015

http://infoscience.epfl.ch/record/213266?ln=en

Overall goals

Understand Reduced models

Overall goalsPart II - Trends in Heterogenous
Desktop Computing

10 Hardware trends:
Uniprocessor performance

11

8/29/2007 CS194 Lecure 14

Revolution is Happening Now

• Chip density is
continuing increase
~2x every 2 years
• Clock speed is not
• Number of processor

cores may double
instead

• There is little or no
hidden parallelism
(ILP) to be found

• Parallelism must be
exposed to and
managed by software

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Power wall: Nuclear power plant for each
machine
ILP wall: Automatic maximum resource
utilization increasingly difficult
Memory wall: Processor speed improves
faster than memory bandwidth.

P / CV 2f

- Performance can only achieved by concurrent computations as uniprocessor performance has stalled.

More performance? (2003-)
- uniprocessor performance increase only
x2/5years(?)
- multiprocessor performance increase x2/2
years implies increased architectural parallelism.
Performance problem is a software problem!

Major challenges:
- Rewrite sequential code
- Expose parallelism
- Deal with communication patterns

Multicore era!

Memory wall + Power wall + ILP wall = Brick wall

CPUs vs. GPUs trends!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*(=?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

Source: Nvidia Programming Guide

“Performance Gap”
(theoretical peak)}

Double precision support in GPUs
(scientific computing)

- GPUs in every PC (massive volume and potential impact)
- TFlops vs. 100 Gflops
- In current heterogenous hardware, CPU manages GPU

Programmable

} HPC in a
desktop!

~x2 transistors every 18 months
(moore’s law since mid 70s)

12

CPUs vs. GPUs trends

Source: Nvidia Programming Guide

!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*(=?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

“Memory wall”
- Processor speed

improves faster than
memory bandwidth

- slow off-chip
bandwidth for GPUs

Determining factor in application performance likely to be memory access
patterns rather than flop count (cf. 13 dwarfs due to P. Collella & D. Patterson).

- approximately x5 difference in bandwidth capacity

“Memory Gap”}
CPU: ~x2 every 10 years
GPU: ~x2 every 3-4 years

13

Paradigm shift in Scientific Computing

Inevitable paradigm shift:

 Parallelism and heterogeneity will be future standard

- New opportunities for solving larger, more complex and new problems.

- Increased focus on cost (perf/$) and energy efficiency (perf/watt) to secure low

maintenance cost and value for the money.

Conclusion: We need to rethink and redesign computational strategies and adopt new

programming models to take advantage of new multi- and many-core technologies.

Multi- and many-core hardware is new standard

Consequences and challenges

- Affects hardware from embedded systems, workstations to super computing clusters

- Compilers and libraries most often don’t hide these issues and are limited

- Traditional computing methods run slower on new hardware and/or cannot fully

exploit architectural features.

- Performance-portability requires algorithms which can expose hardware features.

14

General-Purpose GPU Computing

Many different applications from science and engineering show-cased in Nvidia’s
CUDA zone (mostly by HPC researchers). All applications written in the CUDA
framework after 2007! 15

16

GPUs vs. CPUs.
- GPUs are forerunners for future many-core architectures
- Both GPUs and CPUs are fast
- CPUs are optimized for reducing latency of few individual tasks (task parallelism)
- GPUs are optimized for maximizing throughput of many similar tasks (data parallelism)
- Future: integration going to happen to compensate for memory wall on-chip.

Source: http://en.wikipedia.org/wiki/CUDA

Potential performance bottleneck: data-transfer

- PCI-Express link bandwidth ~5GB/s
- GPU on-chip bandwidth <192GB/s

• Highly scalable stream-processing architectures optimized for high
throughput.

• Massively parallel (SIMT) processing devices

• 100s of cores, 1000s of threads

• Power-efficient (high perf/W)

• Available (almost) everywhere (some affordable, <$699)
(fx mass produced commodity graphics cards)

• High on-chip bandwidth (<192GB/s)
High compute capability (<515Gflops/s, double)

• Programmable using standard languages in combination
with new programming models CUDA and OpenCL (since 2006) and
new extensions of existing ones, e.g. OpenACC.

• Can act as a co-processor to CPU (or alone in next GPU generation)
(off-load computational intensive tasks from the CPU to GPU)

Modern General-Purpose GPUs (GPGPUS)
17

Research and education in Graphics Processing Units in Denmark

Established in August 2008 and is a unique
national competence center and hardware
laboratory.

- Development of efficient algorithms
- High-performance scientific computing
- Performance profiling, auto-tuning and prediction
- Software development
- Education

Collaboration: within both academia and industry.
Research projects: several ongoing B.Sc. - Ph.D.

http://gpulab.imm.dtu.dk
With support 2010-2013 from national FTP grant
“Desktop Computing on Consumer Graphics Cards”
PI: Prof. Per Christian Hansen

18

WHAT do we mean by ‘reduced models’ ?

WHY should we care ?

WHEN could it work ?

HOW do we know ?

DOES it work ?

Understand Reduced models

WHAT’s next ?

Overall goalsPart II - Trends in Heterogenous
Desktop Computing

10 Hardware trends:
Uniprocessor performance

11

8/29/2007 CS194 Lecure 14

Revolution is Happening Now

• Chip density is
continuing increase
~2x every 2 years
• Clock speed is not
• Number of processor

cores may double
instead

• There is little or no
hidden parallelism
(ILP) to be found

• Parallelism must be
exposed to and
managed by software

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Power wall: Nuclear power plant for each
machine
ILP wall: Automatic maximum resource
utilization increasingly difficult
Memory wall: Processor speed improves
faster than memory bandwidth.

P / CV 2f

- Performance can only achieved by concurrent computations as uniprocessor performance has stalled.

More performance? (2003-)
- uniprocessor performance increase only
x2/5years(?)
- multiprocessor performance increase x2/2
years implies increased architectural parallelism.
Performance problem is a software problem!

Major challenges:
- Rewrite sequential code
- Expose parallelism
- Deal with communication patterns

Multicore era!

Memory wall + Power wall + ILP wall = Brick wall

CPUs vs. GPUs trends!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*(=?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

Source: Nvidia Programming Guide

“Performance Gap”
(theoretical peak)}

Double precision support in GPUs
(scientific computing)

- GPUs in every PC (massive volume and potential impact)
- TFlops vs. 100 Gflops
- In current heterogenous hardware, CPU manages GPU

Programmable

} HPC in a
desktop!

~x2 transistors every 18 months
(moore’s law since mid 70s)

12

CPUs vs. GPUs trends

Source: Nvidia Programming Guide

!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*(=?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

“Memory wall”
- Processor speed

improves faster than
memory bandwidth

- slow off-chip
bandwidth for GPUs

Determining factor in application performance likely to be memory access
patterns rather than flop count (cf. 13 dwarfs due to P. Collella & D. Patterson).

- approximately x5 difference in bandwidth capacity

“Memory Gap”}
CPU: ~x2 every 10 years
GPU: ~x2 every 3-4 years

13

Paradigm shift in Scientific Computing

Inevitable paradigm shift:

 Parallelism and heterogeneity will be future standard

- New opportunities for solving larger, more complex and new problems.

- Increased focus on cost (perf/$) and energy efficiency (perf/watt) to secure low

maintenance cost and value for the money.

Conclusion: We need to rethink and redesign computational strategies and adopt new

programming models to take advantage of new multi- and many-core technologies.

Multi- and many-core hardware is new standard

Consequences and challenges

- Affects hardware from embedded systems, workstations to super computing clusters

- Compilers and libraries most often don’t hide these issues and are limited

- Traditional computing methods run slower on new hardware and/or cannot fully

exploit architectural features.

- Performance-portability requires algorithms which can expose hardware features.

14

General-Purpose GPU Computing

Many different applications from science and engineering show-cased in Nvidia’s
CUDA zone (mostly by HPC researchers). All applications written in the CUDA
framework after 2007! 15

16

GPUs vs. CPUs.
- GPUs are forerunners for future many-core architectures
- Both GPUs and CPUs are fast
- CPUs are optimized for reducing latency of few individual tasks (task parallelism)
- GPUs are optimized for maximizing throughput of many similar tasks (data parallelism)
- Future: integration going to happen to compensate for memory wall on-chip.

Source: http://en.wikipedia.org/wiki/CUDA

Potential performance bottleneck: data-transfer

- PCI-Express link bandwidth ~5GB/s
- GPU on-chip bandwidth <192GB/s

• Highly scalable stream-processing architectures optimized for high
throughput.

• Massively parallel (SIMT) processing devices

• 100s of cores, 1000s of threads

• Power-efficient (high perf/W)

• Available (almost) everywhere (some affordable, <$699)
(fx mass produced commodity graphics cards)

• High on-chip bandwidth (<192GB/s)
High compute capability (<515Gflops/s, double)

• Programmable using standard languages in combination
with new programming models CUDA and OpenCL (since 2006) and
new extensions of existing ones, e.g. OpenACC.

