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Software with Algebraic Iterative Methods

ASTRA Toolbox: a MATLAB & Python toolbox of GPU primitives for 2D and 3D
tomography, developed at University of Antwerp and CWI, Amsterdam.
https://www.astra-toolbox.com/

SNARK14: a C++ system for reconstruction of 2D images from 1D projections,
developed at City Univ. New York and Univ. Nacional Autónoma de México.
https://turing.iimas.unam.mx/SNARK14M/

jSNARK: a C++ programming system for the reconstruction of 2D and 3D images
from their projections, developed at City University of New York.
http://jsnark.sourceforge.net/

TIGRE: Matlab and Python libraries for tomographic iterative GPU-based
reconstruction, developed at the University of Bath and CERN.
https://github.com/CERN/TIGRE/

AIR Tools II: a Matlab toolbox of algebraic iterative reconstruction methods,
developed at the Technical Univ. of Denmark and the Univ. of Manchester.
http://people.compute.dtu.dk/pcha/AIRtoolsII/

FAIR Tools: a port to Fortran 90 of parts of the AIR Tools II package, developed
at the Technical University of Denmark.
https://github.com/BartvLith/fortran_AIRtools/
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Goal of my Talk

Algebraic iterative reconstruction methods (Kaczmarz, Cimmino, etc.)
are successfully used in computed tomography:

Very flexible – no assumptions about the CT scanning geometry.
Easy to incorporate convex constraints (e.g., nonneg./box constraints).

Both of these statements are true:

• We know a lot about the convergence – for exact data.
• We know so little about the convergence – for noisy data.

This talk tells the tale of the evolution of convergence theory.

All proofs: see the papers.
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X-Ray Tomography and the Radon Transform

The Principle

Send X-rays through the ob-
ject at different angles, and
measure the attenuation.
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R−1 = Filtered Back Projection (FBP)
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Filtered Back Projection Versus Algebraic Reconstruction

• FBP: fast, low memory, good results with sufficiently many good data.
• But artifacts appear with noisy and/or limited data.
• Difficult to incorporate constraints (e.g., nonnegativity).
• Algebraic iterative reconstruction methods are more flexible and

adaptive – but require more computational work.
Example with 3% noise and an incomplete set of projection angles:
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Setting Up the Algebraic Model

Assume each detector pixel is hit by a single X-ray. The Lambert-Beer law
says that the damping of the ith X-ray through the domain is a line integral:

bi =

∫
rayi

f (ξ) d`, f (ξ) = attenuation coef.

Assume f (ξ) is a constant xj in pixel j , leading to:

bi =
∑
j

aij xj , aij =

{
length of ray i in pixel j
0 otherwise.

This leads to a linear system of equations:

Ax = b

A ∼ measurement geometry,
x ∼ reconstruction,
b ∼ data.

Note: A is sparse; often we do not store it.
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Algebraic Systems and Iterative Methods

Our notation:
Ax = b, A ∈ Rm×n, x ∈ Rm, b ∈ Rm .

Two types of algebraic iterative methods:
Simultaneous iterations such as Cimmino’s method

xk+1 = xk + ω ATM (b − Axk), M = diag(‖A(i , :)‖−2
2 ).

Row-action methods such as Kaczmarz’ method

xk+1 = xk + ω
bi − A(i , :) xk

‖A(i , :)‖22
A(i .; )T , i = k mod m.

Multiplication with A ! (forward) projector.
Multiplication with AT ! backprojector.

NB: the implementation of the backprojector may differ from AT .
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ART: Algebraic Reconstruction Technique = Kaczmarz

Kaczmarz (1937): x ← Pi x = orthogonal projection on the hyperplane Hi

defined by the ith row aTi of A and the corresp. element bi of the rhs.
Repeat accessing the rows sequentially, e.g., in a cyclic fashion:

x ← Pi x = x +
bi − aTi x

‖ai‖22
ai , i = 1, 2, . . . ,m, 1, 2, . . . ,m, 1, 2, . . .
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Initial guess

Can also access the rows in a randomized fashion.
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Example of ART Performance

Image size 64× 64. Data: 360 projection angles in [0◦, 360◦],
90 detector pixels (90 rays per projection).

