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X-Ray Tomography 

X-ray tomography is the science of 
seeing inside objects. 

1. X-rays are sent through an object from 
many different angles.  

2. The response of the object to the signal is 
measured (projections). 

3. Use the data + a mathematical model to 
compute an image of the object's interior.  

The underlying model is

I = I0 e
¡
R

ray
»(s;t) d`

` = length along ray

where » = attenuat. coef., I0 = source intensity, and I = measured ditto.

This leads to the linear relation

\data" = log(I0=I) =

Z

ray

»(s; t) d`:
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ART = Algebraic Reconstruction Technique 

Webster: “art” = the conscious use of skill and creative imagination. 

In relation to tomography 

1. A way of doing things: handling the tomographic reconstruction problem by 
discretization of the model, to obtain a large system of linear equations. 

2. An algorithm: a classical iterative algorithm for solving a large system of 
linear equations; very succesfully used in computed tomography. 

Reconstruction methods based on analytical formulations: 
• Filtered back projection (PBP). 
• Fast implementation based on FFT. 
• Very good results provided we have a lot of data. 

The algebraic formulations provide an important alternative: 
• Better handling of limited data and sparse data. 
• Easy incorporation of simple constraints, such as nonnegativity and box. 
• A general framework for handling priors such as sparsity & total variation. 
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Filtered Back Projection (FBP) versus ART 
² FBP: low memory, works really well with many data.

² But artifacts appear with limited data, or nonuniform distribu-
tion of projection angles or ray.

² Di±cult to incorporate constraints (e.g., nonnegativity) in FBP

² ART and other algebraic methods are more °exible and adaptive.

Example with 3% noise and projection angles 15±; 30±; : : : ; 180±.
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FBP versus ART – A Second Example 

Irregularly spaced angles / \missing" angles also cause di±culties for FBP
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ART is a rich source for research problems!

² Constraints and convergence.

² Performance ! block algorithms.

² Column version of ART.

² Choice of relaxation parameter.

² Stopping rules.

² Acceleration techniques.

² Variations and extensions ART, e.g., for Poisson noise.

² Implementation aspect for high-performance computing.

ART Academy 

This talk 

Listen to Grateful Dead (1965{1995) ! old fashioned.
Listen to Mozart (1756{91) or Bach (1685{28) ! the classics!

Talk about total variation (1992) ! old stu®.
Talk about ART (1937) ! classical algorithm.
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Assume » is a constant xj in pixel j. This leads to:

bi =
X

j

aij xj ; aij =

(
length of ray i in pixel j

0 if ray i does not intersect pixel j.

Setting Up the Algebraic Model 
The data bi associated with the ith X-ray through the domain:

bi =

Z

rayi

»(s; t) d`; » = attenuation coef.

x1 x6 x11 x16 x21

x2 x7 x12 x17 x22

x3 x8 x13 x18 x23

x4 x9 x14 x19 x24

x5 x10 x15 x20 x25

For the ith ray shown in red:

bi = ai;5 x5 + ai8 x8 + ai9 x9 + ¢ ¢ ¢
ai;10 x10 + ai;11 x11 + ai;12 x12

The corresponding row of A:

A(i; :) = (0 0 0 0£ 0 0£££££ 0 0 0 ¢ ¢ ¢ 0)

The matrix is sparse { it has lots of zeros!
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Analogy: the “Sudoku” Problem – 数独 
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Orthogonal Projection of Affine Hyperplane 

´
´
´
´
´
´
´

´
´
´
´
´
´
´

Hi = fx 2 Rn j aTi x = big

rO

6ai

¡
¡
¡
¡
¡µ

z

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢̧

»»»
»»»:Pi(z)

The orthogonal projection Pi(z) of an arbitrary point z on the a±ne hyper-
plane Hi de¯ned by aTi x = bi is given by:

Pi(z) = z +
bi ¡ aTi z

kaik22
ai; kaik22 = aTi ai:

In words, we scale the row vector ai by (bi ¡ aTi z)=kaik22 and add it to z.
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Gordon, Bender, Herman (1970): coined the term \ART" and also in-
troduced a nonnegativity projection:

x Ã PRn+

µ
x +

bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

Herman, Lent, Lutz (1978): introduced relaxation parameters !k < 2:

x Ã x + !k
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Today ART includes both !k and a projection PC on a convex set:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

ART History 
Kaczmarz (1937): orthogonally project x on the hyperplane de¯ned by
the ith row aTi and the corresponding element bi of the right-hand side:

x Ã Pi(x) = x +
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Satisfy one equation of A x = b at a time:
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Convergence Issues 

If the system A x = b is consistent then ART converges to ¹x = Ayb.

Di±culty: ordering of the rows of A in°uences the convergence rate:

0

BB@

1:0 1:0
1:0 1:1
1:0 3:0
1:0 3:7

1

CCAx =

0

BB@

2:0
2:1
4:0
4:7

1

CCA

The ordering 1{3{2{4 er preferable and almost twice as fast.
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Convergence of ART 
Assume that we select the rows randomly, that A is invertible, and
that all rows of A are scaled to unit 2-norm. Then the expected
value E(¢) of the error norm satis¯es:

E
¡
k¹x¡ xkk22

¢
·
µ

1¡ 1

n ·2

¶k
k¹x¡ x0k22; k = 1; 2; : : :

where ¹x = A¡1b and · = kAk2 kA¡1k2. Linear convergence.

Strohmer & Vershynin, 2009 

When · is large we have
µ

1¡ 1

n ·2

¶k
¼ 1¡ k

n ·2
:

After k = n steps, corresp. to one sweep over all the rows of A, the
reduction factor is 1¡ 1=·2.

Note: there are often orderings for which the convergence is faster!
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Iteration-Dependent Relax. Parameter 

For inconsistent systems, ART with a ¯xed relaxation parameter !
has cyclic and non-convergent behavior.

With the diminishing relaxation parameter !k = 1=
p

k ! 0 as k !1
the iterates converge to a weighted least squares solution:

¹xM = arg min
x
kD¡1(b¡A x)k2 ; D = diag(kaik2) :

There is also a column version of ART which always converges to the
standard least squares solution ! end of this talk.
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ART: Projected Incremental Gradient Method 
Consider the constrained weighted least squares problem

min
x

1=2kD¡1 (b¡A x)k22 subject to x 2 C

with D = diag(kaik2), and then write the objective function as

1=2kD¡1 (b¡A x)k22 =

nX

i=1

fi(x)

fi(x) = 1=2
(bi ¡ aTi x)2

kaik22
) rfi(x) = ¡bi ¡ aTi x

kaik22
Incremental gradient methods use only the gradient of one singe term
fi(x) in each iteration, leading to the ART update:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m ;

where PC = projection on convex set C (e.g., nonneg. or box constr.).
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From Sequantial to Simultaneous Updates 

ART accesses the rows sequentially. Cimmino's method accesses
the rows simultaneously and computes the next iteration vector as the
average of the all projections of the previous iteration vector:

xk+1 =
1

m

mX

i=1

Pi

¡
xk
¢

=
1

m

mX

i=1

³
xk +

bi ¡ aTi xk

kaik22
ai

´

= xk +
1

m

mX

i=1

bi ¡ aTi xk

kaik22
ai = xk + 1=mATD¡2(b¡A xk)

´
´
´
´
´́

Q
Q
Q
Q
QQ

Q
Q

QQ

´
´

´́
H1

H2

rxkJ
J

P1(x
k) r

­
­
­
­

P2(x
k)
r

xk+1
©©¼r

D = diag(kaik2)
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Cimmino’s Method 

We obtain the following formulation:

Cimmino's algorithm

x(0) = initial vector
for k = 0; 1; 2; : : :

xk+1 = xk + ATM
¡
b¡ A x(k)

¢
, M = 1=mD¡2

end

Note that one iteration here involves all the rows of A, while one
iteration in ART involves a single row.