• Can act as a co-processor to CPU (or alone in next GPU generation)
(off-load computational intensive tasks from the CPU to GPU)

Modern General-Purpose GPUs (GPGPUS)
17

Research and education in Graphics Processing Units in Denmark

Established in August 2008 and is a unique
national competence center and hardware
laboratory.

- Development of efficient algorithms
- High-performance scientific computing
- Performance profiling, auto-tuning and prediction
- Software development
- Education

Collaboration: within both academia and industry.
Research projects: several ongoing B.Sc. - Ph.D.

http://gpulab.imm.dtu.dk
With support 2010-2013 from national FTP grant
“Desktop Computing on Consumer Graphics Cards”
PI: Prof. Per Christian Hansen

18

WHAT do we mean by ‘reduced models’ ?

WHY should we care ?

WHEN could it work ?

HOW do we know ?

DOES it work ?

Understand Reduced models

WHAT’s next ?

What we seek
What we need is an accurate way to evaluate the
solution at new parameter values at reduced
complexity.

What we seek
What we need is an accurate way to evaluate the
solution at new parameter values at reduced
complexity.

The Reduced Basis Method
Goal

Fast input-output procedure:

input: parameter value µ � D

output: sh(µ) = l(uh(µ);µ)

Lh(uh(µ);µ) = 0
P

D
E

so
lv

er

Reduced models ?

We do not consider reduced physics -

����E + �2E = f ��2E = f

�u
�t

+ u ·�u = ��p�u
�t

+ u ·�u = ��p + ��2u

� · u = 0

High-frequency vs low-frequency EM

vs

Viscous vs inviscid fluid flows

� · u = 0
vs

Reduced models ?

We do not consider reduced physics -

.. but reduced representations of the full problem

����E + �2E = f ��2E = f

�u
�t

+ u ·�u = ��p�u
�t

+ u ·�u = ��p + ��2u

� · u = 0

High-frequency vs low-frequency EM

vs

Viscous vs inviscid fluid flows

� · u = 0
vs

.. but WHY ?
Assume we are interested in

��2u(x, µ) = f(x, µ) x � �

µ
and wish to solve it accurately for many values of

‘some’ parameter

.. but WHY ?
Assume we are interested in

��2u(x, µ) = f(x, µ) x � �

µ
and wish to solve it accurately for many values of

‘some’ parameter

We can use our favorite numerical method

Ahuh(x, µ) = fh(x, µ)

For many parameter values, this is expensive
- and slow !

dim(uh) = N � 1

.. but WHY (con’t)

Assume we (somehow) know

uh(x, µ) � uRB(x, µ) = Va(µ) VT V = I

dim(a) = N dim(V) = N �N

.. but WHY (con’t)

Assume we (somehow) know

uh(x, µ) � uRB(x, µ) = Va(µ)

Then we can recover a solution for a new
parameter as little cost

(VT AhV)VT uh(µ) = VT fh(µ)

VT V = I

dim(a) = N dim(V) = N �N

.. but WHY (con’t)

Assume we (somehow) know

uh(x, µ) � uRB(x, µ) = Va(µ)

Then we can recover a solution for a new
parameter as little cost

(VT AhV)VT uh(µ) = VT fh(µ)

VT V = I

dim(a) = N

N �N N N

dim(V) = N �N

.. but WHY (con’t)

Assume we (somehow) know

uh(x, µ) � uRB(x, µ) = Va(µ)

Then we can recover a solution for a new
parameter as little cost

(VT AhV)VT uh(µ) = VT fh(µ)

VT V = I

dim(a) = N

N �N N N

dim(V) = N �N

.. if this behaves !

‣.. we know the orthonormal basis -

‣.. and it allows an accurate representation -

‣.. and we can evaluate RHS ‘fast’-

.. but WHY (con’t)

So IF

we can evaluate new solutions at cost -

uRB(µ)

V

O(N)

O(N)

‣.. we know the orthonormal basis -

‣.. and it allows an accurate representation -

‣.. and we can evaluate RHS ‘fast’-

.. but WHY (con’t)

So IF

we can evaluate new solutions at cost -

uRB(µ)

V

So WHY ? - a promise to
do more with less

O(N)

O(N)

When is that relevant ?

Examples in many application domains

‣ Optimization/inversion/control problems

‣ Simulation based data bases

‣ Uncertainty quantification

‣ Sub-scale models in multi-scale modeling

‣ In-situ/deployed modeling

When is that relevant ?

Examples in many application domains

‣ Optimization/inversion/control problems

‣ Simulation based data bases

‣ Uncertainty quantification

‣ Sub-scale models in multi-scale modeling

‣ In-situ/deployed modeling

Parametrized
Model Mh,N (RB)

Hierarchical Architecture

...Demonstration...

Patera et al. Certified Reduced Basis Methods 57
D. Knezevic et al, 2010

Typically seeks to approximate the transfer function

Before we continue

We consider projection based techniques, i.e.

uh(x, µ) � uRB(x, µ) = Va(µ)

There is a substantial literature for linear systems

A survey of model reduction by balanced truncation and some new results

SERKAN GUGERCINy* and ATHANASIOS C. ANTOULASy

Balanced truncation is one of the most common model reduction schemes. In this note, we present a survey of balancing
related model reduction methods and their corresponding error norms, and also introduce some new results. Five
balancing methods are studied: (1) Lyapunov balancing, (2) stochastic balancing, (3) bounded real balancing, (4) positive
real balancing and (5) frequency weighted balancing. For positive real balancing, we introduce a multiplicative-type
error bound. Moreover, for a certain subclass of positive real systems, a modified positive-real balancing scheme with
an absolute error bound is proposed. We also develop a new frequency-weighted balanced reduction method with a
simple bound on the error system based on the frequency domain representations of the system gramians. Two numerical
examples are illustrated to verify the efficiency of the proposed methods.

1. Introduction

Direct numerical simulation of dynamical systems
has been a successful means for studying complex physi-
cal phenomena. In this paper, we will examine linear
time invariant dynamical systems in state space form

GðsÞ:
_xxðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þDuðtÞ

!
, GðsÞ :¼ A B

C D

" #

, GðsÞ :¼s CðsI % AÞ%1BþD ð1Þ

where A 2 Rn&n, B 2 Rn&m, C 2 Rp&n, D 2 Rp&m. We
note that by abuse of notation, both the underlying
dynamical system and its transfer function are denoted
by G(s). However, for clarity in the transfer function
notation we will use ‘¼s ’ instead of only ‘¼’. In many
applications, such as circuit simulation, or time-depend-
ent PDE control problems, n is quite large, while the
number of inputs m and outputs p usually satisfies m,
p' n. In these large-scale settings, the system dimension
makes the computation infeasible due to memory, time
limitations and ill-conditioning. One approach to over-
coming this is through model reduction. The goal is
to produce a low dimensional system that has similar
response characteristics as the original system with far
lower storage requirements and evaluation time. The
resulting reduced model might be used to replace the
original system as a component in a large simulation
or it might be used to develop a low dimensional con-
troller suitable for real time applications.

The model reduction problem we are interested in
can be stated as follows: given the linear dynamical
system G(s) in (1), find a reduced order system Gr(s)

GrðsÞ:
_xxrðtÞ ¼ArxrðtÞþBruðtÞ
yrðtÞ¼CrxrðtÞþDruðtÞ

!
, GrðsÞ :¼

Ar Br

Cr Dr

" #

ð2Þ

where Ar 2 Rr&r, Br 2 Rr&m, Cr 2 Rp&r, Dr 2 Rp&m, with
r' n such that the following properties are satisfied:

(1) The approximation error ky% yrk is small, and
there exists a global error bound.

(2) System properties, like stability, passivity, are
preserved.

(3) The procedure is computationally efficient.

One model reduction scheme that is well grounded
in theory and most commonly used is the so-called
balanced model reduction first introduced by Mullis
and Roberts (1976) and later in the systems and control
literature by Moore (1981). To apply balanced reduc-
tion, first the system is transformed to a basis where
the states which are difficult to reach are simultaneously
difficult to observe. This is achieved by simultaneously
diagonalizing the reachability and the observability gra-
mians, which are solutions to the reachability and the
observability Lyapunov equations. Then, the reduced
model is obtained by truncating the states which have
this property. We will call this the Lyapunov balancing
method. When applied to stable systems, Lyapunov
balanced reduction preserves stability (Pernebo and
Silverman 1982) and provides a bound on the approxi-
mation error (Enns 1984), i.e. satisfies (1) and (2) above.
For small-to-medium-scale problems, Lyapunov balanc-
ing can be implemented efficiently. However, for large-
scale settings, exact balancing is expensive to implement
because it requires dense matrix factorizations and
results in a computational complexity of O(n3) and a
storage requirement of O(n2); hence does not satisfy
(3) above. In this case, approximate balanced reduction

International Journal of Control ISSN 0020–7179 print/ISSN 1366–5820 online # 2004 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/00207170410001713448

INT. J. CONTROL, 20 MAY 2004, VOL. 77, NO. 8, 748–766

Received in final form 21 April 2004.
Communicated by Dr. A. Astolfi.
*Author for communication. e-mail: gugercin@math.vt.

edu
yDepartment of Mathematics, Virginia Tech, Blacksburg,

VA, USA.
zDepartment of Electrical and Computer Engineering,

Rice University, Houston, TX, USA.

