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Why (Matlab) Software Packages?

For teaching, training and research:
Get to know a collection of methods that focus on a common theme.
Solve the same problem with different methods; performance study.
Solve different problems with the same method; robustness study.
Use the package in a variety of applied mathematics courses.

For problem solving:
Solve a difficult problem with an advanced method, without the need
to carefully implement the method yourself.
Software templates can be used for specialized implementations.
Make modern numerical methods available to the users.
Get the methods out, beyond papers in specialized journals.
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Problems Solvers

Piet Hein, Denmark, 1905–96
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Overview of Talk

1 Inverse problems and regularization.
2 Overview of IR Tools.
3 Tikhonov regularization, regularizing iterations, and IRcgls.
4 Hybrid regularization methods and IRlsqr_hybrid.
5 Illustration of some test problems and the use of iterative methods:

image deblurring,
computed tomography,
inverse interpolation.

Get the software here: http://people.compute.dtu.dk/pcha/IRtools/

S. Gazzola, P. C. Hansen, and J. G. Nagy, IR Tools: a MATLAB package of
iterative regularization methods and large-scale test problems, Numerical
Algorithms, 81 (2019), pp. 773-811. doi: 10.1007/s11075-018-0570-7.
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What is an Inverse Problem?

In a forward problem, we use a mathematical model to compute the
output from a “system” given the input – or compute the “system” given
the input and the output.

In an inverse problem we estimate a quantity that is not directly
observable, using indirect measurements.
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Discretized Linear Inverse Problems

The basic problem

Solve Ax = b with A ill conditioned.

The underlying model

b = A x̄ + e , x̄ = exact solution, e = noise.

There are no restrictions on the dimensions of A and the noise is unknown.

Our analysis tool: the SVD A = U diag(σi )V
T .

The singular values σi decay do zero with no gap anywhere.
The exact right-hand side b̄ = A x̄ satisfies the Picard condition:

the coefficients uTi b̄ decay faster than the σi .
The dimensions of A – i.e., the amount of data and the number of
unknowns – are large → iterative methods.
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Regularization Methods

The “naive solution” to an inverse problem

xnaive = A−1b = A−1b̄ + A−1e = x̄ + A−1e

is dominated by the inverted noise A−1e, due to the ill conditioned A.

Use regularization to handle the amplification of noise in A−1e.

Truncated SVD: xk ≡
∑k

i=1
uTi b
σi

vi – small problems only.

Tikhonov: xλ ≡ arg min
x

{
‖Ax − b‖22 + λ2R(x)

}
.

Regularization term R(x):
smoothness: ‖x‖22 or ‖L x‖22
sparsity: ‖x‖1
total variation: sparse gradient magnitude.

Regularizing iterations: truncated the iterations of a (least squares)
solver, such as Kacmarz, Landweber, Cimmino, CGLS, and GMRES.
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Matlab Software Packages for Inverse Problems

Regularization Tools (H, 1994, 1999, 2007)
Basic methods for small problems. Everything is based on the SVD.
Tiny, easy, and outdated test problems.

Restore Tools (Nagy, Palmer, Perrone, 2004, 2007, 2012)
Image deblurring problems. Mainly iterative solvers. Object oriented.
Deblurring test problems only.

AIR Tools II (H, Jørgensen, 2018)
Expanded & improved version of AIR Tools (H, Saxild-Hansen, 2012).
Algebraic iterative reconstruction methods for tomography problems.
Tomography test problems only.

IR Tools (Gazzola, H, Nagy, 2019)
Iterative regularization methods for large-scale problems.
Tikhonov-type probelms and regularizing iterations.
Realistic 2D test problems (how many years will they last?).
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The 10 Conventions in IR Tools

1 Easy installation; no compilation; no need for additional toolboxes.
2 Interface to the package AIR Tools II for computed tomography.
3 All iterative solvers have the form

[X, Info] = IR___(A, b, K, options)
4 Information about the performance is returned in the Info structure.
5 Stopping rules are integrated in the iterative methods.
6 All test problem generators have the form

[A, b, x, ProbInfo] = PR___(n, options)
7 Realistic 2D test problems that require no background knowledge.
8 Default values are provided for all parameters.
9 Users can take full control via an optional options input structure.
10 Visualization of b and x is always done by PRshowb and PRshowx.
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What We Can Do With IR Tools

Solve a 2D image deblurring problem with CGLS regularizing iterations.

