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Software with Algebraic Iterative Methods

@ ASTRA Toolbox: a MATLAB & Python toolbox of GPU primitives for 2D and 3D
tomography, developed at University of Antwerp and CWI, Amsterdam.
https://www.astra-toolbox.com/

@ SNARK14: a C++ system for reconstruction of 2D images from 1D projections,
developed at City Univ. New York and Univ. Nacional Auténoma de México.
https://turing.iimas.unam.mx/SNARK14M/

@ jSNARK: a C++ programming system for the reconstruction of 2D and 3D images
from their projections, developed at City University of New York.
http://jsnark.sourceforge.net/

@ TIGRE: Matlab and Python libraries for tomographic iterative GPU-based
reconstruction, developed at the University of Bath and CERN.
https://github.com/CERN/TIGRE/

@ AIR Tools II: a Matlab toolbox of algebraic iterative reconstruction methods,
developed at the Technical Univ. of Denmark and the Univ. of Manchester.
http://people.compute.dtu.dk/pcha/AIRtoolsII/

@ FAIR Tools: a port to Fortran 90 of parts of the AIR Tools Il package, developed
at the Technical University of Denmark.
https://github.com/BartvLith/fortran_AIRtools/
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Goal of my Talk

Algebraic iterative reconstruction methods (Kaczmarz, Cimmino, etc.)
are successfully used in computed tomography:

@ Very flexible — no assumptions about the CT scanning geometry.

e Easy to incorporate convex constraints (e.g., nonneg./box constraints).
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Goal of my Talk

Algebraic iterative reconstruction methods (Kaczmarz, Cimmino, etc.)
are successfully used in computed tomography:

@ Very flexible — no assumptions about the CT scanning geometry.
e Easy to incorporate convex constraints (e.g., nonneg./box constraints).
Both of these statements are true:

We know a lot about the convergence — for exact data.

e We know so little about the convergence — for noisy data.

This talk tells the tale of the evolution of convergence theory.

All proofs: see the papers.
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X-Ray Tomography and the Radon Transform

The Principle

Send X-rays through the ob-
ject at different angles, and
measure the attenuation.
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X-Ray Tomography and the Radon Transform

The Principle

Send X-rays through the ob-
ject at different angles, and
measure the attenuation.

\. J

9

&1

X-ray

&
g(0,s) = R f = Radon transform of f

e cos —sinf
_/_Oof<s[sin9]+T[ cos 6 })dT

R~ = Filtered Back Projection (FBP)

f(&) = 2D object/image, €& = [ &1 }
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Filtered Back Projection Versus Algebraic Reconstruction

FBP: fast, low memory, good results with sufficiently many good data.

But artifacts appear with noisy and/or limited data.

Difficult to incorporate constraints (e.g., nonnegativity).

Algebraic iterative reconstruction methods are more flexible and
adaptive — but require more computational work.

Example with 3% noise and an incomplete set of projection angles:

Data ('sinogram’)

FBP ART w/ box constr.

0° 90° 180°
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Setting Up the Algebraic Model

Assume each detector pixel is hit by a single X-ray. The Lambert-Beer law
says that the damping of the ith X-ray through the domain is a line integral:

bi = / f(&)de, (&) = attenuation coef.
ray;

Assume f(§) is a constant x; in pixel j, leading to:

length of ray 7 in pixel j
bi = Z 2% 4= { 0 otherwise.
/

X=Xy | X5 =X, X1|=/x15=x|4 %o = Xig
X=Xy X7 =Xy X/xﬁ Xi7 = Koy | %2 = Xog

X3= X%y xa=7x|3=x:3 Xig = Xy %3 = X

Xy =Xy X%(AZ X10 = Xz [Xig = Xyg | Xy = X5

X5 = X f X1 = Ko | X5 = Ky | Xog = Xy (X5 = X5
7
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Setting Up the Algebraic Model

Assume each detector pixel is hit by a single X-ray. The Lambert-Beer law
says that the damping of the ith X-ray through the domain is a line integral:

bi = / f(&)de, (&) = attenuation coef.
ray;

Assume f(§) is a constant x; in pixel j, leading to:

b Z length of ray 7 in pixel j

p= D aiX,  aj= .
o / 0 otherwise.

- m=/x‘s=xu Y ox, This leads to a linear system of equations:
/ A ~ measurement geometry,

X3= X%y xa=yx|3=x:3 Xig = Xy %3 = X .
X ~ reconstruction,

X=Xy X%(ﬂ X10 = Xz [Xig = Xyg | Xy = X5 b ~ data

X = oo =Koy | s =X = X = e Note: A is sparse; often we do not store it.