10 Z. Bai / Applied Numerical Mathematics 43 (2002) 9–44

methods which preserve exactly a limited number of parameters of the original model. The work of [25]
provides a survey of early work on these methods. Over the past several years, Krylov subspace based
techniques have emerged as one of the most powerful tools for reduced-order modeling of large-scale
systems. We would like to call the reader’s attention to recent surveys on the topic [27,29,3], which are
complimentary to this work.
In order to introduce first-time readers to this topic, we will begin with a tutorial of Krylov subspace

techniques for reduced-order modeling of linear dynamical systems, specifically, on moment-matching
methods based on the Lanczos process. Then we give an overview of the recent progress of other methods
for linear systems. We will also discuss the work which extends the Krylov subspace techniques for
reduced-order modeling of second-order, semi-second-order, and nonlinear systems. There are plenty of
questions remaining unsolved with regard to those methods discussed in this paper, particularly on semi-
second-order systems and nonlinear systems. We will list these open questions throughout the paper.
Our motivation for studying reduced-order modeling techniques stems from the need for efficient

simulation tools for dynamical systems arising in circuit simulation, structural dynamics and micro-
electromechanical systems (MEMS). We will report our experiences with case studies arising from these
applications.
To encourage first-time readers to try out some of approaches discussed in this paper, we have set up a

web site at http://www.cs.ucdavis.edu/∼bai to include basic implementation of some methods, along with
some test data. We hope this will also be regarded as an effort to exchange software and test problems
amongst researchers and practitioners who are interested in using these tools.
The rest of this paper is organized as follows. In Section 2, we introduce linear dynamical systems

and associated computational tasks and challenges. Then we give a tutorial on Lanczos process based
moment-matching methods for reduced-order modeling of linear systems. The remaining parts of
Section 2 are devoted to the discussion of some essential properties associated with linear dynamical
systems and how to preserve these properties in a reduced-order model, and finally we review other
reduced-order modeling methods for linear systems. In Section 3, we discuss the treatment of second-
order systems by the Krylov subspace based methods with the moment-matching property. Sections 4
and 5 report some preliminary work on the generalization of Krylov subspace techniques for semi-
second-order and nonlinear systems. Concluding remarks are in Section 6.
With a few exceptions, we follow the notational conventions used in [27,29]. Specifically, we use

boldface letters to denote vectors and matrices, 0 for zero vectors or matrices, I for the identity matrix, ek

for the kth unit vector (the kth column of I). The dimensions of these matrices and vectors are conformed
with dimensions used in the context, ·T denotes transpose, i=

√
−1, ℜ(s) is the real part of a complex

variable s and R, C denote the sets of real and complex numbers, respectively. We use Rm,n denotes
the set of rational functions with real numerator polynomial of degree at most m and real denominator
polynomial of degree at most n.

2. Linear dynamical systems

A continuous time-invariant (lumped) multi-input multi-output linear dynamical system is of the form
{

Cẋ(t) + Gx(t) = Bu(t),
y(t) = LTx(t),

(1)

Z. Bai / Applied Numerical Mathematics 43 (2002) 9–44 13

This is known as the pole-residue representation. pj = s0+1/λj are poles of the system,1 κj = −fjgj /λj

are residues, and ρ∞ = ∑
λj =0 fjgj is a constant, which corresponds to the poles at infinity (or zero

eigenvalues). Note that it costsO(N3) operations to diagonalize A, and onlyO(N) operations to evaluate
the transfer function H(s) for each given point s.
Unfortunately, in practice, diagonalization of A is prohibitive when it is ill-conditioned or is too large.

As a remedy for the possible ill-conditioning of diagonalization, we may use the numerically stable Schur
decomposition. Let A = QT QT be the Schur decomposition of A. Then

H(s) = lT
(
I − (s − s0)A

)−1
r =

(
QTl

)T(
I − (s − s0)T

)−1(
QTr

)
.

Now, it costs O(N2) to evaluate the transfer function H(s) at each given point s. Alternatively, one can
use the Hessenberg decomposition of A as suggested in [54].
To reduce the cost of diagonalizing A or computing its Schur decomposition for large N , we may

use partial eigendecomposition. This is also referred to as the modal superposition method, for example,
see [22]. By examining the pole-residue representation (6), it is easy to see that the motivation of this
approach comes from the fact that only a few poles (and associated eigenvalues) around the region of
frequencies of interest are necessary for the approximation of H(s). Those poles are called the dominant
poles. Therefore, to study the steady-state response to an input of the form u(t) = ũeiωt , where ũ is
a constant vector, we express the solution as x(t) = Skv(ω)eiωt , where Sk contains k selected modal
shapes (eigenvectors) of the matrix pair {C,G} needed to retain all the modes whose resonant frequencies
lie within the range of input excitation frequencies. Then one may solve the system

(
iωSTk CSk + STk GSk

)
v(ω) = STkBũ (7)

for v(ω). Once the selected dominant poles and their corresponding modal shapes Sk are computed, the
problem of computing the steady-state response is reduced to solving the k × k system (7). In practice, it
is typical that only a relatively small number of the modal shapes is necessary, i.e., k ≪ N . The problem
of finding a few modal shapes Sk within a certain frequency range is one of the well-known algebraic
eigenvalue problems in numerical linear algebra [4].

2.2. Reduced-order modeling

The desired attributes of reduced-order modeling of the linear dynamical system (1) include replacing
the full-order system by a system of the same type but with a much smaller state-space dimension
such that it has an admissible error between the full-order and reduced-order models. Furthermore, the
reduced-order model should also preserve essential properties of the full-order system. Such a reduced-
order model would let designers efficiently analyze and synthesize the dynamical behavior of the original
system within a tight design cycle. Specifically, given the linear dynamical system (1), we want to find a
reduced-order linear system of the same form

{
Cnż(t) + Gnz(t) = Bn u(t),
ỹ(t) = LT

nz(t),
(8)

1 By a simple exercise, it can be shown that the definition of poles and residues of the system is independent of the choice of
the expansion point s0.

Z. Bai / Applied Numerical Mathematics 43 (2002) 9–44 11

with initial condition x(0) = x0. Here t is the time variable, x(t) ∈ RN is a state vector, u(t) ∈ Rm

the input excitation vector, and y(t) ∈ Rp the output measurement vector. C,G ∈ RN×N are system
matrices, B ∈ RN×m and L ∈ RN×p are input and output distribution arrays, respectively. N is the state
space dimension and m and p are the number of inputs and outputs, respectively. In most practical cases,
we can assume that m and p are much smaller than N and m ! p.
Linear systems arise in many applications, such as the network circuit with linear elements [87],

structural dynamics analysis with only lumped mass and stiffness elements [22,23], linearization of
a nonlinear system around an equilibrium point [27], and a semi-discretization with respect to spatial
variables of a time-dependent differential-integral equations [73,88].
The matrices C and G in (1) are allowed to be singular, and we only assume that the pencil G + sC

is regular, i.e., the matrix G + sC is singular only for a finite number of values s ∈ C. The assumption
that G + sC is regular is satisfied for all applications we are concerned with that lead to systems of the
form (1). In addition, C and G in (1) are general nonsymmetric matrices. However, in some important
applications, C andG are symmetric, and possibly positive definite or positive semidefinite. For example,
with proper formulation, C and G are symmetric indefinite for a linear circuit network that consists of
only resistors, inductors and capacitors (in short, a linear RLC circuit). An important special case is RC
networks consisting of only resistors and capacitors; in this case, one of C and G is symmetric positive
definite. Note that when C is singular, the first equation in (1) is a first-order system of linear differential-
algebraic equations. The corresponding linear system is called a descriptor system or a singular system.
The linear system of the form (1) is often referred to as the representation of the system in the time

domain, or in the state space. Equivalently, one can also represent the system in the frequency domain
via a Laplace transform. Recall that for a vector-valued function f (t), the Laplace transform of f (t) is
defined by

F (s) := L
{
f (t)

}
=

∞∫

0

f (t)e−st dt, s ∈ C. (2)

The physically meaningful values of the complex variable s are s = iω, where ω ! 0 is referred to as the
frequency. Taking the Laplace transform of the system (1), we obtain the following frequency domain
formulation of the system:

{
sCX(s) + GX(s) = BU(s),
Y (s) = LTX(s),

(3)

where X(s), Y (s) and U(s) represents the Laplace transform of x(t), y(t) and u(t), respectively. For
simplicity, we assume that we have zero initial conditions x(0) = x0 = 0 and u(0) = 0.
Eliminating the variable X(s) in (3), we see that the input U(s) and the output Y (s) in the frequency

domain are related by the following p × m matrix-valued rational function
H (s) = LT(G + sC)−1B. (4)

H (s) is known as the transfer function or Laplace-domain impulse response of the linear system (1).
The following types of analysis are typically performed for a given linear dynamical system of the

form (1):

• Static (DC) analysis, to find the point to which the system settles in the equilibrium, or rest, condition,
namely ẋ(t) = 0;

14 Z. Bai / Applied Numerical Mathematics 43 (2002) 9–44

where z(t) ∈Rn, Cn,Gn ∈Rn×n, Bn ∈ Rn×m, Ln ∈Rn×p , and ỹ(t) ∈Rp. The state-space dimension n
of (8) should generally be much smaller than the state-space dimension N of (1), i.e., n ≪ N . Meanwhile,
the output ỹ(t) of (8) approximates the output y(t) of (1) in accordance with some criteria for all u in the
class of admissible input functions. Furthermore, the reduced-order system (8) should preserve essential
properties of the full-order system (1).
Note that the p × m matrix-valued transfer function of the reduced-order model (1) is given by

H n(s) = LT
n(Gn + sCn)

−1Bn.

Hence, for the steady-state analysis in the frequency domain, the objectives of constructing a reduced-
order model (8) include that the reduced-order transfer function H n(s) should be an approximation of
the transfer function H (s) of the full-order model over the frequency range of interest with an admissible
error, and that H n(s) preserves essential properties of H (s).

2.3. Padé approximation and moment-matching

Note that the scalar transfer function H(s) of (4) is a rational function. More precisely, H(s) ∈
RN−1,N , where N is the state-space dimension of (1). The Taylor series expansion of H(s) of (5) about
s0 is given by

H(s) = lT
(
I − (s − s0)A

)−1
r = lTr +

(
lTAr

)
(s − s0) +

(
lTA2r

)
(s − s0)

2 + · · ·
= m0 + m1(s − s0) + m2(s − s0)

2 + · · · , (9)
where mj = lTAjr for j = 0,1,2, . . . , are called moments about s0. Since our primary concern is large
state-space dimension N , we seek to approximate H(s) by a rational function Hn(s) ∈ Rn−1,n over the
range of frequencies of interest, where n ! N . A natural choice of such a rational function is a Padé
approximation. A function Hn(s) ∈ Rn−1,n is said to be an nth Padé approximant of H(s) about the
expansion point s0 if it matches with the moments of H(s) as far as possible. Precisely, it is required that

H(s) = Hn(s) +O
(
(s − s0)

2n). (10)
For a thorough treatment of Padé approximants, we refer the reader to [12]. Note that equation (10)
presents 2n conditions on the 2n degrees of freedom that describe any function Hn(s) ∈ Rn−1,n.
Specifically, let

Hn(s) = Pn−1(s)

Qn(s)
= an−1sn−1 + · · · + a1s + a0

bnsn + bn−1sn−1 + · · · + b1s + 1 , (11)

where b0 is chosen to be equal to 1, which eliminates an arbitrary multiplicative factor in the definition
of Hn(s). Then the coefficients {aj } and {bj } of polynomials Pn−1(s) and Qn(s) can be computed as
follows. Multiplying Qn(s) on both sides of (10) yields

H(s)Qn(s) = Pn−1(s) +O
(
(s − s0)

2n). (12)
Comparing the first n (s − s0)

k-terms of (12) for k = 0,1, . . . , n − 1 shows that the coefficients {bj } of
the denominator polynomial Qn(s) satisfy the following system of simultaneous equations:⎡

⎢⎢⎣

m0 m1 . . . mn−1
m1 m2 . . . mn
...

...
...

mn−1 mn . . . m2n−2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

bn

bn−1
...
b1

⎤

⎥⎥⎦= −

⎡

⎢⎢⎣

mn

mn+1
...

m2n−1

⎤

⎥⎥⎦ . (13)

A survey of model reduction by balanced truncation and some new results

SERKAN GUGERCINy* and ATHANASIOS C. ANTOULASy

Balanced truncation is one of the most common model reduction schemes. In this note, we present a survey of balancing
related model reduction methods and their corresponding error norms, and also introduce some new results. Five
balancing methods are studied: (1) Lyapunov balancing, (2) stochastic balancing, (3) bounded real balancing, (4) positive
real balancing and (5) frequency weighted balancing. For positive real balancing, we introduce a multiplicative-type
error bound. Moreover, for a certain subclass of positive real systems, a modified positive-real balancing scheme with
an absolute error bound is proposed. We also develop a new frequency-weighted balanced reduction method with a
simple bound on the error system based on the frequency domain representations of the system gramians. Two numerical
examples are illustrated to verify the efficiency of the proposed methods.

1. Introduction

Direct numerical simulation of dynamical systems
has been a successful means for studying complex physi-
cal phenomena. In this paper, we will examine linear
time invariant dynamical systems in state space form

GðsÞ:
_xxðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þDuðtÞ

!
, GðsÞ :¼ A B

C D

" #

, GðsÞ :¼s CðsI % AÞ%1BþD ð1Þ

where A 2 Rn&n, B 2 Rn&m, C 2 Rp&n, D 2 Rp&m. We
note that by abuse of notation, both the underlying
dynamical system and its transfer function are denoted
by G(s). However, for clarity in the transfer function
notation we will use ‘¼s ’ instead of only ‘¼’. In many
applications, such as circuit simulation, or time-depend-
ent PDE control problems, n is quite large, while the
number of inputs m and outputs p usually satisfies m,
p' n. In these large-scale settings, the system dimension
makes the computation infeasible due to memory, time
limitations and ill-conditioning. One approach to over-
coming this is through model reduction. The goal is
to produce a low dimensional system that has similar
response characteristics as the original system with far
lower storage requirements and evaluation time. The
resulting reduced model might be used to replace the
original system as a component in a large simulation
or it might be used to develop a low dimensional con-
troller suitable for real time applications.

The model reduction problem we are interested in
can be stated as follows: given the linear dynamical
system G(s) in (1), find a reduced order system Gr(s)

GrðsÞ:
_xxrðtÞ ¼ArxrðtÞþBruðtÞ
yrðtÞ¼CrxrðtÞþDruðtÞ

!
, GrðsÞ :¼

Ar Br

Cr Dr

" #

ð2Þ

where Ar 2 Rr&r, Br 2 Rr&m, Cr 2 Rp&r, Dr 2 Rp&m, with
r' n such that the following properties are satisfied:

(1) The approximation error ky% yrk is small, and
there exists a global error bound.

(2) System properties, like stability, passivity, are
preserved.

(3) The procedure is computationally efficient.

One model reduction scheme that is well grounded
in theory and most commonly used is the so-called
balanced model reduction first introduced by Mullis
and Roberts (1976) and later in the systems and control
literature by Moore (1981). To apply balanced reduc-
tion, first the system is transformed to a basis where
the states which are difficult to reach are simultaneously
difficult to observe. This is achieved by simultaneously
diagonalizing the reachability and the observability gra-
mians, which are solutions to the reachability and the
observability Lyapunov equations. Then, the reduced
model is obtained by truncating the states which have
this property. We will call this the Lyapunov balancing
method. When applied to stable systems, Lyapunov
balanced reduction preserves stability (Pernebo and
Silverman 1982) and provides a bound on the approxi-
mation error (Enns 1984), i.e. satisfies (1) and (2) above.
For small-to-medium-scale problems, Lyapunov balanc-
ing can be implemented efficiently. However, for large-
scale settings, exact balancing is expensive to implement
because it requires dense matrix factorizations and
results in a computational complexity of O(n3) and a
storage requirement of O(n2); hence does not satisfy
(3) above. In this case, approximate balanced reduction

International Journal of Control ISSN 0020–7179 print/ISSN 1366–5820 online # 2004 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/00207170410001713448

INT. J. CONTROL, 20 MAY 2004, VOL. 77, NO. 8, 748–766

Received in final form 21 April 2004.
Communicated by Dr. A. Astolfi.
*Author for communication. e-mail: gugercin@math.vt.

edu
yDepartment of Mathematics, Virginia Tech, Blacksburg,

VA, USA.
zDepartment of Electrical and Computer Engineering,

Rice University, Houston, TX, USA.

‣Pade approximations
‣Krylov subspace methods
‣Balanced truncation

Non-linear problems ?

