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Setting the Stage - Overview of Talk
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Forward problem:
b=Ax

Inverse problem:
solve Ax = b

Iterative Krylov-subspace methods — regularizing iterations.
Enrichment: augmenting the Krylov subspace.

Golub-Kahan bidiagonalization algorithm with augmented subspace.
A hybrid version with Tikhonov regularization.

St W=

Numerical examples that illustrate the advantage of this idea.
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Inverse Problems - Ill-Conditioning

The underlying problem | A f = ¢ | is ill posed:

Arbitrarily small perturbations of g can produce arbitrarily large per-
turbations of the solution f.

The discretized problem | Ax = b| has an ill-conditioned coefficient
matrix A, and the “naive solution” x = A~'b is useless:

T = A—l(bexact i 6) — A—l(Axexact i 6) — xexact i A_le .

We can approximate the exact solution by means of regularization.
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Regularization Algorithms
Variational formulations take the form
min {||Az — b||3 + AR(x)}

where R(x) is a reqularization term that penalizes unwanted features
in the solution, and A is a user-chosen regularization parameter.

Projection formulations take the form

min [|Ax — b||3 st. z €S,
e

where the “signal subspace” Sy is a linear subspace of dimension k.

If S;. is chosen such that it captures the main features in the solution,
then this approach is well suited for large-scale problems.

Hybrid methods are iterative methods that combine regularization
and projection — this talk.
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Krylov Subspaces and Semi-Convergence =

In some applications we can use a pre-determined subspace, e.g., spanned
by the Fourier basis, the discrete cosine basis, a wavelet basis, etc.

An example: truncated SVD

Si = span{vy, va, ..., Uk }.

Alternatively we can use a subspace determined by the given problem,
e.g., the Krylov subspace K} associated with a specific iterative method

CGLS/LSQR : span{A’b, (ATA) ATb, (ATA)? A, ..},
GMRES : span{b, Ab, A%b,...},
RRGMRES : span{Ab, A%b, A°b,...} .

As we take more iterations — and increase the dimension of the Krylov
subspace — we encounter semi-convergence:

e first the iterates approach the desired solution,

e later they approache the undesired “naive solution” A~'b or ATb.
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Illustration of Semi-Convergence
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Hybrid Methods

Recall that a Krylov subspace method, associated with the space ICp,
computes the solution

k)

t*) = argmin_||Ax — b||2 s.t. xr €Ky, .

If K = range(Vy) then

Projected

The Krylov subspace K may pick up unwanted basis vectors before all
the desired ones have emerged. Then K. is not a good signal subspace.

The solution is to add regularization to the projected problem:

Regularized
™ =V 2z 2, = argmin, {||(AVy) z — b||3 + Aill2]|5} - | projected
problem

The power of this approach is that Ay is chosen in each iteration to
imposed just the right amount of regularization.
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Augmented Krylov Subspace =

Let VW, denote a linear subspace — defined by the user — that captures
additional specific components of the desired solution.

Assume that dim()V,) = p < k = no. its.

Then it can be advantageous to use an augmented linear subspace

Sp = W, + Ky, W, = R(W,) = span{wi,...,wy} .

Thus we want an efficient iterative algorithm to solve the problem

min||[Az —bll5 st. 2€S,, .
xr
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Example: Augmented GMRES

Baglama & Reichel (2007): GMRES-based methods that leave the com-
ponent of z in VW, unchanged and build a Krylov subspace from that.

Example: deriv2 GMRES Augmented GMRES

‘ 0.1 0.1
All vectors in the

0.08 0.8l
Krylov subspace — 0 0.06
at end points. Now use 0.04 0.06
_ T '
w1 = (171771) ’ 0.02 0.04
_ T '
’UJQ—(l,Z,...,?’L) . 0 0.0
0 500 1000 0 500 1000

Building on this, we developed the algorithm Regularized RRGMRES,
or R*GMRES, that solves

min ||Az — b3 st. x €W, + Ki(A, Ab) .
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Overview of Methods

Square matrix A € R"*"

e Augmented GRMES and RRGMRES — Baglama, Reichel (2007),
e R°GMRES — Dong, Garde, H (2014).