7
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Algebraic Systems and Iterative Methods

Our notation:
Ax = b, Ae R x € R™, beR™.
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Algebraic Systems and Iterative Methods

Our notation:
Ax = b, Ae R x € R™, beR™.

Two types of algebraic iterative methods:

@ Simultaneous iterations such as Cimmino's method
XKL= xk L WATM (b— AXK), M = diag(]|A(i,)|132).
@ Row-action methods such as Kaczmarz' method

k1 _ k+wbi—A(f73)Xk AT,

=X : i =k mod m.
1A, )13

X
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Algebraic Systems and Iterative Methods

Our notation:
Ax = b, Ae R x € R™, beR™.
Two types of algebraic iterative methods:

@ Simultaneous iterations such as Cimmino's method
XKL= xk L WATM (b— AXK), M = diag(]|A(i,)|132).
@ Row-action methods such as Kaczmarz' method

k+1 _ Uk bi — A(i, ) x*

=x"+w - A(i.;)T, i = k mod m.
IAG, 2113

X

Multiplication with A «~ (forward) projector.

Multiplication with AT «~s backprojector.

NB: the implementation of the backprojector may differ from AT.
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ART: Algebraic Reconstruction Technique = Kaczmarz

Kaczmarz (1937): x < P; x = orthogonal projection on the hyperplane H;
defined by the ith row a] of A and the corresp. element b; of the rhs.

Repeat accessing the rows sequentially, e.g., in a cyclic fashion:

-
bi — a; x

X4+ Pix=x+ 5
laill2

aj , i=12,....m12 ... . m12 ...

Initial guess

\

Can also access the rows in a randomized fashion.
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Example of ART Performance

Image size 64 x 64.  Data: 360 projection angles in [0°, 360°],
90 detector pixels (90 rays per projection).

k=1 k=3

Top: no noise. Bottom: 10% Gaussian noise.
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From Sequential to Simultaneous Updates

Cimmino (1938): access all rows simultaneously and compute next iterate
as the average of the all the projections of the previous iterates:

1 & 1 & b; — a x
A= SR = LY (e )

k1= bi—alxk k | AT k
= X4 => T —h—a=xk+ ATM (b AxN),
m— ajllz
where we introduced the diagonal matrix M = diag(m|]a,-||§)_1.

k
s P1x

H1 772Xk
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Simultaneous Iterative Reconstruction Techniques (SIRT)

A general class of methods:

Xk+1:Xk—|—LUDATM(b—AXk), k2011727"‘

D M
Landweber / /
Projected gradient descent
Cimmino / %diag“laf”%)
Landweber with row normalization
CAV ’ diog (i)
Component Averaging S = diag(nnz(column j))
DROP 51 diog 217
Diagonally relaxed orthogonal projection
SART  diag( i) diog (i, )

Simultaneous algebraic reconstruction technique
Notation: a; = A(/,:) =row, a/ = A(:,j) = column.
Hansen: Convergence Stories 11 /52




Example of Cimmino — Test Problems

Image size 128 x 128.  Data: 360 projection angles in [0°,360°],

181 detector pixels (181 rays per projection), 2 % Gaussian noise.

We use a synthetic problem Ax = b with a “phantom” —i.e., a test image
— inspired by a colorful Dutch cheese.

Hansen: Convergence Stories
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Example of Cimmino — Results

Top: no noise. Bottom: 2% Gaussian noise.

Hansen: Convergence Stories 15,5



Asymptotic Convergence for Kaczmarz's Method

Galantai (2004); Strohmer and Vershynin (2009)

Assume that A is invertible and that all rows are scaled to unit 2-norm.

l
I =213 < (1 det(AR) IIx° %3

1\,
1— — 12
(1 2 ) 10503

where £(-) = expected value, X = A=1b, k = ||Al|2 [|A~||2, and £ counts
the number of row actions. This is linear convergence.

(=1,2,...,

IN

E(Ix" = x13)
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Asymptotic Convergence for Kaczmarz's Method

Galantai (2004); Strohmer and Vershynin (2009)

Assume that A is invertible and that all rows are scaled to unit 2-norm.

l
I =213 < (1 det(AR) IIx° %3

1\,
1— — 12
(1 2 ) 10503

where £(-) = expected value, X = A=1b, k = ||Al|2 [|A~||2, and £ counts
the number of row actions. This is linear convergence.