Parametrized problems - Ex 1

Convection-diffusion problem
Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

Variational setting

Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

Parametrized problems - Ex 1

Convection-diffusion problem
Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

Variational setting

Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

Parametrized problems - Ex 2Example 3: Heat conduction on thermal blocks

µ1 µ2 µ3 µ4

µ5 µ6 µ7 µ8

µ9 µ10 µ11 µ12

µ13 µ14 µ15 1

in
su

la
te

d

in
su

la
te

d

inflow flux

constant temp.

Physics:

µi � R: conductivity of block Ri

� · µ�u = 0, in �,

�u · n = 1, on �1,

�u · n = 0, on �2,�4,

u = 0, on �3.

Find u � H1(�) such that:

�

Mathematics:

�1

�2

�3

�4

µ : �� R such that µ|Ri = µi

R1 R2

R5

n
. . .

. .
.

..
.

Output of interest is the average temperature
over �1:

s(µ) = `(u(µ)) =

Z

�1

u(µ).

Parametrized problems - Ex 2Heat conduction on thermal blocks

Parametrized problem setting:

Let µ = (µ1, µ2, . . . , µ15) 2 P = [µ�, µ+]
15
. Then, for any µ 2 P, compute s(u(µ)).

Solutions u(µ) for di↵erent values of µ 2 P:

Parametrized problems - Ex 2Heat conduction on thermal blocks

Variational setting: Define

V = {v 2 H1(⌦) | v|�
top

= 0},

a(w, v;µ) =
15X

i=1

µi

Z

R
i

rw ·rv +

Z

R
P+1

rw ·rv,

f(v) = `(v) =

Z

�1

v.

Parametrized problem setting:

For any µ 2 P, find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v), 8v 2 V.

Then, compute s(µ) = `(u(µ)) =
R
�1

u(µ).

Parametrized problems - Ex 3

Scattering by 2D PEC Pacman

Backscatter depends very sensitively on
cutout angle and frequency.

0 1 2 3 4 5 6
−20

−10

0

10

20

30
Cylinder
WedgeAngle = 18.5 Deg
WedgeAngle = 21.5 Deg

Fig. 1.1. Radar cross sections for the Pacman with wave number 10 π. Three cases with different wedge angles are
plotted.

1. TM Case.

1

TM polarization

Difference in scattering is clear in fields

Parametrized problems - Ex 3Example 4: Governing equations

Then, the electric field E(µ) = Ei

(µ) + Es

(µ) 2 H(curl,⌦) satisfies

curl curl E(µ)� k2E(µ) = 0 in ⌦, Maxwell

E(µ)⇥ n = 0 on �, boundary condition

���curlEs

(x;µ)⇥ x

|x| � ikEs

(x;µ)
��� = O

⇣
1
|x|

⌘
as |x| ! 1. Silver-Müller radiation cond.

Boundary condition is equivalent to �tE(µ) = 0 where �t denotes the tangential

trace operator on surface �, �tE(µ) = n⇥ (E(µ)⇥ n).

Assume that ⌦ is a homogenous media with magnetic permeability µ0 and elec-

trical permittivity "0.

k = !

p
µ0"0 is wave number and ! the angular frequency of the time-harmonic

ansatz

ˆ

E(x, t;µ) = e

�i!t
E(x;µ).

Example 4: Governing equations

Then, the electric field E(µ) = Ei

(µ) + Es

(µ) 2 H(curl,⌦) satisfies

curl curl E(µ)� k2E(µ) = 0 in ⌦, Maxwell

E(µ)⇥ n = 0 on �, boundary condition

���curlEs

(x;µ)⇥ x

|x| � ikEs

(x;µ)
��� = O

⇣
1
|x|

⌘
as |x| ! 1. Silver-Müller radiation cond.

Boundary condition is equivalent to �tE(µ) = 0 where �t denotes the tangential

trace operator on surface �, �tE(µ) = n⇥ (E(µ)⇥ n).

Assume that ⌦ is a homogenous media with magnetic permeability µ0 and elec-

trical permittivity "0.

k = !

p
µ0"0 is wave number and ! the angular frequency of the time-harmonic

ansatz

ˆ

E(x, t;µ) = e

�i!t
E(x;µ).

Example 4: Governing equations

Then, the electric field E(µ) = Ei

(µ) + Es

(µ) 2 H(curl,⌦) satisfies

curl curl E(µ)� k2E(µ) = 0 in ⌦, Maxwell

E(µ)⇥ n = 0 on �, boundary condition

���curlEs

(x;µ)⇥ x

|x| � ikEs

(x;µ)
��� = O

⇣
1
|x|

⌘
as |x| ! 1. Silver-Müller radiation cond.

Boundary condition is equivalent to �tE(µ) = 0 where �t denotes the tangential

trace operator on surface �, �tE(µ) = n⇥ (E(µ)⇥ n).

Assume that ⌦ is a homogenous media with magnetic permeability µ0 and elec-

trical permittivity "0.

k = !

p
µ0"0 is wave number and ! the angular frequency of the time-harmonic

ansatz

ˆ

E(x, t;µ) = e

�i!t
E(x;µ).

Parametrized problems - Ex 3

Fast evaluation over parameter space allows for rapid
uncertainty quantification

THE PACMAN SCATTERING PROBLEM

1. Problem description. We consider the scattering of TM-polarized electromagnetic waves by
a perfectly conducting 2D cylinder with a cut-out wedge. The basic problem is illustrated in Figure 1.1.
θW denotes the angle of the wedge, θi direction of the incidence wave, and θr the observation angle.
The integrating contour for the RCS is the red circle just outside of the scatterer. Curvilinear PML is
applied sufficiently far away.

θ i

θ r

θw

P

M

L

P

M

L

Fig. 1.1. The configuration of the pacman scattering problem.

1

9.6 11.6 14.3 18.5 21.5
−30

−20

−10

0

10

20

Mean Output
Mean + S.D.
Mean − S.D.

9.6 11.6 14.3 18.5 21.5
−40

−30

−20

−10

0

10

20

Mean Output
Mean + 2 S.D.
Mean − 2 S.D.

Fig. 3.10. Results of a Monte Carlo simulation with a 5% error in θW that is normally distributed. Plotted are
10log10 value of the mean of RCS(10π, θW , 0, 0), that of “mean of RCS(10π, θW , 0, 0) ± i standard deviation”. i = 1 for
the top and i = 2 for the bottom (cut below −40).

3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain
129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the
parameter domain.

Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the
right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is
incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete
offline-online decomposition.

12

9.6 11.6 14.3 18.5 21.5−30

−20

−10

0

10

20

Mean Output
Mean + S.D.
Mean − S.D.

9.6 11.6 14.3 18.5 21.5−40

−30

−20

−10

0

10

20

Mean Output
Mean + 2 S.D.
Mean − 2 S.D.

Fig. 3.10. Results of a Monte Carlo simulation with a 5% error in θW that is normally distributed. Plotted are

10log10 value of the mean of RCS(10π, θW , 0, 0), that of “mean of RCS(10π, θW , 0, 0) ± i standard deviation”. i = 1 for

the top and i = 2 for the bottom (cut below −40).

3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain

129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the

parameter domain.
Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the

right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is

incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete

offline-online decomposition.

12

Uniformly distributed  
5% randomness in  

gap angle

Parametrized problems

The parameters can describe

‣Materials
‣Sources
‣Geometries
‣Parameterized uncertainty
‣Time
‣etc x

y

z

d̃
inc

p
inc

d̃
rcs

Figure 12: (Example 6 .) A stochastic scattering configuration with in which the vertical location of the center cavity is assumed to be specified by
a continuous uniformly distributed distribution in [�1, 1].

28

Parametrized problems

The parameters can describe

‣Materials
‣Sources
‣Geometries
‣Parameterized uncertainty
‣Time
‣etc x

y

z

d̃
inc

p
inc

d̃
rcs

Figure 12: (Example 6 .) A stochastic scattering configuration with in which the vertical location of the center cavity is assumed to be specified by
a continuous uniformly distributed distribution in [�1, 1].

28

Does this always work, i.e., does a reduced
model always exist ?

Probably not - we need to understand
when and how to check

The solution manifoldThe solution manifold

Consider the “exact” and “discrete” solution manifolds

M = {u(µ) ; 8µ 2 P} ⇢ V,

M� = {u�(µ) ; 8µ 2 P} ⇢ V�,

where, for each µ 2 P, u(µ) and u�(µ) denote the solution of the underlying

exact and discrete problems respectively.

V

u(µ1)

u(µ2)
u(µ3)

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

1

 = 0.01

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

 = 0.05

0 0.2 0.4 0.6 0.8 1
x

0
0.05

0.1
0.15

0.2

 = 0.5

M

The solution manifold

Consider the “exact” and “discrete” solution manifolds

M = {u(µ) ; 8µ 2 P} ⇢ V,

M� = {u�(µ) ; 8µ 2 P} ⇢ V�,

where, for each µ 2 P, u(µ) and u�(µ) denote the solution of the underlying

exact and discrete problems respectively.