First generate a deblurring test problem with std. parameters:
NoiseLevel = 0.01;
[A, b, x, ProbInfo] = PRblurspeckle;
[bn, NoiseInfo] = PRnoise(b, ’gauss’, NoiseLevel);

Run CGLS with the discrepancy principle stopping rule:
options = IRset(’NoiseLevel’, NoiseLevel);
[Xcgls, IterInfo] = IRcgls(A, bn, options);
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And Now – the Results

Plot the results:
figure(1), PRshowx(x, ProbInfo)
figure(2), PRshowb(b, ProbInfo)
figure(3), PRshowx(Xcgls, ProbInfo)
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Types of Problems That Can be Solved with IR Tools

Problem type Functions

minx ‖Ax − b‖22
+ semi-convergence

IRart, IRcgls, IRenrich, IRsirt,
IRrrgmres (M = N only)

minx ‖Ax − b‖22 s.t. x ≥ 0
+ semi-convergence

IRmrnsd, IRnnfcgls

minx ‖Ax − b‖22 s.t. x ∈ C
+ semi-convergence

IRconstr_ls, IRfista

minx ‖Ax − b‖22 + λ2‖L x‖22 IRcgls, IRhybrid_lsqr,
IRhybrid_gmres (M = N only)

minx ‖Ax−b‖22+λ2‖L x‖22 s.t. x ∈ C IRconstr_ls, IRfista (L = I only)

minx ‖Ax − b‖22 + λ‖x‖1 IRell1 (M = N only), IRhybrid_fgmres
(M = N only), IRirn

minx ‖Ax − b‖22 + λ‖x‖1 s.t. x ≥ 0, IRirn

minx ‖Ax − b‖22 + λTV(x)
with or without constraint x ≥ 0

IRhtv

The matrix L must have full rank.
C is either the box [xMin, xMax]N or the set defined by ‖x‖1 = xEnergy.
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Test Problems in IR Tools

Test problem type Function Type of A
Image deblurring PRblur (generic function)
– spatially invariant blur PRblurdefocus,

PRblurgauss,
PRblurmotion,
PRblurshake,
PRblurspeckle

Object

– spatially variant blur PRblurrotation Sparse matrix
Inverse diffusion PRdiffusion Function handle
Inverse interpolation PRinvinterp2 Function handle
NMR relaxometry PRnmr Function handle
Tomography Sparse matrix or
– travel-time tomography PRseismic function handle
– spherical means tomography PRspherical ditto
– X-ray computed tomography PRtomo ditto

Add noise to the data (Gauss, Laplace, multiplicative): PRnoise

Visualize the data b and the solution x in appropriate formats: PRshowb, PRshowx
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Solving a Least Squares Problem

Consider the least squares problem without regularization

xLS = arg min
x
‖Ax − b‖22 ,

with the equivalent formulation

ATAx = ATb .

We can use IRcgls to solve this problem.

Relevant stopping rules:
k = MaxIter ,∥∥ATAx (k) − ATb
∥∥

2 ≤ NE_Rtol · ‖ATb‖2 .
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Calling IRcgls

The simplest call, using all default parameters:
[X, info] = IRcgls(A, b);

X holds the final iterate, and info is a structure with lots of information.
E.g., info.its is the number of the last computed iteration.

Specify which iterates are stored in X:
K = 25:25:500;
[X, info] = IRcgls(A, b, K);

Note that MaxIter = max(K) and that info.saved_iterations holds
the iteration numbers of the iterates stored in X.