(=1,2,...
E(lIx" = xl3)

IN

When « is large we have

RN 0
nk2) = nk2

After £ = n updates, i.e., one full sweep, the reduction factor is 1 — 1/x2.
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Asymptotic Convergence for Cimmino (a SIRT Method)

Follows from Nesterov (2004)

Assume that A is invertible and scaled such that ||Al|3 = m.

_ 2\ )
sl < (1- 1) 10 503

where X = A71b and k = ||A||2 || A~Y||o. Again: linear convergence.
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Asymptotic Convergence for Cimmino (a SIRT Method)

Follows from Nesterov (2004)

Assume that A is invertible and scaled such that ||Al|3 = m.

k
2
k = -
sl < (1- 1) 10 503

where X = A71b and k = ||A||2 || A~Y||o. Again: linear convergence.

When « is large then we have the approximate upper bound
Ix* = %113 < (1= 2/8)" |Ix° = x]3,

showing that in each iteration the error is reduced by a factor 1 —2/x2.

Almost the same factor as in one full sweep in Kaczmarz's method.
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Real Problems Have Noisy Data

A standard topic in numerical linear algebra: solve Ax = b.

Don't do this for inverse problems with noisy data!
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Real Problems Have Noisy Data
A standard topic in numerical linear algebra: solve Ax = b.
Don't do this for inverse problems with noisy data!

The right-hand side b (the data) is a sum of noise-free data b = Ax from
the ground-truth image X plus a noise component e:

b=AX+e, X = ground truth, e = noise.

The naive solution x™¢ = A=1p is undesired, because it has a large
component coming from the noise in the data:

xmive — A7 p = AN (AR 4 e) =x+ A e
The component A~!e dominates over X, because A is ill conditioned.
But something interesting happens during the iterations ...
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The Reconstruction Error for Kaczmarz's Method

Ix* — %]I2
0.5F ]
0.4f
0.3f
0 ,_,10 20 ,_g 30

k=20
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Semi-Convergence

Ix* = X2
05F ' ' :
04r 1
0.3r _/___‘
0 10 20 30 40 50

o In the initial iterations x* approaches the unknown ground truth x.

o During later iterations x¥ converges to the undesired x™" = A=1p.
° when the convergence behavior changes.
Then we achieve a . an approximation to the noise-free

solution which is not too perturbed by the noise in the data.

e Today we explain why we have semi-convergence for noisy data.

@ How to stop the iterations at the right time is a different story.
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Convergence Analysis: Split the Error

Let X% denote the iterates for a noise-free right-hand side. We consider:

k = k k

xT =X = x"—=-X" 4+ gk x

——
total error noise error Iteration error

We expect the iteration error to decrease and the noise error to increase.

Then we have semi-convergence, when the noise error starts to dominate:
5

454
4t - - -lteration error,|
35F Noise error

3t

—Total error

25}
2 e S-<
1 . .
0 100 200 300 400 500
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Analysis of Semi-Convergence for Cimmino

Consider Cimmino's method, and use the SVD | M2A =" u;o;v

i

Van der Sluis & Van der Vorst (1990)

The iterate x¥ is a filtered SVD solution:

M S UL I SR R

Recall that we solve noisy systems Ax = b with b= AXx + e. Then:

n

—X_Z<P[k] u Mze) Vi — Z(l—sof-k])vf)?v,- .

i=1

-~

noise error iteration error

\. J

Fact: the iteration error decreases.  Aim: show that noise error increases.
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The Behavior of the Filter Factors

100F T T e
/‘/4/ ., 7’
P ’
/7 s
/s ’
7 i
/" ’ !
/7 i
: ’
1 071 [ l/ ’ ’
/s ’
/s ’
I( ’
/s ’
; ’
Ve ) — k=10
g -~ k=30
! k=90
, -k =270
107 -
10 107" 10°
o

The iteration error >-7 (1 —

The filter factors dampen the “inverted noise” in > 7 ; ‘PE'

Note: wo? < 1 = cpE-k]

Japan 2020
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©; ) v,-T X v; decreases monotonically.

~ kw o2 showing that k and w play the same role.
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The Spectral Behavior of the Noise Error

Recall: the noise error =

n 99[-1(] T 1
> —u'(Mze) v,

i=1 g,

and v; is a spectral basis:
> large o; ~ low-freq. v;

> small o; ~ high-freq. v;
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The Spectral Behavior

Recall: the noise error =
T 1
> u' (Mze)v;

and v; is a spectral basis:

k
n 995 ]
i=1 o;

> large o; ~ low-freq. v;

> small o; ~ high-freq. v;

of the Noise Error

k "
o foi = (1-(1—wod))/oi, w=1
10" TN,
AN
/‘/, \‘\
L TN
oL L7 N
10 7 — k=10
e -~ k=30
R k=90
—ek =270
------ 1/0;
¢ max
107 :
10 107" 10°
0;

e Each curve has a maximum for o; =~ 1.12 /v k w.
@ As k increases, more noise is included and the SVD-spectrum changes.