Top: no noise. Bottom: 10% Gaussian noise.
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From Sequential to Simultaneous Updates

Cimmino (1938): access all rows simultaneously and compute next iterate
as the average of the all the projections of the previous iterates:

xk+1 =
1
m

m∑
i=1

Pixk =
1
m

m∑
i=1

(
xk +

bi − aTi x
k

‖ai‖22
ai

)
= xk +

1
m

m∑
i=1

bi − aTi x
k

‖ai‖22
ai = xk + ATM

(
b − Axk

)
,

where we introduced the diagonal matrix M = diag
(
m‖ai‖22

)−1.
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Simultaneous Iterative Reconstruction Techniques (SIRT)

A general class of methods:

xk+1 = xk + ωD ATM (b − Axk), k = 0, 1, 2, . . .

D M

Landweber I I
Projected gradient descent

Cimmino I 1
m diag

(
1
‖ai‖22

)
Landweber with row normalization

CAV I diag
(

1
‖ai‖2S

)
Component Averaging S = diag(nnz(column j))

DROP S−1 diag
(

1
‖ai‖22

)
Diagonally relaxed orthogonal projection

SART diag
(

1
‖a j‖1

)
diag

(
1
‖ai‖1

)
Simultaneous algebraic reconstruction technique
Notation: ai = A(i , :) = row, a j = A(:, j) = column.
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Example of Cimmino – Test Problems

Image size 128× 128. Data: 360 projection angles in [0◦, 360◦],
181 detector pixels (181 rays per projection), 2 % Gaussian noise.

We use a synthetic problem Ax = b with a “phantom” – i.e., a test image
– inspired by a colorful Dutch cheese.
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Example of Cimmino – Results

Top: no noise. Bottom: 2% Gaussian noise.
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Asymptotic Convergence for Kaczmarz’s Method

Galántai (2004); Strohmer and Vershynin (2009)

Assume that A is invertible and that all rows are scaled to unit 2-norm.

‖x` − x̄‖22 ≤
(
1− det(A)2

)̀
‖x0 − x̄‖22

E
(
‖x` − x̄‖22

)
≤

(
1− 1

n κ2

)̀
‖x0 − x̄‖22

 ` = 1, 2, . . . ,

where E(·) = expected value, x̄ = A−1b, κ = ‖A‖2 ‖A−1‖2, and ` counts
the number of row actions. This is linear convergence.

When κ is large we have(
1− 1

n κ2

)̀
≈ 1− `

n κ2 .

After ` = n updates, i.e., one full sweep, the reduction factor is 1− 1/κ2.
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Asymptotic Convergence for Cimmino (a SIRT Method)

Follows from Nesterov (2004)

Assume that A is invertible and scaled such that ‖A‖22 = m.

‖xk − x̄‖22 ≤
(
1− 2

1 + κ2

)k
‖x0 − x̄‖22

where x̄ = A−1b and κ = ‖A‖2 ‖A−1‖2. Again: linear convergence.

When κ is large then we have the approximate upper bound

‖xk − x̄‖22 <∼ (1− 2/κ2)k ‖x0 − x̄‖22,

showing that in each iteration the error is reduced by a factor 1− 2/κ2.

Almost the same factor as in one full sweep in Kaczmarz’s method.
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Real Problems Have Noisy Data

A standard topic in numerical linear algebra: solve Ax = b.

Don’t do this for inverse problems with noisy data!

The right-hand side b (the data) is a sum of noise-free data b̄ = A x̄ from
the ground-truth image x̄ plus a noise component e:

b = A x̄ + e, x̄ = ground truth, e = noise.

