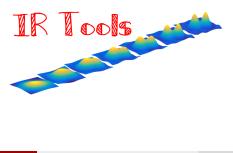
IR Tools: A Matlab Package with Iterative Regularization Methods for Inverse Problems

Per Christian Hansen DTU Compute, Technical University of Denmark

Joint work with Silvia Gazzola, Univ. of Bath & Jim Nagy, Emory Univ.





Japan 2020

Why (Matlab) Software Packages?

For teaching, training and research:

- Get to know a collection of methods that focus on a common theme.
- Solve the same problem with different methods; performance study.
- Solve different problems with the same method; robustness study.
- Use the package in a variety of applied mathematics courses.

Why (Matlab) Software Packages?

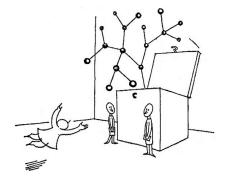
For teaching, training and research:

- Get to know a collection of methods that focus on a common theme.
- Solve the same problem with different methods; performance study.
- Solve different problems with the same method; robustness study.
- Use the package in a variety of applied mathematics courses.

For problem solving:

- Solve a difficult problem with an advanced method, without the need to carefully implement the method yourself.
- Software templates can be used for specialized implementations.
- Make modern numerical methods available to the users.
- Get the methods out, beyond papers in specialized journals.

Problems Solvers



THE ONLY SOLUTION

We shall have to evolve problem-solvers galore since each problem they solve creates ten problems more.

Piet Hein, Denmark, 1905-96

Overview of Talk

- Inverse problems and regularization.
- Overview of IR Tools.
- Sikhonov regularization, regularizing iterations, and IRcgls.
- Hybrid regularization methods and IRlsqr_hybrid.
- Illustration of some test problems and the use of iterative methods:
 - image deblurring,
 - computed tomography,
 - inverse interpolation.

Overview of Talk

- Inverse problems and regularization.
- Overview of IR Tools.
- S Tikhonov regularization, regularizing iterations, and IRcgls.
- Hybrid regularization methods and IRlsqr_hybrid.
- Illustration of some test problems and the use of iterative methods:
 - image deblurring,
 - computed tomography,
 - inverse interpolation.

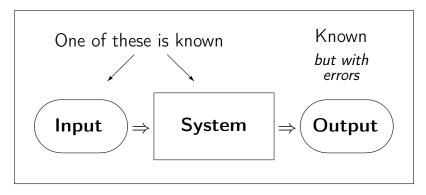
Get the software here: http://people.compute.dtu.dk/pcha/IRtools/

S. Gazzola, P. C. Hansen, and J. G. Nagy, *IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems*, Numerical Algorithms, 81 (2019), pp. 773-811. doi: 10.1007/s11075-018-0570-7.

What is an Inverse Problem?

In a **forward problem**, we use a mathematical model to compute the output from a "system" given the input – or compute the "system" given the input and the output.

In an **inverse problem** we estimate a quantity that is not directly observable, using indirect measurements.



Discretized Linear Inverse Problems

The basic problem

Solve
$$Ax = b$$
 with A ill conditioned.

The underlying model

$$b = A \bar{x} + e$$
, $\bar{x} =$ exact solution, $e =$ noise.

There are no restrictions on the dimensions of A and the noise is unknown.

Discretized Linear Inverse Problems

The basic problem

Solve
$$Ax = b$$
 with A ill conditioned.

The underlying model

$$b = A \bar{x} + e$$
, $\bar{x} =$ exact solution, $e =$ noise.

There are no restrictions on the dimensions of A and the noise is unknown.

- Our analysis tool: the SVD $A = U \operatorname{diag}(\sigma_i) V^T$.
- The singular values σ_i decay do zero with no gap anywhere.
- The exact right-hand side $\bar{b} = A \bar{x}$ satisfies the Picard condition: the coefficients $u_i^T \bar{b}$ decay *faster* than the σ_i .

The dimensions of A – i.e., the amount of data and the number of unknowns – are large \rightarrow iterative methods.