Rectangular matrix A € R™*"

e In some problems (tomography, inverse heat equation) the Arnoldi
subspace underlying GMRES is not suited.

e In many problems the matrix A is rectangular.

e Enriched/augmented CGNR — Calvetti, Reichel, Shuibi (2003).

e Combining enrichment with a hybrid method — our approach.

P. C. Hansen, Y. Dong, and K. Abe, Hybrid enriched bidiagonalization for discrete ill-posed
problems, Numerical Linear Algebra Appl., 26 (2019), 2230, doi: 10.1002/nla.2230.
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Enriched CGNR

We want to solve

min||Ax —b||3 st. z €W, +Kp(ATA ATD) .

Standard CGNR = CGLS: z*+1) = z(k) 4 o p. where the search
direction p; is conjugate to all previous search directions.

Enriched CGNR: z(*t1) = (k) 4+ o, pr + ¢ where g, solves

min |[Ag— (b—Az®)|y st. ge W, \Kp(AT A, ATD) .
q

Straightforward to replace ||Az — b||2 with the Tikhonov problem
A | b
AT o0
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Towards our Algorithm

We want an algorithm that allows a different regularization parameter
Ar 1n each iteration — still based on the problem

min [[Az —b||5 st. €W, +Kp(ATA, A"D) .

W

We prefer to use a stable and efficient “standard” algorithm.

Run the bidiagonalization algorithm to compute an orthonormal basis
of Kr(ATA, ATD), and augment it by WV, in each step of the algorithm.

This seems cumbersome — but the overhead is favorably small!
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Setting the Stage for Our Algorithm

At step k£ we have the decomposition

B G,

A[Vk,Wp]:{UHl,ﬁk}[ A

where

|

o AV, = U,,1B; is obtained after k steps of the bidiag. process.

e V). € R™** has orthonormal columns that span C;(ATA, ATb).

o U1 € R™*(k+1) hag orthonormal columns, u; = b/||b||s.

o U, e R™*P: R(AW,) = R(Upt1Gr + U Fy) and U Uppq = 0.

o B;, € RE+DXk i5 5 lower bidiagonal matrix.
o [ € RP*P and changes in every iteration.
e (7. is (k+ 1) x p and is updated along with By.

The columns of [V, W, | form a basis for S, ;.
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More Details

Recall that

~ B, G
A[VkaWp]:{Uk—HaUk}[ Ok F:] :

The matrices G, € RFEFUXP and F, € RPXP are composed of the
coefficients of A W,, with respect to basis of R(Uy+1) and R(Uy), re-

spectively:

Gp=UL AW,  F,=ULAW, .

Then the iterate () € S, is given by #(¥) = [V}, W, ]y*), where

2
T
Uk:—i—l

rrT
U;

By Gy
0 Fi

Projected

b problem

y(k) = argmin,

2
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Basic Enriched Bidiagonalization

Set U1 = b/HbH2, V() = H, BO = H, GO = UlTAWp, and k£ = 1.

Use the bidiag. process to obtain vy, ug.1 such that AV, = Ui, 1By, where
B 0

Vie = [Vik—1, V), U1 = [Uk, k41 ], Br = L

0 X
Update G = [ TGk_l ] c R(E+1)xp
up 1 AWy

Orthonormalize AWV, with respect to Uy to obtain U, € R,

Compute Fj. = lN]kTAWp e RP*P,

2

to obtain y(¥).
0 F

b

Solve min,, Yy —

2
Then ) = [V;,, W, ]y,

Stop, or set k := k + 1 and return to step 2.

Recomputation of U . and [} in each step; but p is small!
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Efficient and Stable Implementation

In each step we update the orthogonal factorization:

5 . B Téll) T}g12) 7
k k
— (22)
0 Ql 0 T, :
0 0

T,in) e RF*F and T,Em) € RP*P are upper triangular, () is orthogonal.