The naïve solution xnaïve = A−1b is undesired, because it has a large
component coming from the noise in the data:

xnaïve = A−1b = A−1(A x̄ + e) = x̄ + A−1e.

The component A−1e dominates over x̄ , because A is ill conditioned.

But something interesting happens during the iterations . . .
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The Reconstruction Error for Kaczmarz’s Method

‖xk − x̄‖2
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Semi-Convergence

‖xk − x̄‖2

In the initial iterations xk approaches the unknown ground truth x̄ .
During later iterations xk converges to the undesired xnaïve = A−1b.
Stop the iterations when the convergence behavior changes.

Then we achieve a regularized solution: an approximation to the noise-free
solution which is not too perturbed by the noise in the data.

Today we explain why we have semi-convergence for noisy data.
How to stop the iterations at the right time is a different story.
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Convergence Analysis: Split the Error

Let x̄k denote the iterates for a noise-free right-hand side. We consider:

xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error

We expect the iteration error to decrease and the noise error to increase.

Then we have semi-convergence, when the noise error starts to dominate:
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Analysis of Semi-Convergence for Cimmino

Consider Cimmino’s method, and use the SVD M
1
2A =

∑n
i=1 ui σi v

T
i

Van der Sluis & Van der Vorst (1990)

The iterate xk is a filtered SVD solution:

xk =
n∑

i=1

ϕ
[k]
i

uTi (M
1
2 b)

σi
vi , ϕ

[k]
i = 1−

(
1− ω σ2

i

)k
.

Recall that we solve noisy systems Ax = b with b = A x̄ + e. Then:

xk − x̄ =
n∑

i=1

ϕ
[k]
i

uTi (M
1
2 e)

σi
vi︸ ︷︷ ︸

noise error

−
n∑

i=1

(1− ϕ[k]
i ) vTi x̄ vi︸ ︷︷ ︸

iteration error

.

Fact: the iteration error decreases. Aim: show that noise error increases.
Japan 2020 Hansen: Convergence Stories 20 / 52



The Behavior of the Filter Factors

The iteration error
∑n

i=1(1− ϕ[k]
i ) vTi x̄ vi decreases monotonically.

The filter factors dampen the “inverted noise” in
∑n

i=1 ϕ
[k]
i

uTi (M
1
2 e)

σi
.

Note: ω σ2
i � 1 ⇒ ϕ

[k]
i ≈ k ω σ2

i showing that k and ω play the same role.
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The Spectral Behavior of the Noise Error

Recall: the noise error =∑n
i=1

ϕ
[k]
i
σi

uTi (M
1
2 e) vi

and vi is a spectral basis:

. large σi ∼ low-freq. vi

. small σi ∼ high-freq. vi

Each curve has a maximum for σi ≈ 1.12/
√
k ω.

As k increases, more noise is included and the SVD-spectrum changes.
As k increases, the noise error gets dominated by higher frequencies.
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Constrained Problems

In many applications we can improved the reconstruction by including
simple constraints:

minx ‖Ax − b‖2 s.t. x ∈ C

where C is a convex set, e.g.,
C = Rn – nonnegativity constraints.
C = [0, 1]n – box constraints.

No constr. Box constr.

Let PC denote the orthogonal projector on C.
Kaczmarz (ART) with projection:

x ← PC
(
x + ω

bi − aTi x

‖ai‖22
ai

)
, i = 1, 2, 3, . . .

SIRT with projection:

xk+1 = PC
(
xk + ωD ATM (b − Axk)

)
, k = 0, 1, 2, . . .
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Analysis of Semi-Convergence for Projected Cimmino

For constrained problems we cannot perform an SVD analysis.