V

u(µ1)

u(µ2)
u(µ3)

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

1

 = 0.01

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

 = 0.05

0 0.2 0.4 0.6 0.8 1
x

0
0.05

0.1
0.15

0.2

 = 0.5

M

The solution manifold

The key question is how well can the solution manifold
 be approximated by using an N-dimensional
linear space ?

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

Clearly, if the solution space is (locally) smooth we
have a good chance.

The solution manifold

The key question is how well can the solution manifold
 be approximated by using an N-dimensional
linear space ?

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

Clearly, if the solution space is (locally) smooth we
have a good chance.

Highly sensitive/chaotic systems will be problematic as
they have no structure

The solution manifold

For any N-dimensional space we define

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

For any N -dimensional linear space VN , we define

E(M,Vrb) = sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV.

The Kolmogorov N -width is then defined by

dN (M) = inf

Vrb

E(M,Vrb) = inf

Vrb

sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV,

where the first infimum is taken over all N -dimensional subspaces Vrb of V.

The solution manifold

For any N-dimensional space we define

The Kolmogorov N-width is defined as

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

For any N -dimensional linear space VN , we define

E(M,Vrb) = sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV.

The Kolmogorov N -width is then defined by

dN (M) = inf

Vrb

E(M,Vrb) = inf

Vrb

sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV,

where the first infimum is taken over all N -dimensional subspaces Vrb of V.

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

For any N -dimensional linear space VN , we define

E(M,Vrb) = sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV.

The Kolmogorov N -width is then defined by

dN (M) = inf

Vrb

E(M,Vrb) = inf

Vrb

sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV,

where the first infimum is taken over all N -dimensional subspaces Vrb of V.

The solution manifold

For any N-dimensional space we define

The Kolmogorov N-width is defined as

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

For any N -dimensional linear space VN , we define

E(M,Vrb) = sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV.

The Kolmogorov N -width is then defined by

dN (M) = inf

Vrb

E(M,Vrb) = inf

Vrb

sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV,

where the first infimum is taken over all N -dimensional subspaces Vrb of V.

The solution manifold

How well can the solution manifold M resp. M� be approximated by an N -
dimensional linear space Vrb ⇢ V?

For any N -dimensional linear space VN , we define

E(M,Vrb) = sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV.

The Kolmogorov N -width is then defined by

dN (M) = inf

Vrb

E(M,Vrb) = inf

Vrb

sup

u(µ)2M
inf

vrb2Vrb

ku(µ)� vrbkV,

where the first infimum is taken over all N -dimensional subspaces Vrb of V.If this decays rapidly with N, we are in good shape

Identifying the optimal linear space by the Kolmogorov
N-width is not practical — cost exponential in N

Solution manifold

The behavior of the Kolmogorov N-width is non-trivial

Reduced Basis Space

Consider on the other hand

M =

n

u(x, µ) = |x� µ|0.5
�

�

�

µ, x 2 (0, 1)

o

.

⌦

u(0.75)

u(0.5)

u(0.25)

Singularity at varying location.

Solution manifold

The behavior of the Kolmogorov N-width is non-trivial

Reduced Basis Space

Consider on the other hand

M =

n

u(x, µ) = |x� µ|0.5
�

�

�

µ, x 2 (0, 1)

o

.

⌦

u(0.75)

u(0.5)

u(0.25)

Singularity at varying location.

Reduced Basis Space

Error measure dN (M).

0 20 40 60 80 100
N

0.1

1

10

100

lo
g(
er
ro
r)

Consider on the other hand

M =

n

u(x, µ) = |x� µ|0.5
�

�

�

µ, x 2 (0, 1)

o

.

⌦

u(0.75)

u(0.5)

u(0.25)

Singularity at varying location.

Solution manifold
Reduced Basis Space

Consider on the other hand

M =

n

u(x, µ) = |x� 0.5|µ+0.5
�

�

�

µ, x 2 (0, 1)

o

.

⌦

u(0.75)

u(0.25)

u(0)

Singularity at fixed location

with varying width.

Solution manifold
Reduced Basis Space

Consider on the other hand

M =

n

u(x, µ) = |x� 0.5|µ+0.5
�

�

�

µ, x 2 (0, 1)

o

.

⌦

u(0.75)

u(0.25)

u(0)

Singularity at fixed location

with varying width.

Reduced Basis Space

Error measure dN (M).

0 20 40 60 80 100
N

1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

10

lo
g(
er
ro
r)

Consider on the other hand

M =

n

u(x, µ) = |x� 0.5|µ+0.5
�

�

�

µ, x 2 (0, 1)

o

.

⌦

u(0.75)

u(0.25)

u(0)

Singularity at fixed location

with varying width.

Morale: We need to check if a reduced space exists
before going ahead

Solution manifold

We can get a good sense by a feasibility study
Feasibility study: Check SVD

0 0.2 0.4 0.6 0.8 1
x

0
0.05

0.1
0.15

0.2

 = 0.5

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

 = 0.05

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

1

 = 0.01

u(µ3)

u(µ2)

u(µ1)

µ1 µ2 µ3

= A

o Define a point-set Ph = {µ1, . . . , µM} ⇢ P.
o Compute for each µi the truth solution u(µi) using a simplified model.

o Store the degrees of freedom row-wise in a matrix A.

This samples the solution manifold

Solution manifold

3D EM scattering with the angle
varying 0-360 deg. RCS is
computed every 2 deg.

Computing the SVD of the 180
solutions shows that less than 60
samples would suffice -- and likely
much less for applications

Computation by CERFACS

Solution manifold

3D EM scattering with the angle
varying 0-360 deg. RCS is
computed every 2 deg.

Computing the SVD of the 180
solutions shows that less than 60
samples would suffice -- and likely
much less for applications

Computation by CERFACS

Solution manifold

Computing the SVD of the solution matrix gives a
measure of the decay of the Kolmogorov N-width

Reduced Basis Space
Some questions arise:

• How does the Kolmogorov width decay for a particular problem?

Answer: Depends really on the problem. For uniformly elliptic problems,

it converges exponentially fast, for other problems no theoretical result exists

but exponential convergence is in practise observed and for other problems it

converges very slowly.

Example: Existence of a “perfect” reduced basis

x
y

z

0 500 1000 1500 2000 2500 3000

singular values

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001

0.0001

0.001

0.01

0.1
Geometry:

With 200 basis functions you can reach a
precision of 1e-7!

Parameters: (k, �) ⇥ [1, 25]� [0,⇥], ⇤ is fixed.
For a fine discretization of [1, 25] � [0,�], compute the BEM-
solution for each parameter value. Save all solutions in a matrix
and compute the singular values.

Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3

With <100 basis functions you can reach a
precision of 1e-3!

Example: Existence of a “perfect” reduced basis

x
y

z

0 500 1000 1500 2000 2500 3000

singular values

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001

0.0001

0.001

0.01

0.1
Geometry:

With 200 basis functions you can reach a
precision of 1e-7!

Parameters: (k, �) ⇥ [1, 25]� [0,⇥], ⇤ is fixed.
For a fine discretization of [1, 25] � [0,�], compute the BEM-
solution for each parameter value. Save all solutions in a matrix
and compute the singular values.Example of the scattering problem: two dimensional parameterization with po-

lar angle and frequency: (k, ✓) 2 [1, 25]⇥ [0,⇡], � is fixed

E
r
r
o
r
m
e
a
s
u
r
e
d N

(
M

)
.

Solution manifold

Computing the SVD of the solution matrix gives a
measure of the decay of the Kolmogorov N-width

Reduced Basis Space
Some questions arise:

• How does the Kolmogorov width decay for a particular problem?

Answer: Depends really on the problem. For uniformly elliptic problems,

it converges exponentially fast, for other problems no theoretical result exists

but exponential convergence is in practise observed and for other problems it

converges very slowly.

Example: Existence of a “perfect” reduced basis

x
y

z

0 500 1000 1500 2000 2500 3000

singular values

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001

0.0001

0.001

0.01

0.1
Geometry:

With 200 basis functions you can reach a
precision of 1e-7!

Parameters: (k, �) ⇥ [1, 25]� [0,⇥], ⇤ is fixed.
For a fine discretization of [1, 25] � [0,�], compute the BEM-
solution for each parameter value. Save all solutions in a matrix
and compute the singular values.

Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3

With <100 basis functions you can reach a
precision of 1e-3!

Example: Existence of a “perfect” reduced basis

x
y

z

0 500 1000 1500 2000 2500 3000

singular values

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001

0.0001

0.001

0.01

0.1
Geometry:

With 200 basis functions you can reach a
precision of 1e-7!

