

Hybrid Enriched Bidiagonalization for Discrete Ill-Posed Problems

Per Christian Hansen Technical University of Denmark

Joint work with

Kuniyoshi Abe - Gifu Shotoku Gakuen University

Yiqiu Dong - Technical University of Denmark

With thanks to Henrik Garde and Nao Kuroiwa

DTU Compute Department of Applied Mathematics and Computer Science

Setting the Stage – Overview of Talk

- 1. Iterative Krylov-subspace methods regularizing iterations.
- 2. Enrichment: augmenting the Krylov subspace.
- 3. Golub-Kahan bidiagonalization algorithm with augmented subspace.
- 4. A hybrid version with Tikhonov regularization.
- 5. Numerical examples that illustrate the advantage of this idea.

Inverse Problems \rightarrow Ill-Conditioning

The underlying problem $\left| \mathcal{A} f = g \right|$ is ill posed: Arbitrarily small perturbations of g can produce arbitrarily large perturbations of the solution f.

The discretized problem Ax = b has an ill-conditioned coefficient matrix A, and the "naive solution" $x = A^{-1}b$ is useless:

$$x = A^{-1}(b^{\text{exact}} + e) = A^{-1}(Ax^{\text{exact}} + e) = x^{\text{exact}} + A^{-1}e$$

We can *approximate* the exact solution by means of **regularization**.

Regularization Algorithms

DTU

Variational formulations take the form

$$\min_{x} \left\{ \|A x - b\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

where $\mathcal{R}(x)$ is a *regularization term* that penalizes unwanted features in the solution, and λ is a user-chosen regularization parameter.

Projection formulations take the form

$$\min_{x} \|A x - b\|_2^2 \qquad \text{s.t.} \quad x \in \mathcal{S}_k ,$$

where the "signal subspace" S_k is a linear subspace of dimension k.

If S_k is chosen such that it captures the main features in the solution, then this approach is well suited for large-scale problems.

Hybrid methods are iterative methods that combine regularization and projection \rightarrow this talk.

Krylov Subspaces and Semi-Convergence

In some applications we can use a *pre-determined subspace*, e.g., spanned by the Fourier basis, the discrete cosine basis, a wavelet basis, etc. An example: truncated SVD

$$\mathcal{S}_k = \operatorname{span}\{v_1, v_2, \ldots, v_k\}.$$

Alternatively we can use a subspace determined by the given problem, e.g., the Krylov subspace \mathcal{K}_k associated with a specific iterative method

$$\begin{split} \text{CGLS/LSQR} &: & \operatorname{span}\{A^Tb, (A^TA) A^Tb, (A^TA)^2 A^Tb, \ldots\} , \\ & \text{GMRES} &: & \operatorname{span}\{b, A \, b, A^2 \, b, \ldots\} , \\ & \text{RRGMRES} &: & \operatorname{span}\{A \, b, A^2 b, A^3 b, \ldots\} . \end{split}$$

As we take more iterations – and increase the dimension of the Krylov subspace – we encounter **semi-convergence**:

- first the iterates approach the desired solution,
- later they approache the undesired "naive solution" $A^{-1}b$ or $A^{\dagger}b$.

Illustration of Semi-Convergence

Hybrid Methods

Recall that a Krylov subspace method, associated with the space \mathcal{K}_k , computes the solution

$$x^{(k)} = \operatorname{argmin}_{x} ||Ax - b||_{2}^{2}$$
 s.t. $x \in \mathcal{K}_{k}$.

If $\mathcal{K}_k = \operatorname{range}(V_k)$ then

$$x^{(k)} = V_k z_k$$
, $z_k = \operatorname{argmin}_z ||(AV_k) z - b||_2^2$. Projected problem

The Krylov subspace \mathcal{K}_k may pick up unwanted basis vectors *before* all the desired ones have emerged. Then \mathcal{K}_k is not a good signal subspace.

The solution is to add regularization to the projected problem:

$$x^{(k)} = V_k z_k , \qquad z_k = \operatorname{argmin}_z \left\{ \|(AV_k) z - b\|_2^2 + \lambda_k \|z\|_2^2 \right\} .$$
 Regularized projected projected problem

The power of this approach is that λ_k is chosen in each iteration to imposed just the right amount of regularization.

Augmented Krylov Subspace

Let \mathcal{W}_p denote a linear subspace – defined by the user – that captures additional specific components of the desired solution. Assume that $\dim(\mathcal{W}_p) = p \ll k = \text{no.}$ its.