@ As k increases, the noise error gets dominated by higher frequencies.

Japan 2020
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Constrained Problems

In many applications we can improved the reconstruction by including
simple constraints:

’minXHAx—ng s.t. XGC‘

) No constr. Box constr.
where C is a convex set, e.g.,

e C=R" - nonnegativity constraints.
e C =0,1]" - box constraints.
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Constrained Problems

In many applications we can improved the reconstruction by including
simple constraints:

’minXHAx—ng s.t. XGC‘

) No constr. Box constr.
where C is a convex set, e.g.,

e C=R" - nonnegativity constraints.
e C =[0,1]" - box constraints.

Let Pc denote the orthogonal projector on C.
Kaczmarz (ART) with projection:
b — a7
x+776<x+w'a’2xa,-) , i=1,2,3,...
[aill2
SIRT with projection:
Xkl — Pc(xk +wDATM (b Axk)> . k=0,1,2,...
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Analysis of Semi-Convergence for Projected Cimmino
For constrained problems we cannot perform an SVD analysis.
Let X be the constrained solution to the noise-free problem:

X = argmin,cc||Ax — b||um, b = AX = pure data

and let x¥ denote the iterates when applying Projected Cimmino to b.

Then we consider an norm-wise analysis

Ix* = xll2 < |x* =2 l2+ |Ix* ~ x|

-~

noise error  iteration error
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Analysis of Semi-Convergence for Projected Cimmino
For constrained problems we cannot perform an SVD analysis.
Let X be the constrained solution to the noise-free problem:

X = argmin,cc||Ax — b||um, b = AX = pure data

and let x¥ denote the iterates when applying Projected Cimmino to b.

Then we consider an norm-wise analysis

Ix* = xll2 < |x* =2 l2+ |Ix* ~ x|

-~

noise error  iteration error
We already considered the decreasing iteration error:
155 = xll2 S (1 = 2/8%)"[Ix° = XI5 -

Now we must consider the noise error (which we expect to grow with k).
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The Noise Error for Projected Cimmino

Elfving, H, Nikazad (2012)

The noise error in Projected Cimmino is bounded by

o1 1—(1—-wo)k

1
IM2el|z -

As long as wo2 < 1 we have 1 — (1 — wo?)k ~ kwo? and thus

— 1
3K = 2K|lo Swkor||Mzell2

showing again that k and w play the same role in the error bound.
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Analysis of Semi-Convergence for ART — Setting the Stage

Elfving, Nikazad (2009)

A full sweep of ART can be written in a form that resembles SIRT:
Xk+1:Xk+wATM(b—AXk), I\7I:(A+wL)_1.
where the nonsymmetric M comes from the splitting:
AAT =L+ A+LT, A =diag(]ai?) .

and where L is strictly lower triangular.
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Analysis of Semi-Convergence for ART — Setting the Stage

Elfving, Nikazad (2009)

A full sweep of ART can be written in a form that resembles SIRT:
Xk+1:Xk+wATM(b—AXk), I\7I:(A+wL)_1.
where the nonsymmetric M comes from the splitting:

AAT =L+ A+ LT, A=diag(|ai]3)

and where L is strictly lower triangular.

Simple manipulations show that the noise error is given by
Kz = (I- wATM A) (Kt - g 4 wATMe
k—1
= w) (I-wATMA)Y ATMe .
j=1
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Analysis of Semi-Convergence for ART — Results

Elfving, H, Nikazad (2014)

Let 6 = ||AT Mel|2 and o, = smallest nonzero singular value of A.

We obtain a bound which resembles that of Cimmino:

[x* — %Ko <wké + O(c?)

As long as wo? < 1 we have:

Ik — %42 < ¥2V/k 6 + O(o?)