Therefore, the computational work in one Cimmino iteration is equiv-
alent to m iterations (a sweep over all the rows) in ART.

The issue of ¯nding a good row ordering is, of course, absent from
Cimmino's method.
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Convergence of Cimmino’s Method 

Assume that A is invertible and that the rows of A are scaled such that
kAk22 = m. Then. with ¹x = A¡1b

k¹x¡ xkk22 ·
µ

1¡ 2

1 + ·2

¶k
k¹x¡ x0k22

where · = kAk2 kA¡1k2, and we have linear convergence.

When · À 1 then we have the approximate upper bound

k¹x¡ xkk22 <» (1¡ 2=·2)k k¹x¡ x0k22;

showing that in each iteration the error is reduced by a factor 1¡ 2=·2.

This is ¼ the same factor as in one sweep through the rows of A in ART.

Nesterov, 2004 



SSVM, June 2017 18/36 P. C. Hansen – ART Performance 

Performance Issues 

Cimmino: 
slow convergence. 

ART can converge a 
lot faster than SIRT. 

k¹x
¡

x
k
k 2

=
k¹x
k 2

!opt gives fastest
convergence.

In these numerical experiments we compute and store A explicitly!

ART vs. Cimmino 
ART ! = 0:01
Cimmino ! = 0:01
ART !opt = 1:56
Cimmino !opt = 0:21

Sørensen & Hansen, 2014 
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Intel Xeon E5620 
2.40 GHz (4 cores) 

Computing Times 

ART 

Four cores are better 
suited for block matrix-
vector operations. 

ART 
Cimmino 

1 core 4 cores 

ART Cimmino 

ART has more reduction of the error per iteration. 
 

Cimmino can better take advantage of multi-core architecture. 
 

How to achieve the ”best of both worlds?” → Block methods! 
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Block Methods (Ordered Subset Methods) 

In each iteration we can: 
• Treat all blocks sequentially or simultaneously (i.e., in parallel). 
• Treat each block by an iterative method or by a direct computation. 

We obtain several methods: 
• Sequential processing + ART on each block → classical ART 
• Sequential processing + SIRT on each block 
• Sequential processing + pseudoinverse of Aℓ 
• Parallel processing + ART on each block 
• Parallel processing + SIRT on each block → classical SIRT 
• Parallel processing + pseudoinverse of Aℓ 
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The convergence depends on the number of blocks p: 
 If p = 1, we recover Cimmino 
 If p = m, we recover ART 

Block-Sequential Methods 

SART: Andersen, Kak (1984) 
Block-Iteration: Censor (1988) 

Parallelism within each block of 

Initialization: choose an arbitrary x0 2 Rn

Iteration: for k = 0; 1; 2; : : :

z Ã xk

z Ã P
¡

z + ! AT
` M` (b` ¡ A` z)

¢
; ` = 1; 2; : : : ; p

xk+1 Ã z

M` = (A`A
T
` )y ) AT

` M` = Ay
`Variant by Elfving (1980): 
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Block Sequential Performance 

• The ”building blocks” are Cimminoiterations, suited for multicore. 
 

• The error reduction per iteration is close to that of ART. 

ART 
Block 
Seq. Cimmino 

Intel Xeon E5620 
2.40 GHz (4 cores) ART Cimmino Block Seq. 
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Semi-Convergence 
During the ¯rst iterations, the iterates xk capture the \important"

information in the noisy right-hand side b.

² In this phase, the iterates xk approach the exact solution ¹x.

At later stages, the iterates starts to capture undesired noise components.

² Now the iterates xk diverge from the exact solution
and they approach the undesired solution A¡1b.

This behavior is called semi-convergence.