Regularization Methods

The "naive solution" to an inverse problem

$$x^{\text{naive}} = A^{-1}b = A^{-1}\bar{b} + A^{-1}e = \bar{x} + A^{-1}e$$

is dominated by the inverted noise $A^{-1}e$, due to the ill conditioned A. Use *regularization* to handle the amplification of noise in $A^{-1}e$.

- Truncated SVD: $x_k \equiv \sum_{i=1}^k \frac{u_i^T b}{\sigma_i} v_i$ small problems only.
- Tikhonov: $x_{\lambda} \equiv \arg \min_{x} \{ \|Ax b\|_{2}^{2} + \lambda^{2} \mathcal{R}(x) \}.$
- Regularization term $\mathcal{R}(x)$:
 - smoothness: $||x||_2^2$ or $||Lx||_2^2$
 - sparsity: $||x||_1$
 - total variation: sparse gradient magnitude.
- **Regularizing iterations:** truncated the iterations of a (least squares) solver, such as Kacmarz, Landweber, Cimmino, CGLS, and GMRES.

- Basic methods for small problems. Everything is based on the SVD.
- Tiny, easy, and outdated test problems.

- Basic methods for small problems. Everything is based on the SVD.
- Tiny, easy, and outdated test problems.
- Restore Tools (Nagy, Palmer, Perrone, 2004, 2007, 2012)
 - Image deblurring problems. Mainly iterative solvers. Object oriented.
 - Deblurring test problems only.

- Basic methods for small problems. Everything is based on the SVD.
- Tiny, easy, and outdated test problems.
- Restore Tools (Nagy, Palmer, Perrone, 2004, 2007, 2012)
 - Image deblurring problems. Mainly iterative solvers. Object oriented.
 - Deblurring test problems only.
- AIR Tools II (H, Jørgensen, 2018)
 - Expanded & improved version of AIR Tools (H, Saxild-Hansen, 2012).
 - Algebraic iterative reconstruction methods for tomography problems.
 - Tomography test problems only.

- Basic methods for small problems. Everything is based on the SVD.
- Tiny, easy, and outdated test problems.
- Restore Tools (Nagy, Palmer, Perrone, 2004, 2007, 2012)
 - Image deblurring problems. Mainly iterative solvers. Object oriented.
 - Deblurring test problems only.
- AIR Tools II (H, Jørgensen, 2018)
 - Expanded & improved version of AIR Tools (H, Saxild-Hansen, 2012).
 - Algebraic iterative reconstruction methods for tomography problems.
 - Tomography test problems only.
- IR Tools (Gazzola, H, Nagy, 2019)
 - Iterative regularization methods for large-scale problems.
 - Tikhonov-type probelms and regularizing iterations.
 - Realistic 2D test problems (how many years will they last?).

The 10 Conventions in IR Tools

- Seasy installation; no compilation; no need for additional toolboxes.
- Interface to the package AIR Tools II for computed tomography.
- Ill iterative solvers have the form

 $[X, Info] = IR_{--}(A, b, K, options)$

- Information about the performance is returned in the Info structure.
- Stopping rules are integrated in the iterative methods.
- O All test problem generators have the form

[A, b, x, ProbInfo] = PR___(n, options)

- Realistic 2D test problems that require no background knowledge.
- Oefault values are provided for all parameters.
- Users can take full control via an optional options input structure.
- **\textcircled{0}** Visualization of *b* and *x* is always done by **PRshowb** and **PRshowx**.

What We Can Do With IR Tools

Solve a 2D image deblurring problem with CGLS regularizing iterations.

First generate a deblurring test problem with std. parameters:

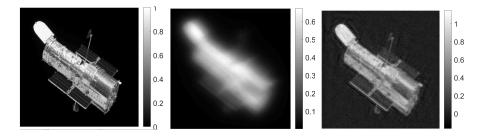
```
NoiseLevel = 0.01;
[A, b, x, ProbInfo] = PRblurspeckle;
[bn, NoiseInfo] = PRnoise(b, 'gauss', NoiseLevel);
```

Run CGLS with the discrepancy principle stopping rule: options = IRset('NoiseLevel', NoiseLevel); [Xcgls, IterInfo] = IRcgls(A, bn, options);



