

ART Performance

The <u>algebraic reconstruction technique</u> for tomography

Per Christian Hansen

joint work with, among others, Tommy Elfving Touraj Nikazad Hans Henrik B. Sørensen

DTU Compute Department of Applied Mathematics and Computer Science

X-Ray Tomography

X-ray tomography is the science of *seeing inside objects*.

- 1. X-rays are sent through an object from many different angles.
- The response of the object to the signal is measured (projections).
- 3. Use the data + a mathematical model to compute an image of the object's interior.

The underlying model is

$$I = I_0 e^{-\int_{\text{ray}} \xi(s,t) d\ell}$$
 $\ell = \text{length along ray}$

where ξ = attenuat. coef., I_0 = source intensity, and I = measured ditto. This leads to the linear relation

"data" =
$$\log(I_0/I) = \int_{\text{ray}} \xi(s,t) \, d\ell.$$

ART = Algebraic Reconstruction Technique

Webster: "art" = the conscious use of skill and creative imagination.

In relation to tomography

- 1. A way of doing things: handling the tomographic reconstruction problem by discretization of the model, to obtain a large system of linear equations.
- 2. An algorithm: a classical iterative algorithm for solving a large system of linear equations; very succesfully used in computed tomography.

Reconstruction methods based on analytical formulations:

- Filtered back projection (PBP).
- Fast implementation based on FFT.
- Very good results provided we have a lot of data.

The *algebraic formulations* provide an important alternative:

- Better handling of limited data and sparse data.
- Easy incorporation of simple constraints, such as nonnegativity and box.
- A general framework for handling priors such as sparsity & total variation.

Filtered Back Projection (FBP) versus ART

- FBP: low memory, works really well with many data.
- But *artifacts* appear with limited data, or nonuniform distribution of projection angles or ray.
- Difficult to incorporate constraints (e.g., nonnegativity) in FBP
- ART and other algebraic methods are more flexible and adaptive.

Example with 3% noise and projection angles $15^{\circ}, 30^{\circ}, \ldots, 180^{\circ}$.

ART w/ box constraints

FBP versus ART – A Second Example

Irregularly spaced angles / "missing" angles also cause difficulties for FBP $\,$

ART w/ box constr.

Filtered back projection

ART Academy

Listen to Grateful Dead $(1965-1995) \rightarrow \text{old fashioned}$. Listen to Mozart (1756–91) or Bach (1685–28) \rightarrow the classics!

Talk about total variation $(1992) \rightarrow \text{old stuff.}$ Talk about ART (1937) \rightarrow classical algorithm.

ART is a rich source for research problems!

- Constraints and convergence.
- Performance \rightarrow block algorithms. - This talk
- Column version of ART.
- Choice of relaxation parameter.
- Stopping rules.
- Acceleration techniques.
- Variations and extensions ART, e.g., for Poisson noise.
- Implementation aspect for high-performance computing.

Setting Up the Algebraic Model

The data b_i associated with the *i*th X-ray through the domain:

 $b_i = \int_{\operatorname{ray}_i} \xi(s, t) \, d\ell, \qquad \xi = \text{attenuation coef.}$

Assume ξ is a constant x_j in pixel j. This leads to:

 $b_i = \sum_j a_{ij} x_j, \qquad a_{ij} = \begin{cases} \text{ length of ray } i \text{ in pixel } j \\ 0 \text{ if ray } i \text{ does not intersect pixel } j. \end{cases}$

x_1	x_6	x_{11}	x_{16}	x_{21}
x_2	x_7	x_{12}	x_{17}	x_{22}
x_3	x_8	x_{13}	x_{18}	x_{23}
x_4	x_9	x_{14}	x_{19}	x_{24}
x_5	x_{10}	x_{15}	x_{20}	x_{25}

For the ith ray shown in red:

$$b_i = a_{i,5} x_5 + a_{i8} x_8 + a_{i9} x_9 + \cdots$$

 $a_{i,10} x_{10} + a_{i,11} x_{11} + a_{i,12} x_{12}$

The corresponding row of A:

 $A(i,:) = (0\ 0\ 0\ 0\ \times\ 0\ 0\ \times\ \times\ \times\ \times\ \times\ 0\ 0\ 0\ \cdots\ 0)$

The matrix is **sparse** – it has lots of zeros!