Then it can be advantageous to use an *augmented* linear subspace

$$\mathcal{S}_{p,k} = \mathcal{W}_p + \mathcal{K}_k, \qquad \mathcal{W}_p = \mathcal{R}(W_p) = \operatorname{span}\{w_1, \dots, w_p\}.$$

Thus we want an efficient iterative algorithm to solve the problem

$$\min_{x} \|Ax - b\|_2^2 \quad \text{s.t.} \quad x \in \mathcal{S}_{p,j} \ .$$

Example: Augmented GMRES

Baglama & Reichel (2007): GMRES-based methods that leave the component of x in \mathcal{W}_p unchanged and build a Krylov subspace from that.

Building on this, we developed the algorithm *Regularized RRGMRES*, or \mathbb{R}^3 GMRES, that solves

$$\min_{x} \|Ax - b\|_{2}^{2} \quad \text{s.t.} \quad x \in \mathcal{W}_{p} + \mathcal{K}_{k}(A, Ab) \ .$$

Overview of Methods

DTU

Square matrix $A \in \mathbb{R}^{n \times n}$

- Augmented GRMES and RRGMRES Baglama, Reichel (2007),
- $R^3GMRES Dong, Garde, H (2014).$

Rectangular matrix $A \in \mathbb{R}^{m \times n}$

- In some problems (tomography, inverse heat equation) the Arnoldi subspace underlying GMRES is not suited.
- In many problems the matrix A is rectangular.
- Enriched/augmented CGNR Calvetti, Reichel, Shuibi (2003).
- Combining enrichment with a hybrid method \rightarrow our approach.

P. C. Hansen, Y. Dong, and K. Abe, *Hybrid enriched bidiagonalization for discrete ill-posed problems*, Numerical Linear Algebra Appl., 26 (2019), e2230, doi: 10.1002/nla.2230.

Enriched CGNR

We want to solve

$$\min_{x} \|Ax - b\|_{2}^{2} \quad \text{s.t.} \quad x \in \mathcal{W}_{p} + \mathcal{K}_{k}(A^{T}A, A^{T}b) \ .$$

Standard CGNR = CGLS: $x^{(k+1)} = x^{(k)} + \alpha_k p_k$ where the search direction p_k is conjugate to all previous search directions.

Enriched CGNR: $x^{(k+1)} = x^{(k)} + \alpha_k p_k + q_k$ where q_k solves

$$\min_{q} \|Aq - (b - Ax^{(k)})\|_2 \quad \text{s.t.} \quad q \in \mathcal{W}_p \setminus \mathcal{K}_k(A^T A, A^T b) \ .$$

Straightforward to replace $||Ax - b||_2$ with the Tikhonov problem

$$\left\| \left[\begin{array}{c} A\\\lambda I \end{array} \right] x - \left[\begin{array}{c} b\\0 \end{array} \right] \right\|_{2}^{2}$$

with a fixed λ .

Towards our Algorithm

We want an algorithm that allows a different regularization parameter λ_k in each iteration – still based on the problem

$$\min_{x} \|Ax - b\|_{2}^{2} \quad \text{s.t.} \quad x \in \mathcal{W}_{p} + \mathcal{K}_{k}(A^{T}A, A^{T}b) \ .$$

We prefer to use a stable and efficient "standard" algorithm.

Run the *bidiagonalization* algorithm to compute an orthonormal basis of $\mathcal{K}_k(A^T A, A^T b)$, and augment it by \mathcal{W}_p in each step of the algorithm.

This seems cumbersome – but the overhead is favorably small!

Setting the Stage for Our Algorithm

At step k we have the decomposition

$$A\left[V_{k}, W_{p}\right] = \left[U_{k+1}, \widetilde{U}_{k}\right] \left[\begin{array}{cc}B_{k} & G_{k}\\0 & F_{k}\end{array}\right]$$

where

- $AV_k = U_{k+1}B_k$ is obtained after k steps of the bidiag. process.
- $V_k \in \mathbb{R}^{n \times k}$ has orthonormal columns that span $\mathcal{K}_j(A^T A, A^T b)$.
- $U_{k+1} \in \mathbb{R}^{m \times (k+1)}$ has orthonormal columns, $u_1 = b/||b||_2$.
- $\widetilde{U}_k \in \mathbb{R}^{m \times p}$: $\mathcal{R}(A W_p) = \mathcal{R}(U_{k+1}G_k + \widetilde{U}_kF_k)$ and $\widetilde{U}_k^T U_{k+1} = 0$.
- $B_k \in \mathbb{R}^{(k+1) \times k}$ is a lower bidiagonal matrix.
- $F_k \in \mathbb{R}^{p \times p}$ and changes in every iteration.
- G_k is $(k+1) \times p$ and is updated along with B_k .