Set your own options:
options = IRset(’MaxIter’,500, ’NE_Rtol’,1e-8)
K = 25:25:500;
[X, info] = IRcgls(A, b, K, options);

Alternatively: options.MaxIter = 500; options.NE_Rtol = 1e-8;
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What Information is in info From IRcgls?
info: structure with the following fields:

its - number of the last computed iteration
saved_iterations - iteration numbers of iterates stored in X
StopFlag - a string that describes the stopping condition:

* Reached maximum number of iterations
* Residual tolerance satisfied (discrepancy principle)
* Normal equation residual tolerance satisfied

StopReg - struct containing information about the solution that
satisfies the stopping criterion, with the fields:

It : iteration where the stopping criterion is satisfied
X : the solution satisfying the stopping criterion
Enrm : the best relative error (requires x_true)

Rnrm - relative residual norms at each iteration
NE_Rnrm - normal eqs relative residual norms
Xnrm - solution norms at each iteration
Enrm - relative error norms (requires x_true) at each iteration
BestReg - struct containing information about the solution that

minimizes Enrm (requires x_true), with the fields:
It : iteration where the minimum is attained
X : best solution
Enrm : best relative error
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Tikhonov Regularization

Now consider the Tikhonov regularization problem

xλ = arg min
x

{
‖Ax − b‖22 + λ2‖L x‖22

}
,

where L may be the identity matrix or an approximation to a derivative
operator. There are two equivalent formulations:

(ATA + λ2LTL) x = ATb , min
x

∥∥∥∥( A
λL

)
x −

(
b
0

)∥∥∥∥2

2
.

We can also use IRcgls to solve this linear least squares problem.

Relevant stopping rules:
k = MaxIter ,∥∥(ATA + λ2LTL) x (k) − ATb

∥∥
2 ≤ NE_Rtol · ‖ATb‖2 .
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Calling IRcgls for Tikhonov Regularization

The simplest call, using a fixed regularization parameter λ and the default
regularization matrix L = I :

options = IRset(’RegParam’,λ)
[X, info] = IRcgls(A, b, options);

Note that we do not need to specify the number of iterations K; the default
maximum number of iterations is MaxIter = 100 (quite small).

Use options to specify a regularization matrix L 6= I :
’Laplacian1D’ and ’Laplacian2D’ give second-order smoothing.
A matrix L specified by the user.
A function handle to a function, written by the user, that computes
matrix-vector products with L and LT .
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CGLS Regularizing Iterations

If we apply CGLS to the un-regularized problem, then the iterates satisfy

x (k) = arg min
x
‖Ax − b‖2 s.t. x ∈ Kk ,

where
Kk = span{ATb, (ATA)ATb, . . . , (ATA)k−1ATb} .

The challenge is to stop the iterations when k is just large enough, and
stopping rule = regularization-parameter choice (GCV, L-curve, etc.).

Recall our model b = A x̄ + e. We implemented the discrepancy principle:

stop as soon as ‖Ax (k) − b‖2 ≤ η ‖e‖2 ,

where η is a “safety factor” (default 1.01).

options = IRset(’NoiseLevel’,‖e‖2/‖b‖2); NB: rel. noise level.
options = IRset(options, ’eta’,1.2); If we want to set η.
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Studying Convergence in IR Tools

Monitor the iterations and the convergence – beyond the iteration where
the stopping rule is satisfied – assuming that we know the true solution x̄ .

options = IRset(’x_true’,x̄, ’NoStop’,’on’);
[X, info] = IRcgls(A, b, K, options);

Pay attention to these fields in the output info structure:
StopFlag a string that describes the stopping condition
Xnrm solution norms at each iteration
Enrm relative error norms at each iteration (requires x_true)
Stopreg.It iteration where the stopping criterion is satisfied
StopReg.X the solution that satisfying the stopping criterion
StopReg.Enrm the corresponding relative error (requires x_true)
BestReg.It iteration where the minimum of Enrm is attained
BestReg.X best solution
BestReg.Enrm best relative error
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Illustration of Convergence Study