Plot the results:

figure(1), PRshowx(x, ProbInfo)
figure(2), PRshowb(b, ProbInfo)
figure(3), PRshowx(Xcgls, ProbInfo)



Types of Problems That Can be Solved with IR Tools

Problem type	Functions
$ \min_{x} \ Ax - b\ _{2}^{2} $ + semi-convergence	IRart, IRcgls, IRenrich, IRsirt, IRrrgmres ($M = N$ only)
$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	IRmrnsd, IRnnfcgls
$ \begin{array}{ c c c c } \min_{x} \ Ax - b\ _{2}^{2} & \text{s.t. } x \in \mathcal{C} \\ + \text{ semi-convergence} \end{array} $	IRconstr_ls, IRfista
$\min_{x} \ Ax - b\ _{2}^{2} + \lambda^{2} \ Lx\ _{2}^{2}$	IRcgls, IRhybrid_lsqr, IRhybrid_gmres ($M = N$ only)
$\min_{x} \ Ax - b\ _{2}^{2} + \lambda^{2} \ Lx\ _{2}^{2} \text{ s.t. } x \in \mathcal{C}$	IRconstr_ls, IRfista ($L = I$ only)
$\min_{x} \ Ax - b\ _2^2 + \lambda \ x\ _1$	IRell1 ($M = N$ only), IRhybrid_fgmres ($M = N$ only), IRirn
$\min_{x} \ Ax - b\ _{2}^{2} + \lambda \ x\ _{1} \text{ s.t. } x \ge 0,$	IRirn
$\frac{\min_{x} Ax - b _{2}^{2} + \lambda TV(x)}{\text{with or without constraint } x \ge 0}$	IRhtv

The matrix *L* must have full rank.

C is either the box $[xMin, xMax]^N$ or the set defined by $||x||_1 = xEnergy$.

Japan 2020

Test Problems in IR Tools

Test problem type	Function	Type of A
Image deblurring	PRblur (generic function)	
– spatially invariant blur	PRblurdefocus,	Object
	PRblurgauss,	
	PRblurmotion,	
	PRblur <mark>shake</mark> ,	
	PRblurspeckle	
– spatially variant blur	PRblurrotation	Sparse matrix
Inverse diffusion	PRdiffusion	Function handle
Inverse interpolation	PRinvinterp2	Function handle
NMR relaxometry	PRnmr	Function handle
Tomography		Sparse matrix or
 travel-time tomography 	PRseismic	function handle
 spherical means tomography 	PRspherical	ditto
 – X-ray computed tomography 	PRtomo	ditto

Add noise to the data (Gauss, Laplace, multiplicative): PRnoise

Visualize the data b and the solution x in appropriate formats: PRshowb, PRshowx

Japan 2020

Solving a Least Squares Problem

Consider the least squares problem without regularization

$$x_{\mathsf{LS}} = \arg\min_{x} \, \|Ax - b\|_2^2 \, ,$$

with the equivalent formulation

$$A^T A x = A^T b .$$

We can use **IRcgls** to solve this problem.

Solving a Least Squares Problem

Consider the least squares problem without regularization

$$x_{\mathsf{LS}} = \arg\min_{x} \|Ax - b\|_2^2 ,$$

with the equivalent formulation

$$A^T A x = A^T b .$$

We can use IRcgls to solve this problem.

Relevant stopping rules:

$$k = ext{MaxIter}$$
 , $\left\| A^T A x^{(k)} - A^T b
ight\|_2 \leq ext{NE}_ ext{Rtol} \cdot \| A^T b \|_2$.

Calling IRcgls

The simplest call, using all default parameters:

```
[X, info] = IRcgls(A, b);
```

X holds the final iterate, and info is a structure with lots of information. E.g., info.its is the number of the last computed iteration.

Calling IRcgls

The simplest call, using all default parameters:

```
[X, info] = IRcgls(A, b);
```

X holds the final iterate, and info is a structure with lots of information. E.g., info.its is the number of the last computed iteration.