The columns of $[V_j, W_p]$ form a basis for $\mathcal{S}_{p,j}$.

More Details

Recall that

$$A\left[V_{k}, W_{p}\right] = \left[U_{k+1}, \widetilde{U}_{k}\right] \left[\begin{array}{cc}B_{k} & G_{k}\\0 & F_{k}\end{array}\right]$$

The matrices $G_k \in \mathbb{R}^{(k+1)\times p}$ and $F_k \in \mathbb{R}^{p\times p}$ are composed of the coefficients of AW_p with respect to basis of $\mathcal{R}(U_{k+1})$ and $\mathcal{R}(\widetilde{U}_k)$, respectively:

$$G_k = U_{k+1}^T A W_p, \qquad F_k = \widetilde{U}_k^T A W_p$$

Then the iterate $x^{(k)} \in \mathcal{S}_{p,k}$ is given by $x^{(k)} = [V_k, W_p] y^{(k)}$, where

$$y^{(k)} = \operatorname{argmin}_{y} \left\| \begin{bmatrix} B_{k} & G_{k} \\ 0 & F_{k} \end{bmatrix} y - \begin{bmatrix} U_{k+1}^{T} \\ \widetilde{U}_{j}^{T} \end{bmatrix} b \right\|_{2}^{2}.$$

Projected problem

Basic Enriched Bidiagonalization

- 1. Set $U_1 = b/||b||_2$, $V_0 = [], B_0 = [], G_0 = U_1^T A W_p$, and k = 1.
- 2. Use the bidiag. process to obtain v_k , u_{k+1} such that $A V_k = U_{k+1} B_k$, where

$$V_{k} = [V_{k-1}, v_{k}], U_{k+1} = [U_{k}, u_{k+1}], B_{k} = \begin{bmatrix} B_{k-1} & 0 \\ 0 & \times \end{bmatrix}$$

- 3. Update $G_k = \begin{bmatrix} G_{k-1} \\ u_{k+1}^T A W_p \end{bmatrix} \in \mathbb{R}^{(k+1) \times p}$.
- 4. Orthonormalize AW_p with respect to U_{k+1} to obtain $\tilde{U}_k \in \mathbb{R}^{m \times p}$.

5. Compute
$$F_k = \widetilde{U}_k^T A W_p \in \mathbb{R}^{p \times p}$$

6. Solve
$$\min_{y} \left\| \begin{bmatrix} B_{k} & G_{k} \\ 0 & F_{k} \end{bmatrix} y - \begin{bmatrix} U_{k+1}^{T} \\ \widetilde{U}_{k}^{T} \end{bmatrix} b \right\|_{2}^{2}$$
 to obtain $y^{(k)}$.

- 7. Then $x^{(k)} = [V_k, W_p] y^{(k)}$.
- 8. Stop, or set k := k + 1 and return to step 2.

Recomputation of \widetilde{U}_k and F_k in each step; but p is small!

Efficient and Stable Implementation

In each step we update the orthogonal factorization:

$$\begin{bmatrix} B_k & G_k \\ 0 & F_k \end{bmatrix} = Q \begin{bmatrix} T_k^{(11)} & T_k^{(12)} \\ 0 & T_k^{(22)} \\ 0 & 0 \end{bmatrix},$$

 $T_k^{(11)} \in \mathbb{R}^{k \times k}$ and $T_k^{(22)} \in \mathbb{R}^{p \times p}$ are upper triangular, Q is orthogonal.

Update $T_k^{(11)}$ via Givens rotations that are also applied to G_k and $U_{k+1}^T b$.

 $\widetilde{U}_k \in \mathbb{R}^{m \times p}$ is already orthogonal to U_k , hence we can perform the update

$$\widetilde{U}_{k+1} = (I_m - u_{k+1}u_{k+1}^T) \widetilde{U}_k.$$

For numerical stability: must reorthogonalize the columns of V_k , U_{k+1} , and \tilde{U}_k . Consider the use of partial reorthogonalization.

