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About Me …

Interests: numerical methods for inverse problems and tomography, fast and 
reliable numerical regularization algorithms, matrix computations, image deblurring 
algorithms, signal processing, Matlab software, …

Forward problem
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Why are We Interested in ART?

There are many ways to compute reconstructions in tomography:
explicit inversion formulas, Bayesian methods,
algebraic iterative methods, variational formulations, . . .

I will focus on a particular algebraic iterative method, ART:

• surprisingly simple to formulate,

• has a simple geometric interpretation,

• works well for a number of applications,

• has fast initial convergence,

• easily allows simple constraints (e.g., nonnegativity).
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What is ART?
A simple iterative procedure for solving Ax = b where each iteration
updates x via sweeps over the rows aTi of the matrix A.

Kaczmarz (1937): orthogonally project x on the hyperplane defined by
aTi and the corresponding element bi of the right-hand side:

x← Pi x = x+
bi − aTi x
kaik22

ai , i = 1, 2, . . . ,m .

Gordon, Bender, Herman (1970): coined the term “ART” and intro-
duced a nonnegativity projection:

x← max

½
0 , x+

bi − aTi x
kaik22

ai

¾
, i = 1, 2, . . . ,m .

“ART” is now used synonymously with Kaczmarz’s formulation with
a relaxation parameter ωk and a projection PC on a convex set:

x← PC
µ
x+ ωk

bi − aTi x
kaik22

ai

¶
, i = 1, 2, . . . ,m .
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Software for ART

I am afraid that this list is far from complete.

• SNARK09: C++ package from NYU, 2D reconstructions.

• ASTRA: C++ & CUDA with Matlab wrapper,
from Antwerp + CWI.

• Image reconstruction toolbox: Matlab package from Prof. Jeff
Fessler, Univ. of Michigan

• AIR Tools: Matlab package from DTU.

• What did I miss?
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Some Interesting ART Topics
ART is a rich source for research problems!

This list is quite biased towards my own work with the AIR Tools.

• Semi-convergence theory.
• Implementation of block ART.
• Choice of relaxation paremter.
• Stopping Rules.
• Extensions and variations of ART.

This presentation
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Semi-Convergence

Notation: b = A x̄+ e, x̄ = exact solution, e = noise.

Initial iterations: the error kx̄− xkk2 decreases.
Later: the error increases as xk→ (weighted) least squares solution.

A few references:
 F. Natterer, The Mathematics of 

Computerized Tomography (1986)
 A. van der Sluis & H. van der Vorst, 

SIRT- and CG-type methods for the 
iterative solution of sparse linear
least-squares problems (1990)

 M. Bertero & P. Boccacci, Inverse 
Problems in Imaging (1998)

 M. Kilmer & G. W. Stewart, Iterative 
Regularization And Minres (1999)

 H. W. Engl, M. Hanke & A. Neubauer, 
Regularization of Inverse Problems
(2000)

kx̄
−
x
k
k 2
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Illustration of Semi-Convergence
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Analysis of Semi-Convergence for ART

Let x̄ be the solution to the noise-free problem, and let x̄k

denote the iterates when applying ART to b̄. Then

kxk − x̄k2 ≤ kxk − x̄kk2 + kx̄k − x̄k2 .
Noise error Iteration error

The convergence theory for ART is well established and en-
sures that the iteration error x̄k − x̄ goes to zero.

Our concern here is the noise error eNk = xk − x̄k. We wish to
establish that it increases, and how fast.

Elfving, H, Nikazad, Semi-convergence properties of Kaczmarzs method,
Inverse Problems, 30 (2014), DOI: 10.1088/0266-5611/30/5/055007.



Oberwolfach, August 201410/27 P. C. Hansen – ART Exhibit

Sidetrack: Noise Error for Landweber

The unprojected case:
xk is a filtered SVD solution:

With projection an SVD analysis is not possible; we obtain:

kxk − x̄kk2 ≤
σ1
σn

(1− ωσ2n)
k

σn
kbk2

and for ω σ2n ¿ 1 we have:

kxk − x̄kk2 ≈ ω k kAk2 kbk2.

xk =
Pn

i=1 ϕ
[k]
i

uTi b
σi
vi

ϕ
[k]
i = 1−

¡
1− ω σ2i

¢k
.