These results also hold for constrained problems, provided that
yeR(AT) = 7Pcly) e R(AT).
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Numerical Results — Parallel-Beam X-Ray Tomography
Test problem

> 200 x 200 phantom
> 60 projections at

> 3°,6°,9°,...,180°
> m= 15232

> n = 40000

Japan 2020

Hansen: Convergence Stories 28 /52



Numerical Results — Parallel-Beam X-Ray Tomography
Test problem

The upper bound. We estimate
> 200 x 200 phantom

w
o VY5107,
> 60 projections at or
> 3°,6°,9°,...,180°
Our bound Y¥5/k is a huge over-estimate;
> m = 15232 50V k & '
> n = 40000 the factor vk correctly tracks the noise error.
Noise error ||zF — z| Tteration error [|Z* — Z||
102 : : 30 ‘ '
—Kaczmarz
/- ‘ ----with box constr.
ol 104}
i emmmmmTTTTT \
L - —Kaczmarz || | Tl
, -—with box constr.|| | T TTTme—e—
I’ - \/E
100" 3
0 20 40 60 80 0 20 40 60

80
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The Story So Far

Interesting stuff not covered here:
@ Convergence of column-action methods.
o Connections to first-order optimization methods.
@ Pre-asymptotic convergence of ART; Jiao, Jin, Lu (2017).

@ Choice of relaxation parameters; stopping rules.
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The Story So Far

Interesting stuff not covered here:
@ Convergence of column-action methods.
o Connections to first-order optimization methods.
@ Pre-asymptotic convergence of ART; Jiao, Jin, Lu (2017).

@ Choice of relaxation parameters; stopping rules.

What we did cover:
@ Review of the convergence for noise-free data (iteration error).
o lllustration of semi-convergence.

@ Recent convergence results (upper bounds) for the noise error.

1910 14
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Unmatched Projector/Backprojector Pairs

Recall the basic iteration: x*1 = xk + WATM (b — Ax¥).

We take notation literally — the backprojector A” is really the transposed
of the projector A. Otherwise the theory and the algorithms do not work.
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of the projector A. Otherwise the theory and the algorithms do not work.

But many software packages implement the backprojector in such a way
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Unmatched Projector/Backprojector Pairs

Recall the basic iteration: x**1 = xk + wWATM (b — Axk).

We take notation literally — the backprojector A” is really the transposed
of the projector A. Otherwise the theory and the algorithms do not work.

But many software packages implement the backprojector in such a way
that it is not the exact transposed of the projector.

@ Philosophy: different discretization schemes may be appropriate for
projection and backprojection.

@ Practicality: HPC software should make the most efficient use of
multi-core processors, GPUs and other hardware accelerators.

We must study the influence of unmatched projector/backprojector pairs
on the computed solutions and the convergence of the iterations.
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Perturbation Theory for Unmatched Normal Equations
Let {A, AT, b} be the unperturbed data, and consider the perturbations
A=A+Exy AT =AT + Ej, b=b+e.

Also let X denote the unperturbed solution to ATAx = AT b.
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Perturbation Theory for Unmatched Normal Equations
Let {A, AT b} be the unperturbed data, and consider the perturbations
A=A+Ey, AT=AT+Ey, b=b+e.

Also let X denote the unperturbed solution to ATAx = AT b.
Elfving, H (2018)

When we use the perturbed triple {A, AT, b} then we aim at solving the
unmatched normal equations:

ATA(% +6x) = ATb.

Omitting higher-order terms, we obtain:

1 _ 1 - -
[oxl2 S U_(”PR(A) ell2 + | Eaxll2) + 2lEar(b=AX)]2
r r

For inconsistent systems, the solution is more sensitive to E,r than Ea.
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Convergence Analysis for Unmatched Pairs

To set the stage we consider the generic BA lteration

XKL = xk L wB(b—AxK), w>0

Generally not related to solving a minimization problem!
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It is a fixed-point iteration whose convergence depends on the product BA.
@ Any fixed point x* satisfies the unmatched normal eq. BAx* = Bb.
o If BAis invertible then x* = (BA)~1Bb.
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Convergence Analysis for Unmatched Pairs

To set the stage we consider the generic BA lteration

xkl = xk L wB(b— Axk) | w>0

Generally not related to solving a minimization problem!

It is a fixed-point iteration whose convergence depends on the product BA.

@ Any fixed point x* satisfies the unmatched normal eq. BAx* = Bb.
o If BAis invertible then x* = (BA)~1Bb.

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA lteration converges to a solution of BAx = B b if and only if

0<w<? T;ﬁ;\f) and Re())) >0,  {\}=eig(BA).
J

Zeng & Gullberg (2000): similar analysis but ignoring complex A;.