Parameters: (k, �) ⇥ [1, 25]� [0,⇥], ⇤ is fixed.
For a fine discretization of [1, 25] � [0,�], compute the BEM-
solution for each parameter value. Save all solutions in a matrix
and compute the singular values.Example of the scattering problem: two dimensional parameterization with po-

lar angle and frequency: (k, ✓) 2 [1, 25]⇥ [0,⇡], � is fixed

E
r
r
o
r
m
e
a
s
u
r
e
d N

(
M

)
.

Rigorous results are sparse for this - but there are
some of the nature

dN (M) Ce�cN

Basic setting

We consider physical systems of the form

where the solutions are implicitly parameterized by

L(x, µ)u(x, µ) = f(x, µ)

u(x, µ) = g(x, µ)

x � �
x � ��

µ 2 D 2 RN

Basic setting

We consider physical systems of the form

where the solutions are implicitly parameterized by

L(x, µ)u(x, µ) = f(x, µ)

u(x, µ) = g(x, µ)

x � �
x � ��

‣ How do we find the basis.

‣ How do we ensure accuracy under
parameter variation ?

‣ What about speed ?

µ 2 D 2 RN

Solutions and their behaviorDiscretization

Then, compute the value of the output functional s(µ) = `(u(µ);µ).

In practise, the exact PDE cannot be solved. A popular discretisation technique

is the Galerkin approach: Replace the “continuous” space V by the finite

dimensional subspace V� such that

lim

�!0
inf

v�2V�

kv � v�kV = 0, 8v 2 V.

Exact solution: For some parameter value µ 2 P, find u(µ) 2 V such that

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

Then, compute the value of the output functional s�(µ) = `(u�(µ);µ).

Galerkin solution: For some parameter µ 2 P, find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ) 8v� 2 V�.

Discretization

Then, compute the value of the output functional s(µ) = `(u(µ);µ).

In practise, the exact PDE cannot be solved. A popular discretisation technique

is the Galerkin approach: Replace the “continuous” space V by the finite

dimensional subspace V� such that

lim

�!0
inf

v�2V�

kv � v�kV = 0, 8v 2 V.

Exact solution: For some parameter value µ 2 P, find u(µ) 2 V such that

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

Then, compute the value of the output functional s�(µ) = `(u�(µ);µ).

Galerkin solution: For some parameter µ 2 P, find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ) 8v� 2 V�.

Discretization

Then, compute the value of the output functional s(µ) = `(u(µ);µ).

In practise, the exact PDE cannot be solved. A popular discretisation technique

is the Galerkin approach: Replace the “continuous” space V by the finite

dimensional subspace V� such that

lim

�!0
inf

v�2V�

kv � v�kV = 0, 8v 2 V.

Exact solution: For some parameter value µ 2 P, find u(µ) 2 V such that

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

Then, compute the value of the output functional s�(µ) = `(u�(µ);µ).

Galerkin solution: For some parameter µ 2 P, find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ) 8v� 2 V�.

Linear algebra of the Galerkin discretisation

16 2 Parametrized Di↵erential Equations

Linear algebra box: The truth solver

We denote the sti↵ness matrix and the right hand side of the truth problem by Aµ

�

2 RN

�

⇥N

� resp.
fµ
�

2 RN

� . Further, we denote by M
�

2 RN

�

⇥N

� the matrix associated to the inner product (·, ·)V of
V

�

. They are defined in the following way

(M
�

)
ij

= ('
j

,'

i

)V, (Aµ

�

)
ij

= a('
j

,'

i

;µ), and (fµ
�

)
i

= f('
i

;µ),

for all 1 i, j N

�

where we remind that {'
i

}N�

i=1

consists of a basis of V
�

. Then, the truth problem
reads: for each µ 2 P, find uµ

�

2 RN

� s.t.
Aµ

�

uµ

�

= fµ
�

.

Then, evaluate the output functional (in the compliant case)

s

�

(µ) = (uµ

�

)T fµ
�

.

The field approximation u

�

(µ) is obtained by u

�

(µ) =
P

N

�

i=1

(uµ

�

)
i

'

i

where (uµ

�

)
i

denotes the i-th
coe�cient of the vector uµ

�

.

ku(µ)� u
�

(µ)kV ku(µ)� v
�

kV + kv
�

� u
�

(µ)kV,
by the triangle inequality. Further, there holds that

↵(µ)kv
�

� u
�

(µ)k2V a(v
�

� u
�

(µ), v
�

� u
�

(µ);µ) = a(v
�

� u(µ), v
�

� u
�

(µ);µ)

 �(µ) kv
�

� u(µ)kV kv
�

� u
�

(µ)kV
so that

ku(µ)� u
�

(µ)kV
✓

1 +
�(µ)

↵(µ)

◆

inf
v

�

2V
�

ku(µ)� v
�

kV.

This implies that the approximation error ku(µ) � u
�

(µ)kV can be put in relation with the best
approximation error of u(µ) in the approximation space V

�

through the constants ↵(µ), �(µ).
ADD COMMENT ON THE COMPLEXITY TO SOLVE THE TRUTH PROBLEM (SEE

ALSO THE OVERVIEW OF THE RBM AT THE END OF CHAPTER 3)

2.3 Toy problems

We want to consider simple parametrized examples — instantiations of our abstractions — that
are intended to be representative of larger classes of problems (e.g., conduction, linear elastic-
ity) to motivate the reader. We consider two model problems: a (steady) heat conduction prob-
lem with heat fluxes as parameters; and a linear elasticity problem with load traction condi-
tions as parameters.2 Problems below can be solved using rbMIT software library, available at
htpp://augustine.mit.edu [116, 117] .

2 The interesting case of simple (piecewise dilation) geometric variation/parameters and physical material
parametrization is left for generalization after the complete introduction of topics in Chap. 4, complex
parametrizations after the introduction of topics in Chap. 5.

Let {'i}N�
i=1 be a basis of the discretisation space V�.

Linear algebra of the Galerkin discretisation

16 2 Parametrized Di↵erential Equations

Linear algebra box: The truth solver

We denote the sti↵ness matrix and the right hand side of the truth problem by Aµ

�

2 RN

�

⇥N

� resp.
fµ
�

2 RN

� . Further, we denote by M
�

2 RN

�

⇥N

� the matrix associated to the inner product (·, ·)V of
V

�

. They are defined in the following way

(M
�

)
ij

= ('
j

,'

i

)V, (Aµ

�

)
ij

= a('
j

,'

i

;µ), and (fµ
�

)
i

= f('
i

;µ),

for all 1 i, j N

�

where we remind that {'
i

}N�

i=1

consists of a basis of V
�

. Then, the truth problem
reads: for each µ 2 P, find uµ

�

2 RN

� s.t.
Aµ

�

uµ

�

= fµ
�

.

Then, evaluate the output functional (in the compliant case)

s

�

(µ) = (uµ

�

)T fµ
�

.

The field approximation u

�

(µ) is obtained by u

�

(µ) =
P

N

�

i=1

(uµ

�

)
i

'

i

where (uµ

�

)
i

denotes the i-th
coe�cient of the vector uµ

�

.

ku(µ)� u
�

(µ)kV ku(µ)� v
�

kV + kv
�

� u
�

(µ)kV,
by the triangle inequality. Further, there holds that

↵(µ)kv
�

� u
�

(µ)k2V a(v
�

� u
�

(µ), v
�

� u
�

(µ);µ) = a(v
�

� u(µ), v
�

� u
�

(µ);µ)

 �(µ) kv
�

� u(µ)kV kv
�

� u
�

(µ)kV
so that

ku(µ)� u
�

(µ)kV
✓

1 +
�(µ)

↵(µ)

◆

inf
v

�

2V
�

ku(µ)� v
�

kV.

This implies that the approximation error ku(µ) � u
�

(µ)kV can be put in relation with the best
approximation error of u(µ) in the approximation space V

�

through the constants ↵(µ), �(µ).
ADD COMMENT ON THE COMPLEXITY TO SOLVE THE TRUTH PROBLEM (SEE

ALSO THE OVERVIEW OF THE RBM AT THE END OF CHAPTER 3)

2.3 Toy problems

We want to consider simple parametrized examples — instantiations of our abstractions — that
are intended to be representative of larger classes of problems (e.g., conduction, linear elastic-
ity) to motivate the reader. We consider two model problems: a (steady) heat conduction prob-
lem with heat fluxes as parameters; and a linear elasticity problem with load traction condi-
tions as parameters.2 Problems below can be solved using rbMIT software library, available at
htpp://augustine.mit.edu [116, 117] .

2 The interesting case of simple (piecewise dilation) geometric variation/parameters and physical material
parametrization is left for generalization after the complete introduction of topics in Chap. 4, complex
parametrizations after the introduction of topics in Chap. 5.

Let {'i}N�
i=1 be a basis of the discretisation space V�.