Filter factors ϕ
[k]
i = 1−

¡
1− ω σ2i

¢k

Elfving, H, Nikazad, 2012

Steepest descent for LSQ problem: xk+1 = PC
¡
xk + ωAT (b−Axk)

¢
.
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Noise Error for ART – No Projection

We introduce: e = b− b̄ = noise in data, Q = I − ωATM A.

ART is equivalent to applying SOR to AAT y = b, x = AT y. Splitting:

AAT = L+D + LT , M = (D + ωL)−1,

where L is strictly lower triangular and D = diag(kaik22). Then:
xk+1 = xk + ωATM (b−Axk) .

Then simple manipulations show that the noise error is given by

eNk = xk − x̄k = Q eNk−1 + ωATM e = ω
k−1X
j=1

QjATM e .

After some work (see the paper) we obtain the bound

keNk k2 ≤ ωδ
1− qk
1− q = ω k kATM ek2 +O(σ2r).
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Ψk for ω = 1

σr
σr
σr
σr

k

Noise Error Analysis – A Tighter Bound
Further analysis (see the paper) shows that the noise error in
ART is bounded above as:

keNk k2 ≤
kATM ek2

σr
Ψk +O(σ2r), Ψk =

1− (1− ωσ2r)
k

σr
.

As long as ωσ2r < 1 we have

Ψk ≤
√
ω
√
k

and thus

keNk k2 ≤
√
ωkATMek2

σr

√
k +O(σ2r).

This also holds for projected ART
provided that A and P satisfy

y ∈ R(AT ) ⇒ P(y) ∈ R(AT ).
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Numerical Results (‘paralleltomo’ from AIR Tools)

Test problem:

• 200200 phantom,
• 60 projections at
• 3,6,9,…,180,
 m = 15,232,
 n = 40,000.

We estimate
√
ωkATMek2

σr
≈ 107.

Hence our bound is a
wild over-estimate but
it correctly tracks the
noise error.

The point of semi-convergence arises when noise error  iteration error.

1% noise

5% noise

1% noise

5% noise
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Implementation Issues

Slow convergence.

ART can converge a 
lot faster than SIRT.

kx
k
−
x̄
k 2
/k
x̄
k 2

SIRT (Cimmino): x← P
¡
x+ ωATD−2(b−Ax)

¢
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Iterations k

Re
la

tiv
e 

er
ro

r

Test Problem:
• Parallel-beam tomography.
• 13 projections.
• 3D Shepp-Logan phantom, Schabel (2006).

kxk − x̄k2/kx̄k2

ART

Intel Xeon E5620
2.40 GHz (1 core)

Performance
1 core
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Performance
1 core

Intel Xeon E5620
2.40 GHz (1 core)

Same number of flops!
The difference is due to 
the cache: ART uses 
row ai twice once it is 
loaded.

ART SIRT
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Intel Xeon E5620
2.40 GHz (4 cores)

Performance
4 cores

ART
SIRT

Four cores are better 
suited for block matrix-
vector operations.

ART
SIRT
1 core 4 cores
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Our Dilemma

ART has faster convergence than SIRT – i.e., more reduction of 
the error per iteration.

SIRT can better take advantage of multi-core architecture than ART.

How to achieve the ”best of both worlds?”  Block methods!

H. H. B. Sørensen and P. C. Hansen, Multi-core performance of block 
algebraic iterative reconstruction methods, SIAM J. Sci. Comp., 36 
(2014), pp. C524–C546.
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Block Methods

In each iteration we can:
• Treat the blocks sequentially or simultaneously (i.e., in parallel).
• Treat each block by an iterative or by a direct computation.