Japan 2020
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More Convergence Results for Unmatched Pairs

Dong, H, Hochstenbach, Riis (2019) — for the nerds

The following requirements for a unique fixed point are equivalent:
Q@ BA:R(B) — R(B) is nonsingular.
@ For every b € R™, BAx = Bb has a unique solution x € R(B).
@ R(B)NN(BA) = {0}.
QO N(BAB)=N(B).
@ R(BAB)=R(B).
@ rank(BAB) = rank(B).
@ A is nonsingular on R(B) and B is nonsingular on R(AB).
Q@ R(B)NN(A) = {0} and R(AB)NN(B) = {0}.
Here R(-) = range and N(-) = null space.
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Numerical Example (no Noise) with Negative Real Parts

Parallel-beam CT, unmatched pair from ASTRA, 64 x 64 Shepp-Logan
phantom, 90 proj. angles, 60 detector pixels, min Re(\;) = —6.4 - 1078.
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Numerical Example (no Noise) with Negative Real Parts

Parallel-beam CT, unmatched pair from ASTRA, 64 x 64 Shepp-Logan
phantom, 90 proj. angles, 60 detector pixels, min Re(\;) = —6.4 - 1078.
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For now we assume that Re(\;) > 0 V.
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Iteration Error for BA lteration

For simplicity assume that A/(BA) =0 = the convergence criterion
becomes p(T) < 1 with T =/ —w BA (otherwise: see paper).
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Iteration Error for BA lteration

For simplicity assume that A (BA) =0 = the convergence criterion
becomes p(T) < 1 with T =/ —w BA (otherwise: see paper).

Elfving, H (2018)

The iteration error is given by

K-z =TKx"-%), X% =initial vector,

and it follows that
k k=0 =
—&ll2 < T2 1K = xll2 < [ TI5[1%° = %]2.

In general we cannot assume || T||2 < 1; but asymptotically the conver-
gence rate depends on the spectral radius because

lim | T/]| = lim p(T/) =0,
j—o0 j—o0

so the convergence rate is linear.
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Noise Error for BA lteration

Recall that the noise error xX — x* reveals how the errors e in the
right-hand side propagate during the iterations.

From the definition of the BA Iteration it follows that

XK -3 = (1 —wBA)(x*1 —x*1) 4 wBe,

and hence by induction, and assuming x9 = X0 it follows that

k—1
xK— %Kk =Se with S, = wZ(I —wBA)/B.
j=0
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Noise Error for BA lteration

Recall that the noise error xk — x* reveals how the errors e in the
right-hand side propagate during the iterations.

From the definition of the BA Iteration it follows that
XK -3 = (1 —wBA)(x*1 —x*1) 4 wBe,
and hence by induction, and assuming x? = X9, it follows that
k—1

xK—xk=Se with S,=w> (I-wBA)/B.
Jj=0

Elfving, H (2018)

Similar to iterations with a matched transpose, with b = AX + e we have

I3k = 2K|l2 < (w cpallBll2) k|lell2

where we define the constant cga by: sup;[|(/ —w BA)/||2 < cpa.
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Numerical Experiments — the Influence of Unmatching

@ 64 x 64 image, 180 proj., 91 detector pixels, A is 16,380 x 4,096.

o Unmatched transpose AT: generated from AT by neglecting the
smallest 50% of the nonzeros; then ||E,7 || /|| Allr = 0.406.

o Noisy b = b+ e: Gaussian white noise with ||e||»/||b||2 = 0.01.
e Both A and A have full rank.

o All real parts of the eigenvalues of C = AT A are positive
(the smallest real part is 9.35-1077).

o For the unperturbed right-hand side b = AX, the BA lteration with
both B = AT and B = AT converges to x.

@ For the perturbed right-hand side b, the iteration converges to X when
B = AT and to a solution of ATAx = ATb when B = AT.

k k k

We show: x*—x = x"-—-Xx" + gk x
—— ——

total error noise error iteration error
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25

o\ - - - Tteration error; B # AT
\ - - - Iteration error; B = AT
Cimmino's method. Sl |
Test problem sl \ |
- w
> 64 x 64 phantom £
> 180 projections at 1 ]
> 1°,2°,3°,...,180°
> m = 16380 05 ‘~11:~_::_§__\ |
> n=4096 TTe-iiliiiiiaoa-d
0 500 1000 1500 2000 2500

3000 3500 4000
Iteration k
teration error: both versions converge to X; the one with B # AT is slower.
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2.5 T T T T T T T
I - - - Tteration error; B # AT
\ - - - Iteration error; B = AT
1 1 ! " s . T
Cimmino's method. ol % Eo;ae error; B # AT
W ——Noise error; B = A
Test problem sl \ |
- A
> 64 x 64 phantom E
> 180 projections at 1 ]
> 1°,2°,3°, ... 180° S
> m = 16380 05 Sl |
> n=4096 TTe-iiliiiiiaoa-d
0 500 1000 1500 2000 2500