NoiseLevel = 0.01; % Relative noise level.
[A, b, x, ProbInfo] = PRblurspeckle; % Atmospheric turbulence blur.
[bn, NoiseInfo] = PRnoise(b, ’gauss’, NoiseLevel); % Additive noise.
options = IRset(’NoiseLevel’, NoiseLevel, ’NoStop’,’on’, ’x_true’,x);
[X, info] = IRcgls(A, bn, options);
info.StopFlag : ’Residual tolerance satisfied’
info.StopReg.It : 33
info.BestReg.It : 39
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Pros and Cons of Tikhonov & CGLS

Tikhonov regularization. In terms of the SVD A =
n∑

i=1

ui σi v
T
i we have

xλ =
n∑

i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi ,

clearly showing the filtering of the SVD components.
But we may need to try many different values of λ.

Regularizing iterations (CGLS). Here the regularization is achieve by
restricting the solution x (k) to lie in the Krylov subspace Kk , and it is
convenient that k is a regularization parameter.
But noise may enter in x (k) if Kk picks up unwanted SVD components.

⇒ Combine the two methods → next slide.
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A Hybrid Method Based on LSQR

LSQR is an alternative implementation of CGLS; at iteration k we have

AVk = Uk+1 Bk and x (k) = Vk yk ,

where Kk = range(Vk) and

yk = arg min
k
‖Bk y − (UT

k+1b)‖22 .

The hybrid method:

yk = arg mink

{
‖Bk y − (UT

k+1b)‖22 + λ2
k ‖y‖22

}
where we choose a regularization parameter λk in each iteration, by means
of the discrepancy principle, GCV, the L-curve, etc.

We implemented this in the function IRhybrid_lsqr.

A GMRES-based hybrid method implemented is in IRhybrid_gmres.
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IRhybrid_lsqr in Action

If we set the regularization parameter to a fixed value λ,
options = IRset(’RegParam’,λ);

then IRhybrid_lsqr is identical to IRcgls appl. to the Tikhonov problem.

We obtain a true hybrid method if the regularization parameter λk is
chosen in each iteration; here we use weighted GCV.

options = IRset(options, ’RegParam’, ’wgcv’);
[X, iter] = IRhybrid_lsqr(A, bn, options);
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Many Other Methods in IR Tools

General-form regularization (IRcgls, IRhybrid_lsqr, IRhybrid_gmres):

min
x

{
‖Ax − b‖22 + λ2 ‖L x‖22

}
.

In the regularizing iterations we can incorporate L by priorconditioning with
M = (LTL)−1 (IRcgls, IRhybrid_lsqr):

x (k) ∈ span{M ATb, (M ATA)M ATb, . . . (M ATA)k−1M ATb} .

We can enrich the Krylov subspace (IRenrich):

x (k) ∈ span{ATb, (ATA)ATb, . . . (ATA)k−1ATb}+ span{w1, . . . ,wp} .

We can add nonnegativity (IRmrnsd, IRconstr_ls, IRnnfcgls, IRirn).

We can use other regularization terms: sparsity λ‖x‖1 (IRell1, IRfista,
IRhybrid_fgmres), total variation (IRhtv).
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We can use other regularization terms: sparsity λ‖x‖1 (IRell1, IRfista,
IRhybrid_fgmres), total variation (IRhtv).
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Test Problem: Image Deblurring PRblur

The basic call:
[A, b, x, ProbInfo] = PRblur;

ProbInfo is a structure with information about the problem:
problemType: ’deblurring’

xType: ’image2D’
xSize: [256 256]
bType: ’image2D’
bSize: [256 256]

psf: [256x256double]

The general call:
[A, b, x, ProbInfo] = PRblur(n, options);

The image is n× n (so x ∈ Rn2), and options has such fields as:
trueImage – test image, e.g., ’ppower’, ’satellite’, ’hst’
PSF – point spread function, e.g., ’gauss’, ’defocus’, ’shake’
BlurLevel – severity of the blur: ’mild’, ’medium’, ’severe’

Japan 2020 Hansen: IR Tools 26 / 35



PRblur: Some Test Images and Point Spread Functions
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Test Problems: Computed Tomography (CT)

We provide three X-ray CT test problems.
Parallel beam: PRtomo with options.CTtype = ’parallel’.
Fan beam: PRtomo with options.CTtype = ’fancurved’.
Spherical means: PRspherical.