Let x̄ be the constrained solution to the noise-free problem:

x̄ = argminx∈C‖Ax − b̄‖M , b̄ = A x̄ = pure data

and let x̄k denote the iterates when applying Projected Cimmino to b̄.
Then we consider an norm-wise analysis

‖xk − x̄‖2 ≤ ‖xk − x̄k‖2︸ ︷︷ ︸
noise error

+ ‖x̄k − x̄‖2︸ ︷︷ ︸
iteration error

.

We already considered the decreasing iteration error:

‖x̄k − x̄‖2 <∼ (1− 2/κ2)k ‖x0 − x̄‖22 .

Now we must consider the noise error (which we expect to grow with k).
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The Noise Error for Projected Cimmino

Elfving, H, Nikazad (2012)

The noise error in Projected Cimmino is bounded by

‖xk − x̄k‖2 ≤
σ1

σn

1− (1− ω σ2
n)k

σn
‖M

1
2 e‖2 .

As long as ω σ2
n � 1 we have 1− (1− ω σ2

n)k ≈ k ω σ2
n and thus

‖xk − x̄k‖2 <∼ ω k σ1‖M
1
2 e‖2 ,

showing again that k and ω play the same role in the error bound.
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Analysis of Semi-Convergence for ART – Setting the Stage

Elfving, Nikazad (2009)

A full sweep of ART can be written in a form that resembles SIRT:

xk+1 = xk + ω AT M̂ (b − Axk) , M̂ = (∆ + ω L)−1 .

where the nonsymmetric M̂ comes from the splitting:

AAT = L + ∆ + LT , ∆ = diag(‖ai‖22) ,

and where L is strictly lower triangular.

Simple manipulations show that the noise error is given by

xk − x̄k = (I − ω AT M̂ A) (xk−1 − x̄k−1) + ω AT M̂ e

= ω

k−1∑
j=1

(I − ω AT M̂ A) j AT M̂ e .
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Analysis of Semi-Convergence for ART – Results

Elfving, H, Nikazad (2014)

Let δ = ‖AT M̂ e‖2 and σr = smallest nonzero singular value of A.

We obtain a bound which resembles that of Cimmino:

‖xk − x̄k‖2 ≤ ω k δ + O(σ2
r )

As long as ω σ2
r < 1 we have:

‖xk − x̄k‖2 ≤
√
ω
σr

√
k δ + O(σ2

r )

These results also hold for constrained problems, provided that
y ∈ R(AT ) ⇒ PC(y) ∈ R(AT ) .
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Numerical Results – Parallel-Beam X-Ray Tomography
Test problem

B 200× 200 phantom
B 60 projections at
B 3◦, 6◦, 9◦, . . . , 180◦

B m = 15 232
B n = 40 000

The upper bound. We estimate
√
ω

σr
δ ≈ 107.

Our bound
√
ω
σr
δ
√
k is a huge over-estimate;

the factor
√
k correctly tracks the noise error.
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k correctly tracks the noise error.
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The Story So Far

Interesting stuff not covered here:
Convergence of column-action methods.
Connections to first-order optimization methods.
Pre-asymptotic convergence of ART; Jiao, Jin, Lu (2017).
Choice of relaxation parameters; stopping rules.

What we did cover:
Review of the convergence for noise-free data (iteration error).
Illustration of semi-convergence.
Recent convergence results (upper bounds) for the noise error.
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Unmatched Projector/Backprojector Pairs

Recall the basic iteration: xk+1 = xk + ωATM (b − Axk).

We take notation literally – the backprojector AT is really the transposed
of the projector A. Otherwise the theory and the algorithms do not work.

But many software packages implement the backprojector in such a way
that it is not the exact transposed of the projector.

1 Philosophy: different discretization schemes may be appropriate for
projection and backprojection.

2 Practicality: HPC software should make the most efficient use of
multi-core processors, GPUs and other hardware accelerators.

We must study the influence of unmatched projector/backprojector pairs
on the computed solutions and the convergence of the iterations.
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Perturbation Theory for Unmatched Normal Equations

Let {A,AT , b̄} be the unperturbed data, and consider the perturbations

Ã = A + EA, ÂT = AT + EAT , b = b̄ + e.