Analogy: the "Sudoku" Problem - 数独

Prior: solution is integer and non-negative

3 0 1 6

3

3

2

4

1

5

 \mathbf{O}

4

1

3

2

2

Orthogonal Projection of Affine Hyperplane

The orthogonal projection $P_i(z)$ of an arbitrary point z on the affine hyperplane \mathcal{H}_i defined by $a_i^T x = b_i$ is given by:

$$P_i(z) = z + rac{b_i - a_i^T z}{\|a_i\|_2^2} \, a_i, \qquad \|a_i\|_2^2 = a_i^T a_i.$$

In words, we scale the row vector \mathbf{a}_i by $(b_i - \mathbf{a}_i^T z) / \|\mathbf{a}_i\|_2^2$ and add it to z.

ART History

$$x \leftarrow \mathcal{P}_i(x) = x + \frac{b_i - a_i^T x}{\|a_i\|_2^2} a_i, \qquad i = 1, 2, \dots, m.$$

Satisfy one equation of $A x^{1} = b$ at a time term "ART" and also introduced a

Convergence Issues

If the system A x = b is consistent then ART converges to $\bar{x} = A^{\dagger}b$. Difficulty: *ordering* of the rows of A influences the convergence rate:

The ordering 1-3-2-4 er preferable and almost twice as fast.

Convergence of ART

Assume that we select the rows randomly, that A is invertible, and that all rows of A are scaled to unit 2-norm. Then the expected value $\mathcal{E}(\cdot)$ of the error norm satisfies:

$$\mathcal{E}(\|\bar{x} - x^k\|_2^2) \Box \left(1 - \frac{1}{n\kappa^2}\right)^k \|\bar{x} - x^0\|_2^2, \quad k = 1, 2, \dots$$

where $\bar{x} = A^{-1}b$ and $\kappa = ||A||_2 ||A^{-1}||_2$. Linear convergence. When κ is large we have

$$\left(1 - \frac{1}{n \kappa^2}\right)^k \approx 1 - \frac{k}{n \kappa^2}.$$

After k = n steps, corresp. to one *sweep* over all the rows of A, the reduction factor is $1 - 1/\kappa^2$.

Note: there are often orderings for which the convergence is faster!

Strohmer & Vershynin, 2009

Iteration-Dependent Relax. Parameter

For inconsistent systems, ART with a fixed relaxation parameter ω has cyclic and non-convergent behavior.

With the diminishing relaxation parameter $\omega_k = 1/\sqrt{k} \to 0$ as $k \to \infty$ the iterates converge to a weighted least squares solution:

 $\bar{x}_M = \arg\min_x \|D^{-1}(b - Ax)\|_2$, $D = \operatorname{diag}(\|a_i\|_2)$.

There is also a *column version* of ART which always converges to the standard least squares solution \rightarrow end of this talk.

ART: Projected Incremental Gradient Method

Consider the constrained weighted least squares problem

$$\min_{x} \frac{1}{2} \|D^{-1} (b - Ax)\|_{2}^{2} \qquad \text{subject to} \qquad x \in \mathcal{C}$$

with $D = \text{diag}(||a_i||_2)$, and then write the objective function as

$$1/2 \|D^{-1} (b - A x)\|_{2}^{2} = \sum_{i=1}^{n} f_{i}(x)$$
$$f_{i}(x) = 1/2 \frac{(b_{i} - a_{i}^{T} x)^{2}}{\|a_{i}\|_{2}^{2}} \qquad \Rightarrow \qquad \nabla f_{i}(x) = -\frac{b_{i} - a_{i}^{T} x}{\|a_{i}\|_{2}^{2}}$$

Incremental gradient methods use only the gradient of one single term $f_i(x)$ in each iteration, leading to the ART update:

$$x \leftarrow \mathcal{P}_{\mathcal{C}}\left(x + \omega_k \frac{b_i - a_i^T x}{\|a_i\|_2^2} a_i\right), \qquad i = 1, 2, \dots, m,$$

where $\mathcal{P}_{\mathcal{C}}$ = projection on convex set \mathcal{C} (e.g., nonneg. or box constr.).