Specify which iterates are stored in X:

```
K = 25:25:500;
[X, info] = IRcgls(A, b, K);
```

Note that MaxIter = max(K) and that info.saved_iterations holds the iteration numbers of the iterates stored in X.

Calling IRcgls

The simplest call, using all default parameters:

```
[X, info] = IRcgls(A, b);
```

X holds the final iterate, and info is a structure with lots of information. E.g., info.its is the number of the last computed iteration.

```
Specify which iterates are stored in X:
```

```
K = 25:25:500;
```

```
[X, info] = IRcgls(A, b, K);
```

Note that MaxIter = max(K) and that info.saved_iterations holds the iteration numbers of the iterates stored in X.

```
Set your own options:
```

```
options = IRset('MaxIter',500, 'NE_Rtol',1e-8)
K = 25:25:500;
[X, info] = IRcgls(A, b, K, options);
```

Alternatively: options.MaxIter = 500; options.NE_Rtol = 1e-8;

What Information is in info From IRcgls?

info: structure with the following fields:
its - number of the last computed iteration
saved_iterations - iteration numbers of iterates stored in \mathtt{X}
StopFlag - a string that describes the stopping condition:
* Reached maximum number of iterations
* Residual tolerance satisfied (discrepancy principle)
* Normal equation residual tolerance satisfied
StopReg - struct containing information about the solution that
satisfies the stopping criterion, with the fields:
It : iteration where the stopping criterion is satisfied
X : the solution satisfying the stopping criterion
Enrm : the best relative error (requires x_true)
Rnrm - relative residual norms at each iteration
NE_Rnrm – normal eqs relative residual norms
Xnrm - solution norms at each iteration
Enrm - relative error norms (requires x_true) at each iteration
BestReg – struct containing information about the solution that
minimizes Enrm (requires x_true), with the fields:
It : iteration where the minimum is attained
X : best solution
Enrm : best relative error
Japan 2020 Hansen: IR Tools 16 / 35

Tikhonov Regularization

Now consider the Tikhonov regularization problem

$$x_{\lambda} = \arg\min_{x} \left\{ \|Ax - b\|_{2}^{2} + \lambda^{2} \|Lx\|_{2}^{2} \right\} ,$$

where L may be the identity matrix or an approximation to a derivative operator. There are two equivalent formulations:

$$(A^{T}A + \lambda^{2}L^{T}L)x = A^{T}b$$
, $\min_{x} \left\| \begin{pmatrix} A \\ \lambda L \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_{2}^{2}$

We can also use IRcgls to solve this linear least squares problem.

Tikhonov Regularization

Now consider the Tikhonov regularization problem

$$x_{\lambda} = \arg \min_{x} \left\{ \|Ax - b\|_{2}^{2} + \lambda^{2} \|Lx\|_{2}^{2} \right\} ,$$

where L may be the identity matrix or an approximation to a derivative operator. There are two equivalent formulations:

$$(A^{T}A + \lambda^{2}L^{T}L)x = A^{T}b$$
, $\min_{x} \left\| \begin{pmatrix} A \\ \lambda L \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_{2}^{2}$

We can also use IRcgls to solve this linear least squares problem. Relevant stopping rules:

$$k = ext{MaxIter}$$
 ,
 $\left| \left(A^T A + \lambda^2 L^T L \right) x^{(k)} - A^T b \right\|_2 \le ext{NE}_ ext{Rtol} \cdot \|A^T b\|_2$.

Calling IRcg1s for Tikhonov Regularization

The simplest call, using a fixed regularization parameter λ and the default regularization matrix L = I:

```
options = IRset('RegParam',\lambda)
[X, info] = IRcgls(A, b, options);
```

Note that we do not need to specify the number of iterations K; the default maximum number of iterations is MaxIter = 100 (quite small).

Calling IRcg1s for Tikhonov Regularization

The simplest call, using a fixed regularization parameter λ and the default regularization matrix L = I:

```
options = IRset('RegParam',\lambda)
[X, info] = IRcgls(A, b, options);
```

Note that we do not need to specify the number of iterations K; the default maximum number of iterations is MaxIter = 100 (quite small).