Also let x̄ denote the unperturbed solution to ATA x̄ = AT b̄.

Elfving, H (2018)

When we use the perturbed triple {Ã, ÂT , b} then we aim at solving the
unmatched normal equations:

ÂT Ã (x̄ + δx) = ÂTb.

Omitting higher-order terms, we obtain:

‖δx‖2 .
1
σr

(
‖PR(A) e‖2 + ‖EAx̄‖2

)
+

1
σ2
r

‖EAT (b̄ − A x̄)‖2

For inconsistent systems, the solution is more sensitive to EAT than EA.
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Convergence Analysis for Unmatched Pairs

To set the stage we consider the generic BA Iteration

xk+1 = xk + ω B (b − Axk) , ω > 0

Generally not related to solving a minimization problem!

It is a fixed-point iteration whose convergence depends on the product BA.
Any fixed point x∗ satisfies the unmatched normal eq. BAx∗ = Bb.
If BA is invertible then x∗ = (BA)−1Bb.

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA Iteration converges to a solution of BAx = B b if and only if

0 < ω <
2Re(λj)

|λj |2
and Re(λj) > 0, {λj} = eig(BA) .

Zeng & Gullberg (2000): similar analysis but ignoring complex λj .
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More Convergence Results for Unmatched Pairs

Dong, H, Hochstenbach, Riis (2019) – for the nerds

The following requirements for a unique fixed point are equivalent:

1 BA : R(B)→ R(B) is nonsingular.
2 For every b ∈ Rm, BAx = Bb has a unique solution x ∈ R(B).
3 R(B) ∩N (BA) = {0}.
4 N (BAB) = N (B).
5 R(BAB) = R(B).
6 rank(BAB) = rank(B).
7 A is nonsingular on R(B) and B is nonsingular on R(AB).
8 R(B) ∩N (A) = {0} and R(AB) ∩N (B) = {0}.

Here R(·) = range and N (·) = null space.
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Numerical Example (no Noise) with Negative Real Parts

Parallel-beam CT, unmatched pair from ASTRA, 64× 64 Shepp-Logan
phantom, 90 proj. angles, 60 detector pixels, minRe(λj) = −6.4 · 10−8.

For now we assume that Re(λj) > 0 ∀ j .
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Iteration Error for BA Iteration

For simplicity assume that N (BA) = ∅ ⇒ the convergence criterion
becomes ρ(T ) < 1 with T = I − ω BA (otherwise: see paper).

Elfving, H (2018)

The iteration error is given by

x̄k − x̄ = T k(x̄0 − x̄), x̄0 = initial vector,
and it follows that

‖x̄k − x̄‖2 ≤ ‖T k‖2 ‖x̄0 − x̄‖2 ≤ ‖T‖k2 ‖x̄0 − x̄‖2.

In general we cannot assume ‖T‖2 < 1; but asymptotically the conver-
gence rate depends on the spectral radius because

lim
j→∞
‖T j‖ = lim

j→∞
ρ(T j) = 0,

so the convergence rate is linear.
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Noise Error for BA Iteration

Recall that the noise error xk − x̄k reveals how the errors e in the
right-hand side propagate during the iterations.

From the definition of the BA Iteration it follows that

xk − x̄k = (I − ω BA) (xk−1 − x̄k−1) + ωB e,

and hence by induction, and assuming x0 = x̄0, it follows that

xk − x̄k = Ske with Sk = ω

k−1∑
j=0

(I − ω BA) jB.