Algorithm HYBR (Chung, Nagy, O'Leary 2008) also uses full reorthogonalization.

And Now: a Hybrid Algorithm

Recall that we want a hybrid algorithm with regularization added to the projected problem. An *equivalent* formulation:

$$x^{(k)} = \operatorname{argmin}_{x} \{ \|Ax - b\|_{2}^{2} + \lambda_{k}^{2} \|x\|_{2}^{2} \}$$
 s.t. $x \in \mathcal{K}_{k}$.

where λ_k is chosen in each iteration. This has two advantages:

- 1. The amount of regularization adapts to each iteration.
- 2. Can be used as a stopping rule, when λ_k or $x^{(k)}$ settles.

This is not possible with the enriched CGNR algorithm. But it is possible with the enriched bidiagonalization algorithm.

HEB: Hybrid Enriched Bidiagonalization

- 1. Set $U_1 = b/||b||_2$, $V_0 = [], B_0 = [], G_0 = U_1^T A W_p$, and k = 1.
- 2. Use the bidiag. process to obtain v_k , u_{k+1} such that $A V_k = U_{k+1}B_k$, where

$$V_{k} = [V_{k-1}, v_{k}], U_{k+1} = [U_{k}, u_{k+1}], B_{k} = \begin{bmatrix} B_{k-1} & 0 \\ 0 & \times \end{bmatrix}$$

- 3. Compute $G_k = \begin{bmatrix} G_{k-1} \\ u_{k+1}^T A W_p \end{bmatrix} \in \mathbb{R}^{(k+1) \times p}$.
- 4. Orthonormalize AW_p with respect to U_{k+1} to obtain $\tilde{U}_k \in \mathbb{R}^{m \times p}$.

5. Compute
$$F_k = \widetilde{U}_k^T A W_p \in \mathbb{R}^{p \times p}$$
.
Regularized projected problem
6. Choose λ_k and solve $\left\| \begin{bmatrix} B_k & G_k \\ 0 & F_k \\ \lambda_k V_k & \lambda_k W_p \end{bmatrix} y - \begin{bmatrix} U_{k+1}^T \\ \widetilde{U}_k^T \\ 0 \end{bmatrix} b \right\|_2^2$ for $y_{\lambda_k}^{(k)}$.

- 7. Then $x^{(k)} = [V_k, W_p] y_{\lambda_k}^{(k)}$.
- 8. Stop, or set k := k + 1 and return to step 2.

Terrible Computational Details of Step 6

Use any parameter-choice rule (GCV, discrep. principle, L-curve, ...) to choose λ_k . Already described how to update a QR factorization of the top 2×2 block matrix. To treat the bottom block $\lambda_k [V_k, W_p] \in \mathbb{R}^{n \times (k+p)}$, we multiply from the left with the orthogonal matrix $[V_k, V_o]^T$. The bottom block then takes the form

$$\begin{bmatrix} V_k, V_o \end{bmatrix}^T \lambda_k \begin{bmatrix} V_k, W_p \end{bmatrix} = \lambda_k \begin{bmatrix} I_k & V_k^T W_p \\ 0 & V_o^T W_p \end{bmatrix}, \qquad V_k^T W_p = \begin{bmatrix} V_{k-1}^T W_p \\ v_k^T W_p \end{bmatrix},$$

where $V_k = [V_{k-1}, v_k]$. Since the matrix V_o is not explicitly available, we consider the Cholesky factorization of the symmetric and positive definite $p \times p$ matrix

$$(V_o^T W_p)^T V_o^T W_p = W_p^T V_o V_o^T W_p = W_p^T (I_n - V_k V_k^T) W_p = R_k^T R_k ,$$

where $R_k \in \mathbb{R}^{p \times p}$ is the Cholesky factor. It follows immediately that

$$R_k^T R_k = W_p^T (I_n - V_{k-1} V_{k-1}^T) W_p - (W_p^T v_k) (W_p^T v_k)^T = R_{k-1}^T R_{k-1} - (W_p^T v_k) (W_p^T v_k)^T.$$

Hence we can compute R_k from R_{k-1} using techniques that *downdate* a Cholesky factor due to a rank-one change.