Use options to specify a regularization matrix $L \neq I$:

- 'Laplacian1D' and 'Laplacian2D' give second-order smoothing.
- A matrix *L* specified by the user.
- A function handle to a function, written by the user, that computes matrix-vector products with *L* and *L*^{*T*}.

CGLS Regularizing Iterations

If we apply CGLS to the un-regularized problem, then the iterates satisfy

$$x^{(k)} = \arg\min_{x} \|Ax - b\|_2$$
 s.t. $x \in \mathcal{K}_k$,

where

$$\mathcal{K}_k = \mathsf{span}\{A^\mathsf{T}b, (A^\mathsf{T}A)A^\mathsf{T}b, \dots, (A^\mathsf{T}A)^{k-1}A^\mathsf{T}b\}\;.$$

The challenge is to stop the iterations when k is just large enough, and stopping rule = regularization-parameter choice (GCV, L-curve, etc.).

CGLS Regularizing Iterations

If we apply CGLS to the un-regularized problem, then the iterates satisfy

$$x^{(k)} = \arg\min_{x} \|Ax - b\|_2$$
 s.t. $x \in \mathcal{K}_k$,

where

$$\mathcal{K}_k = \operatorname{span}\{A^T b, (A^T A) A^T b, \dots, (A^T A)^{k-1} A^T b\}$$

The challenge is to stop the iterations when k is just large enough, and stopping rule = regularization-parameter choice (GCV, L-curve, etc.).

Recall our model $b = A\bar{x} + e$. We implemented the *discrepancy principle*:

stop as soon as
$$\|Ax^{(k)} - b\|_2 \leq \eta \|e\|_2$$
,

where η is a "safety factor" (default 1.01).

options = IRset('NoiseLevel', $||e||_2/||b||_2$); NB: rel. noise level. options = IRset(options, 'eta', 1.2); If we want to set η .

Studying Convergence in IR Tools

Monitor the iterations and the convergence – beyond the iteration where the stopping rule is satisfied – assuming that we know the true solution \bar{x} .

```
options = IRset('x_true', x̄, 'NoStop', 'on');
[X, info] = IRcgls(A, b, K, options);
```

Studying Convergence in IR Tools

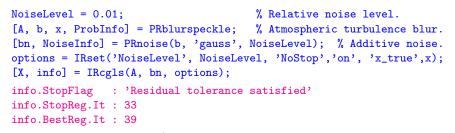
Monitor the iterations and the convergence – beyond the iteration where the stopping rule is satisfied – assuming that we know the true solution \bar{x} .

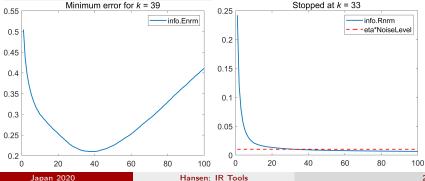
```
options = IRset('x_true', x̄, 'NoStop', 'on');
[X, info] = IRcgls(A, b, K, options);
```

Pay attention to these fields in the output info structure:

StopFlag	a string that describes the stopping condition
Xnrm	solution norms at each iteration
Enrm	relative error norms at each iteration (requires x_true)
Stopreg.It	iteration where the stopping criterion is satisfied
StopReg.X	the solution that satisfying the stopping criterion
StopReg.Enrm	the corresponding relative error (requires x_true)
BestReg.It	iteration where the minimum of Enrm is attained
BestReg.X	best solution
BestReg.Enrm	best relative error

Illustration of Convergence Study





Pros and Cons of Tikhonov & CGLS

Tikhonov regularization. In terms of the SVD $A = \sum_{i=1}^{n} u_i \sigma_i v_i^T$ we have

$$x_{\lambda} = \sum_{i=1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2} \frac{u_i^T b}{\sigma_i} v_i ,$$

clearly showing the filtering of the SVD components.

But we may need to try many different values of λ .

Regularizing iterations (CGLS). Here the regularization is achieve by restricting the solution $x^{(k)}$ to lie in the Krylov subspace \mathcal{K}_k , and it is convenient that k is a regularization parameter.

But noise may enter in $x^{(k)}$ if \mathcal{K}_k picks up unwanted SVD components.