Update Téll) via Givens rotations that are also applied to ;. and U ,;f 410

U . € R™*P is already orthogonal to Uy, hence we can perform the update
Upt1 = (Im — wy1ug41) Uy

For numerical stability: must reorthogonalize the columns of V}, Ui, and U k-
Consider the use of partial reorthogonalization.

Algorithm HYBR (Chung, Nagy, O’Leary 2008) also uses full reorthogonalization.
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And Now: a Hybrid Algorithm

Recall that we want a hybrid algorithm with regularization added to
the projected problem. An equivalent formulation:

") = argmin, {||Az —b||3 + A\ ||=[3} st. zekKy.
where )y is chosen in each iteration. This has two advantages:

1. The amount of regularization adapts to each iteration.

2. Can be used as a stopping rule, when \; or z(%) settles.

This is not possible with the enriched CGNR algorithm.

But it is possible with the enriched bidiagonalization algorithm.

17/27 P. C. Hansen - Hybrid Enriched Bidiagonalization for Discrete Ill-Posed Problems Japan, Spring 2020

HE



1.
2.

HEB: Hybrid Enriched Bidiagonalization

Set Uy =b/||b|l2, Vo =[], Bo=1], Gop = UlTAWp, and k = 1.

Use the bidiag. process to obtain vy, ugi1 such that AV, = Uy Bg, where
B 0

Vk: — [Vk—lavk}]a Uk—{—l — [Ukauk—{—l]a Bk — kel X

0 X
Compute G}, = [ TGk_l ] c Rk+1xp,
U1 AWy

Orthonormalize AWV, with respect to U1 to obtain ﬁk c Rmxp,

Compute Fj = (NngWp e RP*P,
Regularized projected problem

_ - _ o2
By, G Ui i1
Choose A; and solve | min,, 0 Iy, Yy — U ol for yg\i)
| AV AW, 0 ],

Then %) = [V}, W, ] yg\i)
Stop, or set k := k + 1 and return to step 2.
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Terrible Computational Details of Step 6

Use any parameter-choice rule (GCV, discrep. principle, L-curve, ...) to choose \.
Already described how to update a QR factorization of the top 2 x 2 block matrix.

To treat the bottom block Mg [ Vi, W, | € R**(*+P) we multiply from the left with
the orthogonal matrix [ Vi, V, ]T. The bottom block then takes the form

1 VIWw.
[Vk,VO]TAk[Vk,Wp]:Ak[ f

, VW, =
0 VOTWp] o

Vi Wy ]

T

where Vi, = [ Vi_1, vi|. Since the matrix V, is not explicitly available, we consider
the Cholesky factorization of the symmetric and positive definite p X p matrix

(VW) ' VIW, =WV, v, w, =W (I, - Vi, V] )W, = R Ry ,
where R;, € RP*P is the Cholesky factor. It follows immediately that
Ry Ry =W, (In—Vi—1 Vi_ ) Wp— (W, vp) W vi)" = Ri_y Rje—1— (W, o) (W, vg) "

Hence we can compute R from Rjy_; using techniques that downdate a Cholesky
factor due to a rank-one change.
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Numerical Examples

Setting up the test problems:

1. Generate noise-free system: A Texact = bexact-
2. Add noise: b = begact + € Where e is a random vector of Gaussian
white noise scaled such that ||e||2/||bexact||2 = 1-

3. Show the following results:
e the best solution within the iterations,

e the relative error ||Texact — w(k)Hg/HazexactHg,

e the residual norm ||b — Az®)|,.

We compare the following algorithms:

e LSQR is the implementation from REGULARIZATION TOOLS.

e HEB with a fixed A (identical to Enriched CGNR).

o with A\, chosen by generalized cross validation (GCV)
applied to projected problem.
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Large Component in Augment. Subspace
Test problem deriv2(n,2), n = 32, relative noise level n = 107°.
W, = span{wy,ws}, wi = (1,1,...,1)", wy=(1,2,...,n)".
For this problem
[WaWy @exact|l2/||Zexact |2 = 0.99 ,
I(I = WaW3 )zexact[l2/ | @exact [|2 = 0.035 ;

we only need to spend effort in capturing the small component in W .