Full control over the measurement geometry via options.
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PRtomo and PRspherical: Test Images (Phantoms

Japan 2020 Hansen: IR Tools 29 / 35



Example: Limited-Angle Fan Beam CT Test Problem

Fan beam geometry, limited-range projection angles, multiplicative noise.

n = 256;
options.CTtype = ’fancurved’;
options.angles = 0:2:130;
[A,b,x,ProbInfo] = PRtomo(n,options);
[bn,NoiseInfo] = PRnoise(b,’multiplicative’);

The fields of ProbInfo:

problemType: ’tomography’
xType: ’image2D’
bType: ’image2D’
xSize: [256 256]
bSize: [362 66]

The fields of NoiseInfo:

kind: ’multiplicative’
level: 1.0000e-02
noise: [23892x1 double]
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Reconstruction by IRart (Kaczmarz)

Nonnegativity constraints and the discrepancy principle stopping criterion:

options.stopCrit = ’discrep’;
options.NoiseLevel = NoiseInfo.level;
options.eta = 1.5;
options.nonnegativity = ’on’;
[X,info] = IRart(A,b,options);
PRshowx(X,ProbInfo);

Severe artifacts due to the limited-angle geometry.
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Test Problem: 2D Inverse Interpolation PRinvinterp2

Inverse interpolation (gridding): compute values of a function on a regular
grid, given function values on arbitrarily located points.

[A, b, x, ProbInfo] = PRinvinterp2;
PRshowx(x, ProbInfo)
PRshowb(b, ProbInfo)

Interpolation of the gridded function values (the unknowns) must produce
the given values (the data). We provide nearest-neighbour, linear (default),
cubic, and spline interpolation.
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Solution by Priorconditioned CGLS, Part I
Define a small test problem with a 32× 32 grid:

[A, b, x, ProbInfo] = PRinvinterp(32);
bn = PRnoise(b, 0.05);

Standard CGLS fails to recognize a good stopping iteration; the final solution is poor.
[X1, IterInfo1] = IRcgls(A, bn, 1:200);

Priorconditioned CGLS with L representing the 2D Laplacian enforces zero boundary
conditions everywhere, which is undesired.

options.RegMatrix = ’Laplacian2D’;
[X2, IterInfo2] = IRcgls(A, bn, 1:200, options);

0

1

0.5

1
0.5

1

0.5

0 0

0

1

0.5

1
0.5

1

0.5

0 0

Japan 2020 Hansen: IR Tools 33 / 35



Solution by Priorconditioned CGLS, Part II
We create our own prior-conditioning matrix L that is similar to the 2D Laplacian,
except we enforce a zero derivative on the appropriate boundary.

L1 = spdiags([ones(n,1),-2*ones(n,1),ones(n,1)],[-1,0,1],n,n);
L1(1,1:2) = [1,0]; L1(n,n-1:n) = [0,1];
L2 = L1; L2(n,n-1:n) = [-1,1];
L = [ kron(speye(n),L2) ; kron(L1,speye(n)) ];
L = qr(L,0);
options.RegMatrix = L;
[X3, IterInfo3] = IRcgls(A, bn, 1:200, options);
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Conclusions

We presented a recent Matlab software package IR Tools with iterative
regularization methods.

The package also includes realistic 2D test problems (please stop using
Regularization Tools now).

Very easy basic use of the iterative solvers (don’t worry about
parameters, stopping rules, etc.).

Full control of all parameters and stopping rules of the iterative
solvers, if needed.

Please try the package and send bug reports to us.
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