3000 3500
Iteration k

4000
teration error: both versions converge to X; the one with B # AT is slower

Noise error: the one for B # AT increases faster.
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25w

'.'. - - - Iteration error; B # AT
‘l“ - - - Tteration error; B = AT
Cimmino’'s method. ol Noise error; B # A"
W ——Noise error; B= A
'-‘\\‘ ————— Total error; B # A"j
Test problem W —---- Total error; B = A”
_ 150 W 1
= W]
> 64 x 64 phantom E N R
\\\\ _____
> 180 projections at 1 ]
> 1°,2°,3°,...,180° S
> m = 16380 s |
> n= 4096 TTTee--Iiiiiiiood
0 500 1000 1500 2000 2500 3000

3500 4000
Iteration k
teration error: both versions converge to X; the one with B # AT is slower
Noise error: the one for B # AT increases faster.

Total error: semi-convergence, the iteration with B # AT reaches the min.
error o 1.181 after 1314 iterations. This error is 48% larger than the min.
error o 0.796 for the iterations with AT, achieved after 3225 iterations.
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A Closer Look at the Noise Error

Noise errors for BA Iteration

—— Upper bound

——Noise error; B = AT
— Noise error; B = AT

0 500 1000 1500 2000 2500 3000 3500 4000
k

107"

General bound: ||x¥ — x¥|l2 < (wcT||Bl|2)k| el|2; but here the error ~ V/k.

For row/column action methods with matched pair we can show 'k bound.
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Exact Data (e = 0) and Errors in the Matrices

©
[N}

—— Ey #0, Ey # 0, unmatched B

—— E; #0, B> =0, matched B 1
--- E; =0, Ey # 0, unmatched B
--- FE; =0, By =0, matched B — no pert. ]
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k
Matrix errors E; # 0 also lead to semi-convergence.
Minimum reconstruction error is larger for an unmatched transpose E; # 0.
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Did We Prove Semi-Convergence?

Not really:
@ we give an upper bound for the noise error;
@ this bound increases with k,
@ and it seems to track the actual noise error in numerical experiments.

Thus we have justified the observed behavior of

total error = iteration error 4+ noise error.
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Did We Prove Semi-Convergence?

Not really:

@ we give an upper bound for the noise error;

@ this bound increases with k,

@ and it seems to track the actual noise error in numerical experiments.
Thus we have justified the observed behavior of

total error = iteration error 4+ noise error.

But we also need a lower bound that increases with k:

o If the right-hand side error e € N/(A) then the lower bound is 0 (this
is extremely unlikely).

@ We (currently) don't know how to derive a nonzero increasing lower

bound for the case e & N'(A).
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The Story So Far

@ We studied the influence of errors in the forward projector and the
backprojector.

@ Our perturbation analysis shows that the least squares solution is more
sensitive to errors in AT than in A.

@ We derived bounds for the errors in the iteration vectors for a generic
algorithm that includes many well-known algebraic iterative methods.

@ Numerical examples demonstrate that an unmatched matrix pair leads
to a less accurate reconstruction than with a matched transpose.

@ Next up: “fix" the iterative algorithms when there are eigenvalues with
a negative real part.

91914
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And Now: Eigenvalues with Negative Real Parts

Parallel-beam CT, unmatched pair from ASTRA, 64 x 64 Shepp-Logan
phantom, 90 projection angles, 60 detector pixels, minRe \; = —6.4 - 1078,

| <107 Eigenvalues of BA 0.25
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Now we study the case with no asymptotic convergence.

Japan 2020 Hansen: Convergence Stories 43 /52



What To Do?

@ Ask the software developers to change their implementation of
projection and/or backprojection?
— Significant loss of computational efficiency.

@ Use mathematics to fix the nonconvergence.
— What we do here.
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What To Do?

@ Ask the software developers to change their implementation of
projection and/or backprojection?
— Significant loss of computational efficiency.

@ Use mathematics to fix the nonconvergence.
— What we do here.

Take inspiration from the Tikhonov problem
min {[|Ax — b[3 +a [x[3) .
for which a gradient step takes the form
XKL = xk — W (AT(b— Ax) + a x¥)
=(1-aw)x"+wAT(b—Ax¥).

Note the factor (1 — avw).
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The Shifted BA Iteration

-~ Many thanks to Tommy Elfving
. for originally suggesting this.

We define the shifted version of the BA Iteration:

Xkt = (1 —aw)xk+wB(b— Axk) , w >0

with just one extra factor (1 — aw); simple to implement.

This Shifted BA lteration is equivalent to applying the BA Iteration with
the substitutions

Aa{\/'%/}, B—[B,Val], b%[g].