 \Rightarrow Combine the two methods \rightarrow next slide.

A Hybrid Method Based on LSQR

LSQR is an alternative implementation of CGLS; at iteration k we have

$$A V_k = U_{k+1} B_k$$
 and $x^{(k)} = V_k y_k$,

where $\mathcal{K}_k = \operatorname{range}(V_k)$ and

$$y_k = rgmin_k \|B_k y - (U_{k+1}^T b)\|_2^2$$
 .

A Hybrid Method Based on LSQR

LSQR is an alternative implementation of CGLS; at iteration k we have

$$A V_k = U_{k+1} B_k$$
 and $x^{(k)} = V_k y_k$,

where $\mathcal{K}_k = \operatorname{range}(V_k)$ and

$$y_k = \arg\min_k \|B_k y - (U_{k+1}^T b)\|_2^2$$
.

The hybrid method:

$$y_k = \arg\min_k \{ \|B_k y - (U_{k+1}^T b)\|_2^2 + \lambda_k^2 \|y\|_2^2 \}$$

where we choose a regularization parameter λ_k in each iteration, by means of the discrepancy principle, GCV, the L-curve, etc.

We implemented this in the function IRhybrid_lsqr.

A GMRES-based hybrid method implemented is in IRhybrid_gmres.

Japan 2020

IRhybrid_lsqr in Action

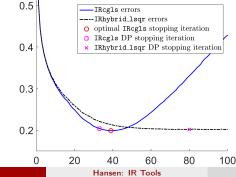
If we set the regularization parameter to a fixed value λ ,

```
options = IRset('RegParam', \lambda);
```

then IRhybrid_lsqr is identical to IRcgls appl. to the Tikhonov problem.

We obtain a true hybrid method if the regularization parameter λ_k is chosen in each iteration; here we use weighted GCV.

options = IRset(options, 'RegParam', 'wgcv'); [X, iter] = IRhybrid_lsqr(A, bn, options);



General-form regularization (IRcgls, IRhybrid_lsqr, IRhybrid_gmres):

$$\min_{x} \{ \|Ax - b\|_{2}^{2} + \lambda^{2} \|Lx\|_{2}^{2} \}.$$

General-form regularization (IRcgls, IRhybrid_lsqr, IRhybrid_gmres):

$$\min_{x} \{ \|Ax - b\|_{2}^{2} + \lambda^{2} \|Lx\|_{2}^{2} \} .$$

In the regularizing iterations we can incorporate *L* by *priorconditioning* with $M = (L^T L)^{-1}$ (IRcgls, IRhybrid_lsqr):

 $x^{(k)} \in \operatorname{span}\{MA^{\mathsf{T}}b, (MA^{\mathsf{T}}A)MA^{\mathsf{T}}b, \dots (MA^{\mathsf{T}}A)^{k-1}MA^{\mathsf{T}}b\}.$

General-form regularization (IRcgls, IRhybrid_lsqr, IRhybrid_gmres):

$$\min_{x} \{ \|Ax - b\|_{2}^{2} + \lambda^{2} \|Lx\|_{2}^{2} \} .$$

In the regularizing iterations we can incorporate *L* by *priorconditioning* with $M = (L^T L)^{-1}$ (IRcgls, IRhybrid_lsqr):

$$x^{(k)} \in \operatorname{span}\{MA^Tb, (MA^TA)MA^Tb, \dots (MA^TA)^{k-1}MA^Tb\}$$

We can *enrich* the Krylov subspace (IRenrich):

$$x^{(k)} \in \mathsf{span}\{A^T b, (A^T A) A^T b, \dots (A^T A)^{k-1} A^T b\} + \mathsf{span}\{w_1, \dots, w_p\} \ .$$

General-form regularization (IRcgls, IRhybrid_lsqr, IRhybrid_gmres):

$$\min_{x} \{ \|Ax - b\|_{2}^{2} + \lambda^{2} \|Lx\|_{2}^{2} \} .$$

In the regularizing iterations we can incorporate *L* by *priorconditioning* with $M = (L^T L)^{-1}$ (IRcgls, IRhybrid_lsqr):

$$x^{(k)} \in \operatorname{span}\{MA^Tb, (MA^TA)MA^Tb, \dots (MA^TA)^{k-1}MA^Tb\}$$