Elfving, H (2018)

Similar to iterations with a matched transpose, with b = A x̄ +e we have

‖xk − x̄k‖2 ≤ (ω cBA‖B‖2) k ‖e‖2
where we define the constant cBA by: supj ‖(I − ω BA) j‖2 ≤ cBA.
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Numerical Experiments – the Influence of Unmatching

64× 64 image, 180 proj., 91 detector pixels, A is 16, 380× 4, 096.
Unmatched transpose ÂT : generated from AT by neglecting the
smallest 50% of the nonzeros; then ‖EAT ‖F/‖A‖F = 0.406.
Noisy b = b̄ + e: Gaussian white noise with ‖e‖2/‖b̄‖2 = 0.01.
Both A and Â have full rank.
All real parts of the eigenvalues of C = ÂTA are positive
(the smallest real part is 9.35 · 10−7).
For the unperturbed right-hand side b̄ = A x̄ , the BA Iteration with
both B = AT and B = ÂT converges to x̄ .
For the perturbed right-hand side b, the iteration converges to x̄ when
B = AT and to a solution of ÂTAx = ÂTb when B = ÂT .

We show: xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error
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Cimmino’s method.

Test problem

B 64× 64 phantom
B 180 projections at
B 1◦, 2◦, 3◦, . . . , 180◦

B m = 16 380
B n = 4 096

Iteration error: both versions converge to x̄ ; the one with B 6= AT is slower.
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B 64× 64 phantom
B 180 projections at
B 1◦, 2◦, 3◦, . . . , 180◦

B m = 16 380
B n = 4 096

Iteration error: both versions converge to x̄ ; the one with B 6= AT is slower.
Noise error: the one for B 6= AT increases faster.
Total error: semi-convergence, the iteration with B 6= AT reaches the min.
error ◦ 1.181 after 1314 iterations. This error is 48% larger than the min.
error ◦ 0.796 for the iterations with AT , achieved after 3225 iterations.
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A Closer Look at the Noise Error

General bound: ‖xk − x̄k‖2 ≤ (ωcT‖B‖2)k‖e‖2; but here the error ≈
√
k .

For row/column action methods with matched pair we can show
√
k bound.
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Exact Data (e = 0) and Errors in the Matrices

Matrix errors E1 6= 0 also lead to semi-convergence.
Minimum reconstruction error is larger for an unmatched transpose E2 6= 0.
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Did We Prove Semi-Convergence?

Not really:
we give an upper bound for the noise error;
this bound increases with k ,
and it seems to track the actual noise error in numerical experiments.

Thus we have justified the observed behavior of

total error = iteration error + noise error.

But we also need a lower bound that increases with k :
If the right-hand side error e ∈ N (A) then the lower bound is 0 (this
is extremely unlikely).
We (currently) don’t know how to derive a nonzero increasing lower
bound for the case e 6∈ N (A).
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The Story So Far

We studied the influence of errors in the forward projector and the
backprojector.

Our perturbation analysis shows that the least squares solution is more
sensitive to errors in AT than in A.

We derived bounds for the errors in the iteration vectors for a generic
algorithm that includes many well-known algebraic iterative methods.

Numerical examples demonstrate that an unmatched matrix pair leads
to a less accurate reconstruction than with a matched transpose.

Next up: “fix” the iterative algorithms when there are eigenvalues with
a negative real part.
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And Now: Eigenvalues with Negative Real Parts

Parallel-beam CT, unmatched pair from ASTRA, 64× 64 Shepp-Logan
phantom, 90 projection angles, 60 detector pixels, minReλj = −6.4 · 10−8.

Now we study the case with no asymptotic convergence.
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What To Do?

1 Ask the software developers to change their implementation of
projection and/or backprojection?
→ Significant loss of computational efficiency.

2 Use mathematics to fix the nonconvergence.
→ What we do here.

Take inspiration from the Tikhonov problem

min
x

{
‖Ax − b‖22 + α ‖x‖22

}
,

for which a gradient step takes the form

xk+1 = xk − ω (AT (b − Ax) + α xk)

= (1− αω) xk + ω AT (b − Axk) .

Note the factor (1− αω).
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The Shifted BA Iteration

Many thanks to Tommy Elfving
for originally suggesting this.