From Sequantial to Simultaneous Updates

ART accesses the rows sequentially. **Cimmino's method** accesses the rows *simultaneously* and computes the next iteration vector as the average of the all projections of the previous iteration vector:

$$\begin{aligned} x^{k+1} &= \frac{1}{m} \sum_{i=1}^{m} P_i(x^k) = \frac{1}{m} \sum_{i=1}^{m} \left(x^k + \frac{b_i - a_i^T x^k}{\|a_i\|_2^2} a_i \right) \\ &= x^k + \frac{1}{m} \sum_{i=1}^{m} \frac{b_i - a_i^T x^k}{\|a_i\|_2^2} a_i = x^k + \frac{1}{m} A^T D^{-2} (b - A x^k) \\ & D = \text{diag}(\|a_i\|_2) \end{aligned}$$

Cimmino's Method

DTU

We obtain the following formulation:

$\begin{array}{l} \underline{\text{Cimmino's algorithm}}\\ x^{(0)} = \text{initial vector}\\ \text{for } k = 0, 1, 2, \dots\\ x^{k+1} = x^k + A^T M \big(b - A \, x^{(k)} \big) \quad, \qquad M = 1/m D^{-2}\\ \text{end} \end{array}$

Note that one iteration here involves all the rows of A, while one iteration in ART involves a single row.

Therefore, the computational work in one Cimmino iteration is equivalent to m iterations (a sweep over all the rows) in ART.

The issue of finding a good row ordering is, of course, absent from Cimmino's method.

Convergence of Cimmino's Method

Assume that A is invertible and that the rows of A are scaled such that $||A||_2^2 = m$. Then, with $\bar{x} = A^{-1}b$

Nesterov, 2004

$$\|\bar{x} - x^k\|_2^2 \square \left(1 - \frac{2}{1 + \kappa^2}\right)^k \|\bar{x} - x^0\|_2^2$$

where $\kappa = ||A||_2 ||A^{-1}||_2$, and we have **linear convergence**.

When $\kappa \gg 1$ then we have the approximate upper bound

$$\|\bar{x} - x^k\|_2^2 \lesssim (1 - 2/\kappa^2)^k \|\bar{x} - x^0\|_2^2,$$

showing that in each iteration the error is reduced by a factor $1 - 2/\kappa^2$. This is \approx the same factor as in one sweep through the rows of A in ART.

Performance Issues

In these numerical experiments we compute and store A explicitly!

Sørensen & Hansen, 2014

Computing Times

ART has more reduction of the error per iteration.

Cimmino can better take advantage of *multi-core architecture*.

How to achieve the "best of both worlds?" \rightarrow Block methods!

Block Methods (Ordered Subset Methods)

$$A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_p \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix}, \qquad A_{\ell} \in \mathbb{R}^{m_{\ell} \times n}, \quad \ell = 1, \dots, p,$$

In each iteration we can:

- Treat all blocks sequentially or simultaneously (i.e., in parallel).
- Treat *each block* by an iterative method or by a direct computation.

We obtain several methods:

- Sequential processing + ART on each block -> classical ART
- Sequential processing + SIRT on each block
- Sequential processing + pseudoinverse of A_{l}
- Parallel processing + ART on each block
- Parallel processing + SIRT on each block -> classical SIRT
- Parallel processing + pseudoinverse of A_{l}

Block-Sequential Methods

Initialization: choose an arbitrary $x^0 \in \mathbb{R}^n$ Iteration: for k = 0, 1, 2, ...