We obtain several methods:
• Sequential processing + ART on each block  classical ART
• Sequential processing + SIRT on each block
• Sequential processing + pseudoinverse of Aℓ
• Parallel processing + ART on each block
• Parallel processing + SIRT on each block  classical SIRT
• Parallel processing + pseudoinverse of Aℓ
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The convergence depends on the number of blocks p:
 If p = 1, we recover SIRT
 If p = m, we recover ART

Block-Sequential Methods

SART: Andersen, Kak (1984)
Block-Iteration: Censor (1988)

Parallelism given by the tradeoff: 

Algorithm: Block-Sequential

Initialization: choose an arbitrary x0 ∈ Rn
Iteration: for k = 0, 1, 2, . . .

xk,0 = xk−1

xk,` = P
¡
xk,`−1 + ωAT` M` (b` − A` xk,`−1)

¢
, ` = 1, 2, . . . , p

xk = xk−1,p

M` = (A`A
T
` )
† ⇒ AT` M` = A

†
`

Variant by Elfving (1980):
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The convergence depends on p:
 If p = 1, we recover ART

 If p = m, we recover SIRT

Block-Parallel Methods

Algorithm: Block-Parallel

Initialization: choose an arbitrary x0 ∈ Rn
Iteration: for k = 0, 1, 2, . . .

for ` = 1, . . . , p execute in parallel

xk,` = ART-sweep(ω, A`, b`, x
k−1)

xk = 1/p
Pp

`=1 x
k,`.

Variants:
 Elfving (1980) – inner step: 

 CARP algorithm, Gordon & Gordon (2005): 
xk,` = P

¡
xk−1,` + ωA†`(b` −A` xk−1,`)

¢
xk =

Pp
`=1D` x

k,`, D` depends on sparsity structure

String-Averaging:
Censor, Elfving, Herman (2001)

Parallelism is given by: 
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Blocks of Structurally Orthogonal Rows

When a block has structurally orthogonal rows then ART, SIRT and 
”pinv” are equivalent. It is worthwhile to utilize this!

 PART algorithm, Gordon (2006)

In 3D tomography, it is easy to find sets of rows that are orthogonal 
due to the structure of zeros/nonzeros.

Thus, a re-ordering of the rows can produce blocks with mutually 
orthogonal rows (= the traces of rays are non-overlapping).
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Block Sequential

4 blocks

The ”building blocks” are 
SIRT iterations, suited 
for multicore.
The blocks are treated 
sequentailly!
Hence the error reduc-
tion per iteration is close 
to that of ART.

ART SIRT Block-Seq.

Intel Xeon 
E5620

2.40 GHz
(4 cores)
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Block Parallel

ART SIRT
Block
Seq.

Block
Par.

Intel Xeon 
E5620

2.40 GHz
(4 cores)

4 blocks
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Multi-Core Results – 4 Cores

Intel Core i7-3820 
3.60 GHz (4 cores) The advantage of PART over standard 

ART is due to the improved use of 
multicore architecture.

Block-Seq: block-sequential-SIRT
Block-Par: block-parallel-ART (Censor, Elfving, Herman)
CARP: block-parallel-ART (Gordon, Gordon)
PART – utilizes struct. orthog.
ART (1 thread)

1283 voxels
115 projections of

128×128 pixels
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Multi-Core Results – 32 Cores

4 socket AMD Opteron 6282 SE
2.60 GHz (32 cores) With many cores, 

PART is a clear winner.

Block-Seq: block-sequential-SIRT
Block-Par: block-parallel-ART (Censor, Elfving, Herman)
CARP: block-parallel-ART (Gordon, Gordon)
PART – utilizes struct. orthog.
ART (1 thread)

2563 voxels
133 projections of

256×256 pixels



Oberwolfach, August 201427/27 P. C. Hansen – ART Exhibit

Conclusions

 Block algebraic iterative reconstruction techniques are able to 
achieve initial convergence rate similar to that of ART,

 and with the smaller computing time of SIRT, because we can 
utilize the multicore architecture.

 With a suitable row ordering and choice of blocks, we can 
produce blocks of structurally orthogonal rows.

 PART has identical convergence to ART and very good scaling 
properties in practice.

 Next step: target GPUs (joint work with ASTRA group).