Convergence and stabilityDiscrete stability

For coercive problems: Since V� ⇢ V, there holds that the discrete

coercivity constant

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

is uniformly bounded from below:

0 < ↵ ↵�(µ),

since

0 < ↵ ↵(µ) = inf

v2V
a(v, v;µ)

kvk2V
 inf

v�2V�

a(v�, v�;µ)

kv�k2V

Convergence and stabilityDiscrete stability

For coercive problems: Since V� ⇢ V, there holds that the discrete

coercivity constant

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

is uniformly bounded from below:

0 < ↵ ↵�(µ),

since

0 < ↵ ↵(µ) = inf

v2V
a(v, v;µ)

kvk2V
 inf

v�2V�

a(v�, v�;µ)

kv�k2V

Convergence for coercive problems

Coercivity, Galerkin orthogonality and continuity (Cea’s lemma):

ku(µ)� u�(µ)k2V
coer.
 1

↵(µ)
a
⇣
u(µ)� u�(µ), u(µ)� u�(µ);µ

⌘

G.O.
=

1

↵(µ)
a
⇣
u(µ)� u�(µ), u(µ)� v�;µ

⌘

cont.
 �(µ)

↵(µ)
ku(µ)� u�(µ)kVku(µ)� v�kV

Let µ 2 P be fixed:

u(µ) : Exact solution

u�(µ) : Truth/Discrete Galerkin approximation

v� : Any discrete function (v� 2 V�)

Then:

ku(µ)� u�(µ)kV �(µ)

↵(µ)
ku(µ)� v�kV, 8v� 2 V�

Then

Let us construct our first modelMotivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Let us construct our first modelMotivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Motivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Let us construct our first modelMotivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Motivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Motivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Let us construct our first modelMotivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Motivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Motivation

Ultimative goal: a fast input-output computation: µ 7! s(µ).

That is, for each µ 2 P, evaluate s(µ) = `(u(µ);µ) where u(µ) is the solution of

the parametrised weak problem: Find u(µ) 2 V s.t.

a(u(µ), v;µ) = f(v;µ), 8v 2 V.

In practise, the truth approximation is considered (instead of the exact solution):

for µ 2 P, evaluate s�(µ) = `(u�(µ);µ) where u�(µ) is solution of: Find u�(µ) 2
V� s.t.

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

Poor man’s approach or brute force approach: For each new µ 2 P, solve
the above discrete problem to obtain u�(µ) and compute the output s�(µ).

One evaluation of the map s� : µ 7! s�(µ) is quite expensive for some desired
accuracy tol. Ok for a couple of evaluations but not in a many query context
where many evaluations are need.

Too expensive

Basis by POD approach
Idea of POD-space

Let Ph be a finite set of M points in P that are sampled “finely”.

) Average error of best approximation in Vrb over Ph.

The POD-space VPOD is the N -dimensional sub-space of V� that minimises the
above error measure.

Introduce the error measure

s
1

M

X

µ2Ph

inf

vrb2Vrb

ku(µ)� vrbk2V.

Remark: The corresponding discrete Kolmogorov space would be the one that

minimises the error measure

sup

µ2Ph

inf

vrb2Vrb

ku(µ)� vrbkV.

Thus, this is question of L1
vs. L2

over the parameter space Ph.

Seeking u(x, t) ' u�(x, t) ' V urb

Basis by POD approach
Idea of POD-space

Let Ph be a finite set of M points in P that are sampled “finely”.

) Average error of best approximation in Vrb over Ph.

The POD-space VPOD is the N -dimensional sub-space of V� that minimises the
above error measure.

Introduce the error measure

s
1

M

X

µ2Ph

inf

vrb2Vrb

ku(µ)� vrbk2V.

Remark: The corresponding discrete Kolmogorov space would be the one that

minimises the error measure

sup

µ2Ph

inf

vrb2Vrb

ku(µ)� vrbkV.

Thus, this is question of L1
vs. L2

over the parameter space Ph.

Idea of POD-space

Let Ph be a finite set of M points in P that are sampled “finely”.

) Average error of best approximation in Vrb over Ph.

The POD-space VPOD is the N -dimensional sub-space of V� that minimises the
above error measure.

Introduce the error measure

s
1

M

X

µ2Ph

inf

vrb2Vrb

ku(µ)� vrbk2V.

Remark: The corresponding discrete Kolmogorov space would be the one that

minimises the error measure

sup

µ2Ph

inf

vrb2Vrb

ku(µ)� vrbkV.

Thus, this is question of L1
vs. L2

over the parameter space Ph.

Seeking u(x, t) ' u�(x, t) ' V urb

Basis by POD approachConstructing a reduced order model (1st attempt)

� Basis functions are
linear combinations of
snapshots.

Proper Orthogonal Projection (POD):

1. Compute the solution u�(µ) for all µ 2 Ph and define the correlation matrix

Cij = (u(µj), u(µi))V, i, j = 1, . . . ,M.

2. Find the eigen-pairs (�n, vn) solution to Cvn = �nvn for the N largest
eigenvalues.

3. Define basis functions as

'n =
MX

i=1

(vn)i u(µi).

4. Set VPOD = span{'1, . . . ,'N}.

Basis by POD approachConstructing a reduced order model (1st attempt)

� Basis functions are
linear combinations of
snapshots.

Proper Orthogonal Projection (POD):

1. Compute the solution u�(µ) for all µ 2 Ph and define the correlation matrix

Cij = (u(µj), u(µi))V, i, j = 1, . . . ,M.

2. Find the eigen-pairs (�n, vn) solution to Cvn = �nvn for the N largest
eigenvalues.

3. Define basis functions as

'n =
MX

i=1

(vn)i u(µi).

4. Set VPOD = span{'1, . . . ,'N}.

Constructing a reduced order model (1st attempt)

� Basis functions are
linear combinations of
snapshots.

Proper Orthogonal Projection (POD):

1. Compute the solution u�(µ) for all µ 2 Ph and define the correlation matrix

Cij = (u(µj), u(µi))V, i, j = 1, . . . ,M.

2. Find the eigen-pairs (�n, vn) solution to Cvn = �nvn for the N largest
eigenvalues.

3. Define basis functions as

'n =
MX

i=1

(vn)i u(µi).

4. Set VPOD = span{'1, . . . ,'N}.

Result:
1

M

LX

i=1

inf
v2VPOD

ku(µi)� vk2V =
MX

n=N+1

�n.

In practise: replace u(µi) by a truth approximation u�(µi).

Basis by POD approachPOD: implementation

0 0.2 0.4 0.6 0.8 1
x

0
0.05

0.1
0.15

0.2

 = 0.5

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

 = 0.05

0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

1

 = 0.01

u(µ3)

u(µ2)

u(µ1)

µ1 µ2 µ3

= A

Find eigen-decomposition of C

C = A⇤M�A

Basis by POD approach

Ahu� = fh

(V TAhV)V Tu� = V T fh V TV = I

Arburb = frb

The reduced model is now obtained as

)

or

Basis by POD approach

Ahu� = fh

(V TAhV)V Tu� = V T fh V TV = I

Arburb = frb

The reduced model is now obtained as

)

or

and the output of interest is

s(u) ' s(u�) ' s(Vurb)

Basis by POD approach

Ahu� = fh

(V TAhV)V Tu� = V T fh V TV = I

Arburb = frb

The reduced model is now obtained as

)

or

and the output of interest is

s(u) ' s(u�) ' s(Vurb)

N ⌧ NSince we have the potential for speed

POD example - Ex 1POD: parametrized convection-diffusion equation

5 10 15 20 25 30
N

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001
0.0001
0.001
0.01
0.1

Eigenvalues:

o Nodal values of exact solutions used instead of FE-approximations.

o Ph : 491 equidistant points in P = [0.01, 0.5].

Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

 = 0.5
 = 0.1
 = 0.05
 = 0.01
�
�

�
�

Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

POD: parametrized convection-diffusion equation

5 10 15 20 25 30
N

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001
0.0001
0.001
0.01
0.1

Eigenvalues:

0 0.2 0.4 0.6 0.8 1
X

0

2

4

6

8

10

5 first basis functions:

� Precision of � 10�6 with 5 basis functions.

o Nodal values of exact solutions used instead of FE-approximations.

o Ph : 491 equidistant points in P = [0.01, 0.5].

POD methods

Method has several names -

‣Karhunen-Loeve expansions
‣Proper orthogonal expansions
‣Empirical eigenfunctions

Properties -

‣Simple and straightforward for linear systems
‣Offline cost can be high
‣Accuracy ? — did we sample carefully enough ?
‣What about online cost for nonlinear problem

r2
u(x, µ) = f(u, µ)

Arb(µ)urb(x, µ) = V

T
f(V urb, µ))

Depends on N

What’s next

‣Compute what we need - nothing more
‣Control the error to certify results
‣Ensure efficiency
‣Deal with non-linear problems

We need to develop methods that address these shortcomings

This will be the main topics of Lecture 2

Questions ?