Results next page >

e We need augmentation to suppress oscillations towards the ends.

e HEB is sensitive to A, and produces a good result only if we know
a good value of .

o performs very well and is able to choose a good Ay.
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Large Component in Augment. Subspace

Best solutions Relative errors

0.6 : 10°
LSQR
05¢ HEB, ) = 1e-05 A
HEB, \,
04l I \
. 4
~ 2
-~ 10
03¢ _~
/// )
0.1 : : : 10 : : :
0 10 20 30 0 5 10 15 20
lterations k
4 >‘k chosen by GCV ) Residual norms
10 - - - 10 ; ; -
107
10'6 -
10
V'
108 : : : 108 : : :
0 5 10 15 20 0 5 10 15 20
lterations k lterations k
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1D Deconvolution and "Inpainting”
1.

HE

Create an n x n Toeplitz matrix Ag with n = 216, similar to the
test problem phillips from REGULARIZATION TOOLS.

The exact solution Texact has elements sin(1.57¢/n)+cos(0.17i/n).

Remove rows 71-126 of Ag,) to obtain (using MATLAB notation)
A = Ap([1:70,127:216], ;) € R160x216,

Then bexact = A Toxact Misses the middle 56 elements.

Use the augmentation subspace W5 = span{wi, wo, w3} with
wy = (1,1,...,1)%, we = (1,2,...,n)", ws = (1,4,...,n

Results next page >

2>T.

LSQR approximates a minimum-norm solution and therefore even the
best solution has a large error in the middle.

HEB solutions are much better: the augmentation subspace W3 provides
basis vectors that “fill the gap” — but at good A is needed.

works very well.
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1D Deconvolution and "Inpainting”

Best solutions Relative errors

0
LSQR 10
HEB, A = 0.01 iy

2t f\’” /\ —
| //y\/‘ v\‘\\ HEB, X, / \’\

1.5 Right-hand side

J N T 1o
N %\;

Or | 1072}
\

0 50 100 150 200 0 5 10 15 20
lterations k

>‘k chosen by GCV Residual norms

100.

. . . 102 . . . !
0 5 10 15 20 0 5 10 15 20
lterations k lterations k
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2D Image Deblurring and Inpainting

1. Create smooth N x N image with N = 80 and pixels given by
sin(mi/(N — 1)) sin(mj/(N — 1)).

2. Remove the rows of the blur matrix that corresponds to a 16 x 16
region in the middle of the image — A is (IN?—256) x N2,

3. Use a 4-dimensional augmentation subspace ¥V, whose basis vec-
tors are vectorized versions of four simple arrays (using some
MATLAB notation):

w1 = vec(ones(N,N)), wo = vec(ones(N, 1) x (1:N))
w3 = vec((1:N)" * ones(1:N)), wy = vec((1:N) x (1:N)) .
Results next page >

LSQR is not able to produce smooth inpainting; it leads to a smooth
reconstruction but with a central region with small pixel values.

inpaints the missing pixels in a smooth fashion as dictated by our
augmentation subspace.

25/27 P. C. Hansen - Hybrid Enriched Bidiagonalization for Discrete Ill-Posed Problems Japan, Spring 2020



DTU

i

2D Image Deblurring and Inpainting
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0 We augment the bidiagonalization algorithm underlying LSQR.

0 Our algorithm uses an enriched subspace:
the Krylov subspace plus a low-dimensional linear subspace.

0 We add standard-form Tikhonov regularization, thus arriving
at a hybrid enriched bidiagonalization algorithm.

0 We choose the regularization parameter adaptively in each
iteration, e.g., by means of GCV.

0 Possible extension: use general-form Tikhonov regularization.
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