We can *enrich* the Krylov subspace (IRenrich):

$$x^{(k)} \in \operatorname{span}\{A^{\mathsf{T}}b, (A^{\mathsf{T}}A)A^{\mathsf{T}}b, \dots (A^{\mathsf{T}}A)^{k-1}A^{\mathsf{T}}b\} + \operatorname{span}\{w_1, \dots, w_p\} \ .$$

We can add nonnegativity (IRmrnsd, IRconstr_ls, IRnnfcgls, IRirn).

General-form regularization (IRcgls, IRhybrid_lsqr, IRhybrid_gmres):

$$\min_{x} \{ \|Ax - b\|_{2}^{2} + \lambda^{2} \|Lx\|_{2}^{2} \} .$$

In the regularizing iterations we can incorporate *L* by *priorconditioning* with $M = (L^T L)^{-1}$ (IRcgls, IRhybrid_lsqr):

$$x^{(k)} \in \operatorname{span}\{MA^Tb, (MA^TA)MA^Tb, \dots (MA^TA)^{k-1}MA^Tb\}$$

We can *enrich* the Krylov subspace (IRenrich):

$$x^{(k)} \in \mathsf{span}\{A^{\mathsf{T}}b, (A^{\mathsf{T}}A)A^{\mathsf{T}}b, \dots (A^{\mathsf{T}}A)^{k-1}A^{\mathsf{T}}b\} + \mathsf{span}\{w_1, \dots, w_p\} \ .$$

We can add nonnegativity (IRmrnsd, IRconstr_ls, IRnnfcgls, IRirn).

We can use other regularization terms: sparsity $\lambda \|x\|_1$ (IRell1, IRfista, IRhybrid_fgmres), total variation (IRhtv).

Japan 2020

Test Problem: Image Deblurring PRblur

The basic call:

[A, b, x, ProbInfo] = PRblur;

ProbInfo is a structure with information about the problem:

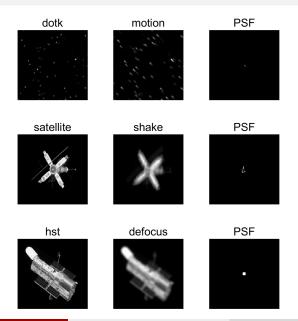
problemType: 'deblurring'
 xType: 'image2D'
 xSize: [256 256]
 bType: 'image2D'
 bSize: [256 256]
 psf: [256x256double]

The general call:

```
[A, b, x, ProbInfo] = PRblur(n, options);
```

The image is $n \times n$ (so $x \in \mathbb{R}^{n^2}$), and options has such fields as: trueImage - test image, e.g., 'ppower', 'satellite', 'hst' PSF - point spread function, e.g., 'gauss', 'defocus', 'shake' BlurLevel - severity of the blur: 'mild', 'medium', 'severe'

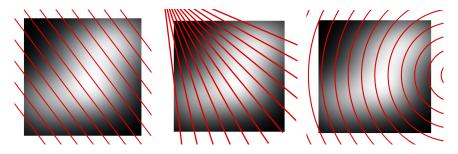
PRblur: Some Test Images and Point Spread Functions



Test Problems: Computed Tomography (CT)

We provide three X-ray CT test problems.

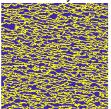
- Parallel beam: PRtomo with options.CTtype = 'parallel'.
- Fan beam: PRtomo with options.CTtype = 'fancurved'.
- Spherical means: PRspherical.



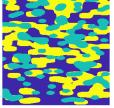
Full control over the measurement geometry via options.

PRtomo and PRspherical: Test Images (Phantoms

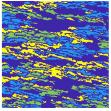
binary



threephases

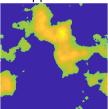


fourphases

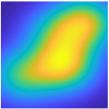


grains

ppower



smooth



Japan 2020

Example: Limited-Angle Fan Beam CT Test Problem

Fan beam geometry, limited-range projection angles, multiplicative noise.