 F. Natterer, The Mathematics of Computerized Tomography (1986) 

 A. van der Sluis & H. van der Vorst, SIRT- and CG-type methods for the iterative solution 
of sparse linear least-squares problems (1990) 

 M. Bertero & P. Boccacci, Inverse Problems in Imaging (1998) 

 M. Kilmer & G. W. Stewart, Iterative Regularization And Minres (1999) 

 H. W. Engl, M. Hanke & A. Neubauer, Regularization of Inverse Problems (2000) 
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Illustration of Semi-Convergence 

Reconstruction of a phantom 
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Analysis of Semi-Convergence 

Let ¹x = solution to noise-free problem, and let xk and ¹xk

denote the iterates when applying ART to b and ¹b = A ¹x:

k¹x¡ xkk2 · k¹x¡ ¹xkk2 + k¹xk ¡ xkk2 :

Noise error Iteration error 

Convergence theory for ART for noise-free data is well estab-
lished and ensures that the iteration error ¹x¡ ¹xk goes to zero.
See the convegence results in the previous slides.

Our concern here is the noise error ekN = ¹xk ¡ xk. We wish to
establish that it increases, and how fast.
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Analysis of Semi-Convergence – Cimmino 

Consider the Cimmino's methods with the SVD:

M1=2A = U § V T =
Pn

i=1 ui ¾i vTi :

Then xk is a ¯ltered SVD solution:

xk =
Pn

i=1 '
[k]
i

uTi (M
1
2 b)

¾i
vi; '

[k]
i = 1¡

¡
1¡ ! ¾2

i

¢k
:

Recall that we solve noisy systems A x = b with b = A ¹x+e.

The ith component of the error, in the SVD basis, is

vTi (¹x¡ xk) = (1¡ '
[k]
i ) vTi ¹x¡ '

[k]
i

uTi (M
1
2 e)

¾i
:

Noise error Iteration error 

Van der Sluis & Van der Vorst, 1990 
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The Behavior of the Filter Factors 

The ¯lter factors dampen the \inverted noise" uTi (M
1
2 e)=¾i.

'
[k]
i = 1¡

¡
1¡ ! ¾2

i

¢k

! ¾2
i ¿ 1 ) '

[k]
i ¼ k ! ¾2

i ) k and ! play the same role.

ω=1 
ω=1 
ω=1 
ω=1 
ω=0.2 
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Noise Error – Projected Cimmino 

The iteration and noise error in projected Cimmino are bounded by

k¹x¡ ¹xkk2 · (1¡ ! ¾2
n) k¹x¡ x0k2

k¹xk ¡ xkk2 · ¾1

¾n

1¡ (1¡ !¾2
n)k

¾n
kM1=2±bk2:

As long as !¾2
n ¿ 1 we have

k¹xk ¡ xkk2 ¼ k ! ¾1kM1=2±bk2:

NE: actual noise error 

NE-b: our bound 

IE: actual iteration error 

IE-b: our bound without 
the factor 

We track the errors well. 

k¹x¡ x0k2

Elfving, H, 
Nikazad, 

2012 
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Noise Error – ART 

We introduce: e = b¡ ¹b = noise in data, Q = I ¡ !ATcM A.

ART is equivalent to applying SOR to A AT y = b, x = AT y. Splitting:

AAT = L + D + LT ; cM = (D + !L)¡1;

where L is strictly lower triangular and D = diag(kaik22). Then:

xk+1 = xk + !ATcM (b¡A xk) :

Then simple manipulations show that the noise error is given by

ekN = xk ¡ ¹xk = Q eN
k¡1 + !ATcM e = !

k¡1X

j=1

QjATcM e :

After some work (see the paper) we obtain the bound

kekNk2 ¼ k ! kATcM ek2:

Successive Over-Relaxation 

Elfving, H, 
Nikazad, 

2014 
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Noise Error Analysis – A Tighter Bound 