SART: Andersen, Kak (1984) Block-Iteration: Censor (1988)

$$z \leftarrow P(z + \omega A_{\ell}^T M_{\ell} (b_{\ell} - A_{\ell} z)), \quad \ell = 1, 2, \dots, p$$
$$x^{k+1} \leftarrow z$$

The convergence depends on the number of blocks *p*:

- > If p = 1, we recover Cimmino
- \blacktriangleright If p = m, we recover ART

Parallelism within each block of m/p rows

Variant by **Elfving** (1980): $M_{\ell} = (A_{\ell}A_{\ell}^T)^{\dagger} \Rightarrow A_{\ell}^T M_{\ell} = A_{\ell}^{\dagger}$

 $z \leftarrow x^k$

Block Sequential Performance

			BIOCK
	ART	Cimmino	Seq.
$m \times n$	t/iter	t/iter	t/iter
$13 \cdot 128^2 \times 64^3$	$0.08 \mathrm{\ s}$	0.04 s	$0.05~{ m s}$
$13\cdot 256^2\times 128^3$	$0.93 \mathrm{s}$	0.41 s	$0.48 \mathrm{\ s}$
$13\cdot 512^2\times 256^3$	$10.8 \mathrm{\ s}$	$4.12 \mathrm{~s}$	$4.36 \mathrm{s}$

- The "building blocks" are Cimminoiterations, suited for multicore.
- The error reduction per iteration is close to that of ART.

23/36 P. C. Hansen – ART Performance

Semi-Convergence

During the first iterations, the iterates x^k capture the "important" information in the noisy right-hand side b.

• In this phase, the iterates x^k approach the exact solution \bar{x} .

At later stages, the iterates starts to capture undesired noise components.

• Now the iterates x^k diverge from the exact solution and they approach the undesired solution $A^{-1}b$.

This behavior is called *semi-convergence*.

- **F.** Natterer, *The Mathematics of Computerized Tomography* (1986)
- A. van der Sluis & H. van der Vorst, SIRT- and CG-type methods for the iterative solution of sparse linear least-squares problems (1990)
- □ M. Bertero & P. Boccacci, *Inverse Problems in Imaging* (1998)
- □ M. Kilmer & G. W. Stewart, *Iterative Regularization And Minres* (1999)
- □ H. W. Engl, M. Hanke & A. Neubauer, *Regularization of Inverse Problems* (2000)

Illustration of Semi-Convergence

SSVM, June 2017

Analysis of Semi-Convergence

Let \bar{x} = solution to noise-free problem, and let x^k and \bar{x}^k denote the iterates when applying ART to b and $\bar{b} = A \bar{x}$:

$$\|\bar{x} - x^k\|_2 \square \|\bar{x} - \bar{x}^k\|_2 + \|\bar{x}_k - x^k\|_2$$

Iteration error Noise error

Convergence theory for ART for noise-free data is well established and ensures that the iteration error $\bar{x} - \bar{x}^k$ goes to zero. See the convegence results in the previous slides.

Our concern here is the noise error $e_{\rm N}^k = \bar{x}^k - x^k$. We wish to establish that it increases, and how fast.

Analysis of Semi-Convergence – Cimmino

Consider the Cimmino's methods with the SVD:

$$M^{1/2}A = U \Sigma V^T = \sum_{i=1}^n u_i \sigma_i v_i^T.$$

Then x^k is a filtered SVD solution:

$$x^{k} = \sum_{i=1}^{n} \varphi_{i}^{[k]} \, \frac{u_{i}^{T}(M^{\frac{1}{2}}b)}{\sigma_{i}} \, v_{i}, \qquad \varphi_{i}^{[k]} = 1 - \left(1 - \omega \, \sigma_{i}^{2}\right)^{k}.$$

Recall that we solve *noisy* systems A x = b with $b = A \overline{x} + e$. The *i*th component of the error, in the SVD basis, is

$$v_i^T(\bar{x} - x^k) = (1 - \varphi_i^{[k]}) v_i^T \bar{x} - \varphi_i^{[k]} \frac{u_i^T(M^{\frac{1}{2}}e)}{\sigma_i}.$$