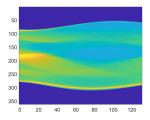
```
n = 256;
options.CTtype = 'fancurved';
options.angles = 0:2:130;
[A,b,x,ProbInfo] = PRtomo(n,options);
[bn,NoiseInfo] = PRnoise(b,'multiplicative');
```

The fields of **ProbInfo**:

problemType: 'tomography'
 xType: 'image2D'
 bType: 'image2D'
 xSize: [256 256]
 bSize: [362 66]

The fields of NoiseInfo:

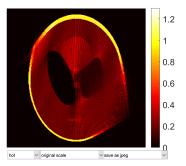
```
kind: 'multiplicative'
level: 1.0000e-02
noise: [23892x1 double]
```



Reconstruction by IRart (Kaczmarz)

Nonnegativity constraints and the discrepancy principle stopping criterion:

```
options.stopCrit = 'discrep';
options.NoiseLevel = NoiseInfo.level;
options.eta = 1.5;
options.nonnegativity = 'on';
[X,info] = IRart(A,b,options);
PRshowx(X,ProbInfo);
```



Severe artifacts due to the limited-angle geometry.

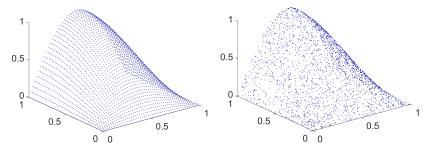
Japan 2020

Hansen: IR Tools

Test Problem: 2D Inverse Interpolation PRinvinterp2

Inverse interpolation (gridding): compute values of a function on a regular grid, given function values on arbitrarily located points.

[A, b, x, ProbInfo] = PRinvinterp2; PRshowx(x, ProbInfo) PRshowb(b, ProbInfo)



Interpolation of the gridded function values (the unknowns) must produce the given values (the data). We provide nearest-neighbour, linear (default), cubic, and spline interpolation.

Japan 2020

Hansen: IR Tools

Solution by Priorconditioned CGLS, Part I

Define a small test problem with a 32 \times 32 grid:

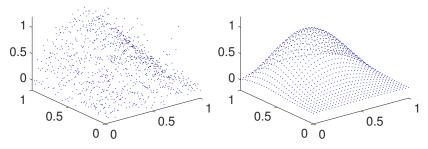
```
[A, b, x, ProbInfo] = PRinvinterp(32);
```

```
bn = PRnoise(b, 0.05);
```

Standard CGLS fails to recognize a good stopping iteration; the final solution is poor.
[X1, IterInfo1] = IRcgls(A, bn, 1:200);

Priorconditioned CGLS with L representing the 2D Laplacian enforces zero boundary conditions everywhere, which is undesired.

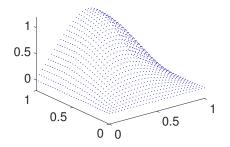
```
options.RegMatrix = 'Laplacian2D';
[X2, IterInfo2] = IRcgls(A, bn, 1:200, options);
```



Solution by Priorconditioned CGLS, Part II

We create our own prior-conditioning matrix L that is similar to the 2D Laplacian, except we enforce a *zero derivative* on the appropriate boundary.

```
L1 = spdiags([ones(n,1),-2*ones(n,1),ones(n,1)],[-1,0,1],n,n);
L1(1,1:2) = [1,0]; L1(n,n-1:n) = [0,1];
L2 = L1; L2(n,n-1:n) = [-1,1];
L = [ kron(speye(n),L2) ; kron(L1,speye(n)) ];
L = qr(L,0);
options.RegMatrix = L;
[X3, IterInfo3] = IRcgls(A, bn, 1:200, options);
```



Conclusions

- We presented a recent Matlab software package IR Tools with iterative regularization methods.
- The package also includes realistic 2D test problems (please stop using Regularization Tools now).
- Very easy basic use of the iterative solvers (don't worry about parameters, stopping rules, etc.).
- Full control of all parameters and stopping rules of the iterative solvers, if needed.
- Please try the package and send bug reports to us.