We define the shifted version of the BA Iteration:

xk+1 = (1− αω) xk + ω B (b − Axk) , ω > 0

with just one extra factor (1− αω); simple to implement.

This Shifted BA Iteration is equivalent to applying the BA Iteration with
the substitutions

A→
[

A√
α I

]
, B →

[
B ,
√
α I
]
, b →

[
b
0

]
.

Hence it is “easy” to perform the convergence analysis . . .
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Convergence Results

Dong, H, Hochstenbach, Riis (2019)

Let λj denote those eigenvalues of BA that are different from −α.
Then the Shifted BA Iteration converges to a fixed point if and only if α
and ω satisfy

0 < ω < 2
Reλj + α

|λj |2 + α (α + 2Reλj)
and Reλj + α > 0 .

The fixed point x∗α satisfies

(BA + α I ) x∗α = Bb .

This result tells us how to choose the shift parameter α:

Just large enough that Reλj + α > 0 for all j .
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“Perturbation” Result

How much do we perturb the solution x̄∗α – the fixed point – when we
introduce α > 0?

Dong, H, Hochstenbach, Riis (2019)

Assume that BA+α I is nonsingular and the right-hand side is noise-free
with b = b̄ = A x̄ . Then the corresponding fixed point x̄∗α satisfies

x̄ − x̄∗α = α (BA + α I )−1x̄ .

Notice the factor α.

With a small α – just large enough to ensure convergence – we compute a
slightly perturbed solution (instead of computing nothing).
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Eigenvalue Estimates (See Paper for Details)

We need to compute an estimate of the leftmost eigenvalue of BA, i.e.,
the eigenvalue with the minimal real part.

Bring in “Mr. Eigenvalue”
Michiel E. Hochstenbach.

In our paper we discuss five different iterative algorithms:
Matlab’s eigs(_,_,’smallestreal’) (calls ARPACK):
baseline algorithm.
Algorithms by Meerbergen and coauthors:
robust but need too many matrix-vector multiplications.
Krylov-Schur method by Stewart (∼ implicitly restarted Arnoldi):
30% faster than Matlab’s eigs.
Jacobi-Davidson: slower than Krylov-Schur.
Our own “field-of-values approximation algorithm”:
competitive with Krylov-Schur.
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Numerical Results – Divergence and Convergence

Parallel-beam CT, 128× 128 Shepp-Logan phantom, 90 projection angles
in [0◦, 180◦], 80 detector pixels; m = 7 200 and n = 16 384.
Both A and B are generated with the GPU-version of the ASTRA toolbox.

ρ(BA) = 1.76 · 104

α = 1.85

The BA Iteration diverges from x̄∗ = (BA)−1Bb̄.
The Shifted BA Iteration converges to fixed point x̄∗α = (BA + α I )−1Bb̄.
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Numerical Results – Reconstruction Errors

The BA Iteration diverges from the ground truth x̄ .
The Shifted BA Iteration

Without noise: converges to a solution x̄∗α that approximates x̄ .
With noise: first semi-convergence, then convergence to x∗α.
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Does It Matter?

For noisy data, the solutions at semi-convergence are almost the same.
But is this always the case? More research is necessary.
Also, we prefer iterative methods that converge with or without noise.
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Last Part of The Story

We studied the influence of an unmatched pair of matrices for which
backprojection 6= adjoint(projection).

Focus on SIRT method; also a concern for Kaczmarz-type methods.

Iterative methods based on unmatched pairs do not solve an
optimization problem, but may converge to a fixed point.

The main criterion for convergence is that all eigenvalues of the
iteration matrix must have positive real part.

If violated, we introduce a small shift that ensures convergence to a
fixed point that is a slightly perturbed solution (∼ Tikhonov).

The shift is computed via estimation of the leftmost eigenvalue.

Numerical results confirm our convergence results.
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