Iteration error Noise error

Van der Sluis & Van der Vorst, 1990

The Behavior of the Filter Factors

Noise Error – Projected Cimmino

The iteration and noise error in *projected* Cimmino are bounded by

$$\begin{aligned} \|\bar{x} - \bar{x}^{k}\|_{2} & \Box & (1 - \omega \sigma_{n}^{2}) \|\bar{x} - x^{0}\|_{2} & \text{Elfving, H,} \\ & \sigma_{1} & 1 - (1 - \omega \sigma_{n}^{2})^{k} & \text{Nikazad,} \end{aligned}$$

$$\|\bar{x}^{\kappa} - x^{\kappa}\|_{2} \quad \Box \quad \frac{1}{\sigma_{n}} \frac{1}{\sigma_{n}} \frac{1}{\sigma_{n}} \|M^{1/2} \delta b\|_{2}.$$
 2012

As long as $\omega \sigma_n^2 \ll 1$ we have

 $\|\bar{x}^k - x^k\|_2 \approx k \,\omega \,\sigma_1 \|M^{1/2} \delta b\|_2.$

Noise Error – ART

ART is equivalent to applying SOR to $A A^T y = b$, $x = A^T y$. Splitting:

$$AA^T = L + D + L^T, \qquad \widehat{M} = (D + \omega L)^{-1},$$

where L is strictly lower triangular and $D = \text{diag}(||a_i||_2^2)$. Then:

$$x^{k+1} = x^k + \omega A^T \widehat{M} \left(b - A x^k \right) \,.$$

We introduce: $e = b - \overline{b} = \text{noise in data}, \quad Q = I - \omega A^T \widehat{M} A.$

Then simple manipulations show that the noise error is given by

$$\boldsymbol{e}_{\mathrm{N}}^{\boldsymbol{k}} = \boldsymbol{x}^{\boldsymbol{k}} - \bar{\boldsymbol{x}}^{\boldsymbol{k}} = Q \ \boldsymbol{e}_{k-1}^{\mathrm{N}} + \omega \boldsymbol{A}^{T} \widehat{\boldsymbol{M}} \boldsymbol{e} = \omega \sum_{j=1}^{k-1} Q^{j} \boldsymbol{A}^{T} \widehat{\boldsymbol{M}} \boldsymbol{e} \ .$$

After some work (see the paper) we obtain the bound

$$\|e_{\mathbf{N}}^{k}\|_{2} \approx \mathbf{k}\,\omega\,\|A^{T}\widehat{M}\,e\|_{2}.$$

Elfving, H, Nikazad, 2014

This also holds for *projected* ART provided that A and $\mathcal{P}_{\mathcal{C}}$ satisfy $y \in \mathcal{R}(A^T) \Rightarrow \mathcal{P}_{\mathcal{C}} y \in \mathcal{R}(A^T).$

Noise Error Analysis – A Tighter Bound

Further analysis (see the paper) shows that the noise error in ART is bounded above as:

 $\|e_{N}^{k}\|_{2} \quad \Box \quad \frac{1 - (1 - \omega \sigma_{\min}^{2})^{k}}{\sigma_{\min}} \frac{\|A^{T} \widehat{M} e\|_{2}}{\sigma_{\min}} + \mathcal{O}(\sigma_{\min}^{2}),$ $\sigma_{\min} = \text{ smallest singular value of } A.$ As long as $\omega \sigma_{\min}^{2} < 1$ we have $\frac{1 - (1 - \omega \sigma_{\min}^{2})^{k}}{\sigma_{\min}} \Box \sqrt{k} \sqrt{\omega}$ and thus

$$\|e_{\mathrm{N}}^{k}\|_{2} \Box \sqrt{k} \frac{\sqrt{\omega} \|A^{T} \widehat{M} e\|_{2}}{\sigma_{\mathrm{min}}} + \mathcal{O}(\sigma_{\mathrm{min}}^{2}).$$
Elfving, H,
Nikazad,
2012

Column Iterations

This algorithm operates on the columns a_j of A, instead of the rows. "Rows are red and columns are blue, ..."