Hence it is “easy” to perform the convergence analysis . ..
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Convergence Results

Dong, H, Hochstenbach, Riis (2019)

Let \; denote those eigenvalues of BA that are different from —a.
Then the Shifted BA lIteration converges to a fixed point if and only if a
and w satisfy

Re ) +
|)\j|2 + « (a + 2Re )\j)

O<w<?2

The fixed point x* satisfies

(BA+al)x, =Bb.
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Convergence Results

Dong, H, Hochstenbach, Riis (2019)

Let \; denote those eigenvalues of BA that are different from —a.
Then the Shifted BA lIteration converges to a fixed point if and only if a
and w satisfy

Re )\j —+ «
|)\j|2 + « (a + 2Re )\j)

O<w<?2

The fixed point x; satisfies

(BA+al)x, =Bb.

This result tells us how to choose the shift parameter «:

Just large enough that Re \; + o > 0 for all j.
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“Perturbation” Result

How much do we perturb the solution X — the fixed point — when we
introduce o > 07
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“Perturbation” Result

How much do we perturb the solution X — the fixed point — when we
introduce o > 07

Dong, H, Hochstenbach, Riis (2019)

Assume that BA+a [ is nonsingular and the right-hand side is noise-free
with b = b = AX. Then the corresponding fixed point X satisfies

Notice the factor a.
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“Perturbation” Result

How much do we perturb the solution X — the fixed point — when we
introduce o > 07

Dong, H, Hochstenbach, Riis (2019)

Assume that BA+a [ is nonsingular and the right-hand side is noise-free
with b = b = AX. Then the corresponding fixed point X satisfies

Notice the factor a.

With a small o — just large enough to ensure convergence — we compute a
slightly perturbed solution (instead of computing nothing).
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Eigenvalue Estimates (See Paper for Details)

We need to compute an estimate of the leftmost eigenvalue of BA, i.e.,
the eigenvalue with the minimal real part.

H Bring in “Mr. Eigenvalue”
“ { Michiel E. Hochstenbach.

In our paper we discuss five different iterative algorithms:

e Matlab's eigs(_,_, ’smallestreal’) (calls ARPACK):
baseline algorithm.

o Algorithms by Meerbergen and coauthors:
robust but need too many matrix-vector multiplications.

@ Krylov-Schur method by Stewart (~ implicitly restarted Arnoldi):
30% faster than Matlab's eigs.

@ Jacobi-Davidson: slower than Krylov-Schur.

@ Our own “field-of-values approximation algorithm™:
competitive with Krylov-Schur.
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Numerical Results — Divergence and Convergence

Parallel-beam CT, 128 x 128 Shepp-Logan phantom, 90 projection angles
in [0°,180°], 80 detector pixels; m = 7200 and n = 16 384.

Both A and B are generated with the GPU-version of the ASTRA toolbox

p(BA) =1.76-10*

— =BA: [l — z*[| /[|z*] /
a=1.85 ——Shifted BA: ||zF — z2||/|Z%]|

10°

1072

10741

10° 10°

Iteration number k

The BA lteration diverges from x* = (BA)~!Bb.
The Shifted BA Iteration converges to fixed point X* = (BA + a/1)"1Bb.
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Numerical Results — Reconstruction Errors

BA Iteration Shifted BA Iteration

l=* — /|||
l=* — || /||]

10° 10° 10° 10°
Iteration number k Iteration number k

@ The BA lteration diverges from the ground truth X.

@ The Shifted BA lteration
o Without noise: converges to a solution X* that approximates X.
o With noise: first semi-convergence, then convergence to x7.
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Does It Matter?

0.9
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l=* — I/ |1z
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BA Iteration

Shifted BA Iteration

l=* — zll/ |1z

10°

Iteration number k

10°

107 107
Iteration number k

@ For noisy data, the solutions at semi-convergence are almost the same.

@ But is this always the case? More research is necessary.

@ Also, we prefer iterative methods that converge with or without noise.
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Last Part of The Story

@ We studied the influence of an unmatched pair of matrices for which
backprojection # adjoint(projection).

@ Focus on SIRT method; also a concern for Kaczmarz-type methods.

o lterative methods based on unmatched pairs do not solve an
optimization problem, but may converge to a fixed point.

@ The main criterion for convergence is that all eigenvalues of the
iteration matrix must have positive real part.

o If violated, we introduce a small shift that ensures convergence to a
fixed point that is a slightly perturbed solution (~ Tikhonov).

@ The shift is computed via estimation of the leftmost eigenvalue.

@ Numerical results confirm our convergence results.

A

"
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