Numerical Examples

Setting up the test problems:

- 1. Generate noise-free system: $A x_{\text{exact}} = b_{\text{exact}}$.
- 2. Add noise: $b = b_{\text{exact}} + e$ where e is a random vector of Gaussian white noise scaled such that $||e||_2/||b_{\text{exact}}||_2 = \eta$.
- 3. Show the following results:
 - the best solution within the iterations,
 - the relative error $||x_{\text{exact}} x^{(k)}||_2 / ||x_{\text{exact}}||_2$,
 - the residual norm $\|b A x^{(k)}\|_2$.

We compare the following algorithms:

- LSQR is the implementation from REGULARIZATION TOOLS.
- HEB with a fixed λ (identical to Enriched CGNR).
- HEB + GCV with λ_k chosen by generalized cross validation (GCV) applied to projected problem.

DTU

Large Component in Augment. Subspace

Test problem deriv2(n,2), n = 32, relative noise level $\eta = 10^{-6}$.

 $\mathcal{W}_2 = \operatorname{span}\{w_1, w_2\}, \quad w_1 = (1, 1, \dots, 1)^T, \quad w_2 = (1, 2, \dots, n)^T.$

For this problem

$$||W_2 W_2^T x_{\text{exact}}||_2 / ||x_{\text{exact}}||_2 = 0.99 ,$$

$$||(I - W_2 W_2^T) x_{\text{exact}}||_2 / ||x_{\text{exact}}||_2 = 0.035 ;$$

we only need to spend effort in capturing the small component in \mathcal{W}_2^{\perp} .

Results next page \rightarrow

- We need augmentation to suppress oscillations towards the ends.
- HEB is sensitive to λ , and produces a good result only if we know a good value of λ .
- HEB + GCV performs very well and is able to choose a good λ_k .

Large Component in Augment. Subspace

1D Deconvolution and "Inpainting"

- 1. Create an $n \times n$ Toeplitz matrix A_{full} with n = 216, similar to the test problem **phillips** from REGULARIZATION TOOLS.
- 2. The exact solution x_{exact} has elements $\sin(1.5\pi i/n) + \cos(0.1\pi i/n)$.
- 3. Remove rows 71–126 of A_{full} to obtain (using MATLAB notation) $A = A_{\text{full}}([1:70, 127:216], :) \in \mathbb{R}^{160 \times 216}.$
- 4. Then $b_{\text{exact}} = A x_{\text{exact}}$ misses the middle 56 elements.
- 5. Use the augmentation subspace $\mathcal{W}_3 = \text{span}\{w_1, w_2, w_3\}$ with $w_1 = (1, 1, \dots, 1)^T, \quad w_2 = (1, 2, \dots, n)^T, \quad w_3 = (1, 4, \dots, n^2)^T.$

Results next page \rightarrow

LSQR approximates a minimum-norm solution and therefore even the best solution has a large error in the middle.

HEB solutions are much better: the augmentation subspace W_3 provides basis vectors that "fill the gap" – but at good λ is needed.

$\mathsf{HEB} + \mathsf{GCV}$ works very well.

1D Deconvolution and "Inpainting"

2D Image Deblurring and Inpainting

- 1. Create smooth $N \times N$ image with N = 80 and pixels given by $\sin(\pi i/(N-1)) \sin(\pi j/(N-1))$.
- 2. Remove the rows of the blur matrix that corresponds to a 16×16 region in the middle of the image $\rightarrow A$ is $(N^2-256) \times N^2$.
- 3. Use a 4-dimensional augmentation subspace \mathcal{W}_4 whose basis vectors are vectorized versions of four simple arrays (using some MATLAB notation):

 $w_1 = \operatorname{vec}(\operatorname{ones}(N, N)), \qquad w_2 = \operatorname{vec}(\operatorname{ones}(N, 1) * (1:N))$ $w_3 = \operatorname{vec}((1:N)' * \operatorname{ones}(1:N)), \qquad w_4 = \operatorname{vec}((1:N)' * (1:N)).$

Results next page \rightarrow

LSQR is not able to produce smooth inpainting; it leads to a smooth reconstruction but with a central region with small pixel values.

HEB inpaints the missing pixels in a smooth fashion as dictated by our augmentation subspace.

Conclusions

- We augment the bidiagonalization algorithm underlying LSQR.
- Our algorithm uses an *enriched* subspace: the Krylov subspace plus a low-dimensional linear subspace.
- We add standard-form Tikhonov regularization, thus arriving at a hybrid enriched bidiagonalization algorithm.
- We choose the regularization parameter adaptively in each iteration, e.g., by means of GCV.
- Possible extension: use general-form Tikhonov regularization.