This method always converges to a least squares solution, and it may also have an advantage from an implementation point of view.

- A. de la Garza, An iterative method for solving systems of linear equations, Oak Ridge, Report K-731, 1951.
- D. W. Watt, Column-relaxed algebraic reconstruction algorithm for tomography with noisy data, Appl. Opt. 33, 4420–4427, 1994.

The column-action method takes its basis in the simple coordinate descent optimization algorithm, in which each step is performed cyclically in the direction of the unit vectors

$$e_j = (\underbrace{0 \ 0 \ \cdots \ 0}_{j-1} \ 1 \ \underbrace{0 \ 0 \ \cdots \ 0}_{n-j-1}), \qquad j = 1, 2, \dots, n.$$

Derivation

The least-squares objective function is

$$f(x) = \frac{1}{2} ||Ax - b||_2^2.$$

At iteration k we consider the update

$$x^k + \alpha_k e_j, \qquad j = k \pmod{n}.$$

Step length α_k that gives maximum reduction in objective function:

$$\begin{aligned} \alpha_k &= \arg \min_{\alpha} \frac{1}{2} \|A \left(x^k + \alpha \, e_j \right) - b\|_2^2 \\ &= \arg \min_{\alpha} \frac{1}{2} \|\alpha \left(A \, e_j \right) - (b - A \, x^k)\|_2^2 \\ &= \arg \min_{\alpha} \frac{1}{2} \|a_j \, \alpha - (b - A \, x^k)\|_2^2. \end{aligned}$$

The minimizer is

$$\alpha_k = (a_j)^{\dagger} (b - A x^k) = \frac{a_j^T (b - A x^k)}{\|a_j\|_2^2} .$$

Formulation of the Algorithm

Hence we obtain the following overall algorithm (where again we have introduced a relaxation parameter ω_k and a projection $\mathcal{P}_{\mathcal{C}}$):

$$x^{0} = \text{initial vector}$$

for $k = 0, 1, 2, \dots$
$$j = k \pmod{n}$$

$$x^{k+1} = \mathcal{P}_{\mathcal{C}}\left(x^{k} + \omega_{k} \frac{a_{j}^{T}(b - A x^{k})}{\|a_{j}\|_{2}^{2}} e_{j}\right)$$

end

Note that the operation in the inner loop simply overwrites the jth element of the iteration vector with an updated value:

$$x_j \leftarrow \mathcal{P}_{\mathcal{C}}\left(x_j + \omega_k \frac{\boldsymbol{a}_j^T (b - A x^k)}{\|\boldsymbol{a}_j\|_2^2}\right).$$

Loping in the Column-Action Method

We can introduce a "loping" strategy where we don't update the solution element x_j^k if $d_j^k = \omega a_j^T r^{k,j} / ||a_j||_2^2$ is small. This will save computational work for blocks that are not updated.

For $k = 1, 2, 3, \ldots$ (cycles or outer iterations) Elfving, H, Nikazad, For $j = 1, 2, \ldots, n$ (inner iterations) 2016 $d_{i}^{k} = \omega a_{i}^{T} r^{k,j} / \|a_{j}\|_{2}^{2}$ If $||d_{i}^{k}||_{2} > \tau$ $x_i^{k+1} \leftarrow x_i^k + d_i^k$ $r^k \leftarrow r^k - a_j (x_j^{k+1} - x_j^k)$ End End $r^{k+1} \leftarrow r^k$

End

Numerical Results

Test image: phantomgallery('ppower', 75) from AIR Tools with large regions of zeros and nonzeros; A is 19080 × 5625.

Conclusions

DTU

- Algebraic methods are fascinating algorithms with important applications in computed tomography.
- Their convergence properties are well understood.
- Block-sequential methods: fast performance because they combine good intrinsic convergence with good utilization of hardware.
- Semi-convergence provides the necessary filtering effect.
- Semi-convergence is quite well understood.
- Column-action methods allow us to reduce computational work by skipping unnecessary updates.