Further analysis (see the paper) shows that the noise error in ART is
bounded above as:

kekNk2 ·
1¡ (1¡ !¾2

min)k

¾min

kATcM ek2
¾min

+O(¾2
min);

¾min = smallest singular value of A:

As long as !¾2
min < 1 we have

1¡ (1¡ !¾2
min)k

¾min
·
p

k
p

!

and thus

kekNk2 ·
p

k

p
! kATcMek2

¾min
+O(¾2

min):

This also holds for projected ART provided that A and PC satisfy

y 2 R(AT ) ) PCy 2 R(AT ):

Elfving, H, 
Nikazad, 

2012 
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Column Iterations 
This algorithm operates on the columns aj of A, instead of the rows.

\Rows are red and columns are blue, . . . "

This method always converges to a least squares solution, and it may
also have an advantage from an implementation point of view.

² A. de la Garza, An iterative method for solving systems of linear
equations, Oak Ridge, Report K-731, 1951.

² D. W. Watt, Column-relaxed algebraic reconstruction algorithm
for tomography with noisy data, Appl. Opt. 33, 4420{4427, 1994.

The column-action method takes its basis in the simple coordinate
descent optimization algorithm, in which each step is performed cycli-
cally in the direction of the unit vectors

ej = ( 0 0 ¢ ¢ ¢ 0| {z }
j¡1

1 0 0 ¢ ¢ ¢ 0| {z }
n¡j¡1

); j = 1; 2; : : : ; n:
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The least-squares objective function is

f(x) = 1=2 kA x¡ bk22:

At iteration k we consider the update

xk + ®k ej ; j = k (mod n):

Step length ®k that gives maximum reduction in objective function:

®k = argmin®1=2kA (xk + ® ej)¡ bk22
= argmin®1=2k® (A ej)¡ (b¡A xk)k22
= argmin®1=2kaj ®¡ (b¡A xk)k22:

Derivation 

The minimizer is

®k = (aj)
y(b¡A xk) =

aTj (b¡A xk)

kajk22
:
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Hence we obtain the following overall algorithm (where again we have
introduced a relaxation parameter !k and a projection PC):

x0 = initial vector
for k = 0; 1; 2; : : :

j = k (mod n)

xk+1 = PC

Ã
xk + !k

aTj (b¡A xk)

kajk22
ej

!
.

end

Formulation of the Algorithm 

Note that the operation in the inner loop simply overwrites the jth
element of the iteration vector with an updated value:

xj Ã PC

Ã
xj + !k

aTj (b¡A xk)

kajk22

!
:



SSVM, June 2017 34/36 P. C. Hansen – ART Performance 

Loping in the Column-Action Method 

We can introduce a \loping" strategy where we don't update the
solution element xkj if dkj = !aTj rk;j=kajk22 is small. This will save
computational work for blocks that are not updated.

For k = 1; 2; 3; : : : (cycles or outer iterations)

For j = 1; 2; : : : ; n (inner iterations)

dkj = !aTj rk;j=kajk22
If kdkj k2 > ¿

xk+1
j Ã xkj + dkj

rk Ã rk ¡ aj(x
k+1
j ¡ xkj )

End

End

rk+1 Ã rk

End

Elfving, H, 
Nikazad, 

2016 
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Numerical Results 
Test image: phantomgallery(’ppower’,75) from AIR Tools with 
large regions of zeros and nonzeros; A is 19080 × 5625. 

Re
co

ns
tr
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tio

ns
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Conclusions 
 Algebraic methods are fascinating algorithms with important applications in 

computed tomography. 

 Their convergence properties are well understood. 

 Block-sequential methods: fast performance because they combine good 
intrinsic convergence with good utilization of hardware. 

 Semi-convergence provides the necessary filtering effect. 

 Semi-convergence is quite well understood. 

 Column-action methods allow us to reduce computational work by skipping 
unnecessary updates